process.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <linux/tracehook.h>
  32. #include <linux/rcupdate.h>
  33. #include <asm/cpu.h>
  34. #include <asm/delay.h>
  35. #include <asm/elf.h>
  36. #include <asm/irq.h>
  37. #include <asm/kexec.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sal.h>
  41. #include <asm/switch_to.h>
  42. #include <asm/tlbflush.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/unwind.h>
  45. #include <asm/user.h>
  46. #include "entry.h"
  47. #ifdef CONFIG_PERFMON
  48. # include <asm/perfmon.h>
  49. #endif
  50. #include "sigframe.h"
  51. void (*ia64_mark_idle)(int);
  52. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  53. EXPORT_SYMBOL(boot_option_idle_override);
  54. void (*pm_idle) (void);
  55. EXPORT_SYMBOL(pm_idle);
  56. void (*pm_power_off) (void);
  57. EXPORT_SYMBOL(pm_power_off);
  58. void
  59. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  60. {
  61. unsigned long ip, sp, bsp;
  62. char buf[128]; /* don't make it so big that it overflows the stack! */
  63. printk("\nCall Trace:\n");
  64. do {
  65. unw_get_ip(info, &ip);
  66. if (ip == 0)
  67. break;
  68. unw_get_sp(info, &sp);
  69. unw_get_bsp(info, &bsp);
  70. snprintf(buf, sizeof(buf),
  71. " [<%016lx>] %%s\n"
  72. " sp=%016lx bsp=%016lx\n",
  73. ip, sp, bsp);
  74. print_symbol(buf, ip);
  75. } while (unw_unwind(info) >= 0);
  76. }
  77. void
  78. show_stack (struct task_struct *task, unsigned long *sp)
  79. {
  80. if (!task)
  81. unw_init_running(ia64_do_show_stack, NULL);
  82. else {
  83. struct unw_frame_info info;
  84. unw_init_from_blocked_task(&info, task);
  85. ia64_do_show_stack(&info, NULL);
  86. }
  87. }
  88. void
  89. dump_stack (void)
  90. {
  91. show_stack(NULL, NULL);
  92. }
  93. EXPORT_SYMBOL(dump_stack);
  94. void
  95. show_regs (struct pt_regs *regs)
  96. {
  97. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  98. print_modules();
  99. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  100. smp_processor_id(), current->comm);
  101. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  102. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  103. init_utsname()->release);
  104. print_symbol("ip is at %s\n", ip);
  105. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  106. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  107. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  108. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  109. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  110. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  111. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  112. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  113. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  114. regs->f6.u.bits[1], regs->f6.u.bits[0],
  115. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  116. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  117. regs->f8.u.bits[1], regs->f8.u.bits[0],
  118. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  119. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  120. regs->f10.u.bits[1], regs->f10.u.bits[0],
  121. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  122. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  123. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  124. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  125. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  126. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  127. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  128. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  129. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  130. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  131. if (user_mode(regs)) {
  132. /* print the stacked registers */
  133. unsigned long val, *bsp, ndirty;
  134. int i, sof, is_nat = 0;
  135. sof = regs->cr_ifs & 0x7f; /* size of frame */
  136. ndirty = (regs->loadrs >> 19);
  137. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  138. for (i = 0; i < sof; ++i) {
  139. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  140. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  141. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  142. }
  143. } else
  144. show_stack(NULL, NULL);
  145. }
  146. /* local support for deprecated console_print */
  147. void
  148. console_print(const char *s)
  149. {
  150. printk(KERN_EMERG "%s", s);
  151. }
  152. void
  153. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  154. {
  155. if (fsys_mode(current, &scr->pt)) {
  156. /*
  157. * defer signal-handling etc. until we return to
  158. * privilege-level 0.
  159. */
  160. if (!ia64_psr(&scr->pt)->lp)
  161. ia64_psr(&scr->pt)->lp = 1;
  162. return;
  163. }
  164. #ifdef CONFIG_PERFMON
  165. if (current->thread.pfm_needs_checking)
  166. /*
  167. * Note: pfm_handle_work() allow us to call it with interrupts
  168. * disabled, and may enable interrupts within the function.
  169. */
  170. pfm_handle_work();
  171. #endif
  172. /* deal with pending signal delivery */
  173. if (test_thread_flag(TIF_SIGPENDING)) {
  174. local_irq_enable(); /* force interrupt enable */
  175. ia64_do_signal(scr, in_syscall);
  176. }
  177. if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
  178. local_irq_enable(); /* force interrupt enable */
  179. tracehook_notify_resume(&scr->pt);
  180. }
  181. /* copy user rbs to kernel rbs */
  182. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  183. local_irq_enable(); /* force interrupt enable */
  184. ia64_sync_krbs();
  185. }
  186. local_irq_disable(); /* force interrupt disable */
  187. }
  188. static int pal_halt = 1;
  189. static int can_do_pal_halt = 1;
  190. static int __init nohalt_setup(char * str)
  191. {
  192. pal_halt = can_do_pal_halt = 0;
  193. return 1;
  194. }
  195. __setup("nohalt", nohalt_setup);
  196. void
  197. update_pal_halt_status(int status)
  198. {
  199. can_do_pal_halt = pal_halt && status;
  200. }
  201. /*
  202. * We use this if we don't have any better idle routine..
  203. */
  204. void
  205. default_idle (void)
  206. {
  207. local_irq_enable();
  208. while (!need_resched()) {
  209. if (can_do_pal_halt) {
  210. local_irq_disable();
  211. if (!need_resched()) {
  212. safe_halt();
  213. }
  214. local_irq_enable();
  215. } else
  216. cpu_relax();
  217. }
  218. }
  219. #ifdef CONFIG_HOTPLUG_CPU
  220. /* We don't actually take CPU down, just spin without interrupts. */
  221. static inline void play_dead(void)
  222. {
  223. unsigned int this_cpu = smp_processor_id();
  224. /* Ack it */
  225. __get_cpu_var(cpu_state) = CPU_DEAD;
  226. max_xtp();
  227. local_irq_disable();
  228. idle_task_exit();
  229. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  230. /*
  231. * The above is a point of no-return, the processor is
  232. * expected to be in SAL loop now.
  233. */
  234. BUG();
  235. }
  236. #else
  237. static inline void play_dead(void)
  238. {
  239. BUG();
  240. }
  241. #endif /* CONFIG_HOTPLUG_CPU */
  242. void __attribute__((noreturn))
  243. cpu_idle (void)
  244. {
  245. void (*mark_idle)(int) = ia64_mark_idle;
  246. int cpu = smp_processor_id();
  247. /* endless idle loop with no priority at all */
  248. while (1) {
  249. rcu_idle_enter();
  250. if (can_do_pal_halt) {
  251. current_thread_info()->status &= ~TS_POLLING;
  252. /*
  253. * TS_POLLING-cleared state must be visible before we
  254. * test NEED_RESCHED:
  255. */
  256. smp_mb();
  257. } else {
  258. current_thread_info()->status |= TS_POLLING;
  259. }
  260. if (!need_resched()) {
  261. void (*idle)(void);
  262. #ifdef CONFIG_SMP
  263. min_xtp();
  264. #endif
  265. rmb();
  266. if (mark_idle)
  267. (*mark_idle)(1);
  268. idle = pm_idle;
  269. if (!idle)
  270. idle = default_idle;
  271. (*idle)();
  272. if (mark_idle)
  273. (*mark_idle)(0);
  274. #ifdef CONFIG_SMP
  275. normal_xtp();
  276. #endif
  277. }
  278. rcu_idle_exit();
  279. schedule_preempt_disabled();
  280. check_pgt_cache();
  281. if (cpu_is_offline(cpu))
  282. play_dead();
  283. }
  284. }
  285. void
  286. ia64_save_extra (struct task_struct *task)
  287. {
  288. #ifdef CONFIG_PERFMON
  289. unsigned long info;
  290. #endif
  291. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  292. ia64_save_debug_regs(&task->thread.dbr[0]);
  293. #ifdef CONFIG_PERFMON
  294. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  295. pfm_save_regs(task);
  296. info = __get_cpu_var(pfm_syst_info);
  297. if (info & PFM_CPUINFO_SYST_WIDE)
  298. pfm_syst_wide_update_task(task, info, 0);
  299. #endif
  300. }
  301. void
  302. ia64_load_extra (struct task_struct *task)
  303. {
  304. #ifdef CONFIG_PERFMON
  305. unsigned long info;
  306. #endif
  307. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  308. ia64_load_debug_regs(&task->thread.dbr[0]);
  309. #ifdef CONFIG_PERFMON
  310. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  311. pfm_load_regs(task);
  312. info = __get_cpu_var(pfm_syst_info);
  313. if (info & PFM_CPUINFO_SYST_WIDE)
  314. pfm_syst_wide_update_task(task, info, 1);
  315. #endif
  316. }
  317. /*
  318. * Copy the state of an ia-64 thread.
  319. *
  320. * We get here through the following call chain:
  321. *
  322. * from user-level: from kernel:
  323. *
  324. * <clone syscall> <some kernel call frames>
  325. * sys_clone :
  326. * do_fork do_fork
  327. * copy_thread copy_thread
  328. *
  329. * This means that the stack layout is as follows:
  330. *
  331. * +---------------------+ (highest addr)
  332. * | struct pt_regs |
  333. * +---------------------+
  334. * | struct switch_stack |
  335. * +---------------------+
  336. * | |
  337. * | memory stack |
  338. * | | <-- sp (lowest addr)
  339. * +---------------------+
  340. *
  341. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  342. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  343. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  344. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  345. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  346. * so there is nothing to worry about.
  347. */
  348. int
  349. copy_thread(unsigned long clone_flags,
  350. unsigned long user_stack_base, unsigned long user_stack_size,
  351. struct task_struct *p, struct pt_regs *regs)
  352. {
  353. extern char ia64_ret_from_clone;
  354. struct switch_stack *child_stack, *stack;
  355. unsigned long rbs, child_rbs, rbs_size;
  356. struct pt_regs *child_ptregs;
  357. int retval = 0;
  358. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  359. child_stack = (struct switch_stack *) child_ptregs - 1;
  360. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  361. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  362. /* copy parts of thread_struct: */
  363. p->thread.ksp = (unsigned long) child_stack - 16;
  364. /*
  365. * NOTE: The calling convention considers all floating point
  366. * registers in the high partition (fph) to be scratch. Since
  367. * the only way to get to this point is through a system call,
  368. * we know that the values in fph are all dead. Hence, there
  369. * is no need to inherit the fph state from the parent to the
  370. * child and all we have to do is to make sure that
  371. * IA64_THREAD_FPH_VALID is cleared in the child.
  372. *
  373. * XXX We could push this optimization a bit further by
  374. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  375. * However, it's not clear this is worth doing. Also, it
  376. * would be a slight deviation from the normal Linux system
  377. * call behavior where scratch registers are preserved across
  378. * system calls (unless used by the system call itself).
  379. */
  380. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  381. | IA64_THREAD_PM_VALID)
  382. # define THREAD_FLAGS_TO_SET 0
  383. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  384. | THREAD_FLAGS_TO_SET);
  385. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  386. if (unlikely(p->flags & PF_KTHREAD)) {
  387. if (unlikely(!user_stack_base)) {
  388. /* fork_idle() called us */
  389. return 0;
  390. }
  391. memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
  392. child_stack->r4 = user_stack_base; /* payload */
  393. child_stack->r5 = user_stack_size; /* argument */
  394. /*
  395. * Preserve PSR bits, except for bits 32-34 and 37-45,
  396. * which we can't read.
  397. */
  398. child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  399. /* mark as valid, empty frame */
  400. child_ptregs->cr_ifs = 1UL << 63;
  401. child_stack->ar_fpsr = child_ptregs->ar_fpsr
  402. = ia64_getreg(_IA64_REG_AR_FPSR);
  403. child_stack->pr = (1 << PRED_KERNEL_STACK);
  404. child_stack->ar_bspstore = child_rbs;
  405. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  406. /* stop some PSR bits from being inherited.
  407. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  408. * therefore we must specify them explicitly here and not include them in
  409. * IA64_PSR_BITS_TO_CLEAR.
  410. */
  411. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  412. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  413. return 0;
  414. }
  415. stack = ((struct switch_stack *) regs) - 1;
  416. /* copy parent's switch_stack & pt_regs to child: */
  417. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  418. /* copy the parent's register backing store to the child: */
  419. rbs_size = stack->ar_bspstore - rbs;
  420. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  421. if (clone_flags & CLONE_SETTLS)
  422. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  423. if (user_stack_base) {
  424. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  425. child_ptregs->ar_bspstore = user_stack_base;
  426. child_ptregs->ar_rnat = 0;
  427. child_ptregs->loadrs = 0;
  428. }
  429. child_stack->ar_bspstore = child_rbs + rbs_size;
  430. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  431. /* stop some PSR bits from being inherited.
  432. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  433. * therefore we must specify them explicitly here and not include them in
  434. * IA64_PSR_BITS_TO_CLEAR.
  435. */
  436. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  437. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  438. #ifdef CONFIG_PERFMON
  439. if (current->thread.pfm_context)
  440. pfm_inherit(p, child_ptregs);
  441. #endif
  442. return retval;
  443. }
  444. static void
  445. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  446. {
  447. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  448. unsigned long uninitialized_var(ip); /* GCC be quiet */
  449. elf_greg_t *dst = arg;
  450. struct pt_regs *pt;
  451. char nat;
  452. int i;
  453. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  454. if (unw_unwind_to_user(info) < 0)
  455. return;
  456. unw_get_sp(info, &sp);
  457. pt = (struct pt_regs *) (sp + 16);
  458. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  459. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  460. return;
  461. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  462. &ar_rnat);
  463. /*
  464. * coredump format:
  465. * r0-r31
  466. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  467. * predicate registers (p0-p63)
  468. * b0-b7
  469. * ip cfm user-mask
  470. * ar.rsc ar.bsp ar.bspstore ar.rnat
  471. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  472. */
  473. /* r0 is zero */
  474. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  475. unw_get_gr(info, i, &dst[i], &nat);
  476. if (nat)
  477. nat_bits |= mask;
  478. mask <<= 1;
  479. }
  480. dst[32] = nat_bits;
  481. unw_get_pr(info, &dst[33]);
  482. for (i = 0; i < 8; ++i)
  483. unw_get_br(info, i, &dst[34 + i]);
  484. unw_get_rp(info, &ip);
  485. dst[42] = ip + ia64_psr(pt)->ri;
  486. dst[43] = cfm;
  487. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  488. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  489. /*
  490. * For bsp and bspstore, unw_get_ar() would return the kernel
  491. * addresses, but we need the user-level addresses instead:
  492. */
  493. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  494. dst[47] = pt->ar_bspstore;
  495. dst[48] = ar_rnat;
  496. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  497. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  498. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  499. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  500. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  501. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  502. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  503. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  504. }
  505. void
  506. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  507. {
  508. elf_fpreg_t *dst = arg;
  509. int i;
  510. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  511. if (unw_unwind_to_user(info) < 0)
  512. return;
  513. /* f0 is 0.0, f1 is 1.0 */
  514. for (i = 2; i < 32; ++i)
  515. unw_get_fr(info, i, dst + i);
  516. ia64_flush_fph(task);
  517. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  518. memcpy(dst + 32, task->thread.fph, 96*16);
  519. }
  520. void
  521. do_copy_regs (struct unw_frame_info *info, void *arg)
  522. {
  523. do_copy_task_regs(current, info, arg);
  524. }
  525. void
  526. do_dump_fpu (struct unw_frame_info *info, void *arg)
  527. {
  528. do_dump_task_fpu(current, info, arg);
  529. }
  530. void
  531. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  532. {
  533. unw_init_running(do_copy_regs, dst);
  534. }
  535. int
  536. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  537. {
  538. unw_init_running(do_dump_fpu, dst);
  539. return 1; /* f0-f31 are always valid so we always return 1 */
  540. }
  541. /*
  542. * Flush thread state. This is called when a thread does an execve().
  543. */
  544. void
  545. flush_thread (void)
  546. {
  547. /* drop floating-point and debug-register state if it exists: */
  548. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  549. ia64_drop_fpu(current);
  550. }
  551. /*
  552. * Clean up state associated with current thread. This is called when
  553. * the thread calls exit().
  554. */
  555. void
  556. exit_thread (void)
  557. {
  558. ia64_drop_fpu(current);
  559. #ifdef CONFIG_PERFMON
  560. /* if needed, stop monitoring and flush state to perfmon context */
  561. if (current->thread.pfm_context)
  562. pfm_exit_thread(current);
  563. /* free debug register resources */
  564. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  565. pfm_release_debug_registers(current);
  566. #endif
  567. }
  568. unsigned long
  569. get_wchan (struct task_struct *p)
  570. {
  571. struct unw_frame_info info;
  572. unsigned long ip;
  573. int count = 0;
  574. if (!p || p == current || p->state == TASK_RUNNING)
  575. return 0;
  576. /*
  577. * Note: p may not be a blocked task (it could be current or
  578. * another process running on some other CPU. Rather than
  579. * trying to determine if p is really blocked, we just assume
  580. * it's blocked and rely on the unwind routines to fail
  581. * gracefully if the process wasn't really blocked after all.
  582. * --davidm 99/12/15
  583. */
  584. unw_init_from_blocked_task(&info, p);
  585. do {
  586. if (p->state == TASK_RUNNING)
  587. return 0;
  588. if (unw_unwind(&info) < 0)
  589. return 0;
  590. unw_get_ip(&info, &ip);
  591. if (!in_sched_functions(ip))
  592. return ip;
  593. } while (count++ < 16);
  594. return 0;
  595. }
  596. void
  597. cpu_halt (void)
  598. {
  599. pal_power_mgmt_info_u_t power_info[8];
  600. unsigned long min_power;
  601. int i, min_power_state;
  602. if (ia64_pal_halt_info(power_info) != 0)
  603. return;
  604. min_power_state = 0;
  605. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  606. for (i = 1; i < 8; ++i)
  607. if (power_info[i].pal_power_mgmt_info_s.im
  608. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  609. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  610. min_power_state = i;
  611. }
  612. while (1)
  613. ia64_pal_halt(min_power_state);
  614. }
  615. void machine_shutdown(void)
  616. {
  617. #ifdef CONFIG_HOTPLUG_CPU
  618. int cpu;
  619. for_each_online_cpu(cpu) {
  620. if (cpu != smp_processor_id())
  621. cpu_down(cpu);
  622. }
  623. #endif
  624. #ifdef CONFIG_KEXEC
  625. kexec_disable_iosapic();
  626. #endif
  627. }
  628. void
  629. machine_restart (char *restart_cmd)
  630. {
  631. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  632. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  633. }
  634. void
  635. machine_halt (void)
  636. {
  637. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  638. cpu_halt();
  639. }
  640. void
  641. machine_power_off (void)
  642. {
  643. if (pm_power_off)
  644. pm_power_off();
  645. machine_halt();
  646. }