tsc_32.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. #include <linux/sched.h>
  2. #include <linux/clocksource.h>
  3. #include <linux/workqueue.h>
  4. #include <linux/delay.h>
  5. #include <linux/cpufreq.h>
  6. #include <linux/jiffies.h>
  7. #include <linux/init.h>
  8. #include <linux/dmi.h>
  9. #include <linux/percpu.h>
  10. #include <asm/delay.h>
  11. #include <asm/tsc.h>
  12. #include <asm/io.h>
  13. #include <asm/timer.h>
  14. #include "mach_timer.h"
  15. static int tsc_disabled;
  16. /*
  17. * On some systems the TSC frequency does not
  18. * change with the cpu frequency. So we need
  19. * an extra value to store the TSC freq
  20. */
  21. unsigned int tsc_khz;
  22. EXPORT_SYMBOL_GPL(tsc_khz);
  23. #ifdef CONFIG_X86_TSC
  24. static int __init tsc_setup(char *str)
  25. {
  26. printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
  27. "cannot disable TSC completely.\n");
  28. tsc_disabled = 1;
  29. return 1;
  30. }
  31. #else
  32. /*
  33. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  34. * in cpu/common.c
  35. */
  36. static int __init tsc_setup(char *str)
  37. {
  38. setup_clear_cpu_cap(X86_FEATURE_TSC);
  39. return 1;
  40. }
  41. #endif
  42. __setup("notsc", tsc_setup);
  43. /*
  44. * code to mark and check if the TSC is unstable
  45. * due to cpufreq or due to unsynced TSCs
  46. */
  47. static int tsc_unstable;
  48. int check_tsc_unstable(void)
  49. {
  50. return tsc_unstable;
  51. }
  52. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  53. /* Accelerators for sched_clock()
  54. * convert from cycles(64bits) => nanoseconds (64bits)
  55. * basic equation:
  56. * ns = cycles / (freq / ns_per_sec)
  57. * ns = cycles * (ns_per_sec / freq)
  58. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  59. * ns = cycles * (10^6 / cpu_khz)
  60. *
  61. * Then we use scaling math (suggested by george@mvista.com) to get:
  62. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  63. * ns = cycles * cyc2ns_scale / SC
  64. *
  65. * And since SC is a constant power of two, we can convert the div
  66. * into a shift.
  67. *
  68. * We can use khz divisor instead of mhz to keep a better precision, since
  69. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  70. * (mathieu.desnoyers@polymtl.ca)
  71. *
  72. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  73. */
  74. DEFINE_PER_CPU(unsigned long, cyc2ns);
  75. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  76. {
  77. unsigned long long tsc_now, ns_now;
  78. unsigned long flags, *scale;
  79. local_irq_save(flags);
  80. sched_clock_idle_sleep_event();
  81. scale = &per_cpu(cyc2ns, cpu);
  82. rdtscll(tsc_now);
  83. ns_now = __cycles_2_ns(tsc_now);
  84. if (cpu_khz)
  85. *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
  86. /*
  87. * Start smoothly with the new frequency:
  88. */
  89. sched_clock_idle_wakeup_event(0);
  90. local_irq_restore(flags);
  91. }
  92. /*
  93. * Scheduler clock - returns current time in nanosec units.
  94. */
  95. unsigned long long native_sched_clock(void)
  96. {
  97. unsigned long long this_offset;
  98. /*
  99. * Fall back to jiffies if there's no TSC available:
  100. * ( But note that we still use it if the TSC is marked
  101. * unstable. We do this because unlike Time Of Day,
  102. * the scheduler clock tolerates small errors and it's
  103. * very important for it to be as fast as the platform
  104. * can achive it. )
  105. */
  106. if (unlikely(tsc_disabled))
  107. /* No locking but a rare wrong value is not a big deal: */
  108. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  109. /* read the Time Stamp Counter: */
  110. rdtscll(this_offset);
  111. /* return the value in ns */
  112. return cycles_2_ns(this_offset);
  113. }
  114. /* We need to define a real function for sched_clock, to override the
  115. weak default version */
  116. #ifdef CONFIG_PARAVIRT
  117. unsigned long long sched_clock(void)
  118. {
  119. return paravirt_sched_clock();
  120. }
  121. #else
  122. unsigned long long sched_clock(void)
  123. __attribute__((alias("native_sched_clock")));
  124. #endif
  125. unsigned long native_calculate_cpu_khz(void)
  126. {
  127. unsigned long long start, end;
  128. unsigned long count;
  129. u64 delta64 = (u64)ULLONG_MAX;
  130. int i;
  131. unsigned long flags;
  132. local_irq_save(flags);
  133. /* run 3 times to ensure the cache is warm and to get an accurate reading */
  134. for (i = 0; i < 3; i++) {
  135. mach_prepare_counter();
  136. rdtscll(start);
  137. mach_countup(&count);
  138. rdtscll(end);
  139. /*
  140. * Error: ECTCNEVERSET
  141. * The CTC wasn't reliable: we got a hit on the very first read,
  142. * or the CPU was so fast/slow that the quotient wouldn't fit in
  143. * 32 bits..
  144. */
  145. if (count <= 1)
  146. continue;
  147. /* cpu freq too slow: */
  148. if ((end - start) <= CALIBRATE_TIME_MSEC)
  149. continue;
  150. /*
  151. * We want the minimum time of all runs in case one of them
  152. * is inaccurate due to SMI or other delay
  153. */
  154. delta64 = min(delta64, (end - start));
  155. }
  156. /* cpu freq too fast (or every run was bad): */
  157. if (delta64 > (1ULL<<32))
  158. goto err;
  159. delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
  160. do_div(delta64,CALIBRATE_TIME_MSEC);
  161. local_irq_restore(flags);
  162. return (unsigned long)delta64;
  163. err:
  164. local_irq_restore(flags);
  165. return 0;
  166. }
  167. int recalibrate_cpu_khz(void)
  168. {
  169. #ifndef CONFIG_SMP
  170. unsigned long cpu_khz_old = cpu_khz;
  171. if (cpu_has_tsc) {
  172. cpu_khz = calculate_cpu_khz();
  173. tsc_khz = cpu_khz;
  174. cpu_data(0).loops_per_jiffy =
  175. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  176. cpu_khz_old, cpu_khz);
  177. return 0;
  178. } else
  179. return -ENODEV;
  180. #else
  181. return -ENODEV;
  182. #endif
  183. }
  184. EXPORT_SYMBOL(recalibrate_cpu_khz);
  185. #ifdef CONFIG_CPU_FREQ
  186. /*
  187. * if the CPU frequency is scaled, TSC-based delays will need a different
  188. * loops_per_jiffy value to function properly.
  189. */
  190. static unsigned int ref_freq;
  191. static unsigned long loops_per_jiffy_ref;
  192. static unsigned long cpu_khz_ref;
  193. static int
  194. time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
  195. {
  196. struct cpufreq_freqs *freq = data;
  197. if (!ref_freq) {
  198. if (!freq->old){
  199. ref_freq = freq->new;
  200. return 0;
  201. }
  202. ref_freq = freq->old;
  203. loops_per_jiffy_ref = cpu_data(freq->cpu).loops_per_jiffy;
  204. cpu_khz_ref = cpu_khz;
  205. }
  206. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  207. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  208. (val == CPUFREQ_RESUMECHANGE)) {
  209. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  210. cpu_data(freq->cpu).loops_per_jiffy =
  211. cpufreq_scale(loops_per_jiffy_ref,
  212. ref_freq, freq->new);
  213. if (cpu_khz) {
  214. if (num_online_cpus() == 1)
  215. cpu_khz = cpufreq_scale(cpu_khz_ref,
  216. ref_freq, freq->new);
  217. if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
  218. tsc_khz = cpu_khz;
  219. set_cyc2ns_scale(cpu_khz, freq->cpu);
  220. /*
  221. * TSC based sched_clock turns
  222. * to junk w/ cpufreq
  223. */
  224. mark_tsc_unstable("cpufreq changes");
  225. }
  226. }
  227. }
  228. return 0;
  229. }
  230. static struct notifier_block time_cpufreq_notifier_block = {
  231. .notifier_call = time_cpufreq_notifier
  232. };
  233. static int __init cpufreq_tsc(void)
  234. {
  235. return cpufreq_register_notifier(&time_cpufreq_notifier_block,
  236. CPUFREQ_TRANSITION_NOTIFIER);
  237. }
  238. core_initcall(cpufreq_tsc);
  239. #endif
  240. /* clock source code */
  241. static unsigned long current_tsc_khz;
  242. static struct clocksource clocksource_tsc;
  243. /*
  244. * We compare the TSC to the cycle_last value in the clocksource
  245. * structure to avoid a nasty time-warp issue. This can be observed in
  246. * a very small window right after one CPU updated cycle_last under
  247. * xtime lock and the other CPU reads a TSC value which is smaller
  248. * than the cycle_last reference value due to a TSC which is slighty
  249. * behind. This delta is nowhere else observable, but in that case it
  250. * results in a forward time jump in the range of hours due to the
  251. * unsigned delta calculation of the time keeping core code, which is
  252. * necessary to support wrapping clocksources like pm timer.
  253. */
  254. static cycle_t read_tsc(void)
  255. {
  256. cycle_t ret;
  257. rdtscll(ret);
  258. return ret >= clocksource_tsc.cycle_last ?
  259. ret : clocksource_tsc.cycle_last;
  260. }
  261. static struct clocksource clocksource_tsc = {
  262. .name = "tsc",
  263. .rating = 300,
  264. .read = read_tsc,
  265. .mask = CLOCKSOURCE_MASK(64),
  266. .mult = 0, /* to be set */
  267. .shift = 22,
  268. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  269. CLOCK_SOURCE_MUST_VERIFY,
  270. };
  271. void mark_tsc_unstable(char *reason)
  272. {
  273. if (!tsc_unstable) {
  274. tsc_unstable = 1;
  275. printk("Marking TSC unstable due to: %s.\n", reason);
  276. /* Can be called before registration */
  277. if (clocksource_tsc.mult)
  278. clocksource_change_rating(&clocksource_tsc, 0);
  279. else
  280. clocksource_tsc.rating = 0;
  281. }
  282. }
  283. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  284. static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
  285. {
  286. printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
  287. d->ident);
  288. tsc_unstable = 1;
  289. return 0;
  290. }
  291. /* List of systems that have known TSC problems */
  292. static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
  293. {
  294. .callback = dmi_mark_tsc_unstable,
  295. .ident = "IBM Thinkpad 380XD",
  296. .matches = {
  297. DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
  298. DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
  299. },
  300. },
  301. {}
  302. };
  303. /*
  304. * Make an educated guess if the TSC is trustworthy and synchronized
  305. * over all CPUs.
  306. */
  307. __cpuinit int unsynchronized_tsc(void)
  308. {
  309. if (!cpu_has_tsc || tsc_unstable)
  310. return 1;
  311. /* Anything with constant TSC should be synchronized */
  312. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  313. return 0;
  314. /*
  315. * Intel systems are normally all synchronized.
  316. * Exceptions must mark TSC as unstable:
  317. */
  318. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  319. /* assume multi socket systems are not synchronized: */
  320. if (num_possible_cpus() > 1)
  321. tsc_unstable = 1;
  322. }
  323. return tsc_unstable;
  324. }
  325. /*
  326. * Geode_LX - the OLPC CPU has a possibly a very reliable TSC
  327. */
  328. #ifdef CONFIG_MGEODE_LX
  329. /* RTSC counts during suspend */
  330. #define RTSC_SUSP 0x100
  331. static void __init check_geode_tsc_reliable(void)
  332. {
  333. unsigned long res_low, res_high;
  334. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  335. if (res_low & RTSC_SUSP)
  336. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  337. }
  338. #else
  339. static inline void check_geode_tsc_reliable(void) { }
  340. #endif
  341. void __init tsc_init(void)
  342. {
  343. int cpu;
  344. u64 lpj;
  345. if (!cpu_has_tsc || tsc_disabled) {
  346. /* Disable the TSC in case of !cpu_has_tsc */
  347. tsc_disabled = 1;
  348. return;
  349. }
  350. cpu_khz = calculate_cpu_khz();
  351. tsc_khz = cpu_khz;
  352. if (!cpu_khz) {
  353. mark_tsc_unstable("could not calculate TSC khz");
  354. /*
  355. * We need to disable the TSC completely in this case
  356. * to prevent sched_clock() from using it.
  357. */
  358. tsc_disabled = 1;
  359. return;
  360. }
  361. lpj = ((u64)tsc_khz * 1000);
  362. do_div(lpj, HZ);
  363. lpj_fine = lpj;
  364. printk("Detected %lu.%03lu MHz processor.\n",
  365. (unsigned long)cpu_khz / 1000,
  366. (unsigned long)cpu_khz % 1000);
  367. /*
  368. * Secondary CPUs do not run through tsc_init(), so set up
  369. * all the scale factors for all CPUs, assuming the same
  370. * speed as the bootup CPU. (cpufreq notifiers will fix this
  371. * up if their speed diverges)
  372. */
  373. for_each_possible_cpu(cpu)
  374. set_cyc2ns_scale(cpu_khz, cpu);
  375. use_tsc_delay();
  376. /* Check and install the TSC clocksource */
  377. dmi_check_system(bad_tsc_dmi_table);
  378. unsynchronized_tsc();
  379. check_geode_tsc_reliable();
  380. current_tsc_khz = tsc_khz;
  381. clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
  382. clocksource_tsc.shift);
  383. /* lower the rating if we already know its unstable: */
  384. if (check_tsc_unstable()) {
  385. clocksource_tsc.rating = 0;
  386. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  387. }
  388. clocksource_register(&clocksource_tsc);
  389. }