cpuset.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/module.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Workqueue for cpuset related tasks.
  62. *
  63. * Using kevent workqueue may cause deadlock when memory_migrate
  64. * is set. So we create a separate workqueue thread for cpuset.
  65. */
  66. static struct workqueue_struct *cpuset_wq;
  67. /*
  68. * Tracks how many cpusets are currently defined in system.
  69. * When there is only one cpuset (the root cpuset) we can
  70. * short circuit some hooks.
  71. */
  72. int number_of_cpusets __read_mostly;
  73. /* Forward declare cgroup structures */
  74. struct cgroup_subsys cpuset_subsys;
  75. struct cpuset;
  76. /* See "Frequency meter" comments, below. */
  77. struct fmeter {
  78. int cnt; /* unprocessed events count */
  79. int val; /* most recent output value */
  80. time_t time; /* clock (secs) when val computed */
  81. spinlock_t lock; /* guards read or write of above */
  82. };
  83. struct cpuset {
  84. struct cgroup_subsys_state css;
  85. unsigned long flags; /* "unsigned long" so bitops work */
  86. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  87. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  88. struct cpuset *parent; /* my parent */
  89. /*
  90. * Copy of global cpuset_mems_generation as of the most
  91. * recent time this cpuset changed its mems_allowed.
  92. */
  93. int mems_generation;
  94. struct fmeter fmeter; /* memory_pressure filter */
  95. /* partition number for rebuild_sched_domains() */
  96. int pn;
  97. /* for custom sched domain */
  98. int relax_domain_level;
  99. /* used for walking a cpuset heirarchy */
  100. struct list_head stack_list;
  101. };
  102. /* Retrieve the cpuset for a cgroup */
  103. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  104. {
  105. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  106. struct cpuset, css);
  107. }
  108. /* Retrieve the cpuset for a task */
  109. static inline struct cpuset *task_cs(struct task_struct *task)
  110. {
  111. return container_of(task_subsys_state(task, cpuset_subsys_id),
  112. struct cpuset, css);
  113. }
  114. /* bits in struct cpuset flags field */
  115. typedef enum {
  116. CS_CPU_EXCLUSIVE,
  117. CS_MEM_EXCLUSIVE,
  118. CS_MEM_HARDWALL,
  119. CS_MEMORY_MIGRATE,
  120. CS_SCHED_LOAD_BALANCE,
  121. CS_SPREAD_PAGE,
  122. CS_SPREAD_SLAB,
  123. } cpuset_flagbits_t;
  124. /* convenient tests for these bits */
  125. static inline int is_cpu_exclusive(const struct cpuset *cs)
  126. {
  127. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  128. }
  129. static inline int is_mem_exclusive(const struct cpuset *cs)
  130. {
  131. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  132. }
  133. static inline int is_mem_hardwall(const struct cpuset *cs)
  134. {
  135. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  136. }
  137. static inline int is_sched_load_balance(const struct cpuset *cs)
  138. {
  139. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  140. }
  141. static inline int is_memory_migrate(const struct cpuset *cs)
  142. {
  143. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  144. }
  145. static inline int is_spread_page(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  148. }
  149. static inline int is_spread_slab(const struct cpuset *cs)
  150. {
  151. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  152. }
  153. /*
  154. * Increment this integer everytime any cpuset changes its
  155. * mems_allowed value. Users of cpusets can track this generation
  156. * number, and avoid having to lock and reload mems_allowed unless
  157. * the cpuset they're using changes generation.
  158. *
  159. * A single, global generation is needed because cpuset_attach_task() could
  160. * reattach a task to a different cpuset, which must not have its
  161. * generation numbers aliased with those of that tasks previous cpuset.
  162. *
  163. * Generations are needed for mems_allowed because one task cannot
  164. * modify another's memory placement. So we must enable every task,
  165. * on every visit to __alloc_pages(), to efficiently check whether
  166. * its current->cpuset->mems_allowed has changed, requiring an update
  167. * of its current->mems_allowed.
  168. *
  169. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  170. * there is no need to mark it atomic.
  171. */
  172. static int cpuset_mems_generation;
  173. static struct cpuset top_cpuset = {
  174. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  175. };
  176. /*
  177. * There are two global mutexes guarding cpuset structures. The first
  178. * is the main control groups cgroup_mutex, accessed via
  179. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  180. * callback_mutex, below. They can nest. It is ok to first take
  181. * cgroup_mutex, then nest callback_mutex. We also require taking
  182. * task_lock() when dereferencing a task's cpuset pointer. See "The
  183. * task_lock() exception", at the end of this comment.
  184. *
  185. * A task must hold both mutexes to modify cpusets. If a task
  186. * holds cgroup_mutex, then it blocks others wanting that mutex,
  187. * ensuring that it is the only task able to also acquire callback_mutex
  188. * and be able to modify cpusets. It can perform various checks on
  189. * the cpuset structure first, knowing nothing will change. It can
  190. * also allocate memory while just holding cgroup_mutex. While it is
  191. * performing these checks, various callback routines can briefly
  192. * acquire callback_mutex to query cpusets. Once it is ready to make
  193. * the changes, it takes callback_mutex, blocking everyone else.
  194. *
  195. * Calls to the kernel memory allocator can not be made while holding
  196. * callback_mutex, as that would risk double tripping on callback_mutex
  197. * from one of the callbacks into the cpuset code from within
  198. * __alloc_pages().
  199. *
  200. * If a task is only holding callback_mutex, then it has read-only
  201. * access to cpusets.
  202. *
  203. * The task_struct fields mems_allowed and mems_generation may only
  204. * be accessed in the context of that task, so require no locks.
  205. *
  206. * The cpuset_common_file_read() handlers only hold callback_mutex across
  207. * small pieces of code, such as when reading out possibly multi-word
  208. * cpumasks and nodemasks.
  209. *
  210. * Accessing a task's cpuset should be done in accordance with the
  211. * guidelines for accessing subsystem state in kernel/cgroup.c
  212. */
  213. static DEFINE_MUTEX(callback_mutex);
  214. /*
  215. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  216. * buffers. They are statically allocated to prevent using excess stack
  217. * when calling cpuset_print_task_mems_allowed().
  218. */
  219. #define CPUSET_NAME_LEN (128)
  220. #define CPUSET_NODELIST_LEN (256)
  221. static char cpuset_name[CPUSET_NAME_LEN];
  222. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  223. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  224. /*
  225. * This is ugly, but preserves the userspace API for existing cpuset
  226. * users. If someone tries to mount the "cpuset" filesystem, we
  227. * silently switch it to mount "cgroup" instead
  228. */
  229. static int cpuset_get_sb(struct file_system_type *fs_type,
  230. int flags, const char *unused_dev_name,
  231. void *data, struct vfsmount *mnt)
  232. {
  233. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  234. int ret = -ENODEV;
  235. if (cgroup_fs) {
  236. char mountopts[] =
  237. "cpuset,noprefix,"
  238. "release_agent=/sbin/cpuset_release_agent";
  239. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  240. unused_dev_name, mountopts, mnt);
  241. put_filesystem(cgroup_fs);
  242. }
  243. return ret;
  244. }
  245. static struct file_system_type cpuset_fs_type = {
  246. .name = "cpuset",
  247. .get_sb = cpuset_get_sb,
  248. };
  249. /*
  250. * Return in pmask the portion of a cpusets's cpus_allowed that
  251. * are online. If none are online, walk up the cpuset hierarchy
  252. * until we find one that does have some online cpus. If we get
  253. * all the way to the top and still haven't found any online cpus,
  254. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  255. * task, return cpu_online_map.
  256. *
  257. * One way or another, we guarantee to return some non-empty subset
  258. * of cpu_online_map.
  259. *
  260. * Call with callback_mutex held.
  261. */
  262. static void guarantee_online_cpus(const struct cpuset *cs,
  263. struct cpumask *pmask)
  264. {
  265. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  266. cs = cs->parent;
  267. if (cs)
  268. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  269. else
  270. cpumask_copy(pmask, cpu_online_mask);
  271. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  272. }
  273. /*
  274. * Return in *pmask the portion of a cpusets's mems_allowed that
  275. * are online, with memory. If none are online with memory, walk
  276. * up the cpuset hierarchy until we find one that does have some
  277. * online mems. If we get all the way to the top and still haven't
  278. * found any online mems, return node_states[N_HIGH_MEMORY].
  279. *
  280. * One way or another, we guarantee to return some non-empty subset
  281. * of node_states[N_HIGH_MEMORY].
  282. *
  283. * Call with callback_mutex held.
  284. */
  285. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  286. {
  287. while (cs && !nodes_intersects(cs->mems_allowed,
  288. node_states[N_HIGH_MEMORY]))
  289. cs = cs->parent;
  290. if (cs)
  291. nodes_and(*pmask, cs->mems_allowed,
  292. node_states[N_HIGH_MEMORY]);
  293. else
  294. *pmask = node_states[N_HIGH_MEMORY];
  295. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  296. }
  297. /*
  298. * update task's spread flag if cpuset's page/slab spread flag is set
  299. *
  300. * Called with callback_mutex/cgroup_mutex held
  301. */
  302. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  303. struct task_struct *tsk)
  304. {
  305. if (is_spread_page(cs))
  306. tsk->flags |= PF_SPREAD_PAGE;
  307. else
  308. tsk->flags &= ~PF_SPREAD_PAGE;
  309. if (is_spread_slab(cs))
  310. tsk->flags |= PF_SPREAD_SLAB;
  311. else
  312. tsk->flags &= ~PF_SPREAD_SLAB;
  313. }
  314. /**
  315. * cpuset_update_task_memory_state - update task memory placement
  316. *
  317. * If the current tasks cpusets mems_allowed changed behind our
  318. * backs, update current->mems_allowed, mems_generation and task NUMA
  319. * mempolicy to the new value.
  320. *
  321. * Task mempolicy is updated by rebinding it relative to the
  322. * current->cpuset if a task has its memory placement changed.
  323. * Do not call this routine if in_interrupt().
  324. *
  325. * Call without callback_mutex or task_lock() held. May be
  326. * called with or without cgroup_mutex held. Thanks in part to
  327. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  328. * be NULL. This routine also might acquire callback_mutex during
  329. * call.
  330. *
  331. * Reading current->cpuset->mems_generation doesn't need task_lock
  332. * to guard the current->cpuset derefence, because it is guarded
  333. * from concurrent freeing of current->cpuset using RCU.
  334. *
  335. * The rcu_dereference() is technically probably not needed,
  336. * as I don't actually mind if I see a new cpuset pointer but
  337. * an old value of mems_generation. However this really only
  338. * matters on alpha systems using cpusets heavily. If I dropped
  339. * that rcu_dereference(), it would save them a memory barrier.
  340. * For all other arch's, rcu_dereference is a no-op anyway, and for
  341. * alpha systems not using cpusets, another planned optimization,
  342. * avoiding the rcu critical section for tasks in the root cpuset
  343. * which is statically allocated, so can't vanish, will make this
  344. * irrelevant. Better to use RCU as intended, than to engage in
  345. * some cute trick to save a memory barrier that is impossible to
  346. * test, for alpha systems using cpusets heavily, which might not
  347. * even exist.
  348. *
  349. * This routine is needed to update the per-task mems_allowed data,
  350. * within the tasks context, when it is trying to allocate memory
  351. * (in various mm/mempolicy.c routines) and notices that some other
  352. * task has been modifying its cpuset.
  353. */
  354. void cpuset_update_task_memory_state(void)
  355. {
  356. int my_cpusets_mem_gen;
  357. struct task_struct *tsk = current;
  358. struct cpuset *cs;
  359. rcu_read_lock();
  360. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  361. rcu_read_unlock();
  362. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  363. mutex_lock(&callback_mutex);
  364. task_lock(tsk);
  365. cs = task_cs(tsk); /* Maybe changed when task not locked */
  366. guarantee_online_mems(cs, &tsk->mems_allowed);
  367. tsk->cpuset_mems_generation = cs->mems_generation;
  368. cpuset_update_task_spread_flag(cs, tsk);
  369. task_unlock(tsk);
  370. mutex_unlock(&callback_mutex);
  371. mpol_rebind_task(tsk, &tsk->mems_allowed);
  372. }
  373. }
  374. /*
  375. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  376. *
  377. * One cpuset is a subset of another if all its allowed CPUs and
  378. * Memory Nodes are a subset of the other, and its exclusive flags
  379. * are only set if the other's are set. Call holding cgroup_mutex.
  380. */
  381. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  382. {
  383. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  384. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  385. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  386. is_mem_exclusive(p) <= is_mem_exclusive(q);
  387. }
  388. /**
  389. * alloc_trial_cpuset - allocate a trial cpuset
  390. * @cs: the cpuset that the trial cpuset duplicates
  391. */
  392. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  393. {
  394. struct cpuset *trial;
  395. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  396. if (!trial)
  397. return NULL;
  398. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  399. kfree(trial);
  400. return NULL;
  401. }
  402. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  403. return trial;
  404. }
  405. /**
  406. * free_trial_cpuset - free the trial cpuset
  407. * @trial: the trial cpuset to be freed
  408. */
  409. static void free_trial_cpuset(struct cpuset *trial)
  410. {
  411. free_cpumask_var(trial->cpus_allowed);
  412. kfree(trial);
  413. }
  414. /*
  415. * validate_change() - Used to validate that any proposed cpuset change
  416. * follows the structural rules for cpusets.
  417. *
  418. * If we replaced the flag and mask values of the current cpuset
  419. * (cur) with those values in the trial cpuset (trial), would
  420. * our various subset and exclusive rules still be valid? Presumes
  421. * cgroup_mutex held.
  422. *
  423. * 'cur' is the address of an actual, in-use cpuset. Operations
  424. * such as list traversal that depend on the actual address of the
  425. * cpuset in the list must use cur below, not trial.
  426. *
  427. * 'trial' is the address of bulk structure copy of cur, with
  428. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  429. * or flags changed to new, trial values.
  430. *
  431. * Return 0 if valid, -errno if not.
  432. */
  433. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  434. {
  435. struct cgroup *cont;
  436. struct cpuset *c, *par;
  437. /* Each of our child cpusets must be a subset of us */
  438. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  439. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  440. return -EBUSY;
  441. }
  442. /* Remaining checks don't apply to root cpuset */
  443. if (cur == &top_cpuset)
  444. return 0;
  445. par = cur->parent;
  446. /* We must be a subset of our parent cpuset */
  447. if (!is_cpuset_subset(trial, par))
  448. return -EACCES;
  449. /*
  450. * If either I or some sibling (!= me) is exclusive, we can't
  451. * overlap
  452. */
  453. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  454. c = cgroup_cs(cont);
  455. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  456. c != cur &&
  457. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  458. return -EINVAL;
  459. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  460. c != cur &&
  461. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  462. return -EINVAL;
  463. }
  464. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  465. if (cgroup_task_count(cur->css.cgroup)) {
  466. if (cpumask_empty(trial->cpus_allowed) ||
  467. nodes_empty(trial->mems_allowed)) {
  468. return -ENOSPC;
  469. }
  470. }
  471. return 0;
  472. }
  473. #ifdef CONFIG_SMP
  474. /*
  475. * Helper routine for generate_sched_domains().
  476. * Do cpusets a, b have overlapping cpus_allowed masks?
  477. */
  478. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  479. {
  480. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  481. }
  482. static void
  483. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  484. {
  485. if (dattr->relax_domain_level < c->relax_domain_level)
  486. dattr->relax_domain_level = c->relax_domain_level;
  487. return;
  488. }
  489. static void
  490. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  491. {
  492. LIST_HEAD(q);
  493. list_add(&c->stack_list, &q);
  494. while (!list_empty(&q)) {
  495. struct cpuset *cp;
  496. struct cgroup *cont;
  497. struct cpuset *child;
  498. cp = list_first_entry(&q, struct cpuset, stack_list);
  499. list_del(q.next);
  500. if (cpumask_empty(cp->cpus_allowed))
  501. continue;
  502. if (is_sched_load_balance(cp))
  503. update_domain_attr(dattr, cp);
  504. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  505. child = cgroup_cs(cont);
  506. list_add_tail(&child->stack_list, &q);
  507. }
  508. }
  509. }
  510. /*
  511. * generate_sched_domains()
  512. *
  513. * This function builds a partial partition of the systems CPUs
  514. * A 'partial partition' is a set of non-overlapping subsets whose
  515. * union is a subset of that set.
  516. * The output of this function needs to be passed to kernel/sched.c
  517. * partition_sched_domains() routine, which will rebuild the scheduler's
  518. * load balancing domains (sched domains) as specified by that partial
  519. * partition.
  520. *
  521. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  522. * for a background explanation of this.
  523. *
  524. * Does not return errors, on the theory that the callers of this
  525. * routine would rather not worry about failures to rebuild sched
  526. * domains when operating in the severe memory shortage situations
  527. * that could cause allocation failures below.
  528. *
  529. * Must be called with cgroup_lock held.
  530. *
  531. * The three key local variables below are:
  532. * q - a linked-list queue of cpuset pointers, used to implement a
  533. * top-down scan of all cpusets. This scan loads a pointer
  534. * to each cpuset marked is_sched_load_balance into the
  535. * array 'csa'. For our purposes, rebuilding the schedulers
  536. * sched domains, we can ignore !is_sched_load_balance cpusets.
  537. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  538. * that need to be load balanced, for convenient iterative
  539. * access by the subsequent code that finds the best partition,
  540. * i.e the set of domains (subsets) of CPUs such that the
  541. * cpus_allowed of every cpuset marked is_sched_load_balance
  542. * is a subset of one of these domains, while there are as
  543. * many such domains as possible, each as small as possible.
  544. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  545. * the kernel/sched.c routine partition_sched_domains() in a
  546. * convenient format, that can be easily compared to the prior
  547. * value to determine what partition elements (sched domains)
  548. * were changed (added or removed.)
  549. *
  550. * Finding the best partition (set of domains):
  551. * The triple nested loops below over i, j, k scan over the
  552. * load balanced cpusets (using the array of cpuset pointers in
  553. * csa[]) looking for pairs of cpusets that have overlapping
  554. * cpus_allowed, but which don't have the same 'pn' partition
  555. * number and gives them in the same partition number. It keeps
  556. * looping on the 'restart' label until it can no longer find
  557. * any such pairs.
  558. *
  559. * The union of the cpus_allowed masks from the set of
  560. * all cpusets having the same 'pn' value then form the one
  561. * element of the partition (one sched domain) to be passed to
  562. * partition_sched_domains().
  563. */
  564. /* FIXME: see the FIXME in partition_sched_domains() */
  565. static int generate_sched_domains(struct cpumask **domains,
  566. struct sched_domain_attr **attributes)
  567. {
  568. LIST_HEAD(q); /* queue of cpusets to be scanned */
  569. struct cpuset *cp; /* scans q */
  570. struct cpuset **csa; /* array of all cpuset ptrs */
  571. int csn; /* how many cpuset ptrs in csa so far */
  572. int i, j, k; /* indices for partition finding loops */
  573. struct cpumask *doms; /* resulting partition; i.e. sched domains */
  574. struct sched_domain_attr *dattr; /* attributes for custom domains */
  575. int ndoms = 0; /* number of sched domains in result */
  576. int nslot; /* next empty doms[] struct cpumask slot */
  577. doms = NULL;
  578. dattr = NULL;
  579. csa = NULL;
  580. /* Special case for the 99% of systems with one, full, sched domain */
  581. if (is_sched_load_balance(&top_cpuset)) {
  582. doms = kmalloc(cpumask_size(), GFP_KERNEL);
  583. if (!doms)
  584. goto done;
  585. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  586. if (dattr) {
  587. *dattr = SD_ATTR_INIT;
  588. update_domain_attr_tree(dattr, &top_cpuset);
  589. }
  590. cpumask_copy(doms, top_cpuset.cpus_allowed);
  591. ndoms = 1;
  592. goto done;
  593. }
  594. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  595. if (!csa)
  596. goto done;
  597. csn = 0;
  598. list_add(&top_cpuset.stack_list, &q);
  599. while (!list_empty(&q)) {
  600. struct cgroup *cont;
  601. struct cpuset *child; /* scans child cpusets of cp */
  602. cp = list_first_entry(&q, struct cpuset, stack_list);
  603. list_del(q.next);
  604. if (cpumask_empty(cp->cpus_allowed))
  605. continue;
  606. /*
  607. * All child cpusets contain a subset of the parent's cpus, so
  608. * just skip them, and then we call update_domain_attr_tree()
  609. * to calc relax_domain_level of the corresponding sched
  610. * domain.
  611. */
  612. if (is_sched_load_balance(cp)) {
  613. csa[csn++] = cp;
  614. continue;
  615. }
  616. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  617. child = cgroup_cs(cont);
  618. list_add_tail(&child->stack_list, &q);
  619. }
  620. }
  621. for (i = 0; i < csn; i++)
  622. csa[i]->pn = i;
  623. ndoms = csn;
  624. restart:
  625. /* Find the best partition (set of sched domains) */
  626. for (i = 0; i < csn; i++) {
  627. struct cpuset *a = csa[i];
  628. int apn = a->pn;
  629. for (j = 0; j < csn; j++) {
  630. struct cpuset *b = csa[j];
  631. int bpn = b->pn;
  632. if (apn != bpn && cpusets_overlap(a, b)) {
  633. for (k = 0; k < csn; k++) {
  634. struct cpuset *c = csa[k];
  635. if (c->pn == bpn)
  636. c->pn = apn;
  637. }
  638. ndoms--; /* one less element */
  639. goto restart;
  640. }
  641. }
  642. }
  643. /*
  644. * Now we know how many domains to create.
  645. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  646. */
  647. doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
  648. if (!doms)
  649. goto done;
  650. /*
  651. * The rest of the code, including the scheduler, can deal with
  652. * dattr==NULL case. No need to abort if alloc fails.
  653. */
  654. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  655. for (nslot = 0, i = 0; i < csn; i++) {
  656. struct cpuset *a = csa[i];
  657. struct cpumask *dp;
  658. int apn = a->pn;
  659. if (apn < 0) {
  660. /* Skip completed partitions */
  661. continue;
  662. }
  663. dp = doms + nslot;
  664. if (nslot == ndoms) {
  665. static int warnings = 10;
  666. if (warnings) {
  667. printk(KERN_WARNING
  668. "rebuild_sched_domains confused:"
  669. " nslot %d, ndoms %d, csn %d, i %d,"
  670. " apn %d\n",
  671. nslot, ndoms, csn, i, apn);
  672. warnings--;
  673. }
  674. continue;
  675. }
  676. cpumask_clear(dp);
  677. if (dattr)
  678. *(dattr + nslot) = SD_ATTR_INIT;
  679. for (j = i; j < csn; j++) {
  680. struct cpuset *b = csa[j];
  681. if (apn == b->pn) {
  682. cpumask_or(dp, dp, b->cpus_allowed);
  683. if (dattr)
  684. update_domain_attr_tree(dattr + nslot, b);
  685. /* Done with this partition */
  686. b->pn = -1;
  687. }
  688. }
  689. nslot++;
  690. }
  691. BUG_ON(nslot != ndoms);
  692. done:
  693. kfree(csa);
  694. /*
  695. * Fallback to the default domain if kmalloc() failed.
  696. * See comments in partition_sched_domains().
  697. */
  698. if (doms == NULL)
  699. ndoms = 1;
  700. *domains = doms;
  701. *attributes = dattr;
  702. return ndoms;
  703. }
  704. /*
  705. * Rebuild scheduler domains.
  706. *
  707. * Call with neither cgroup_mutex held nor within get_online_cpus().
  708. * Takes both cgroup_mutex and get_online_cpus().
  709. *
  710. * Cannot be directly called from cpuset code handling changes
  711. * to the cpuset pseudo-filesystem, because it cannot be called
  712. * from code that already holds cgroup_mutex.
  713. */
  714. static void do_rebuild_sched_domains(struct work_struct *unused)
  715. {
  716. struct sched_domain_attr *attr;
  717. struct cpumask *doms;
  718. int ndoms;
  719. get_online_cpus();
  720. /* Generate domain masks and attrs */
  721. cgroup_lock();
  722. ndoms = generate_sched_domains(&doms, &attr);
  723. cgroup_unlock();
  724. /* Have scheduler rebuild the domains */
  725. partition_sched_domains(ndoms, doms, attr);
  726. put_online_cpus();
  727. }
  728. #else /* !CONFIG_SMP */
  729. static void do_rebuild_sched_domains(struct work_struct *unused)
  730. {
  731. }
  732. static int generate_sched_domains(struct cpumask **domains,
  733. struct sched_domain_attr **attributes)
  734. {
  735. *domains = NULL;
  736. return 1;
  737. }
  738. #endif /* CONFIG_SMP */
  739. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  740. /*
  741. * Rebuild scheduler domains, asynchronously via workqueue.
  742. *
  743. * If the flag 'sched_load_balance' of any cpuset with non-empty
  744. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  745. * which has that flag enabled, or if any cpuset with a non-empty
  746. * 'cpus' is removed, then call this routine to rebuild the
  747. * scheduler's dynamic sched domains.
  748. *
  749. * The rebuild_sched_domains() and partition_sched_domains()
  750. * routines must nest cgroup_lock() inside get_online_cpus(),
  751. * but such cpuset changes as these must nest that locking the
  752. * other way, holding cgroup_lock() for much of the code.
  753. *
  754. * So in order to avoid an ABBA deadlock, the cpuset code handling
  755. * these user changes delegates the actual sched domain rebuilding
  756. * to a separate workqueue thread, which ends up processing the
  757. * above do_rebuild_sched_domains() function.
  758. */
  759. static void async_rebuild_sched_domains(void)
  760. {
  761. queue_work(cpuset_wq, &rebuild_sched_domains_work);
  762. }
  763. /*
  764. * Accomplishes the same scheduler domain rebuild as the above
  765. * async_rebuild_sched_domains(), however it directly calls the
  766. * rebuild routine synchronously rather than calling it via an
  767. * asynchronous work thread.
  768. *
  769. * This can only be called from code that is not holding
  770. * cgroup_mutex (not nested in a cgroup_lock() call.)
  771. */
  772. void rebuild_sched_domains(void)
  773. {
  774. do_rebuild_sched_domains(NULL);
  775. }
  776. /**
  777. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  778. * @tsk: task to test
  779. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  780. *
  781. * Call with cgroup_mutex held. May take callback_mutex during call.
  782. * Called for each task in a cgroup by cgroup_scan_tasks().
  783. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  784. * words, if its mask is not equal to its cpuset's mask).
  785. */
  786. static int cpuset_test_cpumask(struct task_struct *tsk,
  787. struct cgroup_scanner *scan)
  788. {
  789. return !cpumask_equal(&tsk->cpus_allowed,
  790. (cgroup_cs(scan->cg))->cpus_allowed);
  791. }
  792. /**
  793. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  794. * @tsk: task to test
  795. * @scan: struct cgroup_scanner containing the cgroup of the task
  796. *
  797. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  798. * cpus_allowed mask needs to be changed.
  799. *
  800. * We don't need to re-check for the cgroup/cpuset membership, since we're
  801. * holding cgroup_lock() at this point.
  802. */
  803. static void cpuset_change_cpumask(struct task_struct *tsk,
  804. struct cgroup_scanner *scan)
  805. {
  806. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  807. }
  808. /**
  809. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  810. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  811. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  812. *
  813. * Called with cgroup_mutex held
  814. *
  815. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  816. * calling callback functions for each.
  817. *
  818. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  819. * if @heap != NULL.
  820. */
  821. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  822. {
  823. struct cgroup_scanner scan;
  824. scan.cg = cs->css.cgroup;
  825. scan.test_task = cpuset_test_cpumask;
  826. scan.process_task = cpuset_change_cpumask;
  827. scan.heap = heap;
  828. cgroup_scan_tasks(&scan);
  829. }
  830. /**
  831. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  832. * @cs: the cpuset to consider
  833. * @buf: buffer of cpu numbers written to this cpuset
  834. */
  835. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  836. const char *buf)
  837. {
  838. struct ptr_heap heap;
  839. int retval;
  840. int is_load_balanced;
  841. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  842. if (cs == &top_cpuset)
  843. return -EACCES;
  844. /*
  845. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  846. * Since cpulist_parse() fails on an empty mask, we special case
  847. * that parsing. The validate_change() call ensures that cpusets
  848. * with tasks have cpus.
  849. */
  850. if (!*buf) {
  851. cpumask_clear(trialcs->cpus_allowed);
  852. } else {
  853. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  854. if (retval < 0)
  855. return retval;
  856. if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
  857. return -EINVAL;
  858. }
  859. retval = validate_change(cs, trialcs);
  860. if (retval < 0)
  861. return retval;
  862. /* Nothing to do if the cpus didn't change */
  863. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  864. return 0;
  865. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  866. if (retval)
  867. return retval;
  868. is_load_balanced = is_sched_load_balance(trialcs);
  869. mutex_lock(&callback_mutex);
  870. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  871. mutex_unlock(&callback_mutex);
  872. /*
  873. * Scan tasks in the cpuset, and update the cpumasks of any
  874. * that need an update.
  875. */
  876. update_tasks_cpumask(cs, &heap);
  877. heap_free(&heap);
  878. if (is_load_balanced)
  879. async_rebuild_sched_domains();
  880. return 0;
  881. }
  882. /*
  883. * cpuset_migrate_mm
  884. *
  885. * Migrate memory region from one set of nodes to another.
  886. *
  887. * Temporarilly set tasks mems_allowed to target nodes of migration,
  888. * so that the migration code can allocate pages on these nodes.
  889. *
  890. * Call holding cgroup_mutex, so current's cpuset won't change
  891. * during this call, as manage_mutex holds off any cpuset_attach()
  892. * calls. Therefore we don't need to take task_lock around the
  893. * call to guarantee_online_mems(), as we know no one is changing
  894. * our task's cpuset.
  895. *
  896. * Hold callback_mutex around the two modifications of our tasks
  897. * mems_allowed to synchronize with cpuset_mems_allowed().
  898. *
  899. * While the mm_struct we are migrating is typically from some
  900. * other task, the task_struct mems_allowed that we are hacking
  901. * is for our current task, which must allocate new pages for that
  902. * migrating memory region.
  903. *
  904. * We call cpuset_update_task_memory_state() before hacking
  905. * our tasks mems_allowed, so that we are assured of being in
  906. * sync with our tasks cpuset, and in particular, callbacks to
  907. * cpuset_update_task_memory_state() from nested page allocations
  908. * won't see any mismatch of our cpuset and task mems_generation
  909. * values, so won't overwrite our hacked tasks mems_allowed
  910. * nodemask.
  911. */
  912. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  913. const nodemask_t *to)
  914. {
  915. struct task_struct *tsk = current;
  916. cpuset_update_task_memory_state();
  917. mutex_lock(&callback_mutex);
  918. tsk->mems_allowed = *to;
  919. mutex_unlock(&callback_mutex);
  920. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  921. mutex_lock(&callback_mutex);
  922. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  923. mutex_unlock(&callback_mutex);
  924. }
  925. /*
  926. * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
  927. * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
  928. */
  929. static void cpuset_change_nodemask(struct task_struct *p,
  930. struct cgroup_scanner *scan)
  931. {
  932. struct mm_struct *mm;
  933. struct cpuset *cs;
  934. int migrate;
  935. const nodemask_t *oldmem = scan->data;
  936. mm = get_task_mm(p);
  937. if (!mm)
  938. return;
  939. cs = cgroup_cs(scan->cg);
  940. migrate = is_memory_migrate(cs);
  941. mpol_rebind_mm(mm, &cs->mems_allowed);
  942. if (migrate)
  943. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  944. mmput(mm);
  945. }
  946. static void *cpuset_being_rebound;
  947. /**
  948. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  949. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  950. * @oldmem: old mems_allowed of cpuset cs
  951. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  952. *
  953. * Called with cgroup_mutex held
  954. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  955. * if @heap != NULL.
  956. */
  957. static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
  958. struct ptr_heap *heap)
  959. {
  960. struct cgroup_scanner scan;
  961. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  962. scan.cg = cs->css.cgroup;
  963. scan.test_task = NULL;
  964. scan.process_task = cpuset_change_nodemask;
  965. scan.heap = heap;
  966. scan.data = (nodemask_t *)oldmem;
  967. /*
  968. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  969. * take while holding tasklist_lock. Forks can happen - the
  970. * mpol_dup() cpuset_being_rebound check will catch such forks,
  971. * and rebind their vma mempolicies too. Because we still hold
  972. * the global cgroup_mutex, we know that no other rebind effort
  973. * will be contending for the global variable cpuset_being_rebound.
  974. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  975. * is idempotent. Also migrate pages in each mm to new nodes.
  976. */
  977. cgroup_scan_tasks(&scan);
  978. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  979. cpuset_being_rebound = NULL;
  980. }
  981. /*
  982. * Handle user request to change the 'mems' memory placement
  983. * of a cpuset. Needs to validate the request, update the
  984. * cpusets mems_allowed and mems_generation, and for each
  985. * task in the cpuset, rebind any vma mempolicies and if
  986. * the cpuset is marked 'memory_migrate', migrate the tasks
  987. * pages to the new memory.
  988. *
  989. * Call with cgroup_mutex held. May take callback_mutex during call.
  990. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  991. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  992. * their mempolicies to the cpusets new mems_allowed.
  993. */
  994. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  995. const char *buf)
  996. {
  997. nodemask_t oldmem;
  998. int retval;
  999. struct ptr_heap heap;
  1000. /*
  1001. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  1002. * it's read-only
  1003. */
  1004. if (cs == &top_cpuset)
  1005. return -EACCES;
  1006. /*
  1007. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1008. * Since nodelist_parse() fails on an empty mask, we special case
  1009. * that parsing. The validate_change() call ensures that cpusets
  1010. * with tasks have memory.
  1011. */
  1012. if (!*buf) {
  1013. nodes_clear(trialcs->mems_allowed);
  1014. } else {
  1015. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1016. if (retval < 0)
  1017. goto done;
  1018. if (!nodes_subset(trialcs->mems_allowed,
  1019. node_states[N_HIGH_MEMORY]))
  1020. return -EINVAL;
  1021. }
  1022. oldmem = cs->mems_allowed;
  1023. if (nodes_equal(oldmem, trialcs->mems_allowed)) {
  1024. retval = 0; /* Too easy - nothing to do */
  1025. goto done;
  1026. }
  1027. retval = validate_change(cs, trialcs);
  1028. if (retval < 0)
  1029. goto done;
  1030. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1031. if (retval < 0)
  1032. goto done;
  1033. mutex_lock(&callback_mutex);
  1034. cs->mems_allowed = trialcs->mems_allowed;
  1035. cs->mems_generation = cpuset_mems_generation++;
  1036. mutex_unlock(&callback_mutex);
  1037. update_tasks_nodemask(cs, &oldmem, &heap);
  1038. heap_free(&heap);
  1039. done:
  1040. return retval;
  1041. }
  1042. int current_cpuset_is_being_rebound(void)
  1043. {
  1044. return task_cs(current) == cpuset_being_rebound;
  1045. }
  1046. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1047. {
  1048. #ifdef CONFIG_SMP
  1049. if (val < -1 || val >= SD_LV_MAX)
  1050. return -EINVAL;
  1051. #endif
  1052. if (val != cs->relax_domain_level) {
  1053. cs->relax_domain_level = val;
  1054. if (!cpumask_empty(cs->cpus_allowed) &&
  1055. is_sched_load_balance(cs))
  1056. async_rebuild_sched_domains();
  1057. }
  1058. return 0;
  1059. }
  1060. /*
  1061. * update_flag - read a 0 or a 1 in a file and update associated flag
  1062. * bit: the bit to update (see cpuset_flagbits_t)
  1063. * cs: the cpuset to update
  1064. * turning_on: whether the flag is being set or cleared
  1065. *
  1066. * Call with cgroup_mutex held.
  1067. */
  1068. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1069. int turning_on)
  1070. {
  1071. struct cpuset *trialcs;
  1072. int err;
  1073. int balance_flag_changed;
  1074. trialcs = alloc_trial_cpuset(cs);
  1075. if (!trialcs)
  1076. return -ENOMEM;
  1077. if (turning_on)
  1078. set_bit(bit, &trialcs->flags);
  1079. else
  1080. clear_bit(bit, &trialcs->flags);
  1081. err = validate_change(cs, trialcs);
  1082. if (err < 0)
  1083. goto out;
  1084. balance_flag_changed = (is_sched_load_balance(cs) !=
  1085. is_sched_load_balance(trialcs));
  1086. mutex_lock(&callback_mutex);
  1087. cs->flags = trialcs->flags;
  1088. mutex_unlock(&callback_mutex);
  1089. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1090. async_rebuild_sched_domains();
  1091. out:
  1092. free_trial_cpuset(trialcs);
  1093. return err;
  1094. }
  1095. /*
  1096. * Frequency meter - How fast is some event occurring?
  1097. *
  1098. * These routines manage a digitally filtered, constant time based,
  1099. * event frequency meter. There are four routines:
  1100. * fmeter_init() - initialize a frequency meter.
  1101. * fmeter_markevent() - called each time the event happens.
  1102. * fmeter_getrate() - returns the recent rate of such events.
  1103. * fmeter_update() - internal routine used to update fmeter.
  1104. *
  1105. * A common data structure is passed to each of these routines,
  1106. * which is used to keep track of the state required to manage the
  1107. * frequency meter and its digital filter.
  1108. *
  1109. * The filter works on the number of events marked per unit time.
  1110. * The filter is single-pole low-pass recursive (IIR). The time unit
  1111. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1112. * simulate 3 decimal digits of precision (multiplied by 1000).
  1113. *
  1114. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1115. * has a half-life of 10 seconds, meaning that if the events quit
  1116. * happening, then the rate returned from the fmeter_getrate()
  1117. * will be cut in half each 10 seconds, until it converges to zero.
  1118. *
  1119. * It is not worth doing a real infinitely recursive filter. If more
  1120. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1121. * just compute FM_MAXTICKS ticks worth, by which point the level
  1122. * will be stable.
  1123. *
  1124. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1125. * arithmetic overflow in the fmeter_update() routine.
  1126. *
  1127. * Given the simple 32 bit integer arithmetic used, this meter works
  1128. * best for reporting rates between one per millisecond (msec) and
  1129. * one per 32 (approx) seconds. At constant rates faster than one
  1130. * per msec it maxes out at values just under 1,000,000. At constant
  1131. * rates between one per msec, and one per second it will stabilize
  1132. * to a value N*1000, where N is the rate of events per second.
  1133. * At constant rates between one per second and one per 32 seconds,
  1134. * it will be choppy, moving up on the seconds that have an event,
  1135. * and then decaying until the next event. At rates slower than
  1136. * about one in 32 seconds, it decays all the way back to zero between
  1137. * each event.
  1138. */
  1139. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1140. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1141. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1142. #define FM_SCALE 1000 /* faux fixed point scale */
  1143. /* Initialize a frequency meter */
  1144. static void fmeter_init(struct fmeter *fmp)
  1145. {
  1146. fmp->cnt = 0;
  1147. fmp->val = 0;
  1148. fmp->time = 0;
  1149. spin_lock_init(&fmp->lock);
  1150. }
  1151. /* Internal meter update - process cnt events and update value */
  1152. static void fmeter_update(struct fmeter *fmp)
  1153. {
  1154. time_t now = get_seconds();
  1155. time_t ticks = now - fmp->time;
  1156. if (ticks == 0)
  1157. return;
  1158. ticks = min(FM_MAXTICKS, ticks);
  1159. while (ticks-- > 0)
  1160. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1161. fmp->time = now;
  1162. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1163. fmp->cnt = 0;
  1164. }
  1165. /* Process any previous ticks, then bump cnt by one (times scale). */
  1166. static void fmeter_markevent(struct fmeter *fmp)
  1167. {
  1168. spin_lock(&fmp->lock);
  1169. fmeter_update(fmp);
  1170. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1171. spin_unlock(&fmp->lock);
  1172. }
  1173. /* Process any previous ticks, then return current value. */
  1174. static int fmeter_getrate(struct fmeter *fmp)
  1175. {
  1176. int val;
  1177. spin_lock(&fmp->lock);
  1178. fmeter_update(fmp);
  1179. val = fmp->val;
  1180. spin_unlock(&fmp->lock);
  1181. return val;
  1182. }
  1183. /* Protected by cgroup_lock */
  1184. static cpumask_var_t cpus_attach;
  1185. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1186. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1187. struct cgroup *cont, struct task_struct *tsk)
  1188. {
  1189. struct cpuset *cs = cgroup_cs(cont);
  1190. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1191. return -ENOSPC;
  1192. /*
  1193. * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
  1194. * cannot change their cpu affinity and isolating such threads by their
  1195. * set of allowed nodes is unnecessary. Thus, cpusets are not
  1196. * applicable for such threads. This prevents checking for success of
  1197. * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
  1198. * be changed.
  1199. */
  1200. if (tsk->flags & PF_THREAD_BOUND)
  1201. return -EINVAL;
  1202. return security_task_setscheduler(tsk, 0, NULL);
  1203. }
  1204. static void cpuset_attach(struct cgroup_subsys *ss,
  1205. struct cgroup *cont, struct cgroup *oldcont,
  1206. struct task_struct *tsk)
  1207. {
  1208. nodemask_t from, to;
  1209. struct mm_struct *mm;
  1210. struct cpuset *cs = cgroup_cs(cont);
  1211. struct cpuset *oldcs = cgroup_cs(oldcont);
  1212. int err;
  1213. if (cs == &top_cpuset) {
  1214. cpumask_copy(cpus_attach, cpu_possible_mask);
  1215. } else {
  1216. mutex_lock(&callback_mutex);
  1217. guarantee_online_cpus(cs, cpus_attach);
  1218. mutex_unlock(&callback_mutex);
  1219. }
  1220. err = set_cpus_allowed_ptr(tsk, cpus_attach);
  1221. if (err)
  1222. return;
  1223. from = oldcs->mems_allowed;
  1224. to = cs->mems_allowed;
  1225. mm = get_task_mm(tsk);
  1226. if (mm) {
  1227. mpol_rebind_mm(mm, &to);
  1228. if (is_memory_migrate(cs))
  1229. cpuset_migrate_mm(mm, &from, &to);
  1230. mmput(mm);
  1231. }
  1232. }
  1233. /* The various types of files and directories in a cpuset file system */
  1234. typedef enum {
  1235. FILE_MEMORY_MIGRATE,
  1236. FILE_CPULIST,
  1237. FILE_MEMLIST,
  1238. FILE_CPU_EXCLUSIVE,
  1239. FILE_MEM_EXCLUSIVE,
  1240. FILE_MEM_HARDWALL,
  1241. FILE_SCHED_LOAD_BALANCE,
  1242. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1243. FILE_MEMORY_PRESSURE_ENABLED,
  1244. FILE_MEMORY_PRESSURE,
  1245. FILE_SPREAD_PAGE,
  1246. FILE_SPREAD_SLAB,
  1247. } cpuset_filetype_t;
  1248. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1249. {
  1250. int retval = 0;
  1251. struct cpuset *cs = cgroup_cs(cgrp);
  1252. cpuset_filetype_t type = cft->private;
  1253. if (!cgroup_lock_live_group(cgrp))
  1254. return -ENODEV;
  1255. switch (type) {
  1256. case FILE_CPU_EXCLUSIVE:
  1257. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1258. break;
  1259. case FILE_MEM_EXCLUSIVE:
  1260. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1261. break;
  1262. case FILE_MEM_HARDWALL:
  1263. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1264. break;
  1265. case FILE_SCHED_LOAD_BALANCE:
  1266. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1267. break;
  1268. case FILE_MEMORY_MIGRATE:
  1269. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1270. break;
  1271. case FILE_MEMORY_PRESSURE_ENABLED:
  1272. cpuset_memory_pressure_enabled = !!val;
  1273. break;
  1274. case FILE_MEMORY_PRESSURE:
  1275. retval = -EACCES;
  1276. break;
  1277. case FILE_SPREAD_PAGE:
  1278. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1279. cs->mems_generation = cpuset_mems_generation++;
  1280. break;
  1281. case FILE_SPREAD_SLAB:
  1282. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1283. cs->mems_generation = cpuset_mems_generation++;
  1284. break;
  1285. default:
  1286. retval = -EINVAL;
  1287. break;
  1288. }
  1289. cgroup_unlock();
  1290. return retval;
  1291. }
  1292. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1293. {
  1294. int retval = 0;
  1295. struct cpuset *cs = cgroup_cs(cgrp);
  1296. cpuset_filetype_t type = cft->private;
  1297. if (!cgroup_lock_live_group(cgrp))
  1298. return -ENODEV;
  1299. switch (type) {
  1300. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1301. retval = update_relax_domain_level(cs, val);
  1302. break;
  1303. default:
  1304. retval = -EINVAL;
  1305. break;
  1306. }
  1307. cgroup_unlock();
  1308. return retval;
  1309. }
  1310. /*
  1311. * Common handling for a write to a "cpus" or "mems" file.
  1312. */
  1313. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1314. const char *buf)
  1315. {
  1316. int retval = 0;
  1317. struct cpuset *cs = cgroup_cs(cgrp);
  1318. struct cpuset *trialcs;
  1319. if (!cgroup_lock_live_group(cgrp))
  1320. return -ENODEV;
  1321. trialcs = alloc_trial_cpuset(cs);
  1322. if (!trialcs)
  1323. return -ENOMEM;
  1324. switch (cft->private) {
  1325. case FILE_CPULIST:
  1326. retval = update_cpumask(cs, trialcs, buf);
  1327. break;
  1328. case FILE_MEMLIST:
  1329. retval = update_nodemask(cs, trialcs, buf);
  1330. break;
  1331. default:
  1332. retval = -EINVAL;
  1333. break;
  1334. }
  1335. free_trial_cpuset(trialcs);
  1336. cgroup_unlock();
  1337. return retval;
  1338. }
  1339. /*
  1340. * These ascii lists should be read in a single call, by using a user
  1341. * buffer large enough to hold the entire map. If read in smaller
  1342. * chunks, there is no guarantee of atomicity. Since the display format
  1343. * used, list of ranges of sequential numbers, is variable length,
  1344. * and since these maps can change value dynamically, one could read
  1345. * gibberish by doing partial reads while a list was changing.
  1346. * A single large read to a buffer that crosses a page boundary is
  1347. * ok, because the result being copied to user land is not recomputed
  1348. * across a page fault.
  1349. */
  1350. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1351. {
  1352. int ret;
  1353. mutex_lock(&callback_mutex);
  1354. ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1355. mutex_unlock(&callback_mutex);
  1356. return ret;
  1357. }
  1358. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1359. {
  1360. nodemask_t mask;
  1361. mutex_lock(&callback_mutex);
  1362. mask = cs->mems_allowed;
  1363. mutex_unlock(&callback_mutex);
  1364. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1365. }
  1366. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1367. struct cftype *cft,
  1368. struct file *file,
  1369. char __user *buf,
  1370. size_t nbytes, loff_t *ppos)
  1371. {
  1372. struct cpuset *cs = cgroup_cs(cont);
  1373. cpuset_filetype_t type = cft->private;
  1374. char *page;
  1375. ssize_t retval = 0;
  1376. char *s;
  1377. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1378. return -ENOMEM;
  1379. s = page;
  1380. switch (type) {
  1381. case FILE_CPULIST:
  1382. s += cpuset_sprintf_cpulist(s, cs);
  1383. break;
  1384. case FILE_MEMLIST:
  1385. s += cpuset_sprintf_memlist(s, cs);
  1386. break;
  1387. default:
  1388. retval = -EINVAL;
  1389. goto out;
  1390. }
  1391. *s++ = '\n';
  1392. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1393. out:
  1394. free_page((unsigned long)page);
  1395. return retval;
  1396. }
  1397. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1398. {
  1399. struct cpuset *cs = cgroup_cs(cont);
  1400. cpuset_filetype_t type = cft->private;
  1401. switch (type) {
  1402. case FILE_CPU_EXCLUSIVE:
  1403. return is_cpu_exclusive(cs);
  1404. case FILE_MEM_EXCLUSIVE:
  1405. return is_mem_exclusive(cs);
  1406. case FILE_MEM_HARDWALL:
  1407. return is_mem_hardwall(cs);
  1408. case FILE_SCHED_LOAD_BALANCE:
  1409. return is_sched_load_balance(cs);
  1410. case FILE_MEMORY_MIGRATE:
  1411. return is_memory_migrate(cs);
  1412. case FILE_MEMORY_PRESSURE_ENABLED:
  1413. return cpuset_memory_pressure_enabled;
  1414. case FILE_MEMORY_PRESSURE:
  1415. return fmeter_getrate(&cs->fmeter);
  1416. case FILE_SPREAD_PAGE:
  1417. return is_spread_page(cs);
  1418. case FILE_SPREAD_SLAB:
  1419. return is_spread_slab(cs);
  1420. default:
  1421. BUG();
  1422. }
  1423. /* Unreachable but makes gcc happy */
  1424. return 0;
  1425. }
  1426. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1427. {
  1428. struct cpuset *cs = cgroup_cs(cont);
  1429. cpuset_filetype_t type = cft->private;
  1430. switch (type) {
  1431. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1432. return cs->relax_domain_level;
  1433. default:
  1434. BUG();
  1435. }
  1436. /* Unrechable but makes gcc happy */
  1437. return 0;
  1438. }
  1439. /*
  1440. * for the common functions, 'private' gives the type of file
  1441. */
  1442. static struct cftype files[] = {
  1443. {
  1444. .name = "cpus",
  1445. .read = cpuset_common_file_read,
  1446. .write_string = cpuset_write_resmask,
  1447. .max_write_len = (100U + 6 * NR_CPUS),
  1448. .private = FILE_CPULIST,
  1449. },
  1450. {
  1451. .name = "mems",
  1452. .read = cpuset_common_file_read,
  1453. .write_string = cpuset_write_resmask,
  1454. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1455. .private = FILE_MEMLIST,
  1456. },
  1457. {
  1458. .name = "cpu_exclusive",
  1459. .read_u64 = cpuset_read_u64,
  1460. .write_u64 = cpuset_write_u64,
  1461. .private = FILE_CPU_EXCLUSIVE,
  1462. },
  1463. {
  1464. .name = "mem_exclusive",
  1465. .read_u64 = cpuset_read_u64,
  1466. .write_u64 = cpuset_write_u64,
  1467. .private = FILE_MEM_EXCLUSIVE,
  1468. },
  1469. {
  1470. .name = "mem_hardwall",
  1471. .read_u64 = cpuset_read_u64,
  1472. .write_u64 = cpuset_write_u64,
  1473. .private = FILE_MEM_HARDWALL,
  1474. },
  1475. {
  1476. .name = "sched_load_balance",
  1477. .read_u64 = cpuset_read_u64,
  1478. .write_u64 = cpuset_write_u64,
  1479. .private = FILE_SCHED_LOAD_BALANCE,
  1480. },
  1481. {
  1482. .name = "sched_relax_domain_level",
  1483. .read_s64 = cpuset_read_s64,
  1484. .write_s64 = cpuset_write_s64,
  1485. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1486. },
  1487. {
  1488. .name = "memory_migrate",
  1489. .read_u64 = cpuset_read_u64,
  1490. .write_u64 = cpuset_write_u64,
  1491. .private = FILE_MEMORY_MIGRATE,
  1492. },
  1493. {
  1494. .name = "memory_pressure",
  1495. .read_u64 = cpuset_read_u64,
  1496. .write_u64 = cpuset_write_u64,
  1497. .private = FILE_MEMORY_PRESSURE,
  1498. .mode = S_IRUGO,
  1499. },
  1500. {
  1501. .name = "memory_spread_page",
  1502. .read_u64 = cpuset_read_u64,
  1503. .write_u64 = cpuset_write_u64,
  1504. .private = FILE_SPREAD_PAGE,
  1505. },
  1506. {
  1507. .name = "memory_spread_slab",
  1508. .read_u64 = cpuset_read_u64,
  1509. .write_u64 = cpuset_write_u64,
  1510. .private = FILE_SPREAD_SLAB,
  1511. },
  1512. };
  1513. static struct cftype cft_memory_pressure_enabled = {
  1514. .name = "memory_pressure_enabled",
  1515. .read_u64 = cpuset_read_u64,
  1516. .write_u64 = cpuset_write_u64,
  1517. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1518. };
  1519. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1520. {
  1521. int err;
  1522. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1523. if (err)
  1524. return err;
  1525. /* memory_pressure_enabled is in root cpuset only */
  1526. if (!cont->parent)
  1527. err = cgroup_add_file(cont, ss,
  1528. &cft_memory_pressure_enabled);
  1529. return err;
  1530. }
  1531. /*
  1532. * post_clone() is called at the end of cgroup_clone().
  1533. * 'cgroup' was just created automatically as a result of
  1534. * a cgroup_clone(), and the current task is about to
  1535. * be moved into 'cgroup'.
  1536. *
  1537. * Currently we refuse to set up the cgroup - thereby
  1538. * refusing the task to be entered, and as a result refusing
  1539. * the sys_unshare() or clone() which initiated it - if any
  1540. * sibling cpusets have exclusive cpus or mem.
  1541. *
  1542. * If this becomes a problem for some users who wish to
  1543. * allow that scenario, then cpuset_post_clone() could be
  1544. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1545. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1546. * held.
  1547. */
  1548. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1549. struct cgroup *cgroup)
  1550. {
  1551. struct cgroup *parent, *child;
  1552. struct cpuset *cs, *parent_cs;
  1553. parent = cgroup->parent;
  1554. list_for_each_entry(child, &parent->children, sibling) {
  1555. cs = cgroup_cs(child);
  1556. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1557. return;
  1558. }
  1559. cs = cgroup_cs(cgroup);
  1560. parent_cs = cgroup_cs(parent);
  1561. cs->mems_allowed = parent_cs->mems_allowed;
  1562. cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
  1563. return;
  1564. }
  1565. /*
  1566. * cpuset_create - create a cpuset
  1567. * ss: cpuset cgroup subsystem
  1568. * cont: control group that the new cpuset will be part of
  1569. */
  1570. static struct cgroup_subsys_state *cpuset_create(
  1571. struct cgroup_subsys *ss,
  1572. struct cgroup *cont)
  1573. {
  1574. struct cpuset *cs;
  1575. struct cpuset *parent;
  1576. if (!cont->parent) {
  1577. /* This is early initialization for the top cgroup */
  1578. top_cpuset.mems_generation = cpuset_mems_generation++;
  1579. return &top_cpuset.css;
  1580. }
  1581. parent = cgroup_cs(cont->parent);
  1582. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1583. if (!cs)
  1584. return ERR_PTR(-ENOMEM);
  1585. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1586. kfree(cs);
  1587. return ERR_PTR(-ENOMEM);
  1588. }
  1589. cpuset_update_task_memory_state();
  1590. cs->flags = 0;
  1591. if (is_spread_page(parent))
  1592. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1593. if (is_spread_slab(parent))
  1594. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1595. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1596. cpumask_clear(cs->cpus_allowed);
  1597. nodes_clear(cs->mems_allowed);
  1598. cs->mems_generation = cpuset_mems_generation++;
  1599. fmeter_init(&cs->fmeter);
  1600. cs->relax_domain_level = -1;
  1601. cs->parent = parent;
  1602. number_of_cpusets++;
  1603. return &cs->css ;
  1604. }
  1605. /*
  1606. * If the cpuset being removed has its flag 'sched_load_balance'
  1607. * enabled, then simulate turning sched_load_balance off, which
  1608. * will call async_rebuild_sched_domains().
  1609. */
  1610. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1611. {
  1612. struct cpuset *cs = cgroup_cs(cont);
  1613. cpuset_update_task_memory_state();
  1614. if (is_sched_load_balance(cs))
  1615. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1616. number_of_cpusets--;
  1617. free_cpumask_var(cs->cpus_allowed);
  1618. kfree(cs);
  1619. }
  1620. struct cgroup_subsys cpuset_subsys = {
  1621. .name = "cpuset",
  1622. .create = cpuset_create,
  1623. .destroy = cpuset_destroy,
  1624. .can_attach = cpuset_can_attach,
  1625. .attach = cpuset_attach,
  1626. .populate = cpuset_populate,
  1627. .post_clone = cpuset_post_clone,
  1628. .subsys_id = cpuset_subsys_id,
  1629. .early_init = 1,
  1630. };
  1631. /*
  1632. * cpuset_init_early - just enough so that the calls to
  1633. * cpuset_update_task_memory_state() in early init code
  1634. * are harmless.
  1635. */
  1636. int __init cpuset_init_early(void)
  1637. {
  1638. alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_NOWAIT);
  1639. top_cpuset.mems_generation = cpuset_mems_generation++;
  1640. return 0;
  1641. }
  1642. /**
  1643. * cpuset_init - initialize cpusets at system boot
  1644. *
  1645. * Description: Initialize top_cpuset and the cpuset internal file system,
  1646. **/
  1647. int __init cpuset_init(void)
  1648. {
  1649. int err = 0;
  1650. cpumask_setall(top_cpuset.cpus_allowed);
  1651. nodes_setall(top_cpuset.mems_allowed);
  1652. fmeter_init(&top_cpuset.fmeter);
  1653. top_cpuset.mems_generation = cpuset_mems_generation++;
  1654. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1655. top_cpuset.relax_domain_level = -1;
  1656. err = register_filesystem(&cpuset_fs_type);
  1657. if (err < 0)
  1658. return err;
  1659. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1660. BUG();
  1661. number_of_cpusets = 1;
  1662. return 0;
  1663. }
  1664. /**
  1665. * cpuset_do_move_task - move a given task to another cpuset
  1666. * @tsk: pointer to task_struct the task to move
  1667. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1668. *
  1669. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1670. * Return nonzero to stop the walk through the tasks.
  1671. */
  1672. static void cpuset_do_move_task(struct task_struct *tsk,
  1673. struct cgroup_scanner *scan)
  1674. {
  1675. struct cgroup *new_cgroup = scan->data;
  1676. cgroup_attach_task(new_cgroup, tsk);
  1677. }
  1678. /**
  1679. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1680. * @from: cpuset in which the tasks currently reside
  1681. * @to: cpuset to which the tasks will be moved
  1682. *
  1683. * Called with cgroup_mutex held
  1684. * callback_mutex must not be held, as cpuset_attach() will take it.
  1685. *
  1686. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1687. * calling callback functions for each.
  1688. */
  1689. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1690. {
  1691. struct cgroup_scanner scan;
  1692. scan.cg = from->css.cgroup;
  1693. scan.test_task = NULL; /* select all tasks in cgroup */
  1694. scan.process_task = cpuset_do_move_task;
  1695. scan.heap = NULL;
  1696. scan.data = to->css.cgroup;
  1697. if (cgroup_scan_tasks(&scan))
  1698. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1699. "cgroup_scan_tasks failed\n");
  1700. }
  1701. /*
  1702. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1703. * or memory nodes, we need to walk over the cpuset hierarchy,
  1704. * removing that CPU or node from all cpusets. If this removes the
  1705. * last CPU or node from a cpuset, then move the tasks in the empty
  1706. * cpuset to its next-highest non-empty parent.
  1707. *
  1708. * Called with cgroup_mutex held
  1709. * callback_mutex must not be held, as cpuset_attach() will take it.
  1710. */
  1711. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1712. {
  1713. struct cpuset *parent;
  1714. /*
  1715. * The cgroup's css_sets list is in use if there are tasks
  1716. * in the cpuset; the list is empty if there are none;
  1717. * the cs->css.refcnt seems always 0.
  1718. */
  1719. if (list_empty(&cs->css.cgroup->css_sets))
  1720. return;
  1721. /*
  1722. * Find its next-highest non-empty parent, (top cpuset
  1723. * has online cpus, so can't be empty).
  1724. */
  1725. parent = cs->parent;
  1726. while (cpumask_empty(parent->cpus_allowed) ||
  1727. nodes_empty(parent->mems_allowed))
  1728. parent = parent->parent;
  1729. move_member_tasks_to_cpuset(cs, parent);
  1730. }
  1731. /*
  1732. * Walk the specified cpuset subtree and look for empty cpusets.
  1733. * The tasks of such cpuset must be moved to a parent cpuset.
  1734. *
  1735. * Called with cgroup_mutex held. We take callback_mutex to modify
  1736. * cpus_allowed and mems_allowed.
  1737. *
  1738. * This walk processes the tree from top to bottom, completing one layer
  1739. * before dropping down to the next. It always processes a node before
  1740. * any of its children.
  1741. *
  1742. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1743. * that has tasks along with an empty 'mems'. But if we did see such
  1744. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1745. */
  1746. static void scan_for_empty_cpusets(struct cpuset *root)
  1747. {
  1748. LIST_HEAD(queue);
  1749. struct cpuset *cp; /* scans cpusets being updated */
  1750. struct cpuset *child; /* scans child cpusets of cp */
  1751. struct cgroup *cont;
  1752. nodemask_t oldmems;
  1753. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1754. while (!list_empty(&queue)) {
  1755. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1756. list_del(queue.next);
  1757. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1758. child = cgroup_cs(cont);
  1759. list_add_tail(&child->stack_list, &queue);
  1760. }
  1761. /* Continue past cpusets with all cpus, mems online */
  1762. if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
  1763. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1764. continue;
  1765. oldmems = cp->mems_allowed;
  1766. /* Remove offline cpus and mems from this cpuset. */
  1767. mutex_lock(&callback_mutex);
  1768. cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
  1769. cpu_online_mask);
  1770. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1771. node_states[N_HIGH_MEMORY]);
  1772. mutex_unlock(&callback_mutex);
  1773. /* Move tasks from the empty cpuset to a parent */
  1774. if (cpumask_empty(cp->cpus_allowed) ||
  1775. nodes_empty(cp->mems_allowed))
  1776. remove_tasks_in_empty_cpuset(cp);
  1777. else {
  1778. update_tasks_cpumask(cp, NULL);
  1779. update_tasks_nodemask(cp, &oldmems, NULL);
  1780. }
  1781. }
  1782. }
  1783. /*
  1784. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1785. * period. This is necessary in order to make cpusets transparent
  1786. * (of no affect) on systems that are actively using CPU hotplug
  1787. * but making no active use of cpusets.
  1788. *
  1789. * This routine ensures that top_cpuset.cpus_allowed tracks
  1790. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1791. *
  1792. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1793. * before calling generate_sched_domains().
  1794. */
  1795. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1796. unsigned long phase, void *unused_cpu)
  1797. {
  1798. struct sched_domain_attr *attr;
  1799. struct cpumask *doms;
  1800. int ndoms;
  1801. switch (phase) {
  1802. case CPU_ONLINE:
  1803. case CPU_ONLINE_FROZEN:
  1804. case CPU_DEAD:
  1805. case CPU_DEAD_FROZEN:
  1806. break;
  1807. default:
  1808. return NOTIFY_DONE;
  1809. }
  1810. cgroup_lock();
  1811. mutex_lock(&callback_mutex);
  1812. cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
  1813. mutex_unlock(&callback_mutex);
  1814. scan_for_empty_cpusets(&top_cpuset);
  1815. ndoms = generate_sched_domains(&doms, &attr);
  1816. cgroup_unlock();
  1817. /* Have scheduler rebuild the domains */
  1818. partition_sched_domains(ndoms, doms, attr);
  1819. return NOTIFY_OK;
  1820. }
  1821. #ifdef CONFIG_MEMORY_HOTPLUG
  1822. /*
  1823. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1824. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1825. * See also the previous routine cpuset_track_online_cpus().
  1826. */
  1827. static int cpuset_track_online_nodes(struct notifier_block *self,
  1828. unsigned long action, void *arg)
  1829. {
  1830. cgroup_lock();
  1831. switch (action) {
  1832. case MEM_ONLINE:
  1833. case MEM_OFFLINE:
  1834. mutex_lock(&callback_mutex);
  1835. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1836. mutex_unlock(&callback_mutex);
  1837. if (action == MEM_OFFLINE)
  1838. scan_for_empty_cpusets(&top_cpuset);
  1839. break;
  1840. default:
  1841. break;
  1842. }
  1843. cgroup_unlock();
  1844. return NOTIFY_OK;
  1845. }
  1846. #endif
  1847. /**
  1848. * cpuset_init_smp - initialize cpus_allowed
  1849. *
  1850. * Description: Finish top cpuset after cpu, node maps are initialized
  1851. **/
  1852. void __init cpuset_init_smp(void)
  1853. {
  1854. cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
  1855. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1856. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1857. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1858. cpuset_wq = create_singlethread_workqueue("cpuset");
  1859. BUG_ON(!cpuset_wq);
  1860. }
  1861. /**
  1862. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1863. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1864. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1865. *
  1866. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1867. * attached to the specified @tsk. Guaranteed to return some non-empty
  1868. * subset of cpu_online_map, even if this means going outside the
  1869. * tasks cpuset.
  1870. **/
  1871. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1872. {
  1873. mutex_lock(&callback_mutex);
  1874. cpuset_cpus_allowed_locked(tsk, pmask);
  1875. mutex_unlock(&callback_mutex);
  1876. }
  1877. /**
  1878. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1879. * Must be called with callback_mutex held.
  1880. **/
  1881. void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
  1882. {
  1883. task_lock(tsk);
  1884. guarantee_online_cpus(task_cs(tsk), pmask);
  1885. task_unlock(tsk);
  1886. }
  1887. void cpuset_init_current_mems_allowed(void)
  1888. {
  1889. nodes_setall(current->mems_allowed);
  1890. }
  1891. /**
  1892. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1893. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1894. *
  1895. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1896. * attached to the specified @tsk. Guaranteed to return some non-empty
  1897. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1898. * tasks cpuset.
  1899. **/
  1900. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1901. {
  1902. nodemask_t mask;
  1903. mutex_lock(&callback_mutex);
  1904. task_lock(tsk);
  1905. guarantee_online_mems(task_cs(tsk), &mask);
  1906. task_unlock(tsk);
  1907. mutex_unlock(&callback_mutex);
  1908. return mask;
  1909. }
  1910. /**
  1911. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1912. * @nodemask: the nodemask to be checked
  1913. *
  1914. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1915. */
  1916. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1917. {
  1918. return nodes_intersects(*nodemask, current->mems_allowed);
  1919. }
  1920. /*
  1921. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1922. * mem_hardwall ancestor to the specified cpuset. Call holding
  1923. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1924. * (an unusual configuration), then returns the root cpuset.
  1925. */
  1926. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1927. {
  1928. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1929. cs = cs->parent;
  1930. return cs;
  1931. }
  1932. /**
  1933. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  1934. * @node: is this an allowed node?
  1935. * @gfp_mask: memory allocation flags
  1936. *
  1937. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  1938. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  1939. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  1940. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  1941. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  1942. * flag, yes.
  1943. * Otherwise, no.
  1944. *
  1945. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  1946. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  1947. * might sleep, and might allow a node from an enclosing cpuset.
  1948. *
  1949. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  1950. * cpusets, and never sleeps.
  1951. *
  1952. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1953. * by forcibly using a zonelist starting at a specified node, and by
  1954. * (in get_page_from_freelist()) refusing to consider the zones for
  1955. * any node on the zonelist except the first. By the time any such
  1956. * calls get to this routine, we should just shut up and say 'yes'.
  1957. *
  1958. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1959. * and do not allow allocations outside the current tasks cpuset
  1960. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1961. * GFP_KERNEL allocations are not so marked, so can escape to the
  1962. * nearest enclosing hardwalled ancestor cpuset.
  1963. *
  1964. * Scanning up parent cpusets requires callback_mutex. The
  1965. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1966. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1967. * current tasks mems_allowed came up empty on the first pass over
  1968. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1969. * cpuset are short of memory, might require taking the callback_mutex
  1970. * mutex.
  1971. *
  1972. * The first call here from mm/page_alloc:get_page_from_freelist()
  1973. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1974. * so no allocation on a node outside the cpuset is allowed (unless
  1975. * in interrupt, of course).
  1976. *
  1977. * The second pass through get_page_from_freelist() doesn't even call
  1978. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1979. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1980. * in alloc_flags. That logic and the checks below have the combined
  1981. * affect that:
  1982. * in_interrupt - any node ok (current task context irrelevant)
  1983. * GFP_ATOMIC - any node ok
  1984. * TIF_MEMDIE - any node ok
  1985. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1986. * GFP_USER - only nodes in current tasks mems allowed ok.
  1987. *
  1988. * Rule:
  1989. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  1990. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1991. * the code that might scan up ancestor cpusets and sleep.
  1992. */
  1993. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  1994. {
  1995. const struct cpuset *cs; /* current cpuset ancestors */
  1996. int allowed; /* is allocation in zone z allowed? */
  1997. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1998. return 1;
  1999. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2000. if (node_isset(node, current->mems_allowed))
  2001. return 1;
  2002. /*
  2003. * Allow tasks that have access to memory reserves because they have
  2004. * been OOM killed to get memory anywhere.
  2005. */
  2006. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2007. return 1;
  2008. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2009. return 0;
  2010. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2011. return 1;
  2012. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2013. mutex_lock(&callback_mutex);
  2014. task_lock(current);
  2015. cs = nearest_hardwall_ancestor(task_cs(current));
  2016. task_unlock(current);
  2017. allowed = node_isset(node, cs->mems_allowed);
  2018. mutex_unlock(&callback_mutex);
  2019. return allowed;
  2020. }
  2021. /*
  2022. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2023. * @node: is this an allowed node?
  2024. * @gfp_mask: memory allocation flags
  2025. *
  2026. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2027. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2028. * yes. If the task has been OOM killed and has access to memory reserves as
  2029. * specified by the TIF_MEMDIE flag, yes.
  2030. * Otherwise, no.
  2031. *
  2032. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2033. * by forcibly using a zonelist starting at a specified node, and by
  2034. * (in get_page_from_freelist()) refusing to consider the zones for
  2035. * any node on the zonelist except the first. By the time any such
  2036. * calls get to this routine, we should just shut up and say 'yes'.
  2037. *
  2038. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2039. * this variant requires that the node be in the current task's
  2040. * mems_allowed or that we're in interrupt. It does not scan up the
  2041. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2042. * It never sleeps.
  2043. */
  2044. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2045. {
  2046. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2047. return 1;
  2048. if (node_isset(node, current->mems_allowed))
  2049. return 1;
  2050. /*
  2051. * Allow tasks that have access to memory reserves because they have
  2052. * been OOM killed to get memory anywhere.
  2053. */
  2054. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2055. return 1;
  2056. return 0;
  2057. }
  2058. /**
  2059. * cpuset_lock - lock out any changes to cpuset structures
  2060. *
  2061. * The out of memory (oom) code needs to mutex_lock cpusets
  2062. * from being changed while it scans the tasklist looking for a
  2063. * task in an overlapping cpuset. Expose callback_mutex via this
  2064. * cpuset_lock() routine, so the oom code can lock it, before
  2065. * locking the task list. The tasklist_lock is a spinlock, so
  2066. * must be taken inside callback_mutex.
  2067. */
  2068. void cpuset_lock(void)
  2069. {
  2070. mutex_lock(&callback_mutex);
  2071. }
  2072. /**
  2073. * cpuset_unlock - release lock on cpuset changes
  2074. *
  2075. * Undo the lock taken in a previous cpuset_lock() call.
  2076. */
  2077. void cpuset_unlock(void)
  2078. {
  2079. mutex_unlock(&callback_mutex);
  2080. }
  2081. /**
  2082. * cpuset_mem_spread_node() - On which node to begin search for a page
  2083. *
  2084. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2085. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2086. * and if the memory allocation used cpuset_mem_spread_node()
  2087. * to determine on which node to start looking, as it will for
  2088. * certain page cache or slab cache pages such as used for file
  2089. * system buffers and inode caches, then instead of starting on the
  2090. * local node to look for a free page, rather spread the starting
  2091. * node around the tasks mems_allowed nodes.
  2092. *
  2093. * We don't have to worry about the returned node being offline
  2094. * because "it can't happen", and even if it did, it would be ok.
  2095. *
  2096. * The routines calling guarantee_online_mems() are careful to
  2097. * only set nodes in task->mems_allowed that are online. So it
  2098. * should not be possible for the following code to return an
  2099. * offline node. But if it did, that would be ok, as this routine
  2100. * is not returning the node where the allocation must be, only
  2101. * the node where the search should start. The zonelist passed to
  2102. * __alloc_pages() will include all nodes. If the slab allocator
  2103. * is passed an offline node, it will fall back to the local node.
  2104. * See kmem_cache_alloc_node().
  2105. */
  2106. int cpuset_mem_spread_node(void)
  2107. {
  2108. int node;
  2109. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2110. if (node == MAX_NUMNODES)
  2111. node = first_node(current->mems_allowed);
  2112. current->cpuset_mem_spread_rotor = node;
  2113. return node;
  2114. }
  2115. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2116. /**
  2117. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2118. * @tsk1: pointer to task_struct of some task.
  2119. * @tsk2: pointer to task_struct of some other task.
  2120. *
  2121. * Description: Return true if @tsk1's mems_allowed intersects the
  2122. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2123. * one of the task's memory usage might impact the memory available
  2124. * to the other.
  2125. **/
  2126. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2127. const struct task_struct *tsk2)
  2128. {
  2129. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2130. }
  2131. /**
  2132. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2133. * @task: pointer to task_struct of some task.
  2134. *
  2135. * Description: Prints @task's name, cpuset name, and cached copy of its
  2136. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2137. * dereferencing task_cs(task).
  2138. */
  2139. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2140. {
  2141. struct dentry *dentry;
  2142. dentry = task_cs(tsk)->css.cgroup->dentry;
  2143. spin_lock(&cpuset_buffer_lock);
  2144. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2145. dentry ? (const char *)dentry->d_name.name : "/");
  2146. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2147. tsk->mems_allowed);
  2148. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2149. tsk->comm, cpuset_name, cpuset_nodelist);
  2150. spin_unlock(&cpuset_buffer_lock);
  2151. }
  2152. /*
  2153. * Collection of memory_pressure is suppressed unless
  2154. * this flag is enabled by writing "1" to the special
  2155. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2156. */
  2157. int cpuset_memory_pressure_enabled __read_mostly;
  2158. /**
  2159. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2160. *
  2161. * Keep a running average of the rate of synchronous (direct)
  2162. * page reclaim efforts initiated by tasks in each cpuset.
  2163. *
  2164. * This represents the rate at which some task in the cpuset
  2165. * ran low on memory on all nodes it was allowed to use, and
  2166. * had to enter the kernels page reclaim code in an effort to
  2167. * create more free memory by tossing clean pages or swapping
  2168. * or writing dirty pages.
  2169. *
  2170. * Display to user space in the per-cpuset read-only file
  2171. * "memory_pressure". Value displayed is an integer
  2172. * representing the recent rate of entry into the synchronous
  2173. * (direct) page reclaim by any task attached to the cpuset.
  2174. **/
  2175. void __cpuset_memory_pressure_bump(void)
  2176. {
  2177. task_lock(current);
  2178. fmeter_markevent(&task_cs(current)->fmeter);
  2179. task_unlock(current);
  2180. }
  2181. #ifdef CONFIG_PROC_PID_CPUSET
  2182. /*
  2183. * proc_cpuset_show()
  2184. * - Print tasks cpuset path into seq_file.
  2185. * - Used for /proc/<pid>/cpuset.
  2186. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2187. * doesn't really matter if tsk->cpuset changes after we read it,
  2188. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2189. * anyway.
  2190. */
  2191. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2192. {
  2193. struct pid *pid;
  2194. struct task_struct *tsk;
  2195. char *buf;
  2196. struct cgroup_subsys_state *css;
  2197. int retval;
  2198. retval = -ENOMEM;
  2199. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2200. if (!buf)
  2201. goto out;
  2202. retval = -ESRCH;
  2203. pid = m->private;
  2204. tsk = get_pid_task(pid, PIDTYPE_PID);
  2205. if (!tsk)
  2206. goto out_free;
  2207. retval = -EINVAL;
  2208. cgroup_lock();
  2209. css = task_subsys_state(tsk, cpuset_subsys_id);
  2210. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2211. if (retval < 0)
  2212. goto out_unlock;
  2213. seq_puts(m, buf);
  2214. seq_putc(m, '\n');
  2215. out_unlock:
  2216. cgroup_unlock();
  2217. put_task_struct(tsk);
  2218. out_free:
  2219. kfree(buf);
  2220. out:
  2221. return retval;
  2222. }
  2223. static int cpuset_open(struct inode *inode, struct file *file)
  2224. {
  2225. struct pid *pid = PROC_I(inode)->pid;
  2226. return single_open(file, proc_cpuset_show, pid);
  2227. }
  2228. const struct file_operations proc_cpuset_operations = {
  2229. .open = cpuset_open,
  2230. .read = seq_read,
  2231. .llseek = seq_lseek,
  2232. .release = single_release,
  2233. };
  2234. #endif /* CONFIG_PROC_PID_CPUSET */
  2235. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2236. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2237. {
  2238. seq_printf(m, "Cpus_allowed:\t");
  2239. seq_cpumask(m, &task->cpus_allowed);
  2240. seq_printf(m, "\n");
  2241. seq_printf(m, "Cpus_allowed_list:\t");
  2242. seq_cpumask_list(m, &task->cpus_allowed);
  2243. seq_printf(m, "\n");
  2244. seq_printf(m, "Mems_allowed:\t");
  2245. seq_nodemask(m, &task->mems_allowed);
  2246. seq_printf(m, "\n");
  2247. seq_printf(m, "Mems_allowed_list:\t");
  2248. seq_nodemask_list(m, &task->mems_allowed);
  2249. seq_printf(m, "\n");
  2250. }