setup_64.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/efi.h>
  32. #include <linux/acpi.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/edd.h>
  35. #include <linux/mmzone.h>
  36. #include <linux/kexec.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/dmi.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/ctype.h>
  41. #include <linux/uaccess.h>
  42. #include <linux/init_ohci1394_dma.h>
  43. #include <asm/mtrr.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/system.h>
  46. #include <asm/vsyscall.h>
  47. #include <asm/io.h>
  48. #include <asm/smp.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <video/edid.h>
  52. #include <asm/e820.h>
  53. #include <asm/dma.h>
  54. #include <asm/gart.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/proto.h>
  58. #include <asm/setup.h>
  59. #include <asm/mach_apic.h>
  60. #include <asm/numa.h>
  61. #include <asm/sections.h>
  62. #include <asm/dmi.h>
  63. #include <asm/cacheflush.h>
  64. #include <asm/mce.h>
  65. #include <asm/ds.h>
  66. #include <asm/topology.h>
  67. #ifdef CONFIG_PARAVIRT
  68. #include <asm/paravirt.h>
  69. #else
  70. #define ARCH_SETUP
  71. #endif
  72. /*
  73. * Machine setup..
  74. */
  75. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  76. EXPORT_SYMBOL(boot_cpu_data);
  77. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  78. unsigned long mmu_cr4_features;
  79. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  80. int bootloader_type;
  81. unsigned long saved_video_mode;
  82. int force_mwait __cpuinitdata;
  83. /*
  84. * Early DMI memory
  85. */
  86. int dmi_alloc_index;
  87. char dmi_alloc_data[DMI_MAX_DATA];
  88. /*
  89. * Setup options
  90. */
  91. struct screen_info screen_info;
  92. EXPORT_SYMBOL(screen_info);
  93. struct sys_desc_table_struct {
  94. unsigned short length;
  95. unsigned char table[0];
  96. };
  97. struct edid_info edid_info;
  98. EXPORT_SYMBOL_GPL(edid_info);
  99. extern int root_mountflags;
  100. char __initdata command_line[COMMAND_LINE_SIZE];
  101. struct resource standard_io_resources[] = {
  102. { .name = "dma1", .start = 0x00, .end = 0x1f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "pic1", .start = 0x20, .end = 0x21,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "timer0", .start = 0x40, .end = 0x43,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "timer1", .start = 0x50, .end = 0x53,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  110. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  111. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  112. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  113. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  114. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  115. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  116. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  117. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  118. { .name = "fpu", .start = 0xf0, .end = 0xff,
  119. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  120. };
  121. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  122. static struct resource data_resource = {
  123. .name = "Kernel data",
  124. .start = 0,
  125. .end = 0,
  126. .flags = IORESOURCE_RAM,
  127. };
  128. static struct resource code_resource = {
  129. .name = "Kernel code",
  130. .start = 0,
  131. .end = 0,
  132. .flags = IORESOURCE_RAM,
  133. };
  134. static struct resource bss_resource = {
  135. .name = "Kernel bss",
  136. .start = 0,
  137. .end = 0,
  138. .flags = IORESOURCE_RAM,
  139. };
  140. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  141. #ifdef CONFIG_PROC_VMCORE
  142. /* elfcorehdr= specifies the location of elf core header
  143. * stored by the crashed kernel. This option will be passed
  144. * by kexec loader to the capture kernel.
  145. */
  146. static int __init setup_elfcorehdr(char *arg)
  147. {
  148. char *end;
  149. if (!arg)
  150. return -EINVAL;
  151. elfcorehdr_addr = memparse(arg, &end);
  152. return end > arg ? 0 : -EINVAL;
  153. }
  154. early_param("elfcorehdr", setup_elfcorehdr);
  155. #endif
  156. #ifndef CONFIG_NUMA
  157. static void __init
  158. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  159. {
  160. unsigned long bootmap_size, bootmap;
  161. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  162. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  163. if (bootmap == -1L)
  164. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  165. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  166. e820_register_active_regions(0, start_pfn, end_pfn);
  167. free_bootmem_with_active_regions(0, end_pfn);
  168. reserve_bootmem(bootmap, bootmap_size);
  169. }
  170. #endif
  171. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  172. struct edd edd;
  173. #ifdef CONFIG_EDD_MODULE
  174. EXPORT_SYMBOL(edd);
  175. #endif
  176. /**
  177. * copy_edd() - Copy the BIOS EDD information
  178. * from boot_params into a safe place.
  179. *
  180. */
  181. static inline void copy_edd(void)
  182. {
  183. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  184. sizeof(edd.mbr_signature));
  185. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  186. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  187. edd.edd_info_nr = boot_params.eddbuf_entries;
  188. }
  189. #else
  190. static inline void copy_edd(void)
  191. {
  192. }
  193. #endif
  194. #ifdef CONFIG_KEXEC
  195. static void __init reserve_crashkernel(void)
  196. {
  197. unsigned long long free_mem;
  198. unsigned long long crash_size, crash_base;
  199. int ret;
  200. free_mem =
  201. ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  202. ret = parse_crashkernel(boot_command_line, free_mem,
  203. &crash_size, &crash_base);
  204. if (ret == 0 && crash_size) {
  205. if (crash_base > 0) {
  206. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  207. "for crashkernel (System RAM: %ldMB)\n",
  208. (unsigned long)(crash_size >> 20),
  209. (unsigned long)(crash_base >> 20),
  210. (unsigned long)(free_mem >> 20));
  211. crashk_res.start = crash_base;
  212. crashk_res.end = crash_base + crash_size - 1;
  213. reserve_bootmem(crash_base, crash_size);
  214. } else
  215. printk(KERN_INFO "crashkernel reservation failed - "
  216. "you have to specify a base address\n");
  217. }
  218. }
  219. #else
  220. static inline void __init reserve_crashkernel(void)
  221. {}
  222. #endif
  223. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  224. void __attribute__((weak)) __init memory_setup(void)
  225. {
  226. machine_specific_memory_setup();
  227. }
  228. /*
  229. * setup_arch - architecture-specific boot-time initializations
  230. *
  231. * Note: On x86_64, fixmaps are ready for use even before this is called.
  232. */
  233. void __init setup_arch(char **cmdline_p)
  234. {
  235. unsigned i;
  236. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  237. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  238. screen_info = boot_params.screen_info;
  239. edid_info = boot_params.edid_info;
  240. saved_video_mode = boot_params.hdr.vid_mode;
  241. bootloader_type = boot_params.hdr.type_of_loader;
  242. #ifdef CONFIG_BLK_DEV_RAM
  243. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  244. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  245. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  246. #endif
  247. #ifdef CONFIG_EFI
  248. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  249. "EL64", 4))
  250. efi_enabled = 1;
  251. #endif
  252. ARCH_SETUP
  253. memory_setup();
  254. copy_edd();
  255. if (!boot_params.hdr.root_flags)
  256. root_mountflags &= ~MS_RDONLY;
  257. init_mm.start_code = (unsigned long) &_text;
  258. init_mm.end_code = (unsigned long) &_etext;
  259. init_mm.end_data = (unsigned long) &_edata;
  260. init_mm.brk = (unsigned long) &_end;
  261. code_resource.start = virt_to_phys(&_text);
  262. code_resource.end = virt_to_phys(&_etext)-1;
  263. data_resource.start = virt_to_phys(&_etext);
  264. data_resource.end = virt_to_phys(&_edata)-1;
  265. bss_resource.start = virt_to_phys(&__bss_start);
  266. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  267. early_identify_cpu(&boot_cpu_data);
  268. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  269. *cmdline_p = command_line;
  270. parse_early_param();
  271. #ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
  272. if (init_ohci1394_dma_early)
  273. init_ohci1394_dma_on_all_controllers();
  274. #endif
  275. finish_e820_parsing();
  276. early_gart_iommu_check();
  277. e820_register_active_regions(0, 0, -1UL);
  278. /*
  279. * partially used pages are not usable - thus
  280. * we are rounding upwards:
  281. */
  282. end_pfn = e820_end_of_ram();
  283. /* update e820 for memory not covered by WB MTRRs */
  284. mtrr_bp_init();
  285. if (mtrr_trim_uncached_memory(end_pfn)) {
  286. e820_register_active_regions(0, 0, -1UL);
  287. end_pfn = e820_end_of_ram();
  288. }
  289. num_physpages = end_pfn;
  290. check_efer();
  291. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  292. if (efi_enabled)
  293. efi_init();
  294. dmi_scan_machine();
  295. io_delay_init();
  296. #ifdef CONFIG_SMP
  297. /* setup to use the early static init tables during kernel startup */
  298. x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
  299. x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
  300. #ifdef CONFIG_NUMA
  301. x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
  302. #endif
  303. #endif
  304. #ifdef CONFIG_ACPI
  305. /*
  306. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  307. * Call this early for SRAT node setup.
  308. */
  309. acpi_boot_table_init();
  310. #endif
  311. /* How many end-of-memory variables you have, grandma! */
  312. max_low_pfn = end_pfn;
  313. max_pfn = end_pfn;
  314. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  315. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  316. remove_all_active_ranges();
  317. #ifdef CONFIG_ACPI_NUMA
  318. /*
  319. * Parse SRAT to discover nodes.
  320. */
  321. acpi_numa_init();
  322. #endif
  323. #ifdef CONFIG_NUMA
  324. numa_initmem_init(0, end_pfn);
  325. #else
  326. contig_initmem_init(0, end_pfn);
  327. #endif
  328. early_res_to_bootmem();
  329. #ifdef CONFIG_ACPI_SLEEP
  330. /*
  331. * Reserve low memory region for sleep support.
  332. */
  333. acpi_reserve_bootmem();
  334. #endif
  335. if (efi_enabled)
  336. efi_reserve_bootmem();
  337. /*
  338. * Find and reserve possible boot-time SMP configuration:
  339. */
  340. find_smp_config();
  341. #ifdef CONFIG_BLK_DEV_INITRD
  342. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  343. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  344. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  345. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  346. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  347. if (ramdisk_end <= end_of_mem) {
  348. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  349. initrd_start = ramdisk_image + PAGE_OFFSET;
  350. initrd_end = initrd_start+ramdisk_size;
  351. } else {
  352. /* Assumes everything on node 0 */
  353. free_bootmem(ramdisk_image, ramdisk_size);
  354. printk(KERN_ERR "initrd extends beyond end of memory "
  355. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  356. ramdisk_end, end_of_mem);
  357. initrd_start = 0;
  358. }
  359. }
  360. #endif
  361. reserve_crashkernel();
  362. paging_init();
  363. map_vsyscall();
  364. early_quirks();
  365. #ifdef CONFIG_ACPI
  366. /*
  367. * Read APIC and some other early information from ACPI tables.
  368. */
  369. acpi_boot_init();
  370. #endif
  371. init_cpu_to_node();
  372. /*
  373. * get boot-time SMP configuration:
  374. */
  375. if (smp_found_config)
  376. get_smp_config();
  377. init_apic_mappings();
  378. ioapic_init_mappings();
  379. /*
  380. * We trust e820 completely. No explicit ROM probing in memory.
  381. */
  382. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  383. e820_mark_nosave_regions();
  384. /* request I/O space for devices used on all i[345]86 PCs */
  385. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  386. request_resource(&ioport_resource, &standard_io_resources[i]);
  387. e820_setup_gap();
  388. #ifdef CONFIG_VT
  389. #if defined(CONFIG_VGA_CONSOLE)
  390. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  391. conswitchp = &vga_con;
  392. #elif defined(CONFIG_DUMMY_CONSOLE)
  393. conswitchp = &dummy_con;
  394. #endif
  395. #endif
  396. }
  397. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  398. {
  399. unsigned int *v;
  400. if (c->extended_cpuid_level < 0x80000004)
  401. return 0;
  402. v = (unsigned int *) c->x86_model_id;
  403. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  404. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  405. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  406. c->x86_model_id[48] = 0;
  407. return 1;
  408. }
  409. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  410. {
  411. unsigned int n, dummy, eax, ebx, ecx, edx;
  412. n = c->extended_cpuid_level;
  413. if (n >= 0x80000005) {
  414. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  415. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  416. "D cache %dK (%d bytes/line)\n",
  417. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  418. c->x86_cache_size = (ecx>>24) + (edx>>24);
  419. /* On K8 L1 TLB is inclusive, so don't count it */
  420. c->x86_tlbsize = 0;
  421. }
  422. if (n >= 0x80000006) {
  423. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  424. ecx = cpuid_ecx(0x80000006);
  425. c->x86_cache_size = ecx >> 16;
  426. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  427. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  428. c->x86_cache_size, ecx & 0xFF);
  429. }
  430. if (n >= 0x80000008) {
  431. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  432. c->x86_virt_bits = (eax >> 8) & 0xff;
  433. c->x86_phys_bits = eax & 0xff;
  434. }
  435. }
  436. #ifdef CONFIG_NUMA
  437. static int nearby_node(int apicid)
  438. {
  439. int i, node;
  440. for (i = apicid - 1; i >= 0; i--) {
  441. node = apicid_to_node[i];
  442. if (node != NUMA_NO_NODE && node_online(node))
  443. return node;
  444. }
  445. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  446. node = apicid_to_node[i];
  447. if (node != NUMA_NO_NODE && node_online(node))
  448. return node;
  449. }
  450. return first_node(node_online_map); /* Shouldn't happen */
  451. }
  452. #endif
  453. /*
  454. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  455. * Assumes number of cores is a power of two.
  456. */
  457. static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
  458. {
  459. #ifdef CONFIG_SMP
  460. unsigned bits;
  461. #ifdef CONFIG_NUMA
  462. int cpu = smp_processor_id();
  463. int node = 0;
  464. unsigned apicid = hard_smp_processor_id();
  465. #endif
  466. bits = c->x86_coreid_bits;
  467. /* Low order bits define the core id (index of core in socket) */
  468. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  469. /* Convert the APIC ID into the socket ID */
  470. c->phys_proc_id = phys_pkg_id(bits);
  471. #ifdef CONFIG_NUMA
  472. node = c->phys_proc_id;
  473. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  474. node = apicid_to_node[apicid];
  475. if (!node_online(node)) {
  476. /* Two possibilities here:
  477. - The CPU is missing memory and no node was created.
  478. In that case try picking one from a nearby CPU
  479. - The APIC IDs differ from the HyperTransport node IDs
  480. which the K8 northbridge parsing fills in.
  481. Assume they are all increased by a constant offset,
  482. but in the same order as the HT nodeids.
  483. If that doesn't result in a usable node fall back to the
  484. path for the previous case. */
  485. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  486. if (ht_nodeid >= 0 &&
  487. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  488. node = apicid_to_node[ht_nodeid];
  489. /* Pick a nearby node */
  490. if (!node_online(node))
  491. node = nearby_node(apicid);
  492. }
  493. numa_set_node(cpu, node);
  494. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  495. #endif
  496. #endif
  497. }
  498. static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
  499. {
  500. #ifdef CONFIG_SMP
  501. unsigned bits, ecx;
  502. /* Multi core CPU? */
  503. if (c->extended_cpuid_level < 0x80000008)
  504. return;
  505. ecx = cpuid_ecx(0x80000008);
  506. c->x86_max_cores = (ecx & 0xff) + 1;
  507. /* CPU telling us the core id bits shift? */
  508. bits = (ecx >> 12) & 0xF;
  509. /* Otherwise recompute */
  510. if (bits == 0) {
  511. while ((1 << bits) < c->x86_max_cores)
  512. bits++;
  513. }
  514. c->x86_coreid_bits = bits;
  515. #endif
  516. }
  517. #define ENABLE_C1E_MASK 0x18000000
  518. #define CPUID_PROCESSOR_SIGNATURE 1
  519. #define CPUID_XFAM 0x0ff00000
  520. #define CPUID_XFAM_K8 0x00000000
  521. #define CPUID_XFAM_10H 0x00100000
  522. #define CPUID_XFAM_11H 0x00200000
  523. #define CPUID_XMOD 0x000f0000
  524. #define CPUID_XMOD_REV_F 0x00040000
  525. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  526. static __cpuinit int amd_apic_timer_broken(void)
  527. {
  528. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  529. switch (eax & CPUID_XFAM) {
  530. case CPUID_XFAM_K8:
  531. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  532. break;
  533. case CPUID_XFAM_10H:
  534. case CPUID_XFAM_11H:
  535. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  536. if (lo & ENABLE_C1E_MASK)
  537. return 1;
  538. break;
  539. default:
  540. /* err on the side of caution */
  541. return 1;
  542. }
  543. return 0;
  544. }
  545. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  546. {
  547. early_init_amd_mc(c);
  548. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  549. if (c->x86_power & (1<<8))
  550. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  551. }
  552. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  553. {
  554. unsigned level;
  555. #ifdef CONFIG_SMP
  556. unsigned long value;
  557. /*
  558. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  559. * bit 6 of msr C001_0015
  560. *
  561. * Errata 63 for SH-B3 steppings
  562. * Errata 122 for all steppings (F+ have it disabled by default)
  563. */
  564. if (c->x86 == 15) {
  565. rdmsrl(MSR_K8_HWCR, value);
  566. value |= 1 << 6;
  567. wrmsrl(MSR_K8_HWCR, value);
  568. }
  569. #endif
  570. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  571. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  572. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  573. /* On C+ stepping K8 rep microcode works well for copy/memset */
  574. level = cpuid_eax(1);
  575. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  576. level >= 0x0f58))
  577. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  578. if (c->x86 == 0x10 || c->x86 == 0x11)
  579. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  580. /* Enable workaround for FXSAVE leak */
  581. if (c->x86 >= 6)
  582. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  583. level = get_model_name(c);
  584. if (!level) {
  585. switch (c->x86) {
  586. case 15:
  587. /* Should distinguish Models here, but this is only
  588. a fallback anyways. */
  589. strcpy(c->x86_model_id, "Hammer");
  590. break;
  591. }
  592. }
  593. display_cacheinfo(c);
  594. /* Multi core CPU? */
  595. if (c->extended_cpuid_level >= 0x80000008)
  596. amd_detect_cmp(c);
  597. if (c->extended_cpuid_level >= 0x80000006 &&
  598. (cpuid_edx(0x80000006) & 0xf000))
  599. num_cache_leaves = 4;
  600. else
  601. num_cache_leaves = 3;
  602. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  603. set_cpu_cap(c, X86_FEATURE_K8);
  604. /* MFENCE stops RDTSC speculation */
  605. set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
  606. if (amd_apic_timer_broken())
  607. disable_apic_timer = 1;
  608. }
  609. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  610. {
  611. #ifdef CONFIG_SMP
  612. u32 eax, ebx, ecx, edx;
  613. int index_msb, core_bits;
  614. cpuid(1, &eax, &ebx, &ecx, &edx);
  615. if (!cpu_has(c, X86_FEATURE_HT))
  616. return;
  617. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  618. goto out;
  619. smp_num_siblings = (ebx & 0xff0000) >> 16;
  620. if (smp_num_siblings == 1) {
  621. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  622. } else if (smp_num_siblings > 1) {
  623. if (smp_num_siblings > NR_CPUS) {
  624. printk(KERN_WARNING "CPU: Unsupported number of "
  625. "siblings %d", smp_num_siblings);
  626. smp_num_siblings = 1;
  627. return;
  628. }
  629. index_msb = get_count_order(smp_num_siblings);
  630. c->phys_proc_id = phys_pkg_id(index_msb);
  631. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  632. index_msb = get_count_order(smp_num_siblings);
  633. core_bits = get_count_order(c->x86_max_cores);
  634. c->cpu_core_id = phys_pkg_id(index_msb) &
  635. ((1 << core_bits) - 1);
  636. }
  637. out:
  638. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  639. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  640. c->phys_proc_id);
  641. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  642. c->cpu_core_id);
  643. }
  644. #endif
  645. }
  646. /*
  647. * find out the number of processor cores on the die
  648. */
  649. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  650. {
  651. unsigned int eax, t;
  652. if (c->cpuid_level < 4)
  653. return 1;
  654. cpuid_count(4, 0, &eax, &t, &t, &t);
  655. if (eax & 0x1f)
  656. return ((eax >> 26) + 1);
  657. else
  658. return 1;
  659. }
  660. static void srat_detect_node(void)
  661. {
  662. #ifdef CONFIG_NUMA
  663. unsigned node;
  664. int cpu = smp_processor_id();
  665. int apicid = hard_smp_processor_id();
  666. /* Don't do the funky fallback heuristics the AMD version employs
  667. for now. */
  668. node = apicid_to_node[apicid];
  669. if (node == NUMA_NO_NODE)
  670. node = first_node(node_online_map);
  671. numa_set_node(cpu, node);
  672. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  673. #endif
  674. }
  675. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  676. {
  677. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  678. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  679. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  680. }
  681. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  682. {
  683. /* Cache sizes */
  684. unsigned n;
  685. init_intel_cacheinfo(c);
  686. if (c->cpuid_level > 9) {
  687. unsigned eax = cpuid_eax(10);
  688. /* Check for version and the number of counters */
  689. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  690. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  691. }
  692. if (cpu_has_ds) {
  693. unsigned int l1, l2;
  694. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  695. if (!(l1 & (1<<11)))
  696. set_cpu_cap(c, X86_FEATURE_BTS);
  697. if (!(l1 & (1<<12)))
  698. set_cpu_cap(c, X86_FEATURE_PEBS);
  699. }
  700. if (cpu_has_bts)
  701. ds_init_intel(c);
  702. n = c->extended_cpuid_level;
  703. if (n >= 0x80000008) {
  704. unsigned eax = cpuid_eax(0x80000008);
  705. c->x86_virt_bits = (eax >> 8) & 0xff;
  706. c->x86_phys_bits = eax & 0xff;
  707. /* CPUID workaround for Intel 0F34 CPU */
  708. if (c->x86_vendor == X86_VENDOR_INTEL &&
  709. c->x86 == 0xF && c->x86_model == 0x3 &&
  710. c->x86_mask == 0x4)
  711. c->x86_phys_bits = 36;
  712. }
  713. if (c->x86 == 15)
  714. c->x86_cache_alignment = c->x86_clflush_size * 2;
  715. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  716. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  717. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  718. if (c->x86 == 6)
  719. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  720. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  721. c->x86_max_cores = intel_num_cpu_cores(c);
  722. srat_detect_node();
  723. }
  724. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  725. {
  726. char *v = c->x86_vendor_id;
  727. if (!strcmp(v, "AuthenticAMD"))
  728. c->x86_vendor = X86_VENDOR_AMD;
  729. else if (!strcmp(v, "GenuineIntel"))
  730. c->x86_vendor = X86_VENDOR_INTEL;
  731. else
  732. c->x86_vendor = X86_VENDOR_UNKNOWN;
  733. }
  734. /* Do some early cpuid on the boot CPU to get some parameter that are
  735. needed before check_bugs. Everything advanced is in identify_cpu
  736. below. */
  737. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  738. {
  739. u32 tfms, xlvl;
  740. c->loops_per_jiffy = loops_per_jiffy;
  741. c->x86_cache_size = -1;
  742. c->x86_vendor = X86_VENDOR_UNKNOWN;
  743. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  744. c->x86_vendor_id[0] = '\0'; /* Unset */
  745. c->x86_model_id[0] = '\0'; /* Unset */
  746. c->x86_clflush_size = 64;
  747. c->x86_cache_alignment = c->x86_clflush_size;
  748. c->x86_max_cores = 1;
  749. c->x86_coreid_bits = 0;
  750. c->extended_cpuid_level = 0;
  751. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  752. /* Get vendor name */
  753. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  754. (unsigned int *)&c->x86_vendor_id[0],
  755. (unsigned int *)&c->x86_vendor_id[8],
  756. (unsigned int *)&c->x86_vendor_id[4]);
  757. get_cpu_vendor(c);
  758. /* Initialize the standard set of capabilities */
  759. /* Note that the vendor-specific code below might override */
  760. /* Intel-defined flags: level 0x00000001 */
  761. if (c->cpuid_level >= 0x00000001) {
  762. __u32 misc;
  763. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  764. &c->x86_capability[0]);
  765. c->x86 = (tfms >> 8) & 0xf;
  766. c->x86_model = (tfms >> 4) & 0xf;
  767. c->x86_mask = tfms & 0xf;
  768. if (c->x86 == 0xf)
  769. c->x86 += (tfms >> 20) & 0xff;
  770. if (c->x86 >= 0x6)
  771. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  772. if (c->x86_capability[0] & (1<<19))
  773. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  774. } else {
  775. /* Have CPUID level 0 only - unheard of */
  776. c->x86 = 4;
  777. }
  778. #ifdef CONFIG_SMP
  779. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  780. #endif
  781. /* AMD-defined flags: level 0x80000001 */
  782. xlvl = cpuid_eax(0x80000000);
  783. c->extended_cpuid_level = xlvl;
  784. if ((xlvl & 0xffff0000) == 0x80000000) {
  785. if (xlvl >= 0x80000001) {
  786. c->x86_capability[1] = cpuid_edx(0x80000001);
  787. c->x86_capability[6] = cpuid_ecx(0x80000001);
  788. }
  789. if (xlvl >= 0x80000004)
  790. get_model_name(c); /* Default name */
  791. }
  792. /* Transmeta-defined flags: level 0x80860001 */
  793. xlvl = cpuid_eax(0x80860000);
  794. if ((xlvl & 0xffff0000) == 0x80860000) {
  795. /* Don't set x86_cpuid_level here for now to not confuse. */
  796. if (xlvl >= 0x80860001)
  797. c->x86_capability[2] = cpuid_edx(0x80860001);
  798. }
  799. c->extended_cpuid_level = cpuid_eax(0x80000000);
  800. if (c->extended_cpuid_level >= 0x80000007)
  801. c->x86_power = cpuid_edx(0x80000007);
  802. switch (c->x86_vendor) {
  803. case X86_VENDOR_AMD:
  804. early_init_amd(c);
  805. break;
  806. case X86_VENDOR_INTEL:
  807. early_init_intel(c);
  808. break;
  809. }
  810. }
  811. /*
  812. * This does the hard work of actually picking apart the CPU stuff...
  813. */
  814. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  815. {
  816. int i;
  817. early_identify_cpu(c);
  818. init_scattered_cpuid_features(c);
  819. c->apicid = phys_pkg_id(0);
  820. /*
  821. * Vendor-specific initialization. In this section we
  822. * canonicalize the feature flags, meaning if there are
  823. * features a certain CPU supports which CPUID doesn't
  824. * tell us, CPUID claiming incorrect flags, or other bugs,
  825. * we handle them here.
  826. *
  827. * At the end of this section, c->x86_capability better
  828. * indicate the features this CPU genuinely supports!
  829. */
  830. switch (c->x86_vendor) {
  831. case X86_VENDOR_AMD:
  832. init_amd(c);
  833. break;
  834. case X86_VENDOR_INTEL:
  835. init_intel(c);
  836. break;
  837. case X86_VENDOR_UNKNOWN:
  838. default:
  839. display_cacheinfo(c);
  840. break;
  841. }
  842. detect_ht(c);
  843. /*
  844. * On SMP, boot_cpu_data holds the common feature set between
  845. * all CPUs; so make sure that we indicate which features are
  846. * common between the CPUs. The first time this routine gets
  847. * executed, c == &boot_cpu_data.
  848. */
  849. if (c != &boot_cpu_data) {
  850. /* AND the already accumulated flags with these */
  851. for (i = 0; i < NCAPINTS; i++)
  852. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  853. }
  854. /* Clear all flags overriden by options */
  855. for (i = 0; i < NCAPINTS; i++)
  856. c->x86_capability[i] ^= cleared_cpu_caps[i];
  857. #ifdef CONFIG_X86_MCE
  858. mcheck_init(c);
  859. #endif
  860. select_idle_routine(c);
  861. if (c != &boot_cpu_data)
  862. mtrr_ap_init();
  863. #ifdef CONFIG_NUMA
  864. numa_add_cpu(smp_processor_id());
  865. #endif
  866. }
  867. static __init int setup_noclflush(char *arg)
  868. {
  869. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  870. return 1;
  871. }
  872. __setup("noclflush", setup_noclflush);
  873. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  874. {
  875. if (c->x86_model_id[0])
  876. printk(KERN_INFO "%s", c->x86_model_id);
  877. if (c->x86_mask || c->cpuid_level >= 0)
  878. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  879. else
  880. printk(KERN_CONT "\n");
  881. }
  882. static __init int setup_disablecpuid(char *arg)
  883. {
  884. int bit;
  885. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  886. setup_clear_cpu_cap(bit);
  887. else
  888. return 0;
  889. return 1;
  890. }
  891. __setup("clearcpuid=", setup_disablecpuid);
  892. /*
  893. * Get CPU information for use by the procfs.
  894. */
  895. static int show_cpuinfo(struct seq_file *m, void *v)
  896. {
  897. struct cpuinfo_x86 *c = v;
  898. int cpu = 0, i;
  899. /*
  900. * These flag bits must match the definitions in <asm/cpufeature.h>.
  901. * NULL means this bit is undefined or reserved; either way it doesn't
  902. * have meaning as far as Linux is concerned. Note that it's important
  903. * to realize there is a difference between this table and CPUID -- if
  904. * applications want to get the raw CPUID data, they should access
  905. * /dev/cpu/<cpu_nr>/cpuid instead.
  906. */
  907. static const char *const x86_cap_flags[] = {
  908. /* Intel-defined */
  909. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  910. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  911. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  912. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  913. /* AMD-defined */
  914. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  915. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  916. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  917. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  918. "3dnowext", "3dnow",
  919. /* Transmeta-defined */
  920. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  921. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  922. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  923. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  924. /* Other (Linux-defined) */
  925. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  926. NULL, NULL, NULL, NULL,
  927. "constant_tsc", "up", NULL, "arch_perfmon",
  928. "pebs", "bts", NULL, "sync_rdtsc",
  929. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  930. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  931. /* Intel-defined (#2) */
  932. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  933. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  934. NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
  935. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  936. /* VIA/Cyrix/Centaur-defined */
  937. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  938. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  939. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  940. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  941. /* AMD-defined (#2) */
  942. "lahf_lm", "cmp_legacy", "svm", "extapic",
  943. "cr8_legacy", "abm", "sse4a", "misalignsse",
  944. "3dnowprefetch", "osvw", "ibs", "sse5",
  945. "skinit", "wdt", NULL, NULL,
  946. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  947. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  948. /* Auxiliary (Linux-defined) */
  949. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  950. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  951. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  952. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  953. };
  954. static const char *const x86_power_flags[] = {
  955. "ts", /* temperature sensor */
  956. "fid", /* frequency id control */
  957. "vid", /* voltage id control */
  958. "ttp", /* thermal trip */
  959. "tm",
  960. "stc",
  961. "100mhzsteps",
  962. "hwpstate",
  963. "", /* tsc invariant mapped to constant_tsc */
  964. /* nothing */
  965. };
  966. #ifdef CONFIG_SMP
  967. cpu = c->cpu_index;
  968. #endif
  969. seq_printf(m, "processor\t: %u\n"
  970. "vendor_id\t: %s\n"
  971. "cpu family\t: %d\n"
  972. "model\t\t: %d\n"
  973. "model name\t: %s\n",
  974. (unsigned)cpu,
  975. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  976. c->x86,
  977. (int)c->x86_model,
  978. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  979. if (c->x86_mask || c->cpuid_level >= 0)
  980. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  981. else
  982. seq_printf(m, "stepping\t: unknown\n");
  983. if (cpu_has(c, X86_FEATURE_TSC)) {
  984. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  985. if (!freq)
  986. freq = cpu_khz;
  987. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  988. freq / 1000, (freq % 1000));
  989. }
  990. /* Cache size */
  991. if (c->x86_cache_size >= 0)
  992. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  993. #ifdef CONFIG_SMP
  994. if (smp_num_siblings * c->x86_max_cores > 1) {
  995. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  996. seq_printf(m, "siblings\t: %d\n",
  997. cpus_weight(per_cpu(cpu_core_map, cpu)));
  998. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  999. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  1000. }
  1001. #endif
  1002. seq_printf(m,
  1003. "fpu\t\t: yes\n"
  1004. "fpu_exception\t: yes\n"
  1005. "cpuid level\t: %d\n"
  1006. "wp\t\t: yes\n"
  1007. "flags\t\t:",
  1008. c->cpuid_level);
  1009. for (i = 0; i < 32*NCAPINTS; i++)
  1010. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  1011. seq_printf(m, " %s", x86_cap_flags[i]);
  1012. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  1013. c->loops_per_jiffy/(500000/HZ),
  1014. (c->loops_per_jiffy/(5000/HZ)) % 100);
  1015. if (c->x86_tlbsize > 0)
  1016. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  1017. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  1018. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  1019. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  1020. c->x86_phys_bits, c->x86_virt_bits);
  1021. seq_printf(m, "power management:");
  1022. for (i = 0; i < 32; i++) {
  1023. if (c->x86_power & (1 << i)) {
  1024. if (i < ARRAY_SIZE(x86_power_flags) &&
  1025. x86_power_flags[i])
  1026. seq_printf(m, "%s%s",
  1027. x86_power_flags[i][0]?" ":"",
  1028. x86_power_flags[i]);
  1029. else
  1030. seq_printf(m, " [%d]", i);
  1031. }
  1032. }
  1033. seq_printf(m, "\n\n");
  1034. return 0;
  1035. }
  1036. static void *c_start(struct seq_file *m, loff_t *pos)
  1037. {
  1038. if (*pos == 0) /* just in case, cpu 0 is not the first */
  1039. *pos = first_cpu(cpu_online_map);
  1040. if ((*pos) < NR_CPUS && cpu_online(*pos))
  1041. return &cpu_data(*pos);
  1042. return NULL;
  1043. }
  1044. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1045. {
  1046. *pos = next_cpu(*pos, cpu_online_map);
  1047. return c_start(m, pos);
  1048. }
  1049. static void c_stop(struct seq_file *m, void *v)
  1050. {
  1051. }
  1052. const struct seq_operations cpuinfo_op = {
  1053. .start = c_start,
  1054. .next = c_next,
  1055. .stop = c_stop,
  1056. .show = show_cpuinfo,
  1057. };