lguest.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and the
  3. * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
  4. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include "linux/lguest_launcher.h"
  38. #include "linux/virtio_config.h"
  39. #include "linux/virtio_net.h"
  40. #include "linux/virtio_blk.h"
  41. #include "linux/virtio_console.h"
  42. #include "linux/virtio_ring.h"
  43. #include "asm-x86/bootparam.h"
  44. /*L:110 We can ignore the 38 include files we need for this program, but I do
  45. * want to draw attention to the use of kernel-style types.
  46. *
  47. * As Linus said, "C is a Spartan language, and so should your naming be." I
  48. * like these abbreviations, so we define them here. Note that u64 is always
  49. * unsigned long long, which works on all Linux systems: this means that we can
  50. * use %llu in printf for any u64. */
  51. typedef unsigned long long u64;
  52. typedef uint32_t u32;
  53. typedef uint16_t u16;
  54. typedef uint8_t u8;
  55. /*:*/
  56. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  57. #define NET_PEERNUM 1
  58. #define BRIDGE_PFX "bridge:"
  59. #ifndef SIOCBRADDIF
  60. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  61. #endif
  62. /* We can have up to 256 pages for devices. */
  63. #define DEVICE_PAGES 256
  64. /* This will occupy 2 pages: it must be a power of 2. */
  65. #define VIRTQUEUE_NUM 128
  66. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  67. * this, and although I wouldn't recommend it, it works quite nicely here. */
  68. static bool verbose;
  69. #define verbose(args...) \
  70. do { if (verbose) printf(args); } while(0)
  71. /*:*/
  72. /* The pipe to send commands to the waker process */
  73. static int waker_fd;
  74. /* The pointer to the start of guest memory. */
  75. static void *guest_base;
  76. /* The maximum guest physical address allowed, and maximum possible. */
  77. static unsigned long guest_limit, guest_max;
  78. /* a per-cpu variable indicating whose vcpu is currently running */
  79. static unsigned int __thread cpu_id;
  80. /* This is our list of devices. */
  81. struct device_list
  82. {
  83. /* Summary information about the devices in our list: ready to pass to
  84. * select() to ask which need servicing.*/
  85. fd_set infds;
  86. int max_infd;
  87. /* Counter to assign interrupt numbers. */
  88. unsigned int next_irq;
  89. /* Counter to print out convenient device numbers. */
  90. unsigned int device_num;
  91. /* The descriptor page for the devices. */
  92. u8 *descpage;
  93. /* The tail of the last descriptor. */
  94. unsigned int desc_used;
  95. /* A single linked list of devices. */
  96. struct device *dev;
  97. /* ... And an end pointer so we can easily append new devices */
  98. struct device **lastdev;
  99. };
  100. /* The list of Guest devices, based on command line arguments. */
  101. static struct device_list devices;
  102. /* The device structure describes a single device. */
  103. struct device
  104. {
  105. /* The linked-list pointer. */
  106. struct device *next;
  107. /* The this device's descriptor, as mapped into the Guest. */
  108. struct lguest_device_desc *desc;
  109. /* The name of this device, for --verbose. */
  110. const char *name;
  111. /* If handle_input is set, it wants to be called when this file
  112. * descriptor is ready. */
  113. int fd;
  114. bool (*handle_input)(int fd, struct device *me);
  115. /* Any queues attached to this device */
  116. struct virtqueue *vq;
  117. /* Device-specific data. */
  118. void *priv;
  119. };
  120. /* The virtqueue structure describes a queue attached to a device. */
  121. struct virtqueue
  122. {
  123. struct virtqueue *next;
  124. /* Which device owns me. */
  125. struct device *dev;
  126. /* The configuration for this queue. */
  127. struct lguest_vqconfig config;
  128. /* The actual ring of buffers. */
  129. struct vring vring;
  130. /* Last available index we saw. */
  131. u16 last_avail_idx;
  132. /* The routine to call when the Guest pings us. */
  133. void (*handle_output)(int fd, struct virtqueue *me);
  134. };
  135. /* Remember the arguments to the program so we can "reboot" */
  136. static char **main_args;
  137. /* Since guest is UP and we don't run at the same time, we don't need barriers.
  138. * But I include them in the code in case others copy it. */
  139. #define wmb()
  140. /* Convert an iovec element to the given type.
  141. *
  142. * This is a fairly ugly trick: we need to know the size of the type and
  143. * alignment requirement to check the pointer is kosher. It's also nice to
  144. * have the name of the type in case we report failure.
  145. *
  146. * Typing those three things all the time is cumbersome and error prone, so we
  147. * have a macro which sets them all up and passes to the real function. */
  148. #define convert(iov, type) \
  149. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  150. static void *_convert(struct iovec *iov, size_t size, size_t align,
  151. const char *name)
  152. {
  153. if (iov->iov_len != size)
  154. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  155. if ((unsigned long)iov->iov_base % align != 0)
  156. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  157. return iov->iov_base;
  158. }
  159. /* The virtio configuration space is defined to be little-endian. x86 is
  160. * little-endian too, but it's nice to be explicit so we have these helpers. */
  161. #define cpu_to_le16(v16) (v16)
  162. #define cpu_to_le32(v32) (v32)
  163. #define cpu_to_le64(v64) (v64)
  164. #define le16_to_cpu(v16) (v16)
  165. #define le32_to_cpu(v32) (v32)
  166. #define le64_to_cpu(v32) (v64)
  167. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  168. * where pointers run wild and free! Unfortunately, like most userspace
  169. * programs, it's quite boring (which is why everyone likes to hack on the
  170. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  171. * will get you through this section. Or, maybe not.
  172. *
  173. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  174. * memory and stores it in "guest_base". In other words, Guest physical ==
  175. * Launcher virtual with an offset.
  176. *
  177. * This can be tough to get your head around, but usually it just means that we
  178. * use these trivial conversion functions when the Guest gives us it's
  179. * "physical" addresses: */
  180. static void *from_guest_phys(unsigned long addr)
  181. {
  182. return guest_base + addr;
  183. }
  184. static unsigned long to_guest_phys(const void *addr)
  185. {
  186. return (addr - guest_base);
  187. }
  188. /*L:130
  189. * Loading the Kernel.
  190. *
  191. * We start with couple of simple helper routines. open_or_die() avoids
  192. * error-checking code cluttering the callers: */
  193. static int open_or_die(const char *name, int flags)
  194. {
  195. int fd = open(name, flags);
  196. if (fd < 0)
  197. err(1, "Failed to open %s", name);
  198. return fd;
  199. }
  200. /* map_zeroed_pages() takes a number of pages. */
  201. static void *map_zeroed_pages(unsigned int num)
  202. {
  203. int fd = open_or_die("/dev/zero", O_RDONLY);
  204. void *addr;
  205. /* We use a private mapping (ie. if we write to the page, it will be
  206. * copied). */
  207. addr = mmap(NULL, getpagesize() * num,
  208. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  209. if (addr == MAP_FAILED)
  210. err(1, "Mmaping %u pages of /dev/zero", num);
  211. return addr;
  212. }
  213. /* Get some more pages for a device. */
  214. static void *get_pages(unsigned int num)
  215. {
  216. void *addr = from_guest_phys(guest_limit);
  217. guest_limit += num * getpagesize();
  218. if (guest_limit > guest_max)
  219. errx(1, "Not enough memory for devices");
  220. return addr;
  221. }
  222. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  223. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  224. * it falls back to reading the memory in. */
  225. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  226. {
  227. ssize_t r;
  228. /* We map writable even though for some segments are marked read-only.
  229. * The kernel really wants to be writable: it patches its own
  230. * instructions.
  231. *
  232. * MAP_PRIVATE means that the page won't be copied until a write is
  233. * done to it. This allows us to share untouched memory between
  234. * Guests. */
  235. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  236. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  237. return;
  238. /* pread does a seek and a read in one shot: saves a few lines. */
  239. r = pread(fd, addr, len, offset);
  240. if (r != len)
  241. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  242. }
  243. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  244. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  245. * by all modern binaries on Linux including the kernel.
  246. *
  247. * The ELF headers give *two* addresses: a physical address, and a virtual
  248. * address. We use the physical address; the Guest will map itself to the
  249. * virtual address.
  250. *
  251. * We return the starting address. */
  252. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  253. {
  254. Elf32_Phdr phdr[ehdr->e_phnum];
  255. unsigned int i;
  256. /* Sanity checks on the main ELF header: an x86 executable with a
  257. * reasonable number of correctly-sized program headers. */
  258. if (ehdr->e_type != ET_EXEC
  259. || ehdr->e_machine != EM_386
  260. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  261. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  262. errx(1, "Malformed elf header");
  263. /* An ELF executable contains an ELF header and a number of "program"
  264. * headers which indicate which parts ("segments") of the program to
  265. * load where. */
  266. /* We read in all the program headers at once: */
  267. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  268. err(1, "Seeking to program headers");
  269. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  270. err(1, "Reading program headers");
  271. /* Try all the headers: there are usually only three. A read-only one,
  272. * a read-write one, and a "note" section which isn't loadable. */
  273. for (i = 0; i < ehdr->e_phnum; i++) {
  274. /* If this isn't a loadable segment, we ignore it */
  275. if (phdr[i].p_type != PT_LOAD)
  276. continue;
  277. verbose("Section %i: size %i addr %p\n",
  278. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  279. /* We map this section of the file at its physical address. */
  280. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  281. phdr[i].p_offset, phdr[i].p_filesz);
  282. }
  283. /* The entry point is given in the ELF header. */
  284. return ehdr->e_entry;
  285. }
  286. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  287. * supposed to jump into it and it will unpack itself. We used to have to
  288. * perform some hairy magic because the unpacking code scared me.
  289. *
  290. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  291. * a small patch to jump over the tricky bits in the Guest, so now we just read
  292. * the funky header so we know where in the file to load, and away we go! */
  293. static unsigned long load_bzimage(int fd)
  294. {
  295. struct boot_params boot;
  296. int r;
  297. /* Modern bzImages get loaded at 1M. */
  298. void *p = from_guest_phys(0x100000);
  299. /* Go back to the start of the file and read the header. It should be
  300. * a Linux boot header (see Documentation/i386/boot.txt) */
  301. lseek(fd, 0, SEEK_SET);
  302. read(fd, &boot, sizeof(boot));
  303. /* Inside the setup_hdr, we expect the magic "HdrS" */
  304. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  305. errx(1, "This doesn't look like a bzImage to me");
  306. /* Skip over the extra sectors of the header. */
  307. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  308. /* Now read everything into memory. in nice big chunks. */
  309. while ((r = read(fd, p, 65536)) > 0)
  310. p += r;
  311. /* Finally, code32_start tells us where to enter the kernel. */
  312. return boot.hdr.code32_start;
  313. }
  314. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  315. * come wrapped up in the self-decompressing "bzImage" format. With a little
  316. * work, we can load those, too. */
  317. static unsigned long load_kernel(int fd)
  318. {
  319. Elf32_Ehdr hdr;
  320. /* Read in the first few bytes. */
  321. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  322. err(1, "Reading kernel");
  323. /* If it's an ELF file, it starts with "\177ELF" */
  324. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  325. return map_elf(fd, &hdr);
  326. /* Otherwise we assume it's a bzImage, and try to unpack it */
  327. return load_bzimage(fd);
  328. }
  329. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  330. * it calls getpagesize() twice: "it's dumb code."
  331. *
  332. * Kernel guys get really het up about optimization, even when it's not
  333. * necessary. I leave this code as a reaction against that. */
  334. static inline unsigned long page_align(unsigned long addr)
  335. {
  336. /* Add upwards and truncate downwards. */
  337. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  338. }
  339. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  340. * the kernel which the kernel can use to boot from without needing any
  341. * drivers. Most distributions now use this as standard: the initrd contains
  342. * the code to load the appropriate driver modules for the current machine.
  343. *
  344. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  345. * kernels. He sent me this (and tells me when I break it). */
  346. static unsigned long load_initrd(const char *name, unsigned long mem)
  347. {
  348. int ifd;
  349. struct stat st;
  350. unsigned long len;
  351. ifd = open_or_die(name, O_RDONLY);
  352. /* fstat() is needed to get the file size. */
  353. if (fstat(ifd, &st) < 0)
  354. err(1, "fstat() on initrd '%s'", name);
  355. /* We map the initrd at the top of memory, but mmap wants it to be
  356. * page-aligned, so we round the size up for that. */
  357. len = page_align(st.st_size);
  358. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  359. /* Once a file is mapped, you can close the file descriptor. It's a
  360. * little odd, but quite useful. */
  361. close(ifd);
  362. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  363. /* We return the initrd size. */
  364. return len;
  365. }
  366. /* Once we know how much memory we have, we can construct simple linear page
  367. * tables which set virtual == physical which will get the Guest far enough
  368. * into the boot to create its own.
  369. *
  370. * We lay them out of the way, just below the initrd (which is why we need to
  371. * know its size). */
  372. static unsigned long setup_pagetables(unsigned long mem,
  373. unsigned long initrd_size)
  374. {
  375. unsigned long *pgdir, *linear;
  376. unsigned int mapped_pages, i, linear_pages;
  377. unsigned int ptes_per_page = getpagesize()/sizeof(void *);
  378. mapped_pages = mem/getpagesize();
  379. /* Each PTE page can map ptes_per_page pages: how many do we need? */
  380. linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
  381. /* We put the toplevel page directory page at the top of memory. */
  382. pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
  383. /* Now we use the next linear_pages pages as pte pages */
  384. linear = (void *)pgdir - linear_pages*getpagesize();
  385. /* Linear mapping is easy: put every page's address into the mapping in
  386. * order. PAGE_PRESENT contains the flags Present, Writable and
  387. * Executable. */
  388. for (i = 0; i < mapped_pages; i++)
  389. linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
  390. /* The top level points to the linear page table pages above. */
  391. for (i = 0; i < mapped_pages; i += ptes_per_page) {
  392. pgdir[i/ptes_per_page]
  393. = ((to_guest_phys(linear) + i*sizeof(void *))
  394. | PAGE_PRESENT);
  395. }
  396. verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
  397. mapped_pages, linear_pages, to_guest_phys(linear));
  398. /* We return the top level (guest-physical) address: the kernel needs
  399. * to know where it is. */
  400. return to_guest_phys(pgdir);
  401. }
  402. /*:*/
  403. /* Simple routine to roll all the commandline arguments together with spaces
  404. * between them. */
  405. static void concat(char *dst, char *args[])
  406. {
  407. unsigned int i, len = 0;
  408. for (i = 0; args[i]; i++) {
  409. strcpy(dst+len, args[i]);
  410. strcat(dst+len, " ");
  411. len += strlen(args[i]) + 1;
  412. }
  413. /* In case it's empty. */
  414. dst[len] = '\0';
  415. }
  416. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  417. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  418. * the base of Guest "physical" memory, the top physical page to allow, the
  419. * top level pagetable and the entry point for the Guest. */
  420. static int tell_kernel(unsigned long pgdir, unsigned long start)
  421. {
  422. unsigned long args[] = { LHREQ_INITIALIZE,
  423. (unsigned long)guest_base,
  424. guest_limit / getpagesize(), pgdir, start };
  425. int fd;
  426. verbose("Guest: %p - %p (%#lx)\n",
  427. guest_base, guest_base + guest_limit, guest_limit);
  428. fd = open_or_die("/dev/lguest", O_RDWR);
  429. if (write(fd, args, sizeof(args)) < 0)
  430. err(1, "Writing to /dev/lguest");
  431. /* We return the /dev/lguest file descriptor to control this Guest */
  432. return fd;
  433. }
  434. /*:*/
  435. static void add_device_fd(int fd)
  436. {
  437. FD_SET(fd, &devices.infds);
  438. if (fd > devices.max_infd)
  439. devices.max_infd = fd;
  440. }
  441. /*L:200
  442. * The Waker.
  443. *
  444. * With console, block and network devices, we can have lots of input which we
  445. * need to process. We could try to tell the kernel what file descriptors to
  446. * watch, but handing a file descriptor mask through to the kernel is fairly
  447. * icky.
  448. *
  449. * Instead, we fork off a process which watches the file descriptors and writes
  450. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  451. * stop running the Guest. This causes the Launcher to return from the
  452. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  453. * the LHREQ_BREAK and wake us up again.
  454. *
  455. * This, of course, is merely a different *kind* of icky.
  456. */
  457. static void wake_parent(int pipefd, int lguest_fd)
  458. {
  459. /* Add the pipe from the Launcher to the fdset in the device_list, so
  460. * we watch it, too. */
  461. add_device_fd(pipefd);
  462. for (;;) {
  463. fd_set rfds = devices.infds;
  464. unsigned long args[] = { LHREQ_BREAK, 1 };
  465. /* Wait until input is ready from one of the devices. */
  466. select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
  467. /* Is it a message from the Launcher? */
  468. if (FD_ISSET(pipefd, &rfds)) {
  469. int fd;
  470. /* If read() returns 0, it means the Launcher has
  471. * exited. We silently follow. */
  472. if (read(pipefd, &fd, sizeof(fd)) == 0)
  473. exit(0);
  474. /* Otherwise it's telling us to change what file
  475. * descriptors we're to listen to. Positive means
  476. * listen to a new one, negative means stop
  477. * listening. */
  478. if (fd >= 0)
  479. FD_SET(fd, &devices.infds);
  480. else
  481. FD_CLR(-fd - 1, &devices.infds);
  482. } else /* Send LHREQ_BREAK command. */
  483. pwrite(lguest_fd, args, sizeof(args), cpu_id);
  484. }
  485. }
  486. /* This routine just sets up a pipe to the Waker process. */
  487. static int setup_waker(int lguest_fd)
  488. {
  489. int pipefd[2], child;
  490. /* We create a pipe to talk to the Waker, and also so it knows when the
  491. * Launcher dies (and closes pipe). */
  492. pipe(pipefd);
  493. child = fork();
  494. if (child == -1)
  495. err(1, "forking");
  496. if (child == 0) {
  497. /* We are the Waker: close the "writing" end of our copy of the
  498. * pipe and start waiting for input. */
  499. close(pipefd[1]);
  500. wake_parent(pipefd[0], lguest_fd);
  501. }
  502. /* Close the reading end of our copy of the pipe. */
  503. close(pipefd[0]);
  504. /* Here is the fd used to talk to the waker. */
  505. return pipefd[1];
  506. }
  507. /*
  508. * Device Handling.
  509. *
  510. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  511. * We need to make sure it's not trying to reach into the Launcher itself, so
  512. * we have a convenient routine which checks it and exits with an error message
  513. * if something funny is going on:
  514. */
  515. static void *_check_pointer(unsigned long addr, unsigned int size,
  516. unsigned int line)
  517. {
  518. /* We have to separately check addr and addr+size, because size could
  519. * be huge and addr + size might wrap around. */
  520. if (addr >= guest_limit || addr + size >= guest_limit)
  521. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  522. /* We return a pointer for the caller's convenience, now we know it's
  523. * safe to use. */
  524. return from_guest_phys(addr);
  525. }
  526. /* A macro which transparently hands the line number to the real function. */
  527. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  528. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  529. * function returns the next descriptor in the chain, or vq->vring.num if we're
  530. * at the end. */
  531. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  532. {
  533. unsigned int next;
  534. /* If this descriptor says it doesn't chain, we're done. */
  535. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  536. return vq->vring.num;
  537. /* Check they're not leading us off end of descriptors. */
  538. next = vq->vring.desc[i].next;
  539. /* Make sure compiler knows to grab that: we don't want it changing! */
  540. wmb();
  541. if (next >= vq->vring.num)
  542. errx(1, "Desc next is %u", next);
  543. return next;
  544. }
  545. /* This looks in the virtqueue and for the first available buffer, and converts
  546. * it to an iovec for convenient access. Since descriptors consist of some
  547. * number of output then some number of input descriptors, it's actually two
  548. * iovecs, but we pack them into one and note how many of each there were.
  549. *
  550. * This function returns the descriptor number found, or vq->vring.num (which
  551. * is never a valid descriptor number) if none was found. */
  552. static unsigned get_vq_desc(struct virtqueue *vq,
  553. struct iovec iov[],
  554. unsigned int *out_num, unsigned int *in_num)
  555. {
  556. unsigned int i, head;
  557. /* Check it isn't doing very strange things with descriptor numbers. */
  558. if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
  559. errx(1, "Guest moved used index from %u to %u",
  560. vq->last_avail_idx, vq->vring.avail->idx);
  561. /* If there's nothing new since last we looked, return invalid. */
  562. if (vq->vring.avail->idx == vq->last_avail_idx)
  563. return vq->vring.num;
  564. /* Grab the next descriptor number they're advertising, and increment
  565. * the index we've seen. */
  566. head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
  567. /* If their number is silly, that's a fatal mistake. */
  568. if (head >= vq->vring.num)
  569. errx(1, "Guest says index %u is available", head);
  570. /* When we start there are none of either input nor output. */
  571. *out_num = *in_num = 0;
  572. i = head;
  573. do {
  574. /* Grab the first descriptor, and check it's OK. */
  575. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  576. iov[*out_num + *in_num].iov_base
  577. = check_pointer(vq->vring.desc[i].addr,
  578. vq->vring.desc[i].len);
  579. /* If this is an input descriptor, increment that count. */
  580. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  581. (*in_num)++;
  582. else {
  583. /* If it's an output descriptor, they're all supposed
  584. * to come before any input descriptors. */
  585. if (*in_num)
  586. errx(1, "Descriptor has out after in");
  587. (*out_num)++;
  588. }
  589. /* If we've got too many, that implies a descriptor loop. */
  590. if (*out_num + *in_num > vq->vring.num)
  591. errx(1, "Looped descriptor");
  592. } while ((i = next_desc(vq, i)) != vq->vring.num);
  593. return head;
  594. }
  595. /* After we've used one of their buffers, we tell them about it. We'll then
  596. * want to send them an interrupt, using trigger_irq(). */
  597. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  598. {
  599. struct vring_used_elem *used;
  600. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  601. * next entry in that used ring. */
  602. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  603. used->id = head;
  604. used->len = len;
  605. /* Make sure buffer is written before we update index. */
  606. wmb();
  607. vq->vring.used->idx++;
  608. }
  609. /* This actually sends the interrupt for this virtqueue */
  610. static void trigger_irq(int fd, struct virtqueue *vq)
  611. {
  612. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  613. /* If they don't want an interrupt, don't send one. */
  614. if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  615. return;
  616. /* Send the Guest an interrupt tell them we used something up. */
  617. if (write(fd, buf, sizeof(buf)) != 0)
  618. err(1, "Triggering irq %i", vq->config.irq);
  619. }
  620. /* And here's the combo meal deal. Supersize me! */
  621. static void add_used_and_trigger(int fd, struct virtqueue *vq,
  622. unsigned int head, int len)
  623. {
  624. add_used(vq, head, len);
  625. trigger_irq(fd, vq);
  626. }
  627. /*
  628. * The Console
  629. *
  630. * Here is the input terminal setting we save, and the routine to restore them
  631. * on exit so the user gets their terminal back. */
  632. static struct termios orig_term;
  633. static void restore_term(void)
  634. {
  635. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  636. }
  637. /* We associate some data with the console for our exit hack. */
  638. struct console_abort
  639. {
  640. /* How many times have they hit ^C? */
  641. int count;
  642. /* When did they start? */
  643. struct timeval start;
  644. };
  645. /* This is the routine which handles console input (ie. stdin). */
  646. static bool handle_console_input(int fd, struct device *dev)
  647. {
  648. int len;
  649. unsigned int head, in_num, out_num;
  650. struct iovec iov[dev->vq->vring.num];
  651. struct console_abort *abort = dev->priv;
  652. /* First we need a console buffer from the Guests's input virtqueue. */
  653. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  654. /* If they're not ready for input, stop listening to this file
  655. * descriptor. We'll start again once they add an input buffer. */
  656. if (head == dev->vq->vring.num)
  657. return false;
  658. if (out_num)
  659. errx(1, "Output buffers in console in queue?");
  660. /* This is why we convert to iovecs: the readv() call uses them, and so
  661. * it reads straight into the Guest's buffer. */
  662. len = readv(dev->fd, iov, in_num);
  663. if (len <= 0) {
  664. /* This implies that the console is closed, is /dev/null, or
  665. * something went terribly wrong. */
  666. warnx("Failed to get console input, ignoring console.");
  667. /* Put the input terminal back. */
  668. restore_term();
  669. /* Remove callback from input vq, so it doesn't restart us. */
  670. dev->vq->handle_output = NULL;
  671. /* Stop listening to this fd: don't call us again. */
  672. return false;
  673. }
  674. /* Tell the Guest about the new input. */
  675. add_used_and_trigger(fd, dev->vq, head, len);
  676. /* Three ^C within one second? Exit.
  677. *
  678. * This is such a hack, but works surprisingly well. Each ^C has to be
  679. * in a buffer by itself, so they can't be too fast. But we check that
  680. * we get three within about a second, so they can't be too slow. */
  681. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  682. if (!abort->count++)
  683. gettimeofday(&abort->start, NULL);
  684. else if (abort->count == 3) {
  685. struct timeval now;
  686. gettimeofday(&now, NULL);
  687. if (now.tv_sec <= abort->start.tv_sec+1) {
  688. unsigned long args[] = { LHREQ_BREAK, 0 };
  689. /* Close the fd so Waker will know it has to
  690. * exit. */
  691. close(waker_fd);
  692. /* Just in case waker is blocked in BREAK, send
  693. * unbreak now. */
  694. write(fd, args, sizeof(args));
  695. exit(2);
  696. }
  697. abort->count = 0;
  698. }
  699. } else
  700. /* Any other key resets the abort counter. */
  701. abort->count = 0;
  702. /* Everything went OK! */
  703. return true;
  704. }
  705. /* Handling output for console is simple: we just get all the output buffers
  706. * and write them to stdout. */
  707. static void handle_console_output(int fd, struct virtqueue *vq)
  708. {
  709. unsigned int head, out, in;
  710. int len;
  711. struct iovec iov[vq->vring.num];
  712. /* Keep getting output buffers from the Guest until we run out. */
  713. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  714. if (in)
  715. errx(1, "Input buffers in output queue?");
  716. len = writev(STDOUT_FILENO, iov, out);
  717. add_used_and_trigger(fd, vq, head, len);
  718. }
  719. }
  720. /*
  721. * The Network
  722. *
  723. * Handling output for network is also simple: we get all the output buffers
  724. * and write them (ignoring the first element) to this device's file descriptor
  725. * (stdout). */
  726. static void handle_net_output(int fd, struct virtqueue *vq)
  727. {
  728. unsigned int head, out, in;
  729. int len;
  730. struct iovec iov[vq->vring.num];
  731. /* Keep getting output buffers from the Guest until we run out. */
  732. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  733. if (in)
  734. errx(1, "Input buffers in output queue?");
  735. /* Check header, but otherwise ignore it (we told the Guest we
  736. * supported no features, so it shouldn't have anything
  737. * interesting). */
  738. (void)convert(&iov[0], struct virtio_net_hdr);
  739. len = writev(vq->dev->fd, iov+1, out-1);
  740. add_used_and_trigger(fd, vq, head, len);
  741. }
  742. }
  743. /* This is where we handle a packet coming in from the tun device to our
  744. * Guest. */
  745. static bool handle_tun_input(int fd, struct device *dev)
  746. {
  747. unsigned int head, in_num, out_num;
  748. int len;
  749. struct iovec iov[dev->vq->vring.num];
  750. struct virtio_net_hdr *hdr;
  751. /* First we need a network buffer from the Guests's recv virtqueue. */
  752. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  753. if (head == dev->vq->vring.num) {
  754. /* Now, it's expected that if we try to send a packet too
  755. * early, the Guest won't be ready yet. Wait until the device
  756. * status says it's ready. */
  757. /* FIXME: Actually want DRIVER_ACTIVE here. */
  758. if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
  759. warn("network: no dma buffer!");
  760. /* We'll turn this back on if input buffers are registered. */
  761. return false;
  762. } else if (out_num)
  763. errx(1, "Output buffers in network recv queue?");
  764. /* First element is the header: we set it to 0 (no features). */
  765. hdr = convert(&iov[0], struct virtio_net_hdr);
  766. hdr->flags = 0;
  767. hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
  768. /* Read the packet from the device directly into the Guest's buffer. */
  769. len = readv(dev->fd, iov+1, in_num-1);
  770. if (len <= 0)
  771. err(1, "reading network");
  772. /* Tell the Guest about the new packet. */
  773. add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
  774. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  775. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  776. head != dev->vq->vring.num ? "sent" : "discarded");
  777. /* All good. */
  778. return true;
  779. }
  780. /*L:215 This is the callback attached to the network and console input
  781. * virtqueues: it ensures we try again, in case we stopped console or net
  782. * delivery because Guest didn't have any buffers. */
  783. static void enable_fd(int fd, struct virtqueue *vq)
  784. {
  785. add_device_fd(vq->dev->fd);
  786. /* Tell waker to listen to it again */
  787. write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
  788. }
  789. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  790. static void handle_output(int fd, unsigned long addr)
  791. {
  792. struct device *i;
  793. struct virtqueue *vq;
  794. /* Check each virtqueue. */
  795. for (i = devices.dev; i; i = i->next) {
  796. for (vq = i->vq; vq; vq = vq->next) {
  797. if (vq->config.pfn == addr/getpagesize()
  798. && vq->handle_output) {
  799. verbose("Output to %s\n", vq->dev->name);
  800. vq->handle_output(fd, vq);
  801. return;
  802. }
  803. }
  804. }
  805. /* Early console write is done using notify on a nul-terminated string
  806. * in Guest memory. */
  807. if (addr >= guest_limit)
  808. errx(1, "Bad NOTIFY %#lx", addr);
  809. write(STDOUT_FILENO, from_guest_phys(addr),
  810. strnlen(from_guest_phys(addr), guest_limit - addr));
  811. }
  812. /* This is called when the Waker wakes us up: check for incoming file
  813. * descriptors. */
  814. static void handle_input(int fd)
  815. {
  816. /* select() wants a zeroed timeval to mean "don't wait". */
  817. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  818. for (;;) {
  819. struct device *i;
  820. fd_set fds = devices.infds;
  821. /* If nothing is ready, we're done. */
  822. if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
  823. break;
  824. /* Otherwise, call the device(s) which have readable
  825. * file descriptors and a method of handling them. */
  826. for (i = devices.dev; i; i = i->next) {
  827. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  828. int dev_fd;
  829. if (i->handle_input(fd, i))
  830. continue;
  831. /* If handle_input() returns false, it means we
  832. * should no longer service it. Networking and
  833. * console do this when there's no input
  834. * buffers to deliver into. Console also uses
  835. * it when it discovers that stdin is
  836. * closed. */
  837. FD_CLR(i->fd, &devices.infds);
  838. /* Tell waker to ignore it too, by sending a
  839. * negative fd number (-1, since 0 is a valid
  840. * FD number). */
  841. dev_fd = -i->fd - 1;
  842. write(waker_fd, &dev_fd, sizeof(dev_fd));
  843. }
  844. }
  845. }
  846. }
  847. /*L:190
  848. * Device Setup
  849. *
  850. * All devices need a descriptor so the Guest knows it exists, and a "struct
  851. * device" so the Launcher can keep track of it. We have common helper
  852. * routines to allocate them.
  853. *
  854. * This routine allocates a new "struct lguest_device_desc" from descriptor
  855. * table just above the Guest's normal memory. It returns a pointer to that
  856. * descriptor. */
  857. static struct lguest_device_desc *new_dev_desc(u16 type)
  858. {
  859. struct lguest_device_desc *d;
  860. /* We only have one page for all the descriptors. */
  861. if (devices.desc_used + sizeof(*d) > getpagesize())
  862. errx(1, "Too many devices");
  863. /* We don't need to set config_len or status: page is 0 already. */
  864. d = (void *)devices.descpage + devices.desc_used;
  865. d->type = type;
  866. devices.desc_used += sizeof(*d);
  867. return d;
  868. }
  869. /* Each device descriptor is followed by some configuration information.
  870. * Each configuration field looks like: u8 type, u8 len, [... len bytes...].
  871. *
  872. * This routine adds a new field to an existing device's descriptor. It only
  873. * works for the last device, but that's OK because that's how we use it. */
  874. static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
  875. {
  876. /* This is the last descriptor, right? */
  877. assert(devices.descpage + devices.desc_used
  878. == (u8 *)(dev->desc + 1) + dev->desc->config_len);
  879. /* We only have one page of device descriptions. */
  880. if (devices.desc_used + 2 + len > getpagesize())
  881. errx(1, "Too many devices");
  882. /* Copy in the new config header: type then length. */
  883. devices.descpage[devices.desc_used++] = type;
  884. devices.descpage[devices.desc_used++] = len;
  885. memcpy(devices.descpage + devices.desc_used, c, len);
  886. devices.desc_used += len;
  887. /* Update the device descriptor length: two byte head then data. */
  888. dev->desc->config_len += 2 + len;
  889. }
  890. /* This routine adds a virtqueue to a device. We specify how many descriptors
  891. * the virtqueue is to have. */
  892. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  893. void (*handle_output)(int fd, struct virtqueue *me))
  894. {
  895. unsigned int pages;
  896. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  897. void *p;
  898. /* First we need some pages for this virtqueue. */
  899. pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
  900. / getpagesize();
  901. p = get_pages(pages);
  902. /* Initialize the virtqueue */
  903. vq->next = NULL;
  904. vq->last_avail_idx = 0;
  905. vq->dev = dev;
  906. /* Initialize the configuration. */
  907. vq->config.num = num_descs;
  908. vq->config.irq = devices.next_irq++;
  909. vq->config.pfn = to_guest_phys(p) / getpagesize();
  910. /* Initialize the vring. */
  911. vring_init(&vq->vring, num_descs, p, getpagesize());
  912. /* Add the configuration information to this device's descriptor. */
  913. add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
  914. sizeof(vq->config), &vq->config);
  915. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  916. * second. */
  917. for (i = &dev->vq; *i; i = &(*i)->next);
  918. *i = vq;
  919. /* Set the routine to call when the Guest does something to this
  920. * virtqueue. */
  921. vq->handle_output = handle_output;
  922. /* Set the "Don't Notify Me" flag if we don't have a handler */
  923. if (!handle_output)
  924. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  925. }
  926. /* This routine does all the creation and setup of a new device, including
  927. * calling new_dev_desc() to allocate the descriptor and device memory. */
  928. static struct device *new_device(const char *name, u16 type, int fd,
  929. bool (*handle_input)(int, struct device *))
  930. {
  931. struct device *dev = malloc(sizeof(*dev));
  932. /* Append to device list. Prepending to a single-linked list is
  933. * easier, but the user expects the devices to be arranged on the bus
  934. * in command-line order. The first network device on the command line
  935. * is eth0, the first block device /dev/vda, etc. */
  936. *devices.lastdev = dev;
  937. dev->next = NULL;
  938. devices.lastdev = &dev->next;
  939. /* Now we populate the fields one at a time. */
  940. dev->fd = fd;
  941. /* If we have an input handler for this file descriptor, then we add it
  942. * to the device_list's fdset and maxfd. */
  943. if (handle_input)
  944. add_device_fd(dev->fd);
  945. dev->desc = new_dev_desc(type);
  946. dev->handle_input = handle_input;
  947. dev->name = name;
  948. dev->vq = NULL;
  949. return dev;
  950. }
  951. /* Our first setup routine is the console. It's a fairly simple device, but
  952. * UNIX tty handling makes it uglier than it could be. */
  953. static void setup_console(void)
  954. {
  955. struct device *dev;
  956. /* If we can save the initial standard input settings... */
  957. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  958. struct termios term = orig_term;
  959. /* Then we turn off echo, line buffering and ^C etc. We want a
  960. * raw input stream to the Guest. */
  961. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  962. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  963. /* If we exit gracefully, the original settings will be
  964. * restored so the user can see what they're typing. */
  965. atexit(restore_term);
  966. }
  967. dev = new_device("console", VIRTIO_ID_CONSOLE,
  968. STDIN_FILENO, handle_console_input);
  969. /* We store the console state in dev->priv, and initialize it. */
  970. dev->priv = malloc(sizeof(struct console_abort));
  971. ((struct console_abort *)dev->priv)->count = 0;
  972. /* The console needs two virtqueues: the input then the output. When
  973. * they put something the input queue, we make sure we're listening to
  974. * stdin. When they put something in the output queue, we write it to
  975. * stdout. */
  976. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  977. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  978. verbose("device %u: console\n", devices.device_num++);
  979. }
  980. /*:*/
  981. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  982. * --sharenet=<name> option which opens or creates a named pipe. This can be
  983. * used to send packets to another guest in a 1:1 manner.
  984. *
  985. * More sopisticated is to use one of the tools developed for project like UML
  986. * to do networking.
  987. *
  988. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  989. * completely generic ("here's my vring, attach to your vring") and would work
  990. * for any traffic. Of course, namespace and permissions issues need to be
  991. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  992. * multiple inter-guest channels behind one interface, although it would
  993. * require some manner of hotplugging new virtio channels.
  994. *
  995. * Finally, we could implement a virtio network switch in the kernel. :*/
  996. static u32 str2ip(const char *ipaddr)
  997. {
  998. unsigned int byte[4];
  999. sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
  1000. return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
  1001. }
  1002. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1003. * network device to the bridge device specified by the command line.
  1004. *
  1005. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1006. * dislike bridging), and I just try not to break it. */
  1007. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1008. {
  1009. int ifidx;
  1010. struct ifreq ifr;
  1011. if (!*br_name)
  1012. errx(1, "must specify bridge name");
  1013. ifidx = if_nametoindex(if_name);
  1014. if (!ifidx)
  1015. errx(1, "interface %s does not exist!", if_name);
  1016. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1017. ifr.ifr_ifindex = ifidx;
  1018. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1019. err(1, "can't add %s to bridge %s", if_name, br_name);
  1020. }
  1021. /* This sets up the Host end of the network device with an IP address, brings
  1022. * it up so packets will flow, the copies the MAC address into the hwaddr
  1023. * pointer. */
  1024. static void configure_device(int fd, const char *devname, u32 ipaddr,
  1025. unsigned char hwaddr[6])
  1026. {
  1027. struct ifreq ifr;
  1028. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1029. /* Don't read these incantations. Just cut & paste them like I did! */
  1030. memset(&ifr, 0, sizeof(ifr));
  1031. strcpy(ifr.ifr_name, devname);
  1032. sin->sin_family = AF_INET;
  1033. sin->sin_addr.s_addr = htonl(ipaddr);
  1034. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1035. err(1, "Setting %s interface address", devname);
  1036. ifr.ifr_flags = IFF_UP;
  1037. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1038. err(1, "Bringing interface %s up", devname);
  1039. /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
  1040. * above). IF means Interface, and HWADDR is hardware address.
  1041. * Simple! */
  1042. if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
  1043. err(1, "getting hw address for %s", devname);
  1044. memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
  1045. }
  1046. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1047. * routing, but the principle is the same: it uses the "tun" device to inject
  1048. * packets into the Host as if they came in from a normal network card. We
  1049. * just shunt packets between the Guest and the tun device. */
  1050. static void setup_tun_net(const char *arg)
  1051. {
  1052. struct device *dev;
  1053. struct ifreq ifr;
  1054. int netfd, ipfd;
  1055. u32 ip;
  1056. const char *br_name = NULL;
  1057. u8 hwaddr[6];
  1058. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1059. * tap device is like a tun device, only somehow different. To tell
  1060. * the truth, I completely blundered my way through this code, but it
  1061. * works now! */
  1062. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1063. memset(&ifr, 0, sizeof(ifr));
  1064. ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
  1065. strcpy(ifr.ifr_name, "tap%d");
  1066. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1067. err(1, "configuring /dev/net/tun");
  1068. /* We don't need checksums calculated for packets coming in this
  1069. * device: trust us! */
  1070. ioctl(netfd, TUNSETNOCSUM, 1);
  1071. /* First we create a new network device. */
  1072. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1073. /* Network devices need a receive and a send queue, just like
  1074. * console. */
  1075. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1076. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1077. /* We need a socket to perform the magic network ioctls to bring up the
  1078. * tap interface, connect to the bridge etc. Any socket will do! */
  1079. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1080. if (ipfd < 0)
  1081. err(1, "opening IP socket");
  1082. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1083. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1084. ip = INADDR_ANY;
  1085. br_name = arg + strlen(BRIDGE_PFX);
  1086. add_to_bridge(ipfd, ifr.ifr_name, br_name);
  1087. } else /* It is an IP address to set up the device with */
  1088. ip = str2ip(arg);
  1089. /* Set up the tun device, and get the mac address for the interface. */
  1090. configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
  1091. /* Tell Guest what MAC address to use. */
  1092. add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
  1093. /* We don't seed the socket any more; setup is done. */
  1094. close(ipfd);
  1095. verbose("device %u: tun net %u.%u.%u.%u\n",
  1096. devices.device_num++,
  1097. (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
  1098. if (br_name)
  1099. verbose("attached to bridge: %s\n", br_name);
  1100. }
  1101. /* Our block (disk) device should be really simple: the Guest asks for a block
  1102. * number and we read or write that position in the file. Unfortunately, that
  1103. * was amazingly slow: the Guest waits until the read is finished before
  1104. * running anything else, even if it could have been doing useful work.
  1105. *
  1106. * We could use async I/O, except it's reputed to suck so hard that characters
  1107. * actually go missing from your code when you try to use it.
  1108. *
  1109. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1110. /* This hangs off device->priv. */
  1111. struct vblk_info
  1112. {
  1113. /* The size of the file. */
  1114. off64_t len;
  1115. /* The file descriptor for the file. */
  1116. int fd;
  1117. /* IO thread listens on this file descriptor [0]. */
  1118. int workpipe[2];
  1119. /* IO thread writes to this file descriptor to mark it done, then
  1120. * Launcher triggers interrupt to Guest. */
  1121. int done_fd;
  1122. };
  1123. /*:*/
  1124. /*L:210
  1125. * The Disk
  1126. *
  1127. * Remember that the block device is handled by a separate I/O thread. We head
  1128. * straight into the core of that thread here:
  1129. */
  1130. static bool service_io(struct device *dev)
  1131. {
  1132. struct vblk_info *vblk = dev->priv;
  1133. unsigned int head, out_num, in_num, wlen;
  1134. int ret;
  1135. struct virtio_blk_inhdr *in;
  1136. struct virtio_blk_outhdr *out;
  1137. struct iovec iov[dev->vq->vring.num];
  1138. off64_t off;
  1139. /* See if there's a request waiting. If not, nothing to do. */
  1140. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1141. if (head == dev->vq->vring.num)
  1142. return false;
  1143. /* Every block request should contain at least one output buffer
  1144. * (detailing the location on disk and the type of request) and one
  1145. * input buffer (to hold the result). */
  1146. if (out_num == 0 || in_num == 0)
  1147. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1148. head, out_num, in_num);
  1149. out = convert(&iov[0], struct virtio_blk_outhdr);
  1150. in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
  1151. off = out->sector * 512;
  1152. /* The block device implements "barriers", where the Guest indicates
  1153. * that it wants all previous writes to occur before this write. We
  1154. * don't have a way of asking our kernel to do a barrier, so we just
  1155. * synchronize all the data in the file. Pretty poor, no? */
  1156. if (out->type & VIRTIO_BLK_T_BARRIER)
  1157. fdatasync(vblk->fd);
  1158. /* In general the virtio block driver is allowed to try SCSI commands.
  1159. * It'd be nice if we supported eject, for example, but we don't. */
  1160. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1161. fprintf(stderr, "Scsi commands unsupported\n");
  1162. in->status = VIRTIO_BLK_S_UNSUPP;
  1163. wlen = sizeof(*in);
  1164. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1165. /* Write */
  1166. /* Move to the right location in the block file. This can fail
  1167. * if they try to write past end. */
  1168. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1169. err(1, "Bad seek to sector %llu", out->sector);
  1170. ret = writev(vblk->fd, iov+1, out_num-1);
  1171. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1172. /* Grr... Now we know how long the descriptor they sent was, we
  1173. * make sure they didn't try to write over the end of the block
  1174. * file (possibly extending it). */
  1175. if (ret > 0 && off + ret > vblk->len) {
  1176. /* Trim it back to the correct length */
  1177. ftruncate64(vblk->fd, vblk->len);
  1178. /* Die, bad Guest, die. */
  1179. errx(1, "Write past end %llu+%u", off, ret);
  1180. }
  1181. wlen = sizeof(*in);
  1182. in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1183. } else {
  1184. /* Read */
  1185. /* Move to the right location in the block file. This can fail
  1186. * if they try to read past end. */
  1187. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1188. err(1, "Bad seek to sector %llu", out->sector);
  1189. ret = readv(vblk->fd, iov+1, in_num-1);
  1190. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1191. if (ret >= 0) {
  1192. wlen = sizeof(*in) + ret;
  1193. in->status = VIRTIO_BLK_S_OK;
  1194. } else {
  1195. wlen = sizeof(*in);
  1196. in->status = VIRTIO_BLK_S_IOERR;
  1197. }
  1198. }
  1199. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1200. * that when we tell it we're done. */
  1201. add_used(dev->vq, head, wlen);
  1202. return true;
  1203. }
  1204. /* This is the thread which actually services the I/O. */
  1205. static int io_thread(void *_dev)
  1206. {
  1207. struct device *dev = _dev;
  1208. struct vblk_info *vblk = dev->priv;
  1209. char c;
  1210. /* Close other side of workpipe so we get 0 read when main dies. */
  1211. close(vblk->workpipe[1]);
  1212. /* Close the other side of the done_fd pipe. */
  1213. close(dev->fd);
  1214. /* When this read fails, it means Launcher died, so we follow. */
  1215. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1216. /* We acknowledge each request immediately to reduce latency,
  1217. * rather than waiting until we've done them all. I haven't
  1218. * measured to see if it makes any difference. */
  1219. while (service_io(dev))
  1220. write(vblk->done_fd, &c, 1);
  1221. }
  1222. return 0;
  1223. }
  1224. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1225. * when the thread tells us it's completed some I/O. */
  1226. static bool handle_io_finish(int fd, struct device *dev)
  1227. {
  1228. char c;
  1229. /* If the I/O thread died, presumably it printed the error, so we
  1230. * simply exit. */
  1231. if (read(dev->fd, &c, 1) != 1)
  1232. exit(1);
  1233. /* It did some work, so trigger the irq. */
  1234. trigger_irq(fd, dev->vq);
  1235. return true;
  1236. }
  1237. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1238. static void handle_virtblk_output(int fd, struct virtqueue *vq)
  1239. {
  1240. struct vblk_info *vblk = vq->dev->priv;
  1241. char c = 0;
  1242. /* Wake up I/O thread and tell it to go to work! */
  1243. if (write(vblk->workpipe[1], &c, 1) != 1)
  1244. /* Presumably it indicated why it died. */
  1245. exit(1);
  1246. }
  1247. /*L:198 This actually sets up a virtual block device. */
  1248. static void setup_block_file(const char *filename)
  1249. {
  1250. int p[2];
  1251. struct device *dev;
  1252. struct vblk_info *vblk;
  1253. void *stack;
  1254. u64 cap;
  1255. unsigned int val;
  1256. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1257. pipe(p);
  1258. /* The device responds to return from I/O thread. */
  1259. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1260. /* The device has one virtqueue, where the Guest places requests. */
  1261. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1262. /* Allocate the room for our own bookkeeping */
  1263. vblk = dev->priv = malloc(sizeof(*vblk));
  1264. /* First we open the file and store the length. */
  1265. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1266. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1267. /* Tell Guest how many sectors this device has. */
  1268. cap = cpu_to_le64(vblk->len / 512);
  1269. add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);
  1270. /* Tell Guest not to put in too many descriptors at once: two are used
  1271. * for the in and out elements. */
  1272. val = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1273. add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);
  1274. /* The I/O thread writes to this end of the pipe when done. */
  1275. vblk->done_fd = p[1];
  1276. /* This is the second pipe, which is how we tell the I/O thread about
  1277. * more work. */
  1278. pipe(vblk->workpipe);
  1279. /* Create stack for thread and run it */
  1280. stack = malloc(32768);
  1281. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1282. * becoming a zombie. */
  1283. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1284. err(1, "Creating clone");
  1285. /* We don't need to keep the I/O thread's end of the pipes open. */
  1286. close(vblk->done_fd);
  1287. close(vblk->workpipe[0]);
  1288. verbose("device %u: virtblock %llu sectors\n",
  1289. devices.device_num, cap);
  1290. }
  1291. /* That's the end of device setup. :*/
  1292. /* Reboot */
  1293. static void __attribute__((noreturn)) restart_guest(void)
  1294. {
  1295. unsigned int i;
  1296. /* Closing pipes causes the waker thread and io_threads to die, and
  1297. * closing /dev/lguest cleans up the Guest. Since we don't track all
  1298. * open fds, we simply close everything beyond stderr. */
  1299. for (i = 3; i < FD_SETSIZE; i++)
  1300. close(i);
  1301. execv(main_args[0], main_args);
  1302. err(1, "Could not exec %s", main_args[0]);
  1303. }
  1304. /*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
  1305. * its input and output, and finally, lays it to rest. */
  1306. static void __attribute__((noreturn)) run_guest(int lguest_fd)
  1307. {
  1308. for (;;) {
  1309. unsigned long args[] = { LHREQ_BREAK, 0 };
  1310. unsigned long notify_addr;
  1311. int readval;
  1312. /* We read from the /dev/lguest device to run the Guest. */
  1313. readval = pread(lguest_fd, &notify_addr,
  1314. sizeof(notify_addr), cpu_id);
  1315. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1316. if (readval == sizeof(notify_addr)) {
  1317. verbose("Notify on address %#lx\n", notify_addr);
  1318. handle_output(lguest_fd, notify_addr);
  1319. continue;
  1320. /* ENOENT means the Guest died. Reading tells us why. */
  1321. } else if (errno == ENOENT) {
  1322. char reason[1024] = { 0 };
  1323. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1324. errx(1, "%s", reason);
  1325. /* ERESTART means that we need to reboot the guest */
  1326. } else if (errno == ERESTART) {
  1327. restart_guest();
  1328. /* EAGAIN means the Waker wanted us to look at some input.
  1329. * Anything else means a bug or incompatible change. */
  1330. } else if (errno != EAGAIN)
  1331. err(1, "Running guest failed");
  1332. /* Only service input on thread for CPU 0. */
  1333. if (cpu_id != 0)
  1334. continue;
  1335. /* Service input, then unset the BREAK to release the Waker. */
  1336. handle_input(lguest_fd);
  1337. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1338. err(1, "Resetting break");
  1339. }
  1340. }
  1341. /*
  1342. * This is the end of the Launcher. The good news: we are over halfway
  1343. * through! The bad news: the most fiendish part of the code still lies ahead
  1344. * of us.
  1345. *
  1346. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1347. * "make Host".
  1348. :*/
  1349. static struct option opts[] = {
  1350. { "verbose", 0, NULL, 'v' },
  1351. { "tunnet", 1, NULL, 't' },
  1352. { "block", 1, NULL, 'b' },
  1353. { "initrd", 1, NULL, 'i' },
  1354. { NULL },
  1355. };
  1356. static void usage(void)
  1357. {
  1358. errx(1, "Usage: lguest [--verbose] "
  1359. "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
  1360. "|--block=<filename>|--initrd=<filename>]...\n"
  1361. "<mem-in-mb> vmlinux [args...]");
  1362. }
  1363. /*L:105 The main routine is where the real work begins: */
  1364. int main(int argc, char *argv[])
  1365. {
  1366. /* Memory, top-level pagetable, code startpoint and size of the
  1367. * (optional) initrd. */
  1368. unsigned long mem = 0, pgdir, start, initrd_size = 0;
  1369. /* Two temporaries and the /dev/lguest file descriptor. */
  1370. int i, c, lguest_fd;
  1371. /* The boot information for the Guest. */
  1372. struct boot_params *boot;
  1373. /* If they specify an initrd file to load. */
  1374. const char *initrd_name = NULL;
  1375. /* Save the args: we "reboot" by execing ourselves again. */
  1376. main_args = argv;
  1377. /* We don't "wait" for the children, so prevent them from becoming
  1378. * zombies. */
  1379. signal(SIGCHLD, SIG_IGN);
  1380. /* First we initialize the device list. Since console and network
  1381. * device receive input from a file descriptor, we keep an fdset
  1382. * (infds) and the maximum fd number (max_infd) with the head of the
  1383. * list. We also keep a pointer to the last device, for easy appending
  1384. * to the list. Finally, we keep the next interrupt number to hand out
  1385. * (1: remember that 0 is used by the timer). */
  1386. FD_ZERO(&devices.infds);
  1387. devices.max_infd = -1;
  1388. devices.lastdev = &devices.dev;
  1389. devices.next_irq = 1;
  1390. cpu_id = 0;
  1391. /* We need to know how much memory so we can set up the device
  1392. * descriptor and memory pages for the devices as we parse the command
  1393. * line. So we quickly look through the arguments to find the amount
  1394. * of memory now. */
  1395. for (i = 1; i < argc; i++) {
  1396. if (argv[i][0] != '-') {
  1397. mem = atoi(argv[i]) * 1024 * 1024;
  1398. /* We start by mapping anonymous pages over all of
  1399. * guest-physical memory range. This fills it with 0,
  1400. * and ensures that the Guest won't be killed when it
  1401. * tries to access it. */
  1402. guest_base = map_zeroed_pages(mem / getpagesize()
  1403. + DEVICE_PAGES);
  1404. guest_limit = mem;
  1405. guest_max = mem + DEVICE_PAGES*getpagesize();
  1406. devices.descpage = get_pages(1);
  1407. break;
  1408. }
  1409. }
  1410. /* The options are fairly straight-forward */
  1411. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1412. switch (c) {
  1413. case 'v':
  1414. verbose = true;
  1415. break;
  1416. case 't':
  1417. setup_tun_net(optarg);
  1418. break;
  1419. case 'b':
  1420. setup_block_file(optarg);
  1421. break;
  1422. case 'i':
  1423. initrd_name = optarg;
  1424. break;
  1425. default:
  1426. warnx("Unknown argument %s", argv[optind]);
  1427. usage();
  1428. }
  1429. }
  1430. /* After the other arguments we expect memory and kernel image name,
  1431. * followed by command line arguments for the kernel. */
  1432. if (optind + 2 > argc)
  1433. usage();
  1434. verbose("Guest base is at %p\n", guest_base);
  1435. /* We always have a console device */
  1436. setup_console();
  1437. /* Now we load the kernel */
  1438. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1439. /* Boot information is stashed at physical address 0 */
  1440. boot = from_guest_phys(0);
  1441. /* Map the initrd image if requested (at top of physical memory) */
  1442. if (initrd_name) {
  1443. initrd_size = load_initrd(initrd_name, mem);
  1444. /* These are the location in the Linux boot header where the
  1445. * start and size of the initrd are expected to be found. */
  1446. boot->hdr.ramdisk_image = mem - initrd_size;
  1447. boot->hdr.ramdisk_size = initrd_size;
  1448. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1449. boot->hdr.type_of_loader = 0xFF;
  1450. }
  1451. /* Set up the initial linear pagetables, starting below the initrd. */
  1452. pgdir = setup_pagetables(mem, initrd_size);
  1453. /* The Linux boot header contains an "E820" memory map: ours is a
  1454. * simple, single region. */
  1455. boot->e820_entries = 1;
  1456. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1457. /* The boot header contains a command line pointer: we put the command
  1458. * line after the boot header. */
  1459. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1460. /* We use a simple helper to copy the arguments separated by spaces. */
  1461. concat((char *)(boot + 1), argv+optind+2);
  1462. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1463. boot->hdr.version = 0x207;
  1464. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1465. boot->hdr.hardware_subarch = 1;
  1466. /* Tell the entry path not to try to reload segment registers. */
  1467. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1468. /* We tell the kernel to initialize the Guest: this returns the open
  1469. * /dev/lguest file descriptor. */
  1470. lguest_fd = tell_kernel(pgdir, start);
  1471. /* We fork off a child process, which wakes the Launcher whenever one
  1472. * of the input file descriptors needs attention. Otherwise we would
  1473. * run the Guest until it tries to output something. */
  1474. waker_fd = setup_waker(lguest_fd);
  1475. /* Finally, run the Guest. This doesn't return. */
  1476. run_guest(lguest_fd);
  1477. }
  1478. /*:*/
  1479. /*M:999
  1480. * Mastery is done: you now know everything I do.
  1481. *
  1482. * But surely you have seen code, features and bugs in your wanderings which
  1483. * you now yearn to attack? That is the real game, and I look forward to you
  1484. * patching and forking lguest into the Your-Name-Here-visor.
  1485. *
  1486. * Farewell, and good coding!
  1487. * Rusty Russell.
  1488. */