free-space-cache.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322
  1. /*
  2. * Copyright (C) 2008 Red Hat. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/pagemap.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/math64.h>
  22. #include "ctree.h"
  23. #include "free-space-cache.h"
  24. #include "transaction.h"
  25. #include "disk-io.h"
  26. #include "extent_io.h"
  27. #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
  28. #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
  29. static void recalculate_thresholds(struct btrfs_block_group_cache
  30. *block_group);
  31. static int link_free_space(struct btrfs_block_group_cache *block_group,
  32. struct btrfs_free_space *info);
  33. struct inode *lookup_free_space_inode(struct btrfs_root *root,
  34. struct btrfs_block_group_cache
  35. *block_group, struct btrfs_path *path)
  36. {
  37. struct btrfs_key key;
  38. struct btrfs_key location;
  39. struct btrfs_disk_key disk_key;
  40. struct btrfs_free_space_header *header;
  41. struct extent_buffer *leaf;
  42. struct inode *inode = NULL;
  43. int ret;
  44. spin_lock(&block_group->lock);
  45. if (block_group->inode)
  46. inode = igrab(block_group->inode);
  47. spin_unlock(&block_group->lock);
  48. if (inode)
  49. return inode;
  50. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  51. key.offset = block_group->key.objectid;
  52. key.type = 0;
  53. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  54. if (ret < 0)
  55. return ERR_PTR(ret);
  56. if (ret > 0) {
  57. btrfs_release_path(root, path);
  58. return ERR_PTR(-ENOENT);
  59. }
  60. leaf = path->nodes[0];
  61. header = btrfs_item_ptr(leaf, path->slots[0],
  62. struct btrfs_free_space_header);
  63. btrfs_free_space_key(leaf, header, &disk_key);
  64. btrfs_disk_key_to_cpu(&location, &disk_key);
  65. btrfs_release_path(root, path);
  66. inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  67. if (!inode)
  68. return ERR_PTR(-ENOENT);
  69. if (IS_ERR(inode))
  70. return inode;
  71. if (is_bad_inode(inode)) {
  72. iput(inode);
  73. return ERR_PTR(-ENOENT);
  74. }
  75. inode->i_mapping->flags &= ~__GFP_FS;
  76. spin_lock(&block_group->lock);
  77. if (!root->fs_info->closing) {
  78. block_group->inode = igrab(inode);
  79. block_group->iref = 1;
  80. }
  81. spin_unlock(&block_group->lock);
  82. return inode;
  83. }
  84. int create_free_space_inode(struct btrfs_root *root,
  85. struct btrfs_trans_handle *trans,
  86. struct btrfs_block_group_cache *block_group,
  87. struct btrfs_path *path)
  88. {
  89. struct btrfs_key key;
  90. struct btrfs_disk_key disk_key;
  91. struct btrfs_free_space_header *header;
  92. struct btrfs_inode_item *inode_item;
  93. struct extent_buffer *leaf;
  94. u64 objectid;
  95. int ret;
  96. ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
  97. if (ret < 0)
  98. return ret;
  99. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  100. if (ret)
  101. return ret;
  102. leaf = path->nodes[0];
  103. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  104. struct btrfs_inode_item);
  105. btrfs_item_key(leaf, &disk_key, path->slots[0]);
  106. memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
  107. sizeof(*inode_item));
  108. btrfs_set_inode_generation(leaf, inode_item, trans->transid);
  109. btrfs_set_inode_size(leaf, inode_item, 0);
  110. btrfs_set_inode_nbytes(leaf, inode_item, 0);
  111. btrfs_set_inode_uid(leaf, inode_item, 0);
  112. btrfs_set_inode_gid(leaf, inode_item, 0);
  113. btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
  114. btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
  115. BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
  116. btrfs_set_inode_nlink(leaf, inode_item, 1);
  117. btrfs_set_inode_transid(leaf, inode_item, trans->transid);
  118. btrfs_set_inode_block_group(leaf, inode_item,
  119. block_group->key.objectid);
  120. btrfs_mark_buffer_dirty(leaf);
  121. btrfs_release_path(root, path);
  122. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  123. key.offset = block_group->key.objectid;
  124. key.type = 0;
  125. ret = btrfs_insert_empty_item(trans, root, path, &key,
  126. sizeof(struct btrfs_free_space_header));
  127. if (ret < 0) {
  128. btrfs_release_path(root, path);
  129. return ret;
  130. }
  131. leaf = path->nodes[0];
  132. header = btrfs_item_ptr(leaf, path->slots[0],
  133. struct btrfs_free_space_header);
  134. memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
  135. btrfs_set_free_space_key(leaf, header, &disk_key);
  136. btrfs_mark_buffer_dirty(leaf);
  137. btrfs_release_path(root, path);
  138. return 0;
  139. }
  140. int btrfs_truncate_free_space_cache(struct btrfs_root *root,
  141. struct btrfs_trans_handle *trans,
  142. struct btrfs_path *path,
  143. struct inode *inode)
  144. {
  145. loff_t oldsize;
  146. int ret = 0;
  147. trans->block_rsv = root->orphan_block_rsv;
  148. ret = btrfs_block_rsv_check(trans, root,
  149. root->orphan_block_rsv,
  150. 0, 5);
  151. if (ret)
  152. return ret;
  153. oldsize = i_size_read(inode);
  154. btrfs_i_size_write(inode, 0);
  155. truncate_pagecache(inode, oldsize, 0);
  156. /*
  157. * We don't need an orphan item because truncating the free space cache
  158. * will never be split across transactions.
  159. */
  160. ret = btrfs_truncate_inode_items(trans, root, inode,
  161. 0, BTRFS_EXTENT_DATA_KEY);
  162. if (ret) {
  163. WARN_ON(1);
  164. return ret;
  165. }
  166. return btrfs_update_inode(trans, root, inode);
  167. }
  168. static int readahead_cache(struct inode *inode)
  169. {
  170. struct file_ra_state *ra;
  171. unsigned long last_index;
  172. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  173. if (!ra)
  174. return -ENOMEM;
  175. file_ra_state_init(ra, inode->i_mapping);
  176. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  177. page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
  178. kfree(ra);
  179. return 0;
  180. }
  181. int load_free_space_cache(struct btrfs_fs_info *fs_info,
  182. struct btrfs_block_group_cache *block_group)
  183. {
  184. struct btrfs_root *root = fs_info->tree_root;
  185. struct inode *inode;
  186. struct btrfs_free_space_header *header;
  187. struct extent_buffer *leaf;
  188. struct page *page;
  189. struct btrfs_path *path;
  190. u32 *checksums = NULL, *crc;
  191. char *disk_crcs = NULL;
  192. struct btrfs_key key;
  193. struct list_head bitmaps;
  194. u64 num_entries;
  195. u64 num_bitmaps;
  196. u64 generation;
  197. u64 used = btrfs_block_group_used(&block_group->item);
  198. u32 cur_crc = ~(u32)0;
  199. pgoff_t index = 0;
  200. unsigned long first_page_offset;
  201. int num_checksums;
  202. int ret = 0;
  203. /*
  204. * If we're unmounting then just return, since this does a search on the
  205. * normal root and not the commit root and we could deadlock.
  206. */
  207. smp_mb();
  208. if (fs_info->closing)
  209. return 0;
  210. /*
  211. * If this block group has been marked to be cleared for one reason or
  212. * another then we can't trust the on disk cache, so just return.
  213. */
  214. spin_lock(&block_group->lock);
  215. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  216. spin_unlock(&block_group->lock);
  217. return 0;
  218. }
  219. spin_unlock(&block_group->lock);
  220. INIT_LIST_HEAD(&bitmaps);
  221. path = btrfs_alloc_path();
  222. if (!path)
  223. return 0;
  224. inode = lookup_free_space_inode(root, block_group, path);
  225. if (IS_ERR(inode)) {
  226. btrfs_free_path(path);
  227. return 0;
  228. }
  229. /* Nothing in the space cache, goodbye */
  230. if (!i_size_read(inode)) {
  231. btrfs_free_path(path);
  232. goto out;
  233. }
  234. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  235. key.offset = block_group->key.objectid;
  236. key.type = 0;
  237. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  238. if (ret) {
  239. btrfs_free_path(path);
  240. goto out;
  241. }
  242. leaf = path->nodes[0];
  243. header = btrfs_item_ptr(leaf, path->slots[0],
  244. struct btrfs_free_space_header);
  245. num_entries = btrfs_free_space_entries(leaf, header);
  246. num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
  247. generation = btrfs_free_space_generation(leaf, header);
  248. btrfs_free_path(path);
  249. if (BTRFS_I(inode)->generation != generation) {
  250. printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
  251. " not match free space cache generation (%llu) for "
  252. "block group %llu\n",
  253. (unsigned long long)BTRFS_I(inode)->generation,
  254. (unsigned long long)generation,
  255. (unsigned long long)block_group->key.objectid);
  256. goto free_cache;
  257. }
  258. if (!num_entries)
  259. goto out;
  260. /* Setup everything for doing checksumming */
  261. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  262. checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  263. if (!checksums)
  264. goto out;
  265. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  266. disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
  267. if (!disk_crcs)
  268. goto out;
  269. ret = readahead_cache(inode);
  270. if (ret) {
  271. ret = 0;
  272. goto out;
  273. }
  274. while (1) {
  275. struct btrfs_free_space_entry *entry;
  276. struct btrfs_free_space *e;
  277. void *addr;
  278. unsigned long offset = 0;
  279. unsigned long start_offset = 0;
  280. int need_loop = 0;
  281. if (!num_entries && !num_bitmaps)
  282. break;
  283. if (index == 0) {
  284. start_offset = first_page_offset;
  285. offset = start_offset;
  286. }
  287. page = grab_cache_page(inode->i_mapping, index);
  288. if (!page) {
  289. ret = 0;
  290. goto free_cache;
  291. }
  292. if (!PageUptodate(page)) {
  293. btrfs_readpage(NULL, page);
  294. lock_page(page);
  295. if (!PageUptodate(page)) {
  296. unlock_page(page);
  297. page_cache_release(page);
  298. printk(KERN_ERR "btrfs: error reading free "
  299. "space cache: %llu\n",
  300. (unsigned long long)
  301. block_group->key.objectid);
  302. goto free_cache;
  303. }
  304. }
  305. addr = kmap(page);
  306. if (index == 0) {
  307. u64 *gen;
  308. memcpy(disk_crcs, addr, first_page_offset);
  309. gen = addr + (sizeof(u32) * num_checksums);
  310. if (*gen != BTRFS_I(inode)->generation) {
  311. printk(KERN_ERR "btrfs: space cache generation"
  312. " (%llu) does not match inode (%llu) "
  313. "for block group %llu\n",
  314. (unsigned long long)*gen,
  315. (unsigned long long)
  316. BTRFS_I(inode)->generation,
  317. (unsigned long long)
  318. block_group->key.objectid);
  319. kunmap(page);
  320. unlock_page(page);
  321. page_cache_release(page);
  322. goto free_cache;
  323. }
  324. crc = (u32 *)disk_crcs;
  325. }
  326. entry = addr + start_offset;
  327. /* First lets check our crc before we do anything fun */
  328. cur_crc = ~(u32)0;
  329. cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
  330. PAGE_CACHE_SIZE - start_offset);
  331. btrfs_csum_final(cur_crc, (char *)&cur_crc);
  332. if (cur_crc != *crc) {
  333. printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
  334. "block group %llu\n", index,
  335. (unsigned long long)block_group->key.objectid);
  336. kunmap(page);
  337. unlock_page(page);
  338. page_cache_release(page);
  339. goto free_cache;
  340. }
  341. crc++;
  342. while (1) {
  343. if (!num_entries)
  344. break;
  345. need_loop = 1;
  346. e = kmem_cache_zalloc(btrfs_free_space_cachep,
  347. GFP_NOFS);
  348. if (!e) {
  349. kunmap(page);
  350. unlock_page(page);
  351. page_cache_release(page);
  352. goto free_cache;
  353. }
  354. e->offset = le64_to_cpu(entry->offset);
  355. e->bytes = le64_to_cpu(entry->bytes);
  356. if (!e->bytes) {
  357. kunmap(page);
  358. kmem_cache_free(btrfs_free_space_cachep, e);
  359. unlock_page(page);
  360. page_cache_release(page);
  361. goto free_cache;
  362. }
  363. if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
  364. spin_lock(&block_group->tree_lock);
  365. ret = link_free_space(block_group, e);
  366. spin_unlock(&block_group->tree_lock);
  367. BUG_ON(ret);
  368. } else {
  369. e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  370. if (!e->bitmap) {
  371. kunmap(page);
  372. kmem_cache_free(
  373. btrfs_free_space_cachep, e);
  374. unlock_page(page);
  375. page_cache_release(page);
  376. goto free_cache;
  377. }
  378. spin_lock(&block_group->tree_lock);
  379. ret = link_free_space(block_group, e);
  380. block_group->total_bitmaps++;
  381. recalculate_thresholds(block_group);
  382. spin_unlock(&block_group->tree_lock);
  383. list_add_tail(&e->list, &bitmaps);
  384. }
  385. num_entries--;
  386. offset += sizeof(struct btrfs_free_space_entry);
  387. if (offset + sizeof(struct btrfs_free_space_entry) >=
  388. PAGE_CACHE_SIZE)
  389. break;
  390. entry++;
  391. }
  392. /*
  393. * We read an entry out of this page, we need to move on to the
  394. * next page.
  395. */
  396. if (need_loop) {
  397. kunmap(page);
  398. goto next;
  399. }
  400. /*
  401. * We add the bitmaps at the end of the entries in order that
  402. * the bitmap entries are added to the cache.
  403. */
  404. e = list_entry(bitmaps.next, struct btrfs_free_space, list);
  405. list_del_init(&e->list);
  406. memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
  407. kunmap(page);
  408. num_bitmaps--;
  409. next:
  410. unlock_page(page);
  411. page_cache_release(page);
  412. index++;
  413. }
  414. spin_lock(&block_group->tree_lock);
  415. if (block_group->free_space != (block_group->key.offset - used -
  416. block_group->bytes_super)) {
  417. spin_unlock(&block_group->tree_lock);
  418. printk(KERN_ERR "block group %llu has an wrong amount of free "
  419. "space\n", block_group->key.objectid);
  420. ret = 0;
  421. goto free_cache;
  422. }
  423. spin_unlock(&block_group->tree_lock);
  424. ret = 1;
  425. out:
  426. kfree(checksums);
  427. kfree(disk_crcs);
  428. iput(inode);
  429. return ret;
  430. free_cache:
  431. /* This cache is bogus, make sure it gets cleared */
  432. spin_lock(&block_group->lock);
  433. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  434. spin_unlock(&block_group->lock);
  435. btrfs_remove_free_space_cache(block_group);
  436. goto out;
  437. }
  438. int btrfs_write_out_cache(struct btrfs_root *root,
  439. struct btrfs_trans_handle *trans,
  440. struct btrfs_block_group_cache *block_group,
  441. struct btrfs_path *path)
  442. {
  443. struct btrfs_free_space_header *header;
  444. struct extent_buffer *leaf;
  445. struct inode *inode;
  446. struct rb_node *node;
  447. struct list_head *pos, *n;
  448. struct page **pages;
  449. struct page *page;
  450. struct extent_state *cached_state = NULL;
  451. struct btrfs_free_cluster *cluster = NULL;
  452. struct extent_io_tree *unpin = NULL;
  453. struct list_head bitmap_list;
  454. struct btrfs_key key;
  455. u64 start, end, len;
  456. u64 bytes = 0;
  457. u32 *crc, *checksums;
  458. unsigned long first_page_offset;
  459. int index = 0, num_pages = 0;
  460. int entries = 0;
  461. int bitmaps = 0;
  462. int ret = 0;
  463. bool next_page = false;
  464. bool out_of_space = false;
  465. root = root->fs_info->tree_root;
  466. INIT_LIST_HEAD(&bitmap_list);
  467. spin_lock(&block_group->lock);
  468. if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
  469. spin_unlock(&block_group->lock);
  470. return 0;
  471. }
  472. spin_unlock(&block_group->lock);
  473. inode = lookup_free_space_inode(root, block_group, path);
  474. if (IS_ERR(inode))
  475. return 0;
  476. if (!i_size_read(inode)) {
  477. iput(inode);
  478. return 0;
  479. }
  480. node = rb_first(&block_group->free_space_offset);
  481. if (!node) {
  482. iput(inode);
  483. return 0;
  484. }
  485. num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
  486. PAGE_CACHE_SHIFT;
  487. filemap_write_and_wait(inode->i_mapping);
  488. btrfs_wait_ordered_range(inode, inode->i_size &
  489. ~(root->sectorsize - 1), (u64)-1);
  490. /* We need a checksum per page. */
  491. crc = checksums = kzalloc(sizeof(u32) * num_pages, GFP_NOFS);
  492. if (!crc) {
  493. iput(inode);
  494. return 0;
  495. }
  496. pages = kzalloc(sizeof(struct page *) * num_pages, GFP_NOFS);
  497. if (!pages) {
  498. kfree(crc);
  499. iput(inode);
  500. return 0;
  501. }
  502. /* Since the first page has all of our checksums and our generation we
  503. * need to calculate the offset into the page that we can start writing
  504. * our entries.
  505. */
  506. first_page_offset = (sizeof(u32) * num_pages) + sizeof(u64);
  507. /* Get the cluster for this block_group if it exists */
  508. if (!list_empty(&block_group->cluster_list))
  509. cluster = list_entry(block_group->cluster_list.next,
  510. struct btrfs_free_cluster,
  511. block_group_list);
  512. /*
  513. * We shouldn't have switched the pinned extents yet so this is the
  514. * right one
  515. */
  516. unpin = root->fs_info->pinned_extents;
  517. /*
  518. * Lock all pages first so we can lock the extent safely.
  519. *
  520. * NOTE: Because we hold the ref the entire time we're going to write to
  521. * the page find_get_page should never fail, so we don't do a check
  522. * after find_get_page at this point. Just putting this here so people
  523. * know and don't freak out.
  524. */
  525. while (index < num_pages) {
  526. page = grab_cache_page(inode->i_mapping, index);
  527. if (!page) {
  528. int i;
  529. for (i = 0; i < num_pages; i++) {
  530. unlock_page(pages[i]);
  531. page_cache_release(pages[i]);
  532. }
  533. goto out_free;
  534. }
  535. pages[index] = page;
  536. index++;
  537. }
  538. index = 0;
  539. lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
  540. 0, &cached_state, GFP_NOFS);
  541. /*
  542. * When searching for pinned extents, we need to start at our start
  543. * offset.
  544. */
  545. start = block_group->key.objectid;
  546. /* Write out the extent entries */
  547. do {
  548. struct btrfs_free_space_entry *entry;
  549. void *addr;
  550. unsigned long offset = 0;
  551. unsigned long start_offset = 0;
  552. next_page = false;
  553. if (index == 0) {
  554. start_offset = first_page_offset;
  555. offset = start_offset;
  556. }
  557. if (index >= num_pages) {
  558. out_of_space = true;
  559. break;
  560. }
  561. page = pages[index];
  562. addr = kmap(page);
  563. entry = addr + start_offset;
  564. memset(addr, 0, PAGE_CACHE_SIZE);
  565. while (node && !next_page) {
  566. struct btrfs_free_space *e;
  567. e = rb_entry(node, struct btrfs_free_space, offset_index);
  568. entries++;
  569. entry->offset = cpu_to_le64(e->offset);
  570. entry->bytes = cpu_to_le64(e->bytes);
  571. if (e->bitmap) {
  572. entry->type = BTRFS_FREE_SPACE_BITMAP;
  573. list_add_tail(&e->list, &bitmap_list);
  574. bitmaps++;
  575. } else {
  576. entry->type = BTRFS_FREE_SPACE_EXTENT;
  577. }
  578. node = rb_next(node);
  579. if (!node && cluster) {
  580. node = rb_first(&cluster->root);
  581. cluster = NULL;
  582. }
  583. offset += sizeof(struct btrfs_free_space_entry);
  584. if (offset + sizeof(struct btrfs_free_space_entry) >=
  585. PAGE_CACHE_SIZE)
  586. next_page = true;
  587. entry++;
  588. }
  589. /*
  590. * We want to add any pinned extents to our free space cache
  591. * so we don't leak the space
  592. */
  593. while (!next_page && (start < block_group->key.objectid +
  594. block_group->key.offset)) {
  595. ret = find_first_extent_bit(unpin, start, &start, &end,
  596. EXTENT_DIRTY);
  597. if (ret) {
  598. ret = 0;
  599. break;
  600. }
  601. /* This pinned extent is out of our range */
  602. if (start >= block_group->key.objectid +
  603. block_group->key.offset)
  604. break;
  605. len = block_group->key.objectid +
  606. block_group->key.offset - start;
  607. len = min(len, end + 1 - start);
  608. entries++;
  609. entry->offset = cpu_to_le64(start);
  610. entry->bytes = cpu_to_le64(len);
  611. entry->type = BTRFS_FREE_SPACE_EXTENT;
  612. start = end + 1;
  613. offset += sizeof(struct btrfs_free_space_entry);
  614. if (offset + sizeof(struct btrfs_free_space_entry) >=
  615. PAGE_CACHE_SIZE)
  616. next_page = true;
  617. entry++;
  618. }
  619. *crc = ~(u32)0;
  620. *crc = btrfs_csum_data(root, addr + start_offset, *crc,
  621. PAGE_CACHE_SIZE - start_offset);
  622. kunmap(page);
  623. btrfs_csum_final(*crc, (char *)crc);
  624. crc++;
  625. bytes += PAGE_CACHE_SIZE;
  626. index++;
  627. } while (node || next_page);
  628. /* Write out the bitmaps */
  629. list_for_each_safe(pos, n, &bitmap_list) {
  630. void *addr;
  631. struct btrfs_free_space *entry =
  632. list_entry(pos, struct btrfs_free_space, list);
  633. if (index >= num_pages) {
  634. out_of_space = true;
  635. break;
  636. }
  637. page = pages[index];
  638. addr = kmap(page);
  639. memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
  640. *crc = ~(u32)0;
  641. *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
  642. kunmap(page);
  643. btrfs_csum_final(*crc, (char *)crc);
  644. crc++;
  645. bytes += PAGE_CACHE_SIZE;
  646. list_del_init(&entry->list);
  647. index++;
  648. }
  649. if (out_of_space) {
  650. btrfs_drop_pages(pages, num_pages);
  651. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  652. i_size_read(inode) - 1, &cached_state,
  653. GFP_NOFS);
  654. ret = 0;
  655. goto out_free;
  656. }
  657. /* Zero out the rest of the pages just to make sure */
  658. while (index < num_pages) {
  659. void *addr;
  660. page = pages[index];
  661. addr = kmap(page);
  662. memset(addr, 0, PAGE_CACHE_SIZE);
  663. kunmap(page);
  664. bytes += PAGE_CACHE_SIZE;
  665. index++;
  666. }
  667. /* Write the checksums and trans id to the first page */
  668. {
  669. void *addr;
  670. u64 *gen;
  671. page = pages[0];
  672. addr = kmap(page);
  673. memcpy(addr, checksums, sizeof(u32) * num_pages);
  674. gen = addr + (sizeof(u32) * num_pages);
  675. *gen = trans->transid;
  676. kunmap(page);
  677. }
  678. ret = btrfs_dirty_pages(root, inode, pages, num_pages, 0,
  679. bytes, &cached_state);
  680. btrfs_drop_pages(pages, num_pages);
  681. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  682. i_size_read(inode) - 1, &cached_state, GFP_NOFS);
  683. if (ret) {
  684. ret = 0;
  685. goto out_free;
  686. }
  687. BTRFS_I(inode)->generation = trans->transid;
  688. filemap_write_and_wait(inode->i_mapping);
  689. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  690. key.offset = block_group->key.objectid;
  691. key.type = 0;
  692. ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
  693. if (ret < 0) {
  694. ret = 0;
  695. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  696. EXTENT_DIRTY | EXTENT_DELALLOC |
  697. EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
  698. goto out_free;
  699. }
  700. leaf = path->nodes[0];
  701. if (ret > 0) {
  702. struct btrfs_key found_key;
  703. BUG_ON(!path->slots[0]);
  704. path->slots[0]--;
  705. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  706. if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
  707. found_key.offset != block_group->key.objectid) {
  708. ret = 0;
  709. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  710. EXTENT_DIRTY | EXTENT_DELALLOC |
  711. EXTENT_DO_ACCOUNTING, 0, 0, NULL,
  712. GFP_NOFS);
  713. btrfs_release_path(root, path);
  714. goto out_free;
  715. }
  716. }
  717. header = btrfs_item_ptr(leaf, path->slots[0],
  718. struct btrfs_free_space_header);
  719. btrfs_set_free_space_entries(leaf, header, entries);
  720. btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
  721. btrfs_set_free_space_generation(leaf, header, trans->transid);
  722. btrfs_mark_buffer_dirty(leaf);
  723. btrfs_release_path(root, path);
  724. ret = 1;
  725. out_free:
  726. if (ret == 0) {
  727. invalidate_inode_pages2_range(inode->i_mapping, 0, index);
  728. spin_lock(&block_group->lock);
  729. block_group->disk_cache_state = BTRFS_DC_ERROR;
  730. spin_unlock(&block_group->lock);
  731. BTRFS_I(inode)->generation = 0;
  732. }
  733. kfree(checksums);
  734. kfree(pages);
  735. btrfs_update_inode(trans, root, inode);
  736. iput(inode);
  737. return ret;
  738. }
  739. static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
  740. u64 offset)
  741. {
  742. BUG_ON(offset < bitmap_start);
  743. offset -= bitmap_start;
  744. return (unsigned long)(div64_u64(offset, sectorsize));
  745. }
  746. static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
  747. {
  748. return (unsigned long)(div64_u64(bytes, sectorsize));
  749. }
  750. static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
  751. u64 offset)
  752. {
  753. u64 bitmap_start;
  754. u64 bytes_per_bitmap;
  755. bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
  756. bitmap_start = offset - block_group->key.objectid;
  757. bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
  758. bitmap_start *= bytes_per_bitmap;
  759. bitmap_start += block_group->key.objectid;
  760. return bitmap_start;
  761. }
  762. static int tree_insert_offset(struct rb_root *root, u64 offset,
  763. struct rb_node *node, int bitmap)
  764. {
  765. struct rb_node **p = &root->rb_node;
  766. struct rb_node *parent = NULL;
  767. struct btrfs_free_space *info;
  768. while (*p) {
  769. parent = *p;
  770. info = rb_entry(parent, struct btrfs_free_space, offset_index);
  771. if (offset < info->offset) {
  772. p = &(*p)->rb_left;
  773. } else if (offset > info->offset) {
  774. p = &(*p)->rb_right;
  775. } else {
  776. /*
  777. * we could have a bitmap entry and an extent entry
  778. * share the same offset. If this is the case, we want
  779. * the extent entry to always be found first if we do a
  780. * linear search through the tree, since we want to have
  781. * the quickest allocation time, and allocating from an
  782. * extent is faster than allocating from a bitmap. So
  783. * if we're inserting a bitmap and we find an entry at
  784. * this offset, we want to go right, or after this entry
  785. * logically. If we are inserting an extent and we've
  786. * found a bitmap, we want to go left, or before
  787. * logically.
  788. */
  789. if (bitmap) {
  790. WARN_ON(info->bitmap);
  791. p = &(*p)->rb_right;
  792. } else {
  793. WARN_ON(!info->bitmap);
  794. p = &(*p)->rb_left;
  795. }
  796. }
  797. }
  798. rb_link_node(node, parent, p);
  799. rb_insert_color(node, root);
  800. return 0;
  801. }
  802. /*
  803. * searches the tree for the given offset.
  804. *
  805. * fuzzy - If this is set, then we are trying to make an allocation, and we just
  806. * want a section that has at least bytes size and comes at or after the given
  807. * offset.
  808. */
  809. static struct btrfs_free_space *
  810. tree_search_offset(struct btrfs_block_group_cache *block_group,
  811. u64 offset, int bitmap_only, int fuzzy)
  812. {
  813. struct rb_node *n = block_group->free_space_offset.rb_node;
  814. struct btrfs_free_space *entry, *prev = NULL;
  815. /* find entry that is closest to the 'offset' */
  816. while (1) {
  817. if (!n) {
  818. entry = NULL;
  819. break;
  820. }
  821. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  822. prev = entry;
  823. if (offset < entry->offset)
  824. n = n->rb_left;
  825. else if (offset > entry->offset)
  826. n = n->rb_right;
  827. else
  828. break;
  829. }
  830. if (bitmap_only) {
  831. if (!entry)
  832. return NULL;
  833. if (entry->bitmap)
  834. return entry;
  835. /*
  836. * bitmap entry and extent entry may share same offset,
  837. * in that case, bitmap entry comes after extent entry.
  838. */
  839. n = rb_next(n);
  840. if (!n)
  841. return NULL;
  842. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  843. if (entry->offset != offset)
  844. return NULL;
  845. WARN_ON(!entry->bitmap);
  846. return entry;
  847. } else if (entry) {
  848. if (entry->bitmap) {
  849. /*
  850. * if previous extent entry covers the offset,
  851. * we should return it instead of the bitmap entry
  852. */
  853. n = &entry->offset_index;
  854. while (1) {
  855. n = rb_prev(n);
  856. if (!n)
  857. break;
  858. prev = rb_entry(n, struct btrfs_free_space,
  859. offset_index);
  860. if (!prev->bitmap) {
  861. if (prev->offset + prev->bytes > offset)
  862. entry = prev;
  863. break;
  864. }
  865. }
  866. }
  867. return entry;
  868. }
  869. if (!prev)
  870. return NULL;
  871. /* find last entry before the 'offset' */
  872. entry = prev;
  873. if (entry->offset > offset) {
  874. n = rb_prev(&entry->offset_index);
  875. if (n) {
  876. entry = rb_entry(n, struct btrfs_free_space,
  877. offset_index);
  878. BUG_ON(entry->offset > offset);
  879. } else {
  880. if (fuzzy)
  881. return entry;
  882. else
  883. return NULL;
  884. }
  885. }
  886. if (entry->bitmap) {
  887. n = &entry->offset_index;
  888. while (1) {
  889. n = rb_prev(n);
  890. if (!n)
  891. break;
  892. prev = rb_entry(n, struct btrfs_free_space,
  893. offset_index);
  894. if (!prev->bitmap) {
  895. if (prev->offset + prev->bytes > offset)
  896. return prev;
  897. break;
  898. }
  899. }
  900. if (entry->offset + BITS_PER_BITMAP *
  901. block_group->sectorsize > offset)
  902. return entry;
  903. } else if (entry->offset + entry->bytes > offset)
  904. return entry;
  905. if (!fuzzy)
  906. return NULL;
  907. while (1) {
  908. if (entry->bitmap) {
  909. if (entry->offset + BITS_PER_BITMAP *
  910. block_group->sectorsize > offset)
  911. break;
  912. } else {
  913. if (entry->offset + entry->bytes > offset)
  914. break;
  915. }
  916. n = rb_next(&entry->offset_index);
  917. if (!n)
  918. return NULL;
  919. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  920. }
  921. return entry;
  922. }
  923. static inline void
  924. __unlink_free_space(struct btrfs_block_group_cache *block_group,
  925. struct btrfs_free_space *info)
  926. {
  927. rb_erase(&info->offset_index, &block_group->free_space_offset);
  928. block_group->free_extents--;
  929. }
  930. static void unlink_free_space(struct btrfs_block_group_cache *block_group,
  931. struct btrfs_free_space *info)
  932. {
  933. __unlink_free_space(block_group, info);
  934. block_group->free_space -= info->bytes;
  935. }
  936. static int link_free_space(struct btrfs_block_group_cache *block_group,
  937. struct btrfs_free_space *info)
  938. {
  939. int ret = 0;
  940. BUG_ON(!info->bitmap && !info->bytes);
  941. ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
  942. &info->offset_index, (info->bitmap != NULL));
  943. if (ret)
  944. return ret;
  945. block_group->free_space += info->bytes;
  946. block_group->free_extents++;
  947. return ret;
  948. }
  949. static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
  950. {
  951. u64 max_bytes;
  952. u64 bitmap_bytes;
  953. u64 extent_bytes;
  954. u64 size = block_group->key.offset;
  955. /*
  956. * The goal is to keep the total amount of memory used per 1gb of space
  957. * at or below 32k, so we need to adjust how much memory we allow to be
  958. * used by extent based free space tracking
  959. */
  960. if (size < 1024 * 1024 * 1024)
  961. max_bytes = MAX_CACHE_BYTES_PER_GIG;
  962. else
  963. max_bytes = MAX_CACHE_BYTES_PER_GIG *
  964. div64_u64(size, 1024 * 1024 * 1024);
  965. /*
  966. * we want to account for 1 more bitmap than what we have so we can make
  967. * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
  968. * we add more bitmaps.
  969. */
  970. bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
  971. if (bitmap_bytes >= max_bytes) {
  972. block_group->extents_thresh = 0;
  973. return;
  974. }
  975. /*
  976. * we want the extent entry threshold to always be at most 1/2 the maxw
  977. * bytes we can have, or whatever is less than that.
  978. */
  979. extent_bytes = max_bytes - bitmap_bytes;
  980. extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
  981. block_group->extents_thresh =
  982. div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
  983. }
  984. static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
  985. struct btrfs_free_space *info, u64 offset,
  986. u64 bytes)
  987. {
  988. unsigned long start, count;
  989. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  990. count = bytes_to_bits(bytes, block_group->sectorsize);
  991. BUG_ON(start + count > BITS_PER_BITMAP);
  992. bitmap_clear(info->bitmap, start, count);
  993. info->bytes -= bytes;
  994. block_group->free_space -= bytes;
  995. }
  996. static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
  997. struct btrfs_free_space *info, u64 offset,
  998. u64 bytes)
  999. {
  1000. unsigned long start, count;
  1001. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  1002. count = bytes_to_bits(bytes, block_group->sectorsize);
  1003. BUG_ON(start + count > BITS_PER_BITMAP);
  1004. bitmap_set(info->bitmap, start, count);
  1005. info->bytes += bytes;
  1006. block_group->free_space += bytes;
  1007. }
  1008. static int search_bitmap(struct btrfs_block_group_cache *block_group,
  1009. struct btrfs_free_space *bitmap_info, u64 *offset,
  1010. u64 *bytes)
  1011. {
  1012. unsigned long found_bits = 0;
  1013. unsigned long bits, i;
  1014. unsigned long next_zero;
  1015. i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
  1016. max_t(u64, *offset, bitmap_info->offset));
  1017. bits = bytes_to_bits(*bytes, block_group->sectorsize);
  1018. for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
  1019. i < BITS_PER_BITMAP;
  1020. i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
  1021. next_zero = find_next_zero_bit(bitmap_info->bitmap,
  1022. BITS_PER_BITMAP, i);
  1023. if ((next_zero - i) >= bits) {
  1024. found_bits = next_zero - i;
  1025. break;
  1026. }
  1027. i = next_zero;
  1028. }
  1029. if (found_bits) {
  1030. *offset = (u64)(i * block_group->sectorsize) +
  1031. bitmap_info->offset;
  1032. *bytes = (u64)(found_bits) * block_group->sectorsize;
  1033. return 0;
  1034. }
  1035. return -1;
  1036. }
  1037. static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
  1038. *block_group, u64 *offset,
  1039. u64 *bytes, int debug)
  1040. {
  1041. struct btrfs_free_space *entry;
  1042. struct rb_node *node;
  1043. int ret;
  1044. if (!block_group->free_space_offset.rb_node)
  1045. return NULL;
  1046. entry = tree_search_offset(block_group,
  1047. offset_to_bitmap(block_group, *offset),
  1048. 0, 1);
  1049. if (!entry)
  1050. return NULL;
  1051. for (node = &entry->offset_index; node; node = rb_next(node)) {
  1052. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1053. if (entry->bytes < *bytes)
  1054. continue;
  1055. if (entry->bitmap) {
  1056. ret = search_bitmap(block_group, entry, offset, bytes);
  1057. if (!ret)
  1058. return entry;
  1059. continue;
  1060. }
  1061. *offset = entry->offset;
  1062. *bytes = entry->bytes;
  1063. return entry;
  1064. }
  1065. return NULL;
  1066. }
  1067. static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
  1068. struct btrfs_free_space *info, u64 offset)
  1069. {
  1070. u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
  1071. int max_bitmaps = (int)div64_u64(block_group->key.offset +
  1072. bytes_per_bg - 1, bytes_per_bg);
  1073. BUG_ON(block_group->total_bitmaps >= max_bitmaps);
  1074. info->offset = offset_to_bitmap(block_group, offset);
  1075. info->bytes = 0;
  1076. link_free_space(block_group, info);
  1077. block_group->total_bitmaps++;
  1078. recalculate_thresholds(block_group);
  1079. }
  1080. static void free_bitmap(struct btrfs_block_group_cache *block_group,
  1081. struct btrfs_free_space *bitmap_info)
  1082. {
  1083. unlink_free_space(block_group, bitmap_info);
  1084. kfree(bitmap_info->bitmap);
  1085. kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
  1086. block_group->total_bitmaps--;
  1087. recalculate_thresholds(block_group);
  1088. }
  1089. static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
  1090. struct btrfs_free_space *bitmap_info,
  1091. u64 *offset, u64 *bytes)
  1092. {
  1093. u64 end;
  1094. u64 search_start, search_bytes;
  1095. int ret;
  1096. again:
  1097. end = bitmap_info->offset +
  1098. (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
  1099. /*
  1100. * XXX - this can go away after a few releases.
  1101. *
  1102. * since the only user of btrfs_remove_free_space is the tree logging
  1103. * stuff, and the only way to test that is under crash conditions, we
  1104. * want to have this debug stuff here just in case somethings not
  1105. * working. Search the bitmap for the space we are trying to use to
  1106. * make sure its actually there. If its not there then we need to stop
  1107. * because something has gone wrong.
  1108. */
  1109. search_start = *offset;
  1110. search_bytes = *bytes;
  1111. search_bytes = min(search_bytes, end - search_start + 1);
  1112. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1113. &search_bytes);
  1114. BUG_ON(ret < 0 || search_start != *offset);
  1115. if (*offset > bitmap_info->offset && *offset + *bytes > end) {
  1116. bitmap_clear_bits(block_group, bitmap_info, *offset,
  1117. end - *offset + 1);
  1118. *bytes -= end - *offset + 1;
  1119. *offset = end + 1;
  1120. } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
  1121. bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
  1122. *bytes = 0;
  1123. }
  1124. if (*bytes) {
  1125. struct rb_node *next = rb_next(&bitmap_info->offset_index);
  1126. if (!bitmap_info->bytes)
  1127. free_bitmap(block_group, bitmap_info);
  1128. /*
  1129. * no entry after this bitmap, but we still have bytes to
  1130. * remove, so something has gone wrong.
  1131. */
  1132. if (!next)
  1133. return -EINVAL;
  1134. bitmap_info = rb_entry(next, struct btrfs_free_space,
  1135. offset_index);
  1136. /*
  1137. * if the next entry isn't a bitmap we need to return to let the
  1138. * extent stuff do its work.
  1139. */
  1140. if (!bitmap_info->bitmap)
  1141. return -EAGAIN;
  1142. /*
  1143. * Ok the next item is a bitmap, but it may not actually hold
  1144. * the information for the rest of this free space stuff, so
  1145. * look for it, and if we don't find it return so we can try
  1146. * everything over again.
  1147. */
  1148. search_start = *offset;
  1149. search_bytes = *bytes;
  1150. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1151. &search_bytes);
  1152. if (ret < 0 || search_start != *offset)
  1153. return -EAGAIN;
  1154. goto again;
  1155. } else if (!bitmap_info->bytes)
  1156. free_bitmap(block_group, bitmap_info);
  1157. return 0;
  1158. }
  1159. static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
  1160. struct btrfs_free_space *info)
  1161. {
  1162. struct btrfs_free_space *bitmap_info;
  1163. int added = 0;
  1164. u64 bytes, offset, end;
  1165. int ret;
  1166. /*
  1167. * If we are below the extents threshold then we can add this as an
  1168. * extent, and don't have to deal with the bitmap
  1169. */
  1170. if (block_group->free_extents < block_group->extents_thresh) {
  1171. /*
  1172. * If this block group has some small extents we don't want to
  1173. * use up all of our free slots in the cache with them, we want
  1174. * to reserve them to larger extents, however if we have plent
  1175. * of cache left then go ahead an dadd them, no sense in adding
  1176. * the overhead of a bitmap if we don't have to.
  1177. */
  1178. if (info->bytes <= block_group->sectorsize * 4) {
  1179. if (block_group->free_extents * 2 <=
  1180. block_group->extents_thresh)
  1181. return 0;
  1182. } else {
  1183. return 0;
  1184. }
  1185. }
  1186. /*
  1187. * some block groups are so tiny they can't be enveloped by a bitmap, so
  1188. * don't even bother to create a bitmap for this
  1189. */
  1190. if (BITS_PER_BITMAP * block_group->sectorsize >
  1191. block_group->key.offset)
  1192. return 0;
  1193. bytes = info->bytes;
  1194. offset = info->offset;
  1195. again:
  1196. bitmap_info = tree_search_offset(block_group,
  1197. offset_to_bitmap(block_group, offset),
  1198. 1, 0);
  1199. if (!bitmap_info) {
  1200. BUG_ON(added);
  1201. goto new_bitmap;
  1202. }
  1203. end = bitmap_info->offset +
  1204. (u64)(BITS_PER_BITMAP * block_group->sectorsize);
  1205. if (offset >= bitmap_info->offset && offset + bytes > end) {
  1206. bitmap_set_bits(block_group, bitmap_info, offset,
  1207. end - offset);
  1208. bytes -= end - offset;
  1209. offset = end;
  1210. added = 0;
  1211. } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
  1212. bitmap_set_bits(block_group, bitmap_info, offset, bytes);
  1213. bytes = 0;
  1214. } else {
  1215. BUG();
  1216. }
  1217. if (!bytes) {
  1218. ret = 1;
  1219. goto out;
  1220. } else
  1221. goto again;
  1222. new_bitmap:
  1223. if (info && info->bitmap) {
  1224. add_new_bitmap(block_group, info, offset);
  1225. added = 1;
  1226. info = NULL;
  1227. goto again;
  1228. } else {
  1229. spin_unlock(&block_group->tree_lock);
  1230. /* no pre-allocated info, allocate a new one */
  1231. if (!info) {
  1232. info = kmem_cache_zalloc(btrfs_free_space_cachep,
  1233. GFP_NOFS);
  1234. if (!info) {
  1235. spin_lock(&block_group->tree_lock);
  1236. ret = -ENOMEM;
  1237. goto out;
  1238. }
  1239. }
  1240. /* allocate the bitmap */
  1241. info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  1242. spin_lock(&block_group->tree_lock);
  1243. if (!info->bitmap) {
  1244. ret = -ENOMEM;
  1245. goto out;
  1246. }
  1247. goto again;
  1248. }
  1249. out:
  1250. if (info) {
  1251. if (info->bitmap)
  1252. kfree(info->bitmap);
  1253. kmem_cache_free(btrfs_free_space_cachep, info);
  1254. }
  1255. return ret;
  1256. }
  1257. bool try_merge_free_space(struct btrfs_block_group_cache *block_group,
  1258. struct btrfs_free_space *info, bool update_stat)
  1259. {
  1260. struct btrfs_free_space *left_info;
  1261. struct btrfs_free_space *right_info;
  1262. bool merged = false;
  1263. u64 offset = info->offset;
  1264. u64 bytes = info->bytes;
  1265. /*
  1266. * first we want to see if there is free space adjacent to the range we
  1267. * are adding, if there is remove that struct and add a new one to
  1268. * cover the entire range
  1269. */
  1270. right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
  1271. if (right_info && rb_prev(&right_info->offset_index))
  1272. left_info = rb_entry(rb_prev(&right_info->offset_index),
  1273. struct btrfs_free_space, offset_index);
  1274. else
  1275. left_info = tree_search_offset(block_group, offset - 1, 0, 0);
  1276. if (right_info && !right_info->bitmap) {
  1277. if (update_stat)
  1278. unlink_free_space(block_group, right_info);
  1279. else
  1280. __unlink_free_space(block_group, right_info);
  1281. info->bytes += right_info->bytes;
  1282. kmem_cache_free(btrfs_free_space_cachep, right_info);
  1283. merged = true;
  1284. }
  1285. if (left_info && !left_info->bitmap &&
  1286. left_info->offset + left_info->bytes == offset) {
  1287. if (update_stat)
  1288. unlink_free_space(block_group, left_info);
  1289. else
  1290. __unlink_free_space(block_group, left_info);
  1291. info->offset = left_info->offset;
  1292. info->bytes += left_info->bytes;
  1293. kmem_cache_free(btrfs_free_space_cachep, left_info);
  1294. merged = true;
  1295. }
  1296. return merged;
  1297. }
  1298. int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
  1299. u64 offset, u64 bytes)
  1300. {
  1301. struct btrfs_free_space *info;
  1302. int ret = 0;
  1303. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  1304. if (!info)
  1305. return -ENOMEM;
  1306. info->offset = offset;
  1307. info->bytes = bytes;
  1308. spin_lock(&block_group->tree_lock);
  1309. if (try_merge_free_space(block_group, info, true))
  1310. goto link;
  1311. /*
  1312. * There was no extent directly to the left or right of this new
  1313. * extent then we know we're going to have to allocate a new extent, so
  1314. * before we do that see if we need to drop this into a bitmap
  1315. */
  1316. ret = insert_into_bitmap(block_group, info);
  1317. if (ret < 0) {
  1318. goto out;
  1319. } else if (ret) {
  1320. ret = 0;
  1321. goto out;
  1322. }
  1323. link:
  1324. ret = link_free_space(block_group, info);
  1325. if (ret)
  1326. kmem_cache_free(btrfs_free_space_cachep, info);
  1327. out:
  1328. spin_unlock(&block_group->tree_lock);
  1329. if (ret) {
  1330. printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
  1331. BUG_ON(ret == -EEXIST);
  1332. }
  1333. return ret;
  1334. }
  1335. int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
  1336. u64 offset, u64 bytes)
  1337. {
  1338. struct btrfs_free_space *info;
  1339. struct btrfs_free_space *next_info = NULL;
  1340. int ret = 0;
  1341. spin_lock(&block_group->tree_lock);
  1342. again:
  1343. info = tree_search_offset(block_group, offset, 0, 0);
  1344. if (!info) {
  1345. /*
  1346. * oops didn't find an extent that matched the space we wanted
  1347. * to remove, look for a bitmap instead
  1348. */
  1349. info = tree_search_offset(block_group,
  1350. offset_to_bitmap(block_group, offset),
  1351. 1, 0);
  1352. if (!info) {
  1353. WARN_ON(1);
  1354. goto out_lock;
  1355. }
  1356. }
  1357. if (info->bytes < bytes && rb_next(&info->offset_index)) {
  1358. u64 end;
  1359. next_info = rb_entry(rb_next(&info->offset_index),
  1360. struct btrfs_free_space,
  1361. offset_index);
  1362. if (next_info->bitmap)
  1363. end = next_info->offset + BITS_PER_BITMAP *
  1364. block_group->sectorsize - 1;
  1365. else
  1366. end = next_info->offset + next_info->bytes;
  1367. if (next_info->bytes < bytes ||
  1368. next_info->offset > offset || offset > end) {
  1369. printk(KERN_CRIT "Found free space at %llu, size %llu,"
  1370. " trying to use %llu\n",
  1371. (unsigned long long)info->offset,
  1372. (unsigned long long)info->bytes,
  1373. (unsigned long long)bytes);
  1374. WARN_ON(1);
  1375. ret = -EINVAL;
  1376. goto out_lock;
  1377. }
  1378. info = next_info;
  1379. }
  1380. if (info->bytes == bytes) {
  1381. unlink_free_space(block_group, info);
  1382. if (info->bitmap) {
  1383. kfree(info->bitmap);
  1384. block_group->total_bitmaps--;
  1385. }
  1386. kmem_cache_free(btrfs_free_space_cachep, info);
  1387. goto out_lock;
  1388. }
  1389. if (!info->bitmap && info->offset == offset) {
  1390. unlink_free_space(block_group, info);
  1391. info->offset += bytes;
  1392. info->bytes -= bytes;
  1393. link_free_space(block_group, info);
  1394. goto out_lock;
  1395. }
  1396. if (!info->bitmap && info->offset <= offset &&
  1397. info->offset + info->bytes >= offset + bytes) {
  1398. u64 old_start = info->offset;
  1399. /*
  1400. * we're freeing space in the middle of the info,
  1401. * this can happen during tree log replay
  1402. *
  1403. * first unlink the old info and then
  1404. * insert it again after the hole we're creating
  1405. */
  1406. unlink_free_space(block_group, info);
  1407. if (offset + bytes < info->offset + info->bytes) {
  1408. u64 old_end = info->offset + info->bytes;
  1409. info->offset = offset + bytes;
  1410. info->bytes = old_end - info->offset;
  1411. ret = link_free_space(block_group, info);
  1412. WARN_ON(ret);
  1413. if (ret)
  1414. goto out_lock;
  1415. } else {
  1416. /* the hole we're creating ends at the end
  1417. * of the info struct, just free the info
  1418. */
  1419. kmem_cache_free(btrfs_free_space_cachep, info);
  1420. }
  1421. spin_unlock(&block_group->tree_lock);
  1422. /* step two, insert a new info struct to cover
  1423. * anything before the hole
  1424. */
  1425. ret = btrfs_add_free_space(block_group, old_start,
  1426. offset - old_start);
  1427. WARN_ON(ret);
  1428. goto out;
  1429. }
  1430. ret = remove_from_bitmap(block_group, info, &offset, &bytes);
  1431. if (ret == -EAGAIN)
  1432. goto again;
  1433. BUG_ON(ret);
  1434. out_lock:
  1435. spin_unlock(&block_group->tree_lock);
  1436. out:
  1437. return ret;
  1438. }
  1439. void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
  1440. u64 bytes)
  1441. {
  1442. struct btrfs_free_space *info;
  1443. struct rb_node *n;
  1444. int count = 0;
  1445. for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
  1446. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1447. if (info->bytes >= bytes)
  1448. count++;
  1449. printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
  1450. (unsigned long long)info->offset,
  1451. (unsigned long long)info->bytes,
  1452. (info->bitmap) ? "yes" : "no");
  1453. }
  1454. printk(KERN_INFO "block group has cluster?: %s\n",
  1455. list_empty(&block_group->cluster_list) ? "no" : "yes");
  1456. printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
  1457. "\n", count);
  1458. }
  1459. /*
  1460. * for a given cluster, put all of its extents back into the free
  1461. * space cache. If the block group passed doesn't match the block group
  1462. * pointed to by the cluster, someone else raced in and freed the
  1463. * cluster already. In that case, we just return without changing anything
  1464. */
  1465. static int
  1466. __btrfs_return_cluster_to_free_space(
  1467. struct btrfs_block_group_cache *block_group,
  1468. struct btrfs_free_cluster *cluster)
  1469. {
  1470. struct btrfs_free_space *entry;
  1471. struct rb_node *node;
  1472. spin_lock(&cluster->lock);
  1473. if (cluster->block_group != block_group)
  1474. goto out;
  1475. cluster->block_group = NULL;
  1476. cluster->window_start = 0;
  1477. list_del_init(&cluster->block_group_list);
  1478. node = rb_first(&cluster->root);
  1479. while (node) {
  1480. bool bitmap;
  1481. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1482. node = rb_next(&entry->offset_index);
  1483. rb_erase(&entry->offset_index, &cluster->root);
  1484. bitmap = (entry->bitmap != NULL);
  1485. if (!bitmap)
  1486. try_merge_free_space(block_group, entry, false);
  1487. tree_insert_offset(&block_group->free_space_offset,
  1488. entry->offset, &entry->offset_index, bitmap);
  1489. }
  1490. cluster->root = RB_ROOT;
  1491. out:
  1492. spin_unlock(&cluster->lock);
  1493. btrfs_put_block_group(block_group);
  1494. return 0;
  1495. }
  1496. void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
  1497. {
  1498. struct btrfs_free_space *info;
  1499. struct rb_node *node;
  1500. struct btrfs_free_cluster *cluster;
  1501. struct list_head *head;
  1502. spin_lock(&block_group->tree_lock);
  1503. while ((head = block_group->cluster_list.next) !=
  1504. &block_group->cluster_list) {
  1505. cluster = list_entry(head, struct btrfs_free_cluster,
  1506. block_group_list);
  1507. WARN_ON(cluster->block_group != block_group);
  1508. __btrfs_return_cluster_to_free_space(block_group, cluster);
  1509. if (need_resched()) {
  1510. spin_unlock(&block_group->tree_lock);
  1511. cond_resched();
  1512. spin_lock(&block_group->tree_lock);
  1513. }
  1514. }
  1515. while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
  1516. info = rb_entry(node, struct btrfs_free_space, offset_index);
  1517. unlink_free_space(block_group, info);
  1518. if (info->bitmap)
  1519. kfree(info->bitmap);
  1520. kmem_cache_free(btrfs_free_space_cachep, info);
  1521. if (need_resched()) {
  1522. spin_unlock(&block_group->tree_lock);
  1523. cond_resched();
  1524. spin_lock(&block_group->tree_lock);
  1525. }
  1526. }
  1527. spin_unlock(&block_group->tree_lock);
  1528. }
  1529. u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
  1530. u64 offset, u64 bytes, u64 empty_size)
  1531. {
  1532. struct btrfs_free_space *entry = NULL;
  1533. u64 bytes_search = bytes + empty_size;
  1534. u64 ret = 0;
  1535. spin_lock(&block_group->tree_lock);
  1536. entry = find_free_space(block_group, &offset, &bytes_search, 0);
  1537. if (!entry)
  1538. goto out;
  1539. ret = offset;
  1540. if (entry->bitmap) {
  1541. bitmap_clear_bits(block_group, entry, offset, bytes);
  1542. if (!entry->bytes)
  1543. free_bitmap(block_group, entry);
  1544. } else {
  1545. unlink_free_space(block_group, entry);
  1546. entry->offset += bytes;
  1547. entry->bytes -= bytes;
  1548. if (!entry->bytes)
  1549. kmem_cache_free(btrfs_free_space_cachep, entry);
  1550. else
  1551. link_free_space(block_group, entry);
  1552. }
  1553. out:
  1554. spin_unlock(&block_group->tree_lock);
  1555. return ret;
  1556. }
  1557. /*
  1558. * given a cluster, put all of its extents back into the free space
  1559. * cache. If a block group is passed, this function will only free
  1560. * a cluster that belongs to the passed block group.
  1561. *
  1562. * Otherwise, it'll get a reference on the block group pointed to by the
  1563. * cluster and remove the cluster from it.
  1564. */
  1565. int btrfs_return_cluster_to_free_space(
  1566. struct btrfs_block_group_cache *block_group,
  1567. struct btrfs_free_cluster *cluster)
  1568. {
  1569. int ret;
  1570. /* first, get a safe pointer to the block group */
  1571. spin_lock(&cluster->lock);
  1572. if (!block_group) {
  1573. block_group = cluster->block_group;
  1574. if (!block_group) {
  1575. spin_unlock(&cluster->lock);
  1576. return 0;
  1577. }
  1578. } else if (cluster->block_group != block_group) {
  1579. /* someone else has already freed it don't redo their work */
  1580. spin_unlock(&cluster->lock);
  1581. return 0;
  1582. }
  1583. atomic_inc(&block_group->count);
  1584. spin_unlock(&cluster->lock);
  1585. /* now return any extents the cluster had on it */
  1586. spin_lock(&block_group->tree_lock);
  1587. ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
  1588. spin_unlock(&block_group->tree_lock);
  1589. /* finally drop our ref */
  1590. btrfs_put_block_group(block_group);
  1591. return ret;
  1592. }
  1593. static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
  1594. struct btrfs_free_cluster *cluster,
  1595. struct btrfs_free_space *entry,
  1596. u64 bytes, u64 min_start)
  1597. {
  1598. int err;
  1599. u64 search_start = cluster->window_start;
  1600. u64 search_bytes = bytes;
  1601. u64 ret = 0;
  1602. search_start = min_start;
  1603. search_bytes = bytes;
  1604. err = search_bitmap(block_group, entry, &search_start,
  1605. &search_bytes);
  1606. if (err)
  1607. return 0;
  1608. ret = search_start;
  1609. bitmap_clear_bits(block_group, entry, ret, bytes);
  1610. return ret;
  1611. }
  1612. /*
  1613. * given a cluster, try to allocate 'bytes' from it, returns 0
  1614. * if it couldn't find anything suitably large, or a logical disk offset
  1615. * if things worked out
  1616. */
  1617. u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
  1618. struct btrfs_free_cluster *cluster, u64 bytes,
  1619. u64 min_start)
  1620. {
  1621. struct btrfs_free_space *entry = NULL;
  1622. struct rb_node *node;
  1623. u64 ret = 0;
  1624. spin_lock(&cluster->lock);
  1625. if (bytes > cluster->max_size)
  1626. goto out;
  1627. if (cluster->block_group != block_group)
  1628. goto out;
  1629. node = rb_first(&cluster->root);
  1630. if (!node)
  1631. goto out;
  1632. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1633. while(1) {
  1634. if (entry->bytes < bytes ||
  1635. (!entry->bitmap && entry->offset < min_start)) {
  1636. struct rb_node *node;
  1637. node = rb_next(&entry->offset_index);
  1638. if (!node)
  1639. break;
  1640. entry = rb_entry(node, struct btrfs_free_space,
  1641. offset_index);
  1642. continue;
  1643. }
  1644. if (entry->bitmap) {
  1645. ret = btrfs_alloc_from_bitmap(block_group,
  1646. cluster, entry, bytes,
  1647. min_start);
  1648. if (ret == 0) {
  1649. struct rb_node *node;
  1650. node = rb_next(&entry->offset_index);
  1651. if (!node)
  1652. break;
  1653. entry = rb_entry(node, struct btrfs_free_space,
  1654. offset_index);
  1655. continue;
  1656. }
  1657. } else {
  1658. ret = entry->offset;
  1659. entry->offset += bytes;
  1660. entry->bytes -= bytes;
  1661. }
  1662. if (entry->bytes == 0)
  1663. rb_erase(&entry->offset_index, &cluster->root);
  1664. break;
  1665. }
  1666. out:
  1667. spin_unlock(&cluster->lock);
  1668. if (!ret)
  1669. return 0;
  1670. spin_lock(&block_group->tree_lock);
  1671. block_group->free_space -= bytes;
  1672. if (entry->bytes == 0) {
  1673. block_group->free_extents--;
  1674. if (entry->bitmap) {
  1675. kfree(entry->bitmap);
  1676. block_group->total_bitmaps--;
  1677. recalculate_thresholds(block_group);
  1678. }
  1679. kmem_cache_free(btrfs_free_space_cachep, entry);
  1680. }
  1681. spin_unlock(&block_group->tree_lock);
  1682. return ret;
  1683. }
  1684. static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
  1685. struct btrfs_free_space *entry,
  1686. struct btrfs_free_cluster *cluster,
  1687. u64 offset, u64 bytes, u64 min_bytes)
  1688. {
  1689. unsigned long next_zero;
  1690. unsigned long i;
  1691. unsigned long search_bits;
  1692. unsigned long total_bits;
  1693. unsigned long found_bits;
  1694. unsigned long start = 0;
  1695. unsigned long total_found = 0;
  1696. int ret;
  1697. bool found = false;
  1698. i = offset_to_bit(entry->offset, block_group->sectorsize,
  1699. max_t(u64, offset, entry->offset));
  1700. search_bits = bytes_to_bits(bytes, block_group->sectorsize);
  1701. total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
  1702. again:
  1703. found_bits = 0;
  1704. for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
  1705. i < BITS_PER_BITMAP;
  1706. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
  1707. next_zero = find_next_zero_bit(entry->bitmap,
  1708. BITS_PER_BITMAP, i);
  1709. if (next_zero - i >= search_bits) {
  1710. found_bits = next_zero - i;
  1711. break;
  1712. }
  1713. i = next_zero;
  1714. }
  1715. if (!found_bits)
  1716. return -ENOSPC;
  1717. if (!found) {
  1718. start = i;
  1719. found = true;
  1720. }
  1721. total_found += found_bits;
  1722. if (cluster->max_size < found_bits * block_group->sectorsize)
  1723. cluster->max_size = found_bits * block_group->sectorsize;
  1724. if (total_found < total_bits) {
  1725. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
  1726. if (i - start > total_bits * 2) {
  1727. total_found = 0;
  1728. cluster->max_size = 0;
  1729. found = false;
  1730. }
  1731. goto again;
  1732. }
  1733. cluster->window_start = start * block_group->sectorsize +
  1734. entry->offset;
  1735. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1736. ret = tree_insert_offset(&cluster->root, entry->offset,
  1737. &entry->offset_index, 1);
  1738. BUG_ON(ret);
  1739. return 0;
  1740. }
  1741. /*
  1742. * This searches the block group for just extents to fill the cluster with.
  1743. */
  1744. static int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
  1745. struct btrfs_free_cluster *cluster,
  1746. u64 offset, u64 bytes, u64 min_bytes)
  1747. {
  1748. struct btrfs_free_space *first = NULL;
  1749. struct btrfs_free_space *entry = NULL;
  1750. struct btrfs_free_space *prev = NULL;
  1751. struct btrfs_free_space *last;
  1752. struct rb_node *node;
  1753. u64 window_start;
  1754. u64 window_free;
  1755. u64 max_extent;
  1756. u64 max_gap = 128 * 1024;
  1757. entry = tree_search_offset(block_group, offset, 0, 1);
  1758. if (!entry)
  1759. return -ENOSPC;
  1760. /*
  1761. * We don't want bitmaps, so just move along until we find a normal
  1762. * extent entry.
  1763. */
  1764. while (entry->bitmap) {
  1765. node = rb_next(&entry->offset_index);
  1766. if (!node)
  1767. return -ENOSPC;
  1768. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1769. }
  1770. window_start = entry->offset;
  1771. window_free = entry->bytes;
  1772. max_extent = entry->bytes;
  1773. first = entry;
  1774. last = entry;
  1775. prev = entry;
  1776. while (window_free <= min_bytes) {
  1777. node = rb_next(&entry->offset_index);
  1778. if (!node)
  1779. return -ENOSPC;
  1780. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1781. if (entry->bitmap)
  1782. continue;
  1783. /*
  1784. * we haven't filled the empty size and the window is
  1785. * very large. reset and try again
  1786. */
  1787. if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
  1788. entry->offset - window_start > (min_bytes * 2)) {
  1789. first = entry;
  1790. window_start = entry->offset;
  1791. window_free = entry->bytes;
  1792. last = entry;
  1793. max_extent = entry->bytes;
  1794. } else {
  1795. last = entry;
  1796. window_free += entry->bytes;
  1797. if (entry->bytes > max_extent)
  1798. max_extent = entry->bytes;
  1799. }
  1800. prev = entry;
  1801. }
  1802. cluster->window_start = first->offset;
  1803. node = &first->offset_index;
  1804. /*
  1805. * now we've found our entries, pull them out of the free space
  1806. * cache and put them into the cluster rbtree
  1807. */
  1808. do {
  1809. int ret;
  1810. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1811. node = rb_next(&entry->offset_index);
  1812. if (entry->bitmap)
  1813. continue;
  1814. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1815. ret = tree_insert_offset(&cluster->root, entry->offset,
  1816. &entry->offset_index, 0);
  1817. BUG_ON(ret);
  1818. } while (node && entry != last);
  1819. cluster->max_size = max_extent;
  1820. return 0;
  1821. }
  1822. /*
  1823. * This specifically looks for bitmaps that may work in the cluster, we assume
  1824. * that we have already failed to find extents that will work.
  1825. */
  1826. static int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
  1827. struct btrfs_free_cluster *cluster,
  1828. u64 offset, u64 bytes, u64 min_bytes)
  1829. {
  1830. struct btrfs_free_space *entry;
  1831. struct rb_node *node;
  1832. int ret = -ENOSPC;
  1833. if (block_group->total_bitmaps == 0)
  1834. return -ENOSPC;
  1835. entry = tree_search_offset(block_group,
  1836. offset_to_bitmap(block_group, offset),
  1837. 0, 1);
  1838. if (!entry)
  1839. return -ENOSPC;
  1840. node = &entry->offset_index;
  1841. do {
  1842. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1843. node = rb_next(&entry->offset_index);
  1844. if (!entry->bitmap)
  1845. continue;
  1846. if (entry->bytes < min_bytes)
  1847. continue;
  1848. ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
  1849. bytes, min_bytes);
  1850. } while (ret && node);
  1851. return ret;
  1852. }
  1853. /*
  1854. * here we try to find a cluster of blocks in a block group. The goal
  1855. * is to find at least bytes free and up to empty_size + bytes free.
  1856. * We might not find them all in one contiguous area.
  1857. *
  1858. * returns zero and sets up cluster if things worked out, otherwise
  1859. * it returns -enospc
  1860. */
  1861. int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
  1862. struct btrfs_root *root,
  1863. struct btrfs_block_group_cache *block_group,
  1864. struct btrfs_free_cluster *cluster,
  1865. u64 offset, u64 bytes, u64 empty_size)
  1866. {
  1867. u64 min_bytes;
  1868. int ret;
  1869. /* for metadata, allow allocates with more holes */
  1870. if (btrfs_test_opt(root, SSD_SPREAD)) {
  1871. min_bytes = bytes + empty_size;
  1872. } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
  1873. /*
  1874. * we want to do larger allocations when we are
  1875. * flushing out the delayed refs, it helps prevent
  1876. * making more work as we go along.
  1877. */
  1878. if (trans->transaction->delayed_refs.flushing)
  1879. min_bytes = max(bytes, (bytes + empty_size) >> 1);
  1880. else
  1881. min_bytes = max(bytes, (bytes + empty_size) >> 4);
  1882. } else
  1883. min_bytes = max(bytes, (bytes + empty_size) >> 2);
  1884. spin_lock(&block_group->tree_lock);
  1885. /*
  1886. * If we know we don't have enough space to make a cluster don't even
  1887. * bother doing all the work to try and find one.
  1888. */
  1889. if (block_group->free_space < min_bytes) {
  1890. spin_unlock(&block_group->tree_lock);
  1891. return -ENOSPC;
  1892. }
  1893. spin_lock(&cluster->lock);
  1894. /* someone already found a cluster, hooray */
  1895. if (cluster->block_group) {
  1896. ret = 0;
  1897. goto out;
  1898. }
  1899. ret = setup_cluster_no_bitmap(block_group, cluster, offset, bytes,
  1900. min_bytes);
  1901. if (ret)
  1902. ret = setup_cluster_bitmap(block_group, cluster, offset,
  1903. bytes, min_bytes);
  1904. if (!ret) {
  1905. atomic_inc(&block_group->count);
  1906. list_add_tail(&cluster->block_group_list,
  1907. &block_group->cluster_list);
  1908. cluster->block_group = block_group;
  1909. }
  1910. out:
  1911. spin_unlock(&cluster->lock);
  1912. spin_unlock(&block_group->tree_lock);
  1913. return ret;
  1914. }
  1915. /*
  1916. * simple code to zero out a cluster
  1917. */
  1918. void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
  1919. {
  1920. spin_lock_init(&cluster->lock);
  1921. spin_lock_init(&cluster->refill_lock);
  1922. cluster->root = RB_ROOT;
  1923. cluster->max_size = 0;
  1924. INIT_LIST_HEAD(&cluster->block_group_list);
  1925. cluster->block_group = NULL;
  1926. }
  1927. int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
  1928. u64 *trimmed, u64 start, u64 end, u64 minlen)
  1929. {
  1930. struct btrfs_free_space *entry = NULL;
  1931. struct btrfs_fs_info *fs_info = block_group->fs_info;
  1932. u64 bytes = 0;
  1933. u64 actually_trimmed;
  1934. int ret = 0;
  1935. *trimmed = 0;
  1936. while (start < end) {
  1937. spin_lock(&block_group->tree_lock);
  1938. if (block_group->free_space < minlen) {
  1939. spin_unlock(&block_group->tree_lock);
  1940. break;
  1941. }
  1942. entry = tree_search_offset(block_group, start, 0, 1);
  1943. if (!entry)
  1944. entry = tree_search_offset(block_group,
  1945. offset_to_bitmap(block_group,
  1946. start),
  1947. 1, 1);
  1948. if (!entry || entry->offset >= end) {
  1949. spin_unlock(&block_group->tree_lock);
  1950. break;
  1951. }
  1952. if (entry->bitmap) {
  1953. ret = search_bitmap(block_group, entry, &start, &bytes);
  1954. if (!ret) {
  1955. if (start >= end) {
  1956. spin_unlock(&block_group->tree_lock);
  1957. break;
  1958. }
  1959. bytes = min(bytes, end - start);
  1960. bitmap_clear_bits(block_group, entry,
  1961. start, bytes);
  1962. if (entry->bytes == 0)
  1963. free_bitmap(block_group, entry);
  1964. } else {
  1965. start = entry->offset + BITS_PER_BITMAP *
  1966. block_group->sectorsize;
  1967. spin_unlock(&block_group->tree_lock);
  1968. ret = 0;
  1969. continue;
  1970. }
  1971. } else {
  1972. start = entry->offset;
  1973. bytes = min(entry->bytes, end - start);
  1974. unlink_free_space(block_group, entry);
  1975. kfree(entry);
  1976. }
  1977. spin_unlock(&block_group->tree_lock);
  1978. if (bytes >= minlen) {
  1979. int update_ret;
  1980. update_ret = btrfs_update_reserved_bytes(block_group,
  1981. bytes, 1, 1);
  1982. ret = btrfs_error_discard_extent(fs_info->extent_root,
  1983. start,
  1984. bytes,
  1985. &actually_trimmed);
  1986. btrfs_add_free_space(block_group,
  1987. start, bytes);
  1988. if (!update_ret)
  1989. btrfs_update_reserved_bytes(block_group,
  1990. bytes, 0, 1);
  1991. if (ret)
  1992. break;
  1993. *trimmed += actually_trimmed;
  1994. }
  1995. start += bytes;
  1996. bytes = 0;
  1997. if (fatal_signal_pending(current)) {
  1998. ret = -ERESTARTSYS;
  1999. break;
  2000. }
  2001. cond_resched();
  2002. }
  2003. return ret;
  2004. }