irq.c 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302
  1. /*
  2. * linux/arch/i386/kernel/irq.c
  3. *
  4. * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
  5. *
  6. * This file contains the lowest level x86-specific interrupt
  7. * entry, irq-stacks and irq statistics code. All the remaining
  8. * irq logic is done by the generic kernel/irq/ code and
  9. * by the x86-specific irq controller code. (e.g. i8259.c and
  10. * io_apic.c.)
  11. */
  12. #include <asm/uaccess.h>
  13. #include <linux/module.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/notifier.h>
  18. #include <linux/cpu.h>
  19. #include <linux/delay.h>
  20. DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_maxaligned_in_smp;
  21. EXPORT_PER_CPU_SYMBOL(irq_stat);
  22. #ifndef CONFIG_X86_LOCAL_APIC
  23. /*
  24. * 'what should we do if we get a hw irq event on an illegal vector'.
  25. * each architecture has to answer this themselves.
  26. */
  27. void ack_bad_irq(unsigned int irq)
  28. {
  29. printk("unexpected IRQ trap at vector %02x\n", irq);
  30. }
  31. #endif
  32. #ifdef CONFIG_4KSTACKS
  33. /*
  34. * per-CPU IRQ handling contexts (thread information and stack)
  35. */
  36. union irq_ctx {
  37. struct thread_info tinfo;
  38. u32 stack[THREAD_SIZE/sizeof(u32)];
  39. };
  40. static union irq_ctx *hardirq_ctx[NR_CPUS];
  41. static union irq_ctx *softirq_ctx[NR_CPUS];
  42. #endif
  43. /*
  44. * do_IRQ handles all normal device IRQ's (the special
  45. * SMP cross-CPU interrupts have their own specific
  46. * handlers).
  47. */
  48. fastcall unsigned int do_IRQ(struct pt_regs *regs)
  49. {
  50. /* high bits used in ret_from_ code */
  51. int irq = regs->orig_eax & 0xff;
  52. #ifdef CONFIG_4KSTACKS
  53. union irq_ctx *curctx, *irqctx;
  54. u32 *isp;
  55. #endif
  56. irq_enter();
  57. #ifdef CONFIG_DEBUG_STACKOVERFLOW
  58. /* Debugging check for stack overflow: is there less than 1KB free? */
  59. {
  60. long esp;
  61. __asm__ __volatile__("andl %%esp,%0" :
  62. "=r" (esp) : "0" (THREAD_SIZE - 1));
  63. if (unlikely(esp < (sizeof(struct thread_info) + STACK_WARN))) {
  64. printk("do_IRQ: stack overflow: %ld\n",
  65. esp - sizeof(struct thread_info));
  66. dump_stack();
  67. }
  68. }
  69. #endif
  70. #ifdef CONFIG_4KSTACKS
  71. curctx = (union irq_ctx *) current_thread_info();
  72. irqctx = hardirq_ctx[smp_processor_id()];
  73. /*
  74. * this is where we switch to the IRQ stack. However, if we are
  75. * already using the IRQ stack (because we interrupted a hardirq
  76. * handler) we can't do that and just have to keep using the
  77. * current stack (which is the irq stack already after all)
  78. */
  79. if (curctx != irqctx) {
  80. int arg1, arg2, ebx;
  81. /* build the stack frame on the IRQ stack */
  82. isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
  83. irqctx->tinfo.task = curctx->tinfo.task;
  84. irqctx->tinfo.previous_esp = current_stack_pointer;
  85. asm volatile(
  86. " xchgl %%ebx,%%esp \n"
  87. " call __do_IRQ \n"
  88. " movl %%ebx,%%esp \n"
  89. : "=a" (arg1), "=d" (arg2), "=b" (ebx)
  90. : "0" (irq), "1" (regs), "2" (isp)
  91. : "memory", "cc", "ecx"
  92. );
  93. } else
  94. #endif
  95. __do_IRQ(irq, regs);
  96. irq_exit();
  97. return 1;
  98. }
  99. #ifdef CONFIG_4KSTACKS
  100. /*
  101. * These should really be __section__(".bss.page_aligned") as well, but
  102. * gcc's 3.0 and earlier don't handle that correctly.
  103. */
  104. static char softirq_stack[NR_CPUS * THREAD_SIZE]
  105. __attribute__((__aligned__(THREAD_SIZE)));
  106. static char hardirq_stack[NR_CPUS * THREAD_SIZE]
  107. __attribute__((__aligned__(THREAD_SIZE)));
  108. /*
  109. * allocate per-cpu stacks for hardirq and for softirq processing
  110. */
  111. void irq_ctx_init(int cpu)
  112. {
  113. union irq_ctx *irqctx;
  114. if (hardirq_ctx[cpu])
  115. return;
  116. irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
  117. irqctx->tinfo.task = NULL;
  118. irqctx->tinfo.exec_domain = NULL;
  119. irqctx->tinfo.cpu = cpu;
  120. irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
  121. irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
  122. hardirq_ctx[cpu] = irqctx;
  123. irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
  124. irqctx->tinfo.task = NULL;
  125. irqctx->tinfo.exec_domain = NULL;
  126. irqctx->tinfo.cpu = cpu;
  127. irqctx->tinfo.preempt_count = SOFTIRQ_OFFSET;
  128. irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
  129. softirq_ctx[cpu] = irqctx;
  130. printk("CPU %u irqstacks, hard=%p soft=%p\n",
  131. cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
  132. }
  133. extern asmlinkage void __do_softirq(void);
  134. asmlinkage void do_softirq(void)
  135. {
  136. unsigned long flags;
  137. struct thread_info *curctx;
  138. union irq_ctx *irqctx;
  139. u32 *isp;
  140. if (in_interrupt())
  141. return;
  142. local_irq_save(flags);
  143. if (local_softirq_pending()) {
  144. curctx = current_thread_info();
  145. irqctx = softirq_ctx[smp_processor_id()];
  146. irqctx->tinfo.task = curctx->task;
  147. irqctx->tinfo.previous_esp = current_stack_pointer;
  148. /* build the stack frame on the softirq stack */
  149. isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
  150. asm volatile(
  151. " xchgl %%ebx,%%esp \n"
  152. " call __do_softirq \n"
  153. " movl %%ebx,%%esp \n"
  154. : "=b"(isp)
  155. : "0"(isp)
  156. : "memory", "cc", "edx", "ecx", "eax"
  157. );
  158. }
  159. local_irq_restore(flags);
  160. }
  161. EXPORT_SYMBOL(do_softirq);
  162. #endif
  163. /*
  164. * Interrupt statistics:
  165. */
  166. atomic_t irq_err_count;
  167. /*
  168. * /proc/interrupts printing:
  169. */
  170. int show_interrupts(struct seq_file *p, void *v)
  171. {
  172. int i = *(loff_t *) v, j;
  173. struct irqaction * action;
  174. unsigned long flags;
  175. if (i == 0) {
  176. seq_printf(p, " ");
  177. for_each_cpu(j)
  178. seq_printf(p, "CPU%d ",j);
  179. seq_putc(p, '\n');
  180. }
  181. if (i < NR_IRQS) {
  182. spin_lock_irqsave(&irq_desc[i].lock, flags);
  183. action = irq_desc[i].action;
  184. if (!action)
  185. goto skip;
  186. seq_printf(p, "%3d: ",i);
  187. #ifndef CONFIG_SMP
  188. seq_printf(p, "%10u ", kstat_irqs(i));
  189. #else
  190. for_each_cpu(j)
  191. seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
  192. #endif
  193. seq_printf(p, " %14s", irq_desc[i].handler->typename);
  194. seq_printf(p, " %s", action->name);
  195. for (action=action->next; action; action = action->next)
  196. seq_printf(p, ", %s", action->name);
  197. seq_putc(p, '\n');
  198. skip:
  199. spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  200. } else if (i == NR_IRQS) {
  201. seq_printf(p, "NMI: ");
  202. for_each_cpu(j)
  203. seq_printf(p, "%10u ", nmi_count(j));
  204. seq_putc(p, '\n');
  205. #ifdef CONFIG_X86_LOCAL_APIC
  206. seq_printf(p, "LOC: ");
  207. for_each_cpu(j)
  208. seq_printf(p, "%10u ",
  209. per_cpu(irq_stat,j).apic_timer_irqs);
  210. seq_putc(p, '\n');
  211. #endif
  212. seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
  213. #if defined(CONFIG_X86_IO_APIC)
  214. seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
  215. #endif
  216. }
  217. return 0;
  218. }
  219. #ifdef CONFIG_HOTPLUG_CPU
  220. #include <mach_apic.h>
  221. void fixup_irqs(cpumask_t map)
  222. {
  223. unsigned int irq;
  224. static int warned;
  225. for (irq = 0; irq < NR_IRQS; irq++) {
  226. cpumask_t mask;
  227. if (irq == 2)
  228. continue;
  229. cpus_and(mask, irq_affinity[irq], map);
  230. if (any_online_cpu(mask) == NR_CPUS) {
  231. printk("Breaking affinity for irq %i\n", irq);
  232. mask = map;
  233. }
  234. if (irq_desc[irq].handler->set_affinity)
  235. irq_desc[irq].handler->set_affinity(irq, mask);
  236. else if (irq_desc[irq].action && !(warned++))
  237. printk("Cannot set affinity for irq %i\n", irq);
  238. }
  239. #if 0
  240. barrier();
  241. /* Ingo Molnar says: "after the IO-APIC masks have been redirected
  242. [note the nop - the interrupt-enable boundary on x86 is two
  243. instructions from sti] - to flush out pending hardirqs and
  244. IPIs. After this point nothing is supposed to reach this CPU." */
  245. __asm__ __volatile__("sti; nop; cli");
  246. barrier();
  247. #else
  248. /* That doesn't seem sufficient. Give it 1ms. */
  249. local_irq_enable();
  250. mdelay(1);
  251. local_irq_disable();
  252. #endif
  253. }
  254. #endif