intel_display.c 280 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. typedef struct {
  50. int min, max;
  51. } intel_range_t;
  52. typedef struct {
  53. int dot_limit;
  54. int p2_slow, p2_fast;
  55. } intel_p2_t;
  56. #define INTEL_P2_NUM 2
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. /* FDI */
  63. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  64. int
  65. intel_pch_rawclk(struct drm_device *dev)
  66. {
  67. struct drm_i915_private *dev_priv = dev->dev_private;
  68. WARN_ON(!HAS_PCH_SPLIT(dev));
  69. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  70. }
  71. static inline u32 /* units of 100MHz */
  72. intel_fdi_link_freq(struct drm_device *dev)
  73. {
  74. if (IS_GEN5(dev)) {
  75. struct drm_i915_private *dev_priv = dev->dev_private;
  76. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  77. } else
  78. return 27;
  79. }
  80. static const intel_limit_t intel_limits_i8xx_dvo = {
  81. .dot = { .min = 25000, .max = 350000 },
  82. .vco = { .min = 930000, .max = 1400000 },
  83. .n = { .min = 3, .max = 16 },
  84. .m = { .min = 96, .max = 140 },
  85. .m1 = { .min = 18, .max = 26 },
  86. .m2 = { .min = 6, .max = 16 },
  87. .p = { .min = 4, .max = 128 },
  88. .p1 = { .min = 2, .max = 33 },
  89. .p2 = { .dot_limit = 165000,
  90. .p2_slow = 4, .p2_fast = 2 },
  91. };
  92. static const intel_limit_t intel_limits_i8xx_lvds = {
  93. .dot = { .min = 25000, .max = 350000 },
  94. .vco = { .min = 930000, .max = 1400000 },
  95. .n = { .min = 3, .max = 16 },
  96. .m = { .min = 96, .max = 140 },
  97. .m1 = { .min = 18, .max = 26 },
  98. .m2 = { .min = 6, .max = 16 },
  99. .p = { .min = 4, .max = 128 },
  100. .p1 = { .min = 1, .max = 6 },
  101. .p2 = { .dot_limit = 165000,
  102. .p2_slow = 14, .p2_fast = 7 },
  103. };
  104. static const intel_limit_t intel_limits_i9xx_sdvo = {
  105. .dot = { .min = 20000, .max = 400000 },
  106. .vco = { .min = 1400000, .max = 2800000 },
  107. .n = { .min = 1, .max = 6 },
  108. .m = { .min = 70, .max = 120 },
  109. .m1 = { .min = 8, .max = 18 },
  110. .m2 = { .min = 3, .max = 7 },
  111. .p = { .min = 5, .max = 80 },
  112. .p1 = { .min = 1, .max = 8 },
  113. .p2 = { .dot_limit = 200000,
  114. .p2_slow = 10, .p2_fast = 5 },
  115. };
  116. static const intel_limit_t intel_limits_i9xx_lvds = {
  117. .dot = { .min = 20000, .max = 400000 },
  118. .vco = { .min = 1400000, .max = 2800000 },
  119. .n = { .min = 1, .max = 6 },
  120. .m = { .min = 70, .max = 120 },
  121. .m1 = { .min = 8, .max = 18 },
  122. .m2 = { .min = 3, .max = 7 },
  123. .p = { .min = 7, .max = 98 },
  124. .p1 = { .min = 1, .max = 8 },
  125. .p2 = { .dot_limit = 112000,
  126. .p2_slow = 14, .p2_fast = 7 },
  127. };
  128. static const intel_limit_t intel_limits_g4x_sdvo = {
  129. .dot = { .min = 25000, .max = 270000 },
  130. .vco = { .min = 1750000, .max = 3500000},
  131. .n = { .min = 1, .max = 4 },
  132. .m = { .min = 104, .max = 138 },
  133. .m1 = { .min = 17, .max = 23 },
  134. .m2 = { .min = 5, .max = 11 },
  135. .p = { .min = 10, .max = 30 },
  136. .p1 = { .min = 1, .max = 3},
  137. .p2 = { .dot_limit = 270000,
  138. .p2_slow = 10,
  139. .p2_fast = 10
  140. },
  141. };
  142. static const intel_limit_t intel_limits_g4x_hdmi = {
  143. .dot = { .min = 22000, .max = 400000 },
  144. .vco = { .min = 1750000, .max = 3500000},
  145. .n = { .min = 1, .max = 4 },
  146. .m = { .min = 104, .max = 138 },
  147. .m1 = { .min = 16, .max = 23 },
  148. .m2 = { .min = 5, .max = 11 },
  149. .p = { .min = 5, .max = 80 },
  150. .p1 = { .min = 1, .max = 8},
  151. .p2 = { .dot_limit = 165000,
  152. .p2_slow = 10, .p2_fast = 5 },
  153. };
  154. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  155. .dot = { .min = 20000, .max = 115000 },
  156. .vco = { .min = 1750000, .max = 3500000 },
  157. .n = { .min = 1, .max = 3 },
  158. .m = { .min = 104, .max = 138 },
  159. .m1 = { .min = 17, .max = 23 },
  160. .m2 = { .min = 5, .max = 11 },
  161. .p = { .min = 28, .max = 112 },
  162. .p1 = { .min = 2, .max = 8 },
  163. .p2 = { .dot_limit = 0,
  164. .p2_slow = 14, .p2_fast = 14
  165. },
  166. };
  167. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  168. .dot = { .min = 80000, .max = 224000 },
  169. .vco = { .min = 1750000, .max = 3500000 },
  170. .n = { .min = 1, .max = 3 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 17, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 14, .max = 42 },
  175. .p1 = { .min = 2, .max = 6 },
  176. .p2 = { .dot_limit = 0,
  177. .p2_slow = 7, .p2_fast = 7
  178. },
  179. };
  180. static const intel_limit_t intel_limits_pineview_sdvo = {
  181. .dot = { .min = 20000, .max = 400000},
  182. .vco = { .min = 1700000, .max = 3500000 },
  183. /* Pineview's Ncounter is a ring counter */
  184. .n = { .min = 3, .max = 6 },
  185. .m = { .min = 2, .max = 256 },
  186. /* Pineview only has one combined m divider, which we treat as m2. */
  187. .m1 = { .min = 0, .max = 0 },
  188. .m2 = { .min = 0, .max = 254 },
  189. .p = { .min = 5, .max = 80 },
  190. .p1 = { .min = 1, .max = 8 },
  191. .p2 = { .dot_limit = 200000,
  192. .p2_slow = 10, .p2_fast = 5 },
  193. };
  194. static const intel_limit_t intel_limits_pineview_lvds = {
  195. .dot = { .min = 20000, .max = 400000 },
  196. .vco = { .min = 1700000, .max = 3500000 },
  197. .n = { .min = 3, .max = 6 },
  198. .m = { .min = 2, .max = 256 },
  199. .m1 = { .min = 0, .max = 0 },
  200. .m2 = { .min = 0, .max = 254 },
  201. .p = { .min = 7, .max = 112 },
  202. .p1 = { .min = 1, .max = 8 },
  203. .p2 = { .dot_limit = 112000,
  204. .p2_slow = 14, .p2_fast = 14 },
  205. };
  206. /* Ironlake / Sandybridge
  207. *
  208. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  209. * the range value for them is (actual_value - 2).
  210. */
  211. static const intel_limit_t intel_limits_ironlake_dac = {
  212. .dot = { .min = 25000, .max = 350000 },
  213. .vco = { .min = 1760000, .max = 3510000 },
  214. .n = { .min = 1, .max = 5 },
  215. .m = { .min = 79, .max = 127 },
  216. .m1 = { .min = 12, .max = 22 },
  217. .m2 = { .min = 5, .max = 9 },
  218. .p = { .min = 5, .max = 80 },
  219. .p1 = { .min = 1, .max = 8 },
  220. .p2 = { .dot_limit = 225000,
  221. .p2_slow = 10, .p2_fast = 5 },
  222. };
  223. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  224. .dot = { .min = 25000, .max = 350000 },
  225. .vco = { .min = 1760000, .max = 3510000 },
  226. .n = { .min = 1, .max = 3 },
  227. .m = { .min = 79, .max = 118 },
  228. .m1 = { .min = 12, .max = 22 },
  229. .m2 = { .min = 5, .max = 9 },
  230. .p = { .min = 28, .max = 112 },
  231. .p1 = { .min = 2, .max = 8 },
  232. .p2 = { .dot_limit = 225000,
  233. .p2_slow = 14, .p2_fast = 14 },
  234. };
  235. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  236. .dot = { .min = 25000, .max = 350000 },
  237. .vco = { .min = 1760000, .max = 3510000 },
  238. .n = { .min = 1, .max = 3 },
  239. .m = { .min = 79, .max = 127 },
  240. .m1 = { .min = 12, .max = 22 },
  241. .m2 = { .min = 5, .max = 9 },
  242. .p = { .min = 14, .max = 56 },
  243. .p1 = { .min = 2, .max = 8 },
  244. .p2 = { .dot_limit = 225000,
  245. .p2_slow = 7, .p2_fast = 7 },
  246. };
  247. /* LVDS 100mhz refclk limits. */
  248. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  249. .dot = { .min = 25000, .max = 350000 },
  250. .vco = { .min = 1760000, .max = 3510000 },
  251. .n = { .min = 1, .max = 2 },
  252. .m = { .min = 79, .max = 126 },
  253. .m1 = { .min = 12, .max = 22 },
  254. .m2 = { .min = 5, .max = 9 },
  255. .p = { .min = 28, .max = 112 },
  256. .p1 = { .min = 2, .max = 8 },
  257. .p2 = { .dot_limit = 225000,
  258. .p2_slow = 14, .p2_fast = 14 },
  259. };
  260. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 3 },
  264. .m = { .min = 79, .max = 126 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 14, .max = 42 },
  268. .p1 = { .min = 2, .max = 6 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 7, .p2_fast = 7 },
  271. };
  272. static const intel_limit_t intel_limits_vlv_dac = {
  273. .dot = { .min = 25000, .max = 270000 },
  274. .vco = { .min = 4000000, .max = 6000000 },
  275. .n = { .min = 1, .max = 7 },
  276. .m = { .min = 22, .max = 450 }, /* guess */
  277. .m1 = { .min = 2, .max = 3 },
  278. .m2 = { .min = 11, .max = 156 },
  279. .p = { .min = 10, .max = 30 },
  280. .p1 = { .min = 1, .max = 3 },
  281. .p2 = { .dot_limit = 270000,
  282. .p2_slow = 2, .p2_fast = 20 },
  283. };
  284. static const intel_limit_t intel_limits_vlv_hdmi = {
  285. .dot = { .min = 25000, .max = 270000 },
  286. .vco = { .min = 4000000, .max = 6000000 },
  287. .n = { .min = 1, .max = 7 },
  288. .m = { .min = 60, .max = 300 }, /* guess */
  289. .m1 = { .min = 2, .max = 3 },
  290. .m2 = { .min = 11, .max = 156 },
  291. .p = { .min = 10, .max = 30 },
  292. .p1 = { .min = 2, .max = 3 },
  293. .p2 = { .dot_limit = 270000,
  294. .p2_slow = 2, .p2_fast = 20 },
  295. };
  296. static const intel_limit_t intel_limits_vlv_dp = {
  297. .dot = { .min = 25000, .max = 270000 },
  298. .vco = { .min = 4000000, .max = 6000000 },
  299. .n = { .min = 1, .max = 7 },
  300. .m = { .min = 22, .max = 450 },
  301. .m1 = { .min = 2, .max = 3 },
  302. .m2 = { .min = 11, .max = 156 },
  303. .p = { .min = 10, .max = 30 },
  304. .p1 = { .min = 1, .max = 3 },
  305. .p2 = { .dot_limit = 270000,
  306. .p2_slow = 2, .p2_fast = 20 },
  307. };
  308. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  309. int refclk)
  310. {
  311. struct drm_device *dev = crtc->dev;
  312. const intel_limit_t *limit;
  313. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  314. if (intel_is_dual_link_lvds(dev)) {
  315. if (refclk == 100000)
  316. limit = &intel_limits_ironlake_dual_lvds_100m;
  317. else
  318. limit = &intel_limits_ironlake_dual_lvds;
  319. } else {
  320. if (refclk == 100000)
  321. limit = &intel_limits_ironlake_single_lvds_100m;
  322. else
  323. limit = &intel_limits_ironlake_single_lvds;
  324. }
  325. } else
  326. limit = &intel_limits_ironlake_dac;
  327. return limit;
  328. }
  329. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  330. {
  331. struct drm_device *dev = crtc->dev;
  332. const intel_limit_t *limit;
  333. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  334. if (intel_is_dual_link_lvds(dev))
  335. limit = &intel_limits_g4x_dual_channel_lvds;
  336. else
  337. limit = &intel_limits_g4x_single_channel_lvds;
  338. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  339. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  340. limit = &intel_limits_g4x_hdmi;
  341. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  342. limit = &intel_limits_g4x_sdvo;
  343. } else /* The option is for other outputs */
  344. limit = &intel_limits_i9xx_sdvo;
  345. return limit;
  346. }
  347. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  348. {
  349. struct drm_device *dev = crtc->dev;
  350. const intel_limit_t *limit;
  351. if (HAS_PCH_SPLIT(dev))
  352. limit = intel_ironlake_limit(crtc, refclk);
  353. else if (IS_G4X(dev)) {
  354. limit = intel_g4x_limit(crtc);
  355. } else if (IS_PINEVIEW(dev)) {
  356. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  357. limit = &intel_limits_pineview_lvds;
  358. else
  359. limit = &intel_limits_pineview_sdvo;
  360. } else if (IS_VALLEYVIEW(dev)) {
  361. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  362. limit = &intel_limits_vlv_dac;
  363. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  364. limit = &intel_limits_vlv_hdmi;
  365. else
  366. limit = &intel_limits_vlv_dp;
  367. } else if (!IS_GEN2(dev)) {
  368. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  369. limit = &intel_limits_i9xx_lvds;
  370. else
  371. limit = &intel_limits_i9xx_sdvo;
  372. } else {
  373. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  374. limit = &intel_limits_i8xx_lvds;
  375. else
  376. limit = &intel_limits_i8xx_dvo;
  377. }
  378. return limit;
  379. }
  380. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  381. static void pineview_clock(int refclk, intel_clock_t *clock)
  382. {
  383. clock->m = clock->m2 + 2;
  384. clock->p = clock->p1 * clock->p2;
  385. clock->vco = refclk * clock->m / clock->n;
  386. clock->dot = clock->vco / clock->p;
  387. }
  388. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  389. {
  390. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  391. }
  392. static void i9xx_clock(int refclk, intel_clock_t *clock)
  393. {
  394. clock->m = i9xx_dpll_compute_m(clock);
  395. clock->p = clock->p1 * clock->p2;
  396. clock->vco = refclk * clock->m / (clock->n + 2);
  397. clock->dot = clock->vco / clock->p;
  398. }
  399. /**
  400. * Returns whether any output on the specified pipe is of the specified type
  401. */
  402. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  403. {
  404. struct drm_device *dev = crtc->dev;
  405. struct intel_encoder *encoder;
  406. for_each_encoder_on_crtc(dev, crtc, encoder)
  407. if (encoder->type == type)
  408. return true;
  409. return false;
  410. }
  411. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  412. /**
  413. * Returns whether the given set of divisors are valid for a given refclk with
  414. * the given connectors.
  415. */
  416. static bool intel_PLL_is_valid(struct drm_device *dev,
  417. const intel_limit_t *limit,
  418. const intel_clock_t *clock)
  419. {
  420. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  421. INTELPllInvalid("p1 out of range\n");
  422. if (clock->p < limit->p.min || limit->p.max < clock->p)
  423. INTELPllInvalid("p out of range\n");
  424. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  425. INTELPllInvalid("m2 out of range\n");
  426. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  427. INTELPllInvalid("m1 out of range\n");
  428. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  429. INTELPllInvalid("m1 <= m2\n");
  430. if (clock->m < limit->m.min || limit->m.max < clock->m)
  431. INTELPllInvalid("m out of range\n");
  432. if (clock->n < limit->n.min || limit->n.max < clock->n)
  433. INTELPllInvalid("n out of range\n");
  434. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  435. INTELPllInvalid("vco out of range\n");
  436. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  437. * connector, etc., rather than just a single range.
  438. */
  439. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  440. INTELPllInvalid("dot out of range\n");
  441. return true;
  442. }
  443. static bool
  444. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  445. int target, int refclk, intel_clock_t *match_clock,
  446. intel_clock_t *best_clock)
  447. {
  448. struct drm_device *dev = crtc->dev;
  449. intel_clock_t clock;
  450. int err = target;
  451. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  452. /*
  453. * For LVDS just rely on its current settings for dual-channel.
  454. * We haven't figured out how to reliably set up different
  455. * single/dual channel state, if we even can.
  456. */
  457. if (intel_is_dual_link_lvds(dev))
  458. clock.p2 = limit->p2.p2_fast;
  459. else
  460. clock.p2 = limit->p2.p2_slow;
  461. } else {
  462. if (target < limit->p2.dot_limit)
  463. clock.p2 = limit->p2.p2_slow;
  464. else
  465. clock.p2 = limit->p2.p2_fast;
  466. }
  467. memset(best_clock, 0, sizeof(*best_clock));
  468. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  469. clock.m1++) {
  470. for (clock.m2 = limit->m2.min;
  471. clock.m2 <= limit->m2.max; clock.m2++) {
  472. if (clock.m2 >= clock.m1)
  473. break;
  474. for (clock.n = limit->n.min;
  475. clock.n <= limit->n.max; clock.n++) {
  476. for (clock.p1 = limit->p1.min;
  477. clock.p1 <= limit->p1.max; clock.p1++) {
  478. int this_err;
  479. i9xx_clock(refclk, &clock);
  480. if (!intel_PLL_is_valid(dev, limit,
  481. &clock))
  482. continue;
  483. if (match_clock &&
  484. clock.p != match_clock->p)
  485. continue;
  486. this_err = abs(clock.dot - target);
  487. if (this_err < err) {
  488. *best_clock = clock;
  489. err = this_err;
  490. }
  491. }
  492. }
  493. }
  494. }
  495. return (err != target);
  496. }
  497. static bool
  498. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  499. int target, int refclk, intel_clock_t *match_clock,
  500. intel_clock_t *best_clock)
  501. {
  502. struct drm_device *dev = crtc->dev;
  503. intel_clock_t clock;
  504. int err = target;
  505. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  506. /*
  507. * For LVDS just rely on its current settings for dual-channel.
  508. * We haven't figured out how to reliably set up different
  509. * single/dual channel state, if we even can.
  510. */
  511. if (intel_is_dual_link_lvds(dev))
  512. clock.p2 = limit->p2.p2_fast;
  513. else
  514. clock.p2 = limit->p2.p2_slow;
  515. } else {
  516. if (target < limit->p2.dot_limit)
  517. clock.p2 = limit->p2.p2_slow;
  518. else
  519. clock.p2 = limit->p2.p2_fast;
  520. }
  521. memset(best_clock, 0, sizeof(*best_clock));
  522. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  523. clock.m1++) {
  524. for (clock.m2 = limit->m2.min;
  525. clock.m2 <= limit->m2.max; clock.m2++) {
  526. for (clock.n = limit->n.min;
  527. clock.n <= limit->n.max; clock.n++) {
  528. for (clock.p1 = limit->p1.min;
  529. clock.p1 <= limit->p1.max; clock.p1++) {
  530. int this_err;
  531. pineview_clock(refclk, &clock);
  532. if (!intel_PLL_is_valid(dev, limit,
  533. &clock))
  534. continue;
  535. if (match_clock &&
  536. clock.p != match_clock->p)
  537. continue;
  538. this_err = abs(clock.dot - target);
  539. if (this_err < err) {
  540. *best_clock = clock;
  541. err = this_err;
  542. }
  543. }
  544. }
  545. }
  546. }
  547. return (err != target);
  548. }
  549. static bool
  550. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  551. int target, int refclk, intel_clock_t *match_clock,
  552. intel_clock_t *best_clock)
  553. {
  554. struct drm_device *dev = crtc->dev;
  555. intel_clock_t clock;
  556. int max_n;
  557. bool found;
  558. /* approximately equals target * 0.00585 */
  559. int err_most = (target >> 8) + (target >> 9);
  560. found = false;
  561. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  562. if (intel_is_dual_link_lvds(dev))
  563. clock.p2 = limit->p2.p2_fast;
  564. else
  565. clock.p2 = limit->p2.p2_slow;
  566. } else {
  567. if (target < limit->p2.dot_limit)
  568. clock.p2 = limit->p2.p2_slow;
  569. else
  570. clock.p2 = limit->p2.p2_fast;
  571. }
  572. memset(best_clock, 0, sizeof(*best_clock));
  573. max_n = limit->n.max;
  574. /* based on hardware requirement, prefer smaller n to precision */
  575. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  576. /* based on hardware requirement, prefere larger m1,m2 */
  577. for (clock.m1 = limit->m1.max;
  578. clock.m1 >= limit->m1.min; clock.m1--) {
  579. for (clock.m2 = limit->m2.max;
  580. clock.m2 >= limit->m2.min; clock.m2--) {
  581. for (clock.p1 = limit->p1.max;
  582. clock.p1 >= limit->p1.min; clock.p1--) {
  583. int this_err;
  584. i9xx_clock(refclk, &clock);
  585. if (!intel_PLL_is_valid(dev, limit,
  586. &clock))
  587. continue;
  588. this_err = abs(clock.dot - target);
  589. if (this_err < err_most) {
  590. *best_clock = clock;
  591. err_most = this_err;
  592. max_n = clock.n;
  593. found = true;
  594. }
  595. }
  596. }
  597. }
  598. }
  599. return found;
  600. }
  601. static bool
  602. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  603. int target, int refclk, intel_clock_t *match_clock,
  604. intel_clock_t *best_clock)
  605. {
  606. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  607. u32 m, n, fastclk;
  608. u32 updrate, minupdate, fracbits, p;
  609. unsigned long bestppm, ppm, absppm;
  610. int dotclk, flag;
  611. flag = 0;
  612. dotclk = target * 1000;
  613. bestppm = 1000000;
  614. ppm = absppm = 0;
  615. fastclk = dotclk / (2*100);
  616. updrate = 0;
  617. minupdate = 19200;
  618. fracbits = 1;
  619. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  620. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  621. /* based on hardware requirement, prefer smaller n to precision */
  622. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  623. updrate = refclk / n;
  624. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  625. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  626. if (p2 > 10)
  627. p2 = p2 - 1;
  628. p = p1 * p2;
  629. /* based on hardware requirement, prefer bigger m1,m2 values */
  630. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  631. m2 = (((2*(fastclk * p * n / m1 )) +
  632. refclk) / (2*refclk));
  633. m = m1 * m2;
  634. vco = updrate * m;
  635. if (vco >= limit->vco.min && vco < limit->vco.max) {
  636. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  637. absppm = (ppm > 0) ? ppm : (-ppm);
  638. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  639. bestppm = 0;
  640. flag = 1;
  641. }
  642. if (absppm < bestppm - 10) {
  643. bestppm = absppm;
  644. flag = 1;
  645. }
  646. if (flag) {
  647. bestn = n;
  648. bestm1 = m1;
  649. bestm2 = m2;
  650. bestp1 = p1;
  651. bestp2 = p2;
  652. flag = 0;
  653. }
  654. }
  655. }
  656. }
  657. }
  658. }
  659. best_clock->n = bestn;
  660. best_clock->m1 = bestm1;
  661. best_clock->m2 = bestm2;
  662. best_clock->p1 = bestp1;
  663. best_clock->p2 = bestp2;
  664. return true;
  665. }
  666. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  667. enum pipe pipe)
  668. {
  669. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  670. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  671. return intel_crtc->config.cpu_transcoder;
  672. }
  673. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  674. {
  675. struct drm_i915_private *dev_priv = dev->dev_private;
  676. u32 frame, frame_reg = PIPEFRAME(pipe);
  677. frame = I915_READ(frame_reg);
  678. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  679. DRM_DEBUG_KMS("vblank wait timed out\n");
  680. }
  681. /**
  682. * intel_wait_for_vblank - wait for vblank on a given pipe
  683. * @dev: drm device
  684. * @pipe: pipe to wait for
  685. *
  686. * Wait for vblank to occur on a given pipe. Needed for various bits of
  687. * mode setting code.
  688. */
  689. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  690. {
  691. struct drm_i915_private *dev_priv = dev->dev_private;
  692. int pipestat_reg = PIPESTAT(pipe);
  693. if (INTEL_INFO(dev)->gen >= 5) {
  694. ironlake_wait_for_vblank(dev, pipe);
  695. return;
  696. }
  697. /* Clear existing vblank status. Note this will clear any other
  698. * sticky status fields as well.
  699. *
  700. * This races with i915_driver_irq_handler() with the result
  701. * that either function could miss a vblank event. Here it is not
  702. * fatal, as we will either wait upon the next vblank interrupt or
  703. * timeout. Generally speaking intel_wait_for_vblank() is only
  704. * called during modeset at which time the GPU should be idle and
  705. * should *not* be performing page flips and thus not waiting on
  706. * vblanks...
  707. * Currently, the result of us stealing a vblank from the irq
  708. * handler is that a single frame will be skipped during swapbuffers.
  709. */
  710. I915_WRITE(pipestat_reg,
  711. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  712. /* Wait for vblank interrupt bit to set */
  713. if (wait_for(I915_READ(pipestat_reg) &
  714. PIPE_VBLANK_INTERRUPT_STATUS,
  715. 50))
  716. DRM_DEBUG_KMS("vblank wait timed out\n");
  717. }
  718. /*
  719. * intel_wait_for_pipe_off - wait for pipe to turn off
  720. * @dev: drm device
  721. * @pipe: pipe to wait for
  722. *
  723. * After disabling a pipe, we can't wait for vblank in the usual way,
  724. * spinning on the vblank interrupt status bit, since we won't actually
  725. * see an interrupt when the pipe is disabled.
  726. *
  727. * On Gen4 and above:
  728. * wait for the pipe register state bit to turn off
  729. *
  730. * Otherwise:
  731. * wait for the display line value to settle (it usually
  732. * ends up stopping at the start of the next frame).
  733. *
  734. */
  735. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  736. {
  737. struct drm_i915_private *dev_priv = dev->dev_private;
  738. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  739. pipe);
  740. if (INTEL_INFO(dev)->gen >= 4) {
  741. int reg = PIPECONF(cpu_transcoder);
  742. /* Wait for the Pipe State to go off */
  743. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  744. 100))
  745. WARN(1, "pipe_off wait timed out\n");
  746. } else {
  747. u32 last_line, line_mask;
  748. int reg = PIPEDSL(pipe);
  749. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  750. if (IS_GEN2(dev))
  751. line_mask = DSL_LINEMASK_GEN2;
  752. else
  753. line_mask = DSL_LINEMASK_GEN3;
  754. /* Wait for the display line to settle */
  755. do {
  756. last_line = I915_READ(reg) & line_mask;
  757. mdelay(5);
  758. } while (((I915_READ(reg) & line_mask) != last_line) &&
  759. time_after(timeout, jiffies));
  760. if (time_after(jiffies, timeout))
  761. WARN(1, "pipe_off wait timed out\n");
  762. }
  763. }
  764. /*
  765. * ibx_digital_port_connected - is the specified port connected?
  766. * @dev_priv: i915 private structure
  767. * @port: the port to test
  768. *
  769. * Returns true if @port is connected, false otherwise.
  770. */
  771. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  772. struct intel_digital_port *port)
  773. {
  774. u32 bit;
  775. if (HAS_PCH_IBX(dev_priv->dev)) {
  776. switch(port->port) {
  777. case PORT_B:
  778. bit = SDE_PORTB_HOTPLUG;
  779. break;
  780. case PORT_C:
  781. bit = SDE_PORTC_HOTPLUG;
  782. break;
  783. case PORT_D:
  784. bit = SDE_PORTD_HOTPLUG;
  785. break;
  786. default:
  787. return true;
  788. }
  789. } else {
  790. switch(port->port) {
  791. case PORT_B:
  792. bit = SDE_PORTB_HOTPLUG_CPT;
  793. break;
  794. case PORT_C:
  795. bit = SDE_PORTC_HOTPLUG_CPT;
  796. break;
  797. case PORT_D:
  798. bit = SDE_PORTD_HOTPLUG_CPT;
  799. break;
  800. default:
  801. return true;
  802. }
  803. }
  804. return I915_READ(SDEISR) & bit;
  805. }
  806. static const char *state_string(bool enabled)
  807. {
  808. return enabled ? "on" : "off";
  809. }
  810. /* Only for pre-ILK configs */
  811. void assert_pll(struct drm_i915_private *dev_priv,
  812. enum pipe pipe, bool state)
  813. {
  814. int reg;
  815. u32 val;
  816. bool cur_state;
  817. reg = DPLL(pipe);
  818. val = I915_READ(reg);
  819. cur_state = !!(val & DPLL_VCO_ENABLE);
  820. WARN(cur_state != state,
  821. "PLL state assertion failure (expected %s, current %s)\n",
  822. state_string(state), state_string(cur_state));
  823. }
  824. struct intel_shared_dpll *
  825. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  826. {
  827. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  828. if (crtc->config.shared_dpll < 0)
  829. return NULL;
  830. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  831. }
  832. /* For ILK+ */
  833. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  834. struct intel_shared_dpll *pll,
  835. bool state)
  836. {
  837. bool cur_state;
  838. struct intel_dpll_hw_state hw_state;
  839. if (HAS_PCH_LPT(dev_priv->dev)) {
  840. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  841. return;
  842. }
  843. if (WARN (!pll,
  844. "asserting DPLL %s with no DPLL\n", state_string(state)))
  845. return;
  846. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  847. WARN(cur_state != state,
  848. "%s assertion failure (expected %s, current %s)\n",
  849. pll->name, state_string(state), state_string(cur_state));
  850. }
  851. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  852. enum pipe pipe, bool state)
  853. {
  854. int reg;
  855. u32 val;
  856. bool cur_state;
  857. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  858. pipe);
  859. if (HAS_DDI(dev_priv->dev)) {
  860. /* DDI does not have a specific FDI_TX register */
  861. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  864. } else {
  865. reg = FDI_TX_CTL(pipe);
  866. val = I915_READ(reg);
  867. cur_state = !!(val & FDI_TX_ENABLE);
  868. }
  869. WARN(cur_state != state,
  870. "FDI TX state assertion failure (expected %s, current %s)\n",
  871. state_string(state), state_string(cur_state));
  872. }
  873. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  874. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  875. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  876. enum pipe pipe, bool state)
  877. {
  878. int reg;
  879. u32 val;
  880. bool cur_state;
  881. reg = FDI_RX_CTL(pipe);
  882. val = I915_READ(reg);
  883. cur_state = !!(val & FDI_RX_ENABLE);
  884. WARN(cur_state != state,
  885. "FDI RX state assertion failure (expected %s, current %s)\n",
  886. state_string(state), state_string(cur_state));
  887. }
  888. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  889. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  890. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  891. enum pipe pipe)
  892. {
  893. int reg;
  894. u32 val;
  895. /* ILK FDI PLL is always enabled */
  896. if (dev_priv->info->gen == 5)
  897. return;
  898. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  899. if (HAS_DDI(dev_priv->dev))
  900. return;
  901. reg = FDI_TX_CTL(pipe);
  902. val = I915_READ(reg);
  903. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  904. }
  905. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  906. enum pipe pipe, bool state)
  907. {
  908. int reg;
  909. u32 val;
  910. bool cur_state;
  911. reg = FDI_RX_CTL(pipe);
  912. val = I915_READ(reg);
  913. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  914. WARN(cur_state != state,
  915. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  916. state_string(state), state_string(cur_state));
  917. }
  918. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  919. enum pipe pipe)
  920. {
  921. int pp_reg, lvds_reg;
  922. u32 val;
  923. enum pipe panel_pipe = PIPE_A;
  924. bool locked = true;
  925. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  926. pp_reg = PCH_PP_CONTROL;
  927. lvds_reg = PCH_LVDS;
  928. } else {
  929. pp_reg = PP_CONTROL;
  930. lvds_reg = LVDS;
  931. }
  932. val = I915_READ(pp_reg);
  933. if (!(val & PANEL_POWER_ON) ||
  934. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  935. locked = false;
  936. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  937. panel_pipe = PIPE_B;
  938. WARN(panel_pipe == pipe && locked,
  939. "panel assertion failure, pipe %c regs locked\n",
  940. pipe_name(pipe));
  941. }
  942. void assert_pipe(struct drm_i915_private *dev_priv,
  943. enum pipe pipe, bool state)
  944. {
  945. int reg;
  946. u32 val;
  947. bool cur_state;
  948. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  949. pipe);
  950. /* if we need the pipe A quirk it must be always on */
  951. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  952. state = true;
  953. if (!intel_display_power_enabled(dev_priv->dev,
  954. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  955. cur_state = false;
  956. } else {
  957. reg = PIPECONF(cpu_transcoder);
  958. val = I915_READ(reg);
  959. cur_state = !!(val & PIPECONF_ENABLE);
  960. }
  961. WARN(cur_state != state,
  962. "pipe %c assertion failure (expected %s, current %s)\n",
  963. pipe_name(pipe), state_string(state), state_string(cur_state));
  964. }
  965. static void assert_plane(struct drm_i915_private *dev_priv,
  966. enum plane plane, bool state)
  967. {
  968. int reg;
  969. u32 val;
  970. bool cur_state;
  971. reg = DSPCNTR(plane);
  972. val = I915_READ(reg);
  973. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  974. WARN(cur_state != state,
  975. "plane %c assertion failure (expected %s, current %s)\n",
  976. plane_name(plane), state_string(state), state_string(cur_state));
  977. }
  978. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  979. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  980. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  981. enum pipe pipe)
  982. {
  983. struct drm_device *dev = dev_priv->dev;
  984. int reg, i;
  985. u32 val;
  986. int cur_pipe;
  987. /* Primary planes are fixed to pipes on gen4+ */
  988. if (INTEL_INFO(dev)->gen >= 4) {
  989. reg = DSPCNTR(pipe);
  990. val = I915_READ(reg);
  991. WARN((val & DISPLAY_PLANE_ENABLE),
  992. "plane %c assertion failure, should be disabled but not\n",
  993. plane_name(pipe));
  994. return;
  995. }
  996. /* Need to check both planes against the pipe */
  997. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  998. reg = DSPCNTR(i);
  999. val = I915_READ(reg);
  1000. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1001. DISPPLANE_SEL_PIPE_SHIFT;
  1002. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1003. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1004. plane_name(i), pipe_name(pipe));
  1005. }
  1006. }
  1007. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1008. enum pipe pipe)
  1009. {
  1010. struct drm_device *dev = dev_priv->dev;
  1011. int reg, i;
  1012. u32 val;
  1013. if (IS_VALLEYVIEW(dev)) {
  1014. for (i = 0; i < dev_priv->num_plane; i++) {
  1015. reg = SPCNTR(pipe, i);
  1016. val = I915_READ(reg);
  1017. WARN((val & SP_ENABLE),
  1018. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1019. sprite_name(pipe, i), pipe_name(pipe));
  1020. }
  1021. } else if (INTEL_INFO(dev)->gen >= 7) {
  1022. reg = SPRCTL(pipe);
  1023. val = I915_READ(reg);
  1024. WARN((val & SPRITE_ENABLE),
  1025. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1026. plane_name(pipe), pipe_name(pipe));
  1027. } else if (INTEL_INFO(dev)->gen >= 5) {
  1028. reg = DVSCNTR(pipe);
  1029. val = I915_READ(reg);
  1030. WARN((val & DVS_ENABLE),
  1031. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1032. plane_name(pipe), pipe_name(pipe));
  1033. }
  1034. }
  1035. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1036. {
  1037. u32 val;
  1038. bool enabled;
  1039. if (HAS_PCH_LPT(dev_priv->dev)) {
  1040. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1041. return;
  1042. }
  1043. val = I915_READ(PCH_DREF_CONTROL);
  1044. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1045. DREF_SUPERSPREAD_SOURCE_MASK));
  1046. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1047. }
  1048. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1049. enum pipe pipe)
  1050. {
  1051. int reg;
  1052. u32 val;
  1053. bool enabled;
  1054. reg = PCH_TRANSCONF(pipe);
  1055. val = I915_READ(reg);
  1056. enabled = !!(val & TRANS_ENABLE);
  1057. WARN(enabled,
  1058. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1059. pipe_name(pipe));
  1060. }
  1061. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1062. enum pipe pipe, u32 port_sel, u32 val)
  1063. {
  1064. if ((val & DP_PORT_EN) == 0)
  1065. return false;
  1066. if (HAS_PCH_CPT(dev_priv->dev)) {
  1067. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1068. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1069. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1070. return false;
  1071. } else {
  1072. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1073. return false;
  1074. }
  1075. return true;
  1076. }
  1077. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1078. enum pipe pipe, u32 val)
  1079. {
  1080. if ((val & SDVO_ENABLE) == 0)
  1081. return false;
  1082. if (HAS_PCH_CPT(dev_priv->dev)) {
  1083. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1084. return false;
  1085. } else {
  1086. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1087. return false;
  1088. }
  1089. return true;
  1090. }
  1091. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 val)
  1093. {
  1094. if ((val & LVDS_PORT_EN) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1098. return false;
  1099. } else {
  1100. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1101. return false;
  1102. }
  1103. return true;
  1104. }
  1105. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1106. enum pipe pipe, u32 val)
  1107. {
  1108. if ((val & ADPA_DAC_ENABLE) == 0)
  1109. return false;
  1110. if (HAS_PCH_CPT(dev_priv->dev)) {
  1111. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1112. return false;
  1113. } else {
  1114. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1115. return false;
  1116. }
  1117. return true;
  1118. }
  1119. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1120. enum pipe pipe, int reg, u32 port_sel)
  1121. {
  1122. u32 val = I915_READ(reg);
  1123. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1124. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1125. reg, pipe_name(pipe));
  1126. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1127. && (val & DP_PIPEB_SELECT),
  1128. "IBX PCH dp port still using transcoder B\n");
  1129. }
  1130. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1131. enum pipe pipe, int reg)
  1132. {
  1133. u32 val = I915_READ(reg);
  1134. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1135. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1136. reg, pipe_name(pipe));
  1137. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1138. && (val & SDVO_PIPE_B_SELECT),
  1139. "IBX PCH hdmi port still using transcoder B\n");
  1140. }
  1141. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1142. enum pipe pipe)
  1143. {
  1144. int reg;
  1145. u32 val;
  1146. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1147. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1148. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1149. reg = PCH_ADPA;
  1150. val = I915_READ(reg);
  1151. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1152. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1153. pipe_name(pipe));
  1154. reg = PCH_LVDS;
  1155. val = I915_READ(reg);
  1156. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1157. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1158. pipe_name(pipe));
  1159. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1160. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1161. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1162. }
  1163. static void vlv_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1164. {
  1165. int reg;
  1166. u32 val;
  1167. assert_pipe_disabled(dev_priv, pipe);
  1168. /* No really, not for ILK+ */
  1169. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1170. /* PLL is protected by panel, make sure we can write it */
  1171. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1172. assert_panel_unlocked(dev_priv, pipe);
  1173. reg = DPLL(pipe);
  1174. val = I915_READ(reg);
  1175. val |= DPLL_VCO_ENABLE;
  1176. /* We do this three times for luck */
  1177. I915_WRITE(reg, val);
  1178. POSTING_READ(reg);
  1179. udelay(150); /* wait for warmup */
  1180. I915_WRITE(reg, val);
  1181. POSTING_READ(reg);
  1182. udelay(150); /* wait for warmup */
  1183. I915_WRITE(reg, val);
  1184. POSTING_READ(reg);
  1185. udelay(150); /* wait for warmup */
  1186. }
  1187. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1188. {
  1189. struct drm_device *dev = crtc->base.dev;
  1190. struct drm_i915_private *dev_priv = dev->dev_private;
  1191. int reg = DPLL(crtc->pipe);
  1192. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1193. assert_pipe_disabled(dev_priv, crtc->pipe);
  1194. /* No really, not for ILK+ */
  1195. BUG_ON(dev_priv->info->gen >= 5);
  1196. /* PLL is protected by panel, make sure we can write it */
  1197. if (IS_MOBILE(dev) && !IS_I830(dev))
  1198. assert_panel_unlocked(dev_priv, crtc->pipe);
  1199. I915_WRITE(reg, dpll);
  1200. /* Wait for the clocks to stabilize. */
  1201. POSTING_READ(reg);
  1202. udelay(150);
  1203. if (INTEL_INFO(dev)->gen >= 4) {
  1204. I915_WRITE(DPLL_MD(crtc->pipe),
  1205. crtc->config.dpll_hw_state.dpll_md);
  1206. } else {
  1207. /* The pixel multiplier can only be updated once the
  1208. * DPLL is enabled and the clocks are stable.
  1209. *
  1210. * So write it again.
  1211. */
  1212. I915_WRITE(reg, dpll);
  1213. }
  1214. /* We do this three times for luck */
  1215. I915_WRITE(reg, dpll);
  1216. POSTING_READ(reg);
  1217. udelay(150); /* wait for warmup */
  1218. I915_WRITE(reg, dpll);
  1219. POSTING_READ(reg);
  1220. udelay(150); /* wait for warmup */
  1221. I915_WRITE(reg, dpll);
  1222. POSTING_READ(reg);
  1223. udelay(150); /* wait for warmup */
  1224. }
  1225. /**
  1226. * intel_disable_pll - disable a PLL
  1227. * @dev_priv: i915 private structure
  1228. * @pipe: pipe PLL to disable
  1229. *
  1230. * Disable the PLL for @pipe, making sure the pipe is off first.
  1231. *
  1232. * Note! This is for pre-ILK only.
  1233. */
  1234. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1235. {
  1236. int reg;
  1237. u32 val;
  1238. /* Don't disable pipe A or pipe A PLLs if needed */
  1239. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1240. return;
  1241. /* Make sure the pipe isn't still relying on us */
  1242. assert_pipe_disabled(dev_priv, pipe);
  1243. reg = DPLL(pipe);
  1244. val = I915_READ(reg);
  1245. val &= ~DPLL_VCO_ENABLE;
  1246. I915_WRITE(reg, val);
  1247. POSTING_READ(reg);
  1248. }
  1249. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1250. {
  1251. u32 port_mask;
  1252. if (!port)
  1253. port_mask = DPLL_PORTB_READY_MASK;
  1254. else
  1255. port_mask = DPLL_PORTC_READY_MASK;
  1256. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1257. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1258. 'B' + port, I915_READ(DPLL(0)));
  1259. }
  1260. /**
  1261. * ironlake_enable_shared_dpll - enable PCH PLL
  1262. * @dev_priv: i915 private structure
  1263. * @pipe: pipe PLL to enable
  1264. *
  1265. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1266. * drives the transcoder clock.
  1267. */
  1268. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1269. {
  1270. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1271. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1272. /* PCH PLLs only available on ILK, SNB and IVB */
  1273. BUG_ON(dev_priv->info->gen < 5);
  1274. if (WARN_ON(pll == NULL))
  1275. return;
  1276. if (WARN_ON(pll->refcount == 0))
  1277. return;
  1278. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1279. pll->name, pll->active, pll->on,
  1280. crtc->base.base.id);
  1281. if (pll->active++) {
  1282. WARN_ON(!pll->on);
  1283. assert_shared_dpll_enabled(dev_priv, pll);
  1284. return;
  1285. }
  1286. WARN_ON(pll->on);
  1287. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1288. pll->enable(dev_priv, pll);
  1289. pll->on = true;
  1290. }
  1291. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1292. {
  1293. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1294. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1295. /* PCH only available on ILK+ */
  1296. BUG_ON(dev_priv->info->gen < 5);
  1297. if (WARN_ON(pll == NULL))
  1298. return;
  1299. if (WARN_ON(pll->refcount == 0))
  1300. return;
  1301. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1302. pll->name, pll->active, pll->on,
  1303. crtc->base.base.id);
  1304. if (WARN_ON(pll->active == 0)) {
  1305. assert_shared_dpll_disabled(dev_priv, pll);
  1306. return;
  1307. }
  1308. assert_shared_dpll_enabled(dev_priv, pll);
  1309. WARN_ON(!pll->on);
  1310. if (--pll->active)
  1311. return;
  1312. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1313. pll->disable(dev_priv, pll);
  1314. pll->on = false;
  1315. }
  1316. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1317. enum pipe pipe)
  1318. {
  1319. struct drm_device *dev = dev_priv->dev;
  1320. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1321. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1322. uint32_t reg, val, pipeconf_val;
  1323. /* PCH only available on ILK+ */
  1324. BUG_ON(dev_priv->info->gen < 5);
  1325. /* Make sure PCH DPLL is enabled */
  1326. assert_shared_dpll_enabled(dev_priv,
  1327. intel_crtc_to_shared_dpll(intel_crtc));
  1328. /* FDI must be feeding us bits for PCH ports */
  1329. assert_fdi_tx_enabled(dev_priv, pipe);
  1330. assert_fdi_rx_enabled(dev_priv, pipe);
  1331. if (HAS_PCH_CPT(dev)) {
  1332. /* Workaround: Set the timing override bit before enabling the
  1333. * pch transcoder. */
  1334. reg = TRANS_CHICKEN2(pipe);
  1335. val = I915_READ(reg);
  1336. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1337. I915_WRITE(reg, val);
  1338. }
  1339. reg = PCH_TRANSCONF(pipe);
  1340. val = I915_READ(reg);
  1341. pipeconf_val = I915_READ(PIPECONF(pipe));
  1342. if (HAS_PCH_IBX(dev_priv->dev)) {
  1343. /*
  1344. * make the BPC in transcoder be consistent with
  1345. * that in pipeconf reg.
  1346. */
  1347. val &= ~PIPECONF_BPC_MASK;
  1348. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1349. }
  1350. val &= ~TRANS_INTERLACE_MASK;
  1351. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1352. if (HAS_PCH_IBX(dev_priv->dev) &&
  1353. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1354. val |= TRANS_LEGACY_INTERLACED_ILK;
  1355. else
  1356. val |= TRANS_INTERLACED;
  1357. else
  1358. val |= TRANS_PROGRESSIVE;
  1359. I915_WRITE(reg, val | TRANS_ENABLE);
  1360. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1361. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1362. }
  1363. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1364. enum transcoder cpu_transcoder)
  1365. {
  1366. u32 val, pipeconf_val;
  1367. /* PCH only available on ILK+ */
  1368. BUG_ON(dev_priv->info->gen < 5);
  1369. /* FDI must be feeding us bits for PCH ports */
  1370. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1371. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1372. /* Workaround: set timing override bit. */
  1373. val = I915_READ(_TRANSA_CHICKEN2);
  1374. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1375. I915_WRITE(_TRANSA_CHICKEN2, val);
  1376. val = TRANS_ENABLE;
  1377. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1378. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1379. PIPECONF_INTERLACED_ILK)
  1380. val |= TRANS_INTERLACED;
  1381. else
  1382. val |= TRANS_PROGRESSIVE;
  1383. I915_WRITE(LPT_TRANSCONF, val);
  1384. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1385. DRM_ERROR("Failed to enable PCH transcoder\n");
  1386. }
  1387. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1388. enum pipe pipe)
  1389. {
  1390. struct drm_device *dev = dev_priv->dev;
  1391. uint32_t reg, val;
  1392. /* FDI relies on the transcoder */
  1393. assert_fdi_tx_disabled(dev_priv, pipe);
  1394. assert_fdi_rx_disabled(dev_priv, pipe);
  1395. /* Ports must be off as well */
  1396. assert_pch_ports_disabled(dev_priv, pipe);
  1397. reg = PCH_TRANSCONF(pipe);
  1398. val = I915_READ(reg);
  1399. val &= ~TRANS_ENABLE;
  1400. I915_WRITE(reg, val);
  1401. /* wait for PCH transcoder off, transcoder state */
  1402. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1403. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1404. if (!HAS_PCH_IBX(dev)) {
  1405. /* Workaround: Clear the timing override chicken bit again. */
  1406. reg = TRANS_CHICKEN2(pipe);
  1407. val = I915_READ(reg);
  1408. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1409. I915_WRITE(reg, val);
  1410. }
  1411. }
  1412. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1413. {
  1414. u32 val;
  1415. val = I915_READ(LPT_TRANSCONF);
  1416. val &= ~TRANS_ENABLE;
  1417. I915_WRITE(LPT_TRANSCONF, val);
  1418. /* wait for PCH transcoder off, transcoder state */
  1419. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1420. DRM_ERROR("Failed to disable PCH transcoder\n");
  1421. /* Workaround: clear timing override bit. */
  1422. val = I915_READ(_TRANSA_CHICKEN2);
  1423. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1424. I915_WRITE(_TRANSA_CHICKEN2, val);
  1425. }
  1426. /**
  1427. * intel_enable_pipe - enable a pipe, asserting requirements
  1428. * @dev_priv: i915 private structure
  1429. * @pipe: pipe to enable
  1430. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1431. *
  1432. * Enable @pipe, making sure that various hardware specific requirements
  1433. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1434. *
  1435. * @pipe should be %PIPE_A or %PIPE_B.
  1436. *
  1437. * Will wait until the pipe is actually running (i.e. first vblank) before
  1438. * returning.
  1439. */
  1440. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1441. bool pch_port)
  1442. {
  1443. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1444. pipe);
  1445. enum pipe pch_transcoder;
  1446. int reg;
  1447. u32 val;
  1448. assert_planes_disabled(dev_priv, pipe);
  1449. assert_sprites_disabled(dev_priv, pipe);
  1450. if (HAS_PCH_LPT(dev_priv->dev))
  1451. pch_transcoder = TRANSCODER_A;
  1452. else
  1453. pch_transcoder = pipe;
  1454. /*
  1455. * A pipe without a PLL won't actually be able to drive bits from
  1456. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1457. * need the check.
  1458. */
  1459. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1460. assert_pll_enabled(dev_priv, pipe);
  1461. else {
  1462. if (pch_port) {
  1463. /* if driving the PCH, we need FDI enabled */
  1464. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1465. assert_fdi_tx_pll_enabled(dev_priv,
  1466. (enum pipe) cpu_transcoder);
  1467. }
  1468. /* FIXME: assert CPU port conditions for SNB+ */
  1469. }
  1470. reg = PIPECONF(cpu_transcoder);
  1471. val = I915_READ(reg);
  1472. if (val & PIPECONF_ENABLE)
  1473. return;
  1474. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1475. intel_wait_for_vblank(dev_priv->dev, pipe);
  1476. }
  1477. /**
  1478. * intel_disable_pipe - disable a pipe, asserting requirements
  1479. * @dev_priv: i915 private structure
  1480. * @pipe: pipe to disable
  1481. *
  1482. * Disable @pipe, making sure that various hardware specific requirements
  1483. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1484. *
  1485. * @pipe should be %PIPE_A or %PIPE_B.
  1486. *
  1487. * Will wait until the pipe has shut down before returning.
  1488. */
  1489. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1490. enum pipe pipe)
  1491. {
  1492. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1493. pipe);
  1494. int reg;
  1495. u32 val;
  1496. /*
  1497. * Make sure planes won't keep trying to pump pixels to us,
  1498. * or we might hang the display.
  1499. */
  1500. assert_planes_disabled(dev_priv, pipe);
  1501. assert_sprites_disabled(dev_priv, pipe);
  1502. /* Don't disable pipe A or pipe A PLLs if needed */
  1503. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1504. return;
  1505. reg = PIPECONF(cpu_transcoder);
  1506. val = I915_READ(reg);
  1507. if ((val & PIPECONF_ENABLE) == 0)
  1508. return;
  1509. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1510. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1511. }
  1512. /*
  1513. * Plane regs are double buffered, going from enabled->disabled needs a
  1514. * trigger in order to latch. The display address reg provides this.
  1515. */
  1516. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1517. enum plane plane)
  1518. {
  1519. if (dev_priv->info->gen >= 4)
  1520. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1521. else
  1522. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1523. }
  1524. /**
  1525. * intel_enable_plane - enable a display plane on a given pipe
  1526. * @dev_priv: i915 private structure
  1527. * @plane: plane to enable
  1528. * @pipe: pipe being fed
  1529. *
  1530. * Enable @plane on @pipe, making sure that @pipe is running first.
  1531. */
  1532. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1533. enum plane plane, enum pipe pipe)
  1534. {
  1535. int reg;
  1536. u32 val;
  1537. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1538. assert_pipe_enabled(dev_priv, pipe);
  1539. reg = DSPCNTR(plane);
  1540. val = I915_READ(reg);
  1541. if (val & DISPLAY_PLANE_ENABLE)
  1542. return;
  1543. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1544. intel_flush_display_plane(dev_priv, plane);
  1545. intel_wait_for_vblank(dev_priv->dev, pipe);
  1546. }
  1547. /**
  1548. * intel_disable_plane - disable a display plane
  1549. * @dev_priv: i915 private structure
  1550. * @plane: plane to disable
  1551. * @pipe: pipe consuming the data
  1552. *
  1553. * Disable @plane; should be an independent operation.
  1554. */
  1555. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1556. enum plane plane, enum pipe pipe)
  1557. {
  1558. int reg;
  1559. u32 val;
  1560. reg = DSPCNTR(plane);
  1561. val = I915_READ(reg);
  1562. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1563. return;
  1564. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1565. intel_flush_display_plane(dev_priv, plane);
  1566. intel_wait_for_vblank(dev_priv->dev, pipe);
  1567. }
  1568. static bool need_vtd_wa(struct drm_device *dev)
  1569. {
  1570. #ifdef CONFIG_INTEL_IOMMU
  1571. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1572. return true;
  1573. #endif
  1574. return false;
  1575. }
  1576. int
  1577. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1578. struct drm_i915_gem_object *obj,
  1579. struct intel_ring_buffer *pipelined)
  1580. {
  1581. struct drm_i915_private *dev_priv = dev->dev_private;
  1582. u32 alignment;
  1583. int ret;
  1584. switch (obj->tiling_mode) {
  1585. case I915_TILING_NONE:
  1586. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1587. alignment = 128 * 1024;
  1588. else if (INTEL_INFO(dev)->gen >= 4)
  1589. alignment = 4 * 1024;
  1590. else
  1591. alignment = 64 * 1024;
  1592. break;
  1593. case I915_TILING_X:
  1594. /* pin() will align the object as required by fence */
  1595. alignment = 0;
  1596. break;
  1597. case I915_TILING_Y:
  1598. /* Despite that we check this in framebuffer_init userspace can
  1599. * screw us over and change the tiling after the fact. Only
  1600. * pinned buffers can't change their tiling. */
  1601. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1602. return -EINVAL;
  1603. default:
  1604. BUG();
  1605. }
  1606. /* Note that the w/a also requires 64 PTE of padding following the
  1607. * bo. We currently fill all unused PTE with the shadow page and so
  1608. * we should always have valid PTE following the scanout preventing
  1609. * the VT-d warning.
  1610. */
  1611. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1612. alignment = 256 * 1024;
  1613. dev_priv->mm.interruptible = false;
  1614. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1615. if (ret)
  1616. goto err_interruptible;
  1617. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1618. * fence, whereas 965+ only requires a fence if using
  1619. * framebuffer compression. For simplicity, we always install
  1620. * a fence as the cost is not that onerous.
  1621. */
  1622. ret = i915_gem_object_get_fence(obj);
  1623. if (ret)
  1624. goto err_unpin;
  1625. i915_gem_object_pin_fence(obj);
  1626. dev_priv->mm.interruptible = true;
  1627. return 0;
  1628. err_unpin:
  1629. i915_gem_object_unpin(obj);
  1630. err_interruptible:
  1631. dev_priv->mm.interruptible = true;
  1632. return ret;
  1633. }
  1634. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1635. {
  1636. i915_gem_object_unpin_fence(obj);
  1637. i915_gem_object_unpin(obj);
  1638. }
  1639. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1640. * is assumed to be a power-of-two. */
  1641. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1642. unsigned int tiling_mode,
  1643. unsigned int cpp,
  1644. unsigned int pitch)
  1645. {
  1646. if (tiling_mode != I915_TILING_NONE) {
  1647. unsigned int tile_rows, tiles;
  1648. tile_rows = *y / 8;
  1649. *y %= 8;
  1650. tiles = *x / (512/cpp);
  1651. *x %= 512/cpp;
  1652. return tile_rows * pitch * 8 + tiles * 4096;
  1653. } else {
  1654. unsigned int offset;
  1655. offset = *y * pitch + *x * cpp;
  1656. *y = 0;
  1657. *x = (offset & 4095) / cpp;
  1658. return offset & -4096;
  1659. }
  1660. }
  1661. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1662. int x, int y)
  1663. {
  1664. struct drm_device *dev = crtc->dev;
  1665. struct drm_i915_private *dev_priv = dev->dev_private;
  1666. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1667. struct intel_framebuffer *intel_fb;
  1668. struct drm_i915_gem_object *obj;
  1669. int plane = intel_crtc->plane;
  1670. unsigned long linear_offset;
  1671. u32 dspcntr;
  1672. u32 reg;
  1673. switch (plane) {
  1674. case 0:
  1675. case 1:
  1676. break;
  1677. default:
  1678. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1679. return -EINVAL;
  1680. }
  1681. intel_fb = to_intel_framebuffer(fb);
  1682. obj = intel_fb->obj;
  1683. reg = DSPCNTR(plane);
  1684. dspcntr = I915_READ(reg);
  1685. /* Mask out pixel format bits in case we change it */
  1686. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1687. switch (fb->pixel_format) {
  1688. case DRM_FORMAT_C8:
  1689. dspcntr |= DISPPLANE_8BPP;
  1690. break;
  1691. case DRM_FORMAT_XRGB1555:
  1692. case DRM_FORMAT_ARGB1555:
  1693. dspcntr |= DISPPLANE_BGRX555;
  1694. break;
  1695. case DRM_FORMAT_RGB565:
  1696. dspcntr |= DISPPLANE_BGRX565;
  1697. break;
  1698. case DRM_FORMAT_XRGB8888:
  1699. case DRM_FORMAT_ARGB8888:
  1700. dspcntr |= DISPPLANE_BGRX888;
  1701. break;
  1702. case DRM_FORMAT_XBGR8888:
  1703. case DRM_FORMAT_ABGR8888:
  1704. dspcntr |= DISPPLANE_RGBX888;
  1705. break;
  1706. case DRM_FORMAT_XRGB2101010:
  1707. case DRM_FORMAT_ARGB2101010:
  1708. dspcntr |= DISPPLANE_BGRX101010;
  1709. break;
  1710. case DRM_FORMAT_XBGR2101010:
  1711. case DRM_FORMAT_ABGR2101010:
  1712. dspcntr |= DISPPLANE_RGBX101010;
  1713. break;
  1714. default:
  1715. BUG();
  1716. }
  1717. if (INTEL_INFO(dev)->gen >= 4) {
  1718. if (obj->tiling_mode != I915_TILING_NONE)
  1719. dspcntr |= DISPPLANE_TILED;
  1720. else
  1721. dspcntr &= ~DISPPLANE_TILED;
  1722. }
  1723. if (IS_G4X(dev))
  1724. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1725. I915_WRITE(reg, dspcntr);
  1726. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1727. if (INTEL_INFO(dev)->gen >= 4) {
  1728. intel_crtc->dspaddr_offset =
  1729. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1730. fb->bits_per_pixel / 8,
  1731. fb->pitches[0]);
  1732. linear_offset -= intel_crtc->dspaddr_offset;
  1733. } else {
  1734. intel_crtc->dspaddr_offset = linear_offset;
  1735. }
  1736. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1737. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1738. fb->pitches[0]);
  1739. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1740. if (INTEL_INFO(dev)->gen >= 4) {
  1741. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1742. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1743. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1744. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1745. } else
  1746. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1747. POSTING_READ(reg);
  1748. return 0;
  1749. }
  1750. static int ironlake_update_plane(struct drm_crtc *crtc,
  1751. struct drm_framebuffer *fb, int x, int y)
  1752. {
  1753. struct drm_device *dev = crtc->dev;
  1754. struct drm_i915_private *dev_priv = dev->dev_private;
  1755. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1756. struct intel_framebuffer *intel_fb;
  1757. struct drm_i915_gem_object *obj;
  1758. int plane = intel_crtc->plane;
  1759. unsigned long linear_offset;
  1760. u32 dspcntr;
  1761. u32 reg;
  1762. switch (plane) {
  1763. case 0:
  1764. case 1:
  1765. case 2:
  1766. break;
  1767. default:
  1768. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1769. return -EINVAL;
  1770. }
  1771. intel_fb = to_intel_framebuffer(fb);
  1772. obj = intel_fb->obj;
  1773. reg = DSPCNTR(plane);
  1774. dspcntr = I915_READ(reg);
  1775. /* Mask out pixel format bits in case we change it */
  1776. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1777. switch (fb->pixel_format) {
  1778. case DRM_FORMAT_C8:
  1779. dspcntr |= DISPPLANE_8BPP;
  1780. break;
  1781. case DRM_FORMAT_RGB565:
  1782. dspcntr |= DISPPLANE_BGRX565;
  1783. break;
  1784. case DRM_FORMAT_XRGB8888:
  1785. case DRM_FORMAT_ARGB8888:
  1786. dspcntr |= DISPPLANE_BGRX888;
  1787. break;
  1788. case DRM_FORMAT_XBGR8888:
  1789. case DRM_FORMAT_ABGR8888:
  1790. dspcntr |= DISPPLANE_RGBX888;
  1791. break;
  1792. case DRM_FORMAT_XRGB2101010:
  1793. case DRM_FORMAT_ARGB2101010:
  1794. dspcntr |= DISPPLANE_BGRX101010;
  1795. break;
  1796. case DRM_FORMAT_XBGR2101010:
  1797. case DRM_FORMAT_ABGR2101010:
  1798. dspcntr |= DISPPLANE_RGBX101010;
  1799. break;
  1800. default:
  1801. BUG();
  1802. }
  1803. if (obj->tiling_mode != I915_TILING_NONE)
  1804. dspcntr |= DISPPLANE_TILED;
  1805. else
  1806. dspcntr &= ~DISPPLANE_TILED;
  1807. /* must disable */
  1808. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1809. I915_WRITE(reg, dspcntr);
  1810. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1811. intel_crtc->dspaddr_offset =
  1812. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1813. fb->bits_per_pixel / 8,
  1814. fb->pitches[0]);
  1815. linear_offset -= intel_crtc->dspaddr_offset;
  1816. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1817. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1818. fb->pitches[0]);
  1819. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1820. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1821. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1822. if (IS_HASWELL(dev)) {
  1823. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1824. } else {
  1825. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1826. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1827. }
  1828. POSTING_READ(reg);
  1829. return 0;
  1830. }
  1831. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1832. static int
  1833. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1834. int x, int y, enum mode_set_atomic state)
  1835. {
  1836. struct drm_device *dev = crtc->dev;
  1837. struct drm_i915_private *dev_priv = dev->dev_private;
  1838. if (dev_priv->display.disable_fbc)
  1839. dev_priv->display.disable_fbc(dev);
  1840. intel_increase_pllclock(crtc);
  1841. return dev_priv->display.update_plane(crtc, fb, x, y);
  1842. }
  1843. void intel_display_handle_reset(struct drm_device *dev)
  1844. {
  1845. struct drm_i915_private *dev_priv = dev->dev_private;
  1846. struct drm_crtc *crtc;
  1847. /*
  1848. * Flips in the rings have been nuked by the reset,
  1849. * so complete all pending flips so that user space
  1850. * will get its events and not get stuck.
  1851. *
  1852. * Also update the base address of all primary
  1853. * planes to the the last fb to make sure we're
  1854. * showing the correct fb after a reset.
  1855. *
  1856. * Need to make two loops over the crtcs so that we
  1857. * don't try to grab a crtc mutex before the
  1858. * pending_flip_queue really got woken up.
  1859. */
  1860. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1861. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1862. enum plane plane = intel_crtc->plane;
  1863. intel_prepare_page_flip(dev, plane);
  1864. intel_finish_page_flip_plane(dev, plane);
  1865. }
  1866. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1867. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1868. mutex_lock(&crtc->mutex);
  1869. if (intel_crtc->active)
  1870. dev_priv->display.update_plane(crtc, crtc->fb,
  1871. crtc->x, crtc->y);
  1872. mutex_unlock(&crtc->mutex);
  1873. }
  1874. }
  1875. static int
  1876. intel_finish_fb(struct drm_framebuffer *old_fb)
  1877. {
  1878. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1879. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1880. bool was_interruptible = dev_priv->mm.interruptible;
  1881. int ret;
  1882. /* Big Hammer, we also need to ensure that any pending
  1883. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1884. * current scanout is retired before unpinning the old
  1885. * framebuffer.
  1886. *
  1887. * This should only fail upon a hung GPU, in which case we
  1888. * can safely continue.
  1889. */
  1890. dev_priv->mm.interruptible = false;
  1891. ret = i915_gem_object_finish_gpu(obj);
  1892. dev_priv->mm.interruptible = was_interruptible;
  1893. return ret;
  1894. }
  1895. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1896. {
  1897. struct drm_device *dev = crtc->dev;
  1898. struct drm_i915_master_private *master_priv;
  1899. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1900. if (!dev->primary->master)
  1901. return;
  1902. master_priv = dev->primary->master->driver_priv;
  1903. if (!master_priv->sarea_priv)
  1904. return;
  1905. switch (intel_crtc->pipe) {
  1906. case 0:
  1907. master_priv->sarea_priv->pipeA_x = x;
  1908. master_priv->sarea_priv->pipeA_y = y;
  1909. break;
  1910. case 1:
  1911. master_priv->sarea_priv->pipeB_x = x;
  1912. master_priv->sarea_priv->pipeB_y = y;
  1913. break;
  1914. default:
  1915. break;
  1916. }
  1917. }
  1918. static int
  1919. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1920. struct drm_framebuffer *fb)
  1921. {
  1922. struct drm_device *dev = crtc->dev;
  1923. struct drm_i915_private *dev_priv = dev->dev_private;
  1924. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1925. struct drm_framebuffer *old_fb;
  1926. int ret;
  1927. /* no fb bound */
  1928. if (!fb) {
  1929. DRM_ERROR("No FB bound\n");
  1930. return 0;
  1931. }
  1932. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1933. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1934. plane_name(intel_crtc->plane),
  1935. INTEL_INFO(dev)->num_pipes);
  1936. return -EINVAL;
  1937. }
  1938. mutex_lock(&dev->struct_mutex);
  1939. ret = intel_pin_and_fence_fb_obj(dev,
  1940. to_intel_framebuffer(fb)->obj,
  1941. NULL);
  1942. if (ret != 0) {
  1943. mutex_unlock(&dev->struct_mutex);
  1944. DRM_ERROR("pin & fence failed\n");
  1945. return ret;
  1946. }
  1947. /* Update pipe size and adjust fitter if needed */
  1948. if (i915_fastboot) {
  1949. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1950. ((crtc->mode.hdisplay - 1) << 16) |
  1951. (crtc->mode.vdisplay - 1));
  1952. if (!intel_crtc->config.pch_pfit.size &&
  1953. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1954. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1955. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1956. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1957. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1958. }
  1959. }
  1960. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1961. if (ret) {
  1962. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1963. mutex_unlock(&dev->struct_mutex);
  1964. DRM_ERROR("failed to update base address\n");
  1965. return ret;
  1966. }
  1967. old_fb = crtc->fb;
  1968. crtc->fb = fb;
  1969. crtc->x = x;
  1970. crtc->y = y;
  1971. if (old_fb) {
  1972. if (intel_crtc->active && old_fb != fb)
  1973. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1974. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1975. }
  1976. intel_update_fbc(dev);
  1977. mutex_unlock(&dev->struct_mutex);
  1978. intel_crtc_update_sarea_pos(crtc, x, y);
  1979. return 0;
  1980. }
  1981. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1982. {
  1983. struct drm_device *dev = crtc->dev;
  1984. struct drm_i915_private *dev_priv = dev->dev_private;
  1985. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1986. int pipe = intel_crtc->pipe;
  1987. u32 reg, temp;
  1988. /* enable normal train */
  1989. reg = FDI_TX_CTL(pipe);
  1990. temp = I915_READ(reg);
  1991. if (IS_IVYBRIDGE(dev)) {
  1992. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1993. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1994. } else {
  1995. temp &= ~FDI_LINK_TRAIN_NONE;
  1996. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1997. }
  1998. I915_WRITE(reg, temp);
  1999. reg = FDI_RX_CTL(pipe);
  2000. temp = I915_READ(reg);
  2001. if (HAS_PCH_CPT(dev)) {
  2002. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2003. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2004. } else {
  2005. temp &= ~FDI_LINK_TRAIN_NONE;
  2006. temp |= FDI_LINK_TRAIN_NONE;
  2007. }
  2008. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2009. /* wait one idle pattern time */
  2010. POSTING_READ(reg);
  2011. udelay(1000);
  2012. /* IVB wants error correction enabled */
  2013. if (IS_IVYBRIDGE(dev))
  2014. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2015. FDI_FE_ERRC_ENABLE);
  2016. }
  2017. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2018. {
  2019. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2020. }
  2021. static void ivb_modeset_global_resources(struct drm_device *dev)
  2022. {
  2023. struct drm_i915_private *dev_priv = dev->dev_private;
  2024. struct intel_crtc *pipe_B_crtc =
  2025. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2026. struct intel_crtc *pipe_C_crtc =
  2027. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2028. uint32_t temp;
  2029. /*
  2030. * When everything is off disable fdi C so that we could enable fdi B
  2031. * with all lanes. Note that we don't care about enabled pipes without
  2032. * an enabled pch encoder.
  2033. */
  2034. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2035. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2036. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2037. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2038. temp = I915_READ(SOUTH_CHICKEN1);
  2039. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2040. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2041. I915_WRITE(SOUTH_CHICKEN1, temp);
  2042. }
  2043. }
  2044. /* The FDI link training functions for ILK/Ibexpeak. */
  2045. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2046. {
  2047. struct drm_device *dev = crtc->dev;
  2048. struct drm_i915_private *dev_priv = dev->dev_private;
  2049. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2050. int pipe = intel_crtc->pipe;
  2051. int plane = intel_crtc->plane;
  2052. u32 reg, temp, tries;
  2053. /* FDI needs bits from pipe & plane first */
  2054. assert_pipe_enabled(dev_priv, pipe);
  2055. assert_plane_enabled(dev_priv, plane);
  2056. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2057. for train result */
  2058. reg = FDI_RX_IMR(pipe);
  2059. temp = I915_READ(reg);
  2060. temp &= ~FDI_RX_SYMBOL_LOCK;
  2061. temp &= ~FDI_RX_BIT_LOCK;
  2062. I915_WRITE(reg, temp);
  2063. I915_READ(reg);
  2064. udelay(150);
  2065. /* enable CPU FDI TX and PCH FDI RX */
  2066. reg = FDI_TX_CTL(pipe);
  2067. temp = I915_READ(reg);
  2068. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2069. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2070. temp &= ~FDI_LINK_TRAIN_NONE;
  2071. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2072. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2073. reg = FDI_RX_CTL(pipe);
  2074. temp = I915_READ(reg);
  2075. temp &= ~FDI_LINK_TRAIN_NONE;
  2076. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2077. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2078. POSTING_READ(reg);
  2079. udelay(150);
  2080. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2081. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2082. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2083. FDI_RX_PHASE_SYNC_POINTER_EN);
  2084. reg = FDI_RX_IIR(pipe);
  2085. for (tries = 0; tries < 5; tries++) {
  2086. temp = I915_READ(reg);
  2087. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2088. if ((temp & FDI_RX_BIT_LOCK)) {
  2089. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2090. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2091. break;
  2092. }
  2093. }
  2094. if (tries == 5)
  2095. DRM_ERROR("FDI train 1 fail!\n");
  2096. /* Train 2 */
  2097. reg = FDI_TX_CTL(pipe);
  2098. temp = I915_READ(reg);
  2099. temp &= ~FDI_LINK_TRAIN_NONE;
  2100. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2101. I915_WRITE(reg, temp);
  2102. reg = FDI_RX_CTL(pipe);
  2103. temp = I915_READ(reg);
  2104. temp &= ~FDI_LINK_TRAIN_NONE;
  2105. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2106. I915_WRITE(reg, temp);
  2107. POSTING_READ(reg);
  2108. udelay(150);
  2109. reg = FDI_RX_IIR(pipe);
  2110. for (tries = 0; tries < 5; tries++) {
  2111. temp = I915_READ(reg);
  2112. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2113. if (temp & FDI_RX_SYMBOL_LOCK) {
  2114. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2115. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2116. break;
  2117. }
  2118. }
  2119. if (tries == 5)
  2120. DRM_ERROR("FDI train 2 fail!\n");
  2121. DRM_DEBUG_KMS("FDI train done\n");
  2122. }
  2123. static const int snb_b_fdi_train_param[] = {
  2124. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2125. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2126. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2127. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2128. };
  2129. /* The FDI link training functions for SNB/Cougarpoint. */
  2130. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2131. {
  2132. struct drm_device *dev = crtc->dev;
  2133. struct drm_i915_private *dev_priv = dev->dev_private;
  2134. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2135. int pipe = intel_crtc->pipe;
  2136. u32 reg, temp, i, retry;
  2137. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2138. for train result */
  2139. reg = FDI_RX_IMR(pipe);
  2140. temp = I915_READ(reg);
  2141. temp &= ~FDI_RX_SYMBOL_LOCK;
  2142. temp &= ~FDI_RX_BIT_LOCK;
  2143. I915_WRITE(reg, temp);
  2144. POSTING_READ(reg);
  2145. udelay(150);
  2146. /* enable CPU FDI TX and PCH FDI RX */
  2147. reg = FDI_TX_CTL(pipe);
  2148. temp = I915_READ(reg);
  2149. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2150. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2151. temp &= ~FDI_LINK_TRAIN_NONE;
  2152. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2153. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2154. /* SNB-B */
  2155. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2156. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2157. I915_WRITE(FDI_RX_MISC(pipe),
  2158. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2159. reg = FDI_RX_CTL(pipe);
  2160. temp = I915_READ(reg);
  2161. if (HAS_PCH_CPT(dev)) {
  2162. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2163. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2164. } else {
  2165. temp &= ~FDI_LINK_TRAIN_NONE;
  2166. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2167. }
  2168. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2169. POSTING_READ(reg);
  2170. udelay(150);
  2171. for (i = 0; i < 4; i++) {
  2172. reg = FDI_TX_CTL(pipe);
  2173. temp = I915_READ(reg);
  2174. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2175. temp |= snb_b_fdi_train_param[i];
  2176. I915_WRITE(reg, temp);
  2177. POSTING_READ(reg);
  2178. udelay(500);
  2179. for (retry = 0; retry < 5; retry++) {
  2180. reg = FDI_RX_IIR(pipe);
  2181. temp = I915_READ(reg);
  2182. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2183. if (temp & FDI_RX_BIT_LOCK) {
  2184. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2185. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2186. break;
  2187. }
  2188. udelay(50);
  2189. }
  2190. if (retry < 5)
  2191. break;
  2192. }
  2193. if (i == 4)
  2194. DRM_ERROR("FDI train 1 fail!\n");
  2195. /* Train 2 */
  2196. reg = FDI_TX_CTL(pipe);
  2197. temp = I915_READ(reg);
  2198. temp &= ~FDI_LINK_TRAIN_NONE;
  2199. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2200. if (IS_GEN6(dev)) {
  2201. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2202. /* SNB-B */
  2203. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2204. }
  2205. I915_WRITE(reg, temp);
  2206. reg = FDI_RX_CTL(pipe);
  2207. temp = I915_READ(reg);
  2208. if (HAS_PCH_CPT(dev)) {
  2209. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2210. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2211. } else {
  2212. temp &= ~FDI_LINK_TRAIN_NONE;
  2213. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2214. }
  2215. I915_WRITE(reg, temp);
  2216. POSTING_READ(reg);
  2217. udelay(150);
  2218. for (i = 0; i < 4; i++) {
  2219. reg = FDI_TX_CTL(pipe);
  2220. temp = I915_READ(reg);
  2221. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2222. temp |= snb_b_fdi_train_param[i];
  2223. I915_WRITE(reg, temp);
  2224. POSTING_READ(reg);
  2225. udelay(500);
  2226. for (retry = 0; retry < 5; retry++) {
  2227. reg = FDI_RX_IIR(pipe);
  2228. temp = I915_READ(reg);
  2229. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2230. if (temp & FDI_RX_SYMBOL_LOCK) {
  2231. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2232. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2233. break;
  2234. }
  2235. udelay(50);
  2236. }
  2237. if (retry < 5)
  2238. break;
  2239. }
  2240. if (i == 4)
  2241. DRM_ERROR("FDI train 2 fail!\n");
  2242. DRM_DEBUG_KMS("FDI train done.\n");
  2243. }
  2244. /* Manual link training for Ivy Bridge A0 parts */
  2245. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2246. {
  2247. struct drm_device *dev = crtc->dev;
  2248. struct drm_i915_private *dev_priv = dev->dev_private;
  2249. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2250. int pipe = intel_crtc->pipe;
  2251. u32 reg, temp, i;
  2252. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2253. for train result */
  2254. reg = FDI_RX_IMR(pipe);
  2255. temp = I915_READ(reg);
  2256. temp &= ~FDI_RX_SYMBOL_LOCK;
  2257. temp &= ~FDI_RX_BIT_LOCK;
  2258. I915_WRITE(reg, temp);
  2259. POSTING_READ(reg);
  2260. udelay(150);
  2261. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2262. I915_READ(FDI_RX_IIR(pipe)));
  2263. /* enable CPU FDI TX and PCH FDI RX */
  2264. reg = FDI_TX_CTL(pipe);
  2265. temp = I915_READ(reg);
  2266. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2267. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2268. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2269. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2270. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2271. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2272. temp |= FDI_COMPOSITE_SYNC;
  2273. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2274. I915_WRITE(FDI_RX_MISC(pipe),
  2275. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2276. reg = FDI_RX_CTL(pipe);
  2277. temp = I915_READ(reg);
  2278. temp &= ~FDI_LINK_TRAIN_AUTO;
  2279. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2280. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2281. temp |= FDI_COMPOSITE_SYNC;
  2282. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2283. POSTING_READ(reg);
  2284. udelay(150);
  2285. for (i = 0; i < 4; i++) {
  2286. reg = FDI_TX_CTL(pipe);
  2287. temp = I915_READ(reg);
  2288. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2289. temp |= snb_b_fdi_train_param[i];
  2290. I915_WRITE(reg, temp);
  2291. POSTING_READ(reg);
  2292. udelay(500);
  2293. reg = FDI_RX_IIR(pipe);
  2294. temp = I915_READ(reg);
  2295. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2296. if (temp & FDI_RX_BIT_LOCK ||
  2297. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2298. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2299. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2300. break;
  2301. }
  2302. }
  2303. if (i == 4)
  2304. DRM_ERROR("FDI train 1 fail!\n");
  2305. /* Train 2 */
  2306. reg = FDI_TX_CTL(pipe);
  2307. temp = I915_READ(reg);
  2308. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2309. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2310. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2311. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2312. I915_WRITE(reg, temp);
  2313. reg = FDI_RX_CTL(pipe);
  2314. temp = I915_READ(reg);
  2315. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2316. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2317. I915_WRITE(reg, temp);
  2318. POSTING_READ(reg);
  2319. udelay(150);
  2320. for (i = 0; i < 4; i++) {
  2321. reg = FDI_TX_CTL(pipe);
  2322. temp = I915_READ(reg);
  2323. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2324. temp |= snb_b_fdi_train_param[i];
  2325. I915_WRITE(reg, temp);
  2326. POSTING_READ(reg);
  2327. udelay(500);
  2328. reg = FDI_RX_IIR(pipe);
  2329. temp = I915_READ(reg);
  2330. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2331. if (temp & FDI_RX_SYMBOL_LOCK) {
  2332. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2333. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2334. break;
  2335. }
  2336. }
  2337. if (i == 4)
  2338. DRM_ERROR("FDI train 2 fail!\n");
  2339. DRM_DEBUG_KMS("FDI train done.\n");
  2340. }
  2341. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2342. {
  2343. struct drm_device *dev = intel_crtc->base.dev;
  2344. struct drm_i915_private *dev_priv = dev->dev_private;
  2345. int pipe = intel_crtc->pipe;
  2346. u32 reg, temp;
  2347. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2348. reg = FDI_RX_CTL(pipe);
  2349. temp = I915_READ(reg);
  2350. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2351. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2352. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2353. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2354. POSTING_READ(reg);
  2355. udelay(200);
  2356. /* Switch from Rawclk to PCDclk */
  2357. temp = I915_READ(reg);
  2358. I915_WRITE(reg, temp | FDI_PCDCLK);
  2359. POSTING_READ(reg);
  2360. udelay(200);
  2361. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2362. reg = FDI_TX_CTL(pipe);
  2363. temp = I915_READ(reg);
  2364. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2365. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2366. POSTING_READ(reg);
  2367. udelay(100);
  2368. }
  2369. }
  2370. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2371. {
  2372. struct drm_device *dev = intel_crtc->base.dev;
  2373. struct drm_i915_private *dev_priv = dev->dev_private;
  2374. int pipe = intel_crtc->pipe;
  2375. u32 reg, temp;
  2376. /* Switch from PCDclk to Rawclk */
  2377. reg = FDI_RX_CTL(pipe);
  2378. temp = I915_READ(reg);
  2379. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2380. /* Disable CPU FDI TX PLL */
  2381. reg = FDI_TX_CTL(pipe);
  2382. temp = I915_READ(reg);
  2383. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2384. POSTING_READ(reg);
  2385. udelay(100);
  2386. reg = FDI_RX_CTL(pipe);
  2387. temp = I915_READ(reg);
  2388. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2389. /* Wait for the clocks to turn off. */
  2390. POSTING_READ(reg);
  2391. udelay(100);
  2392. }
  2393. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2394. {
  2395. struct drm_device *dev = crtc->dev;
  2396. struct drm_i915_private *dev_priv = dev->dev_private;
  2397. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2398. int pipe = intel_crtc->pipe;
  2399. u32 reg, temp;
  2400. /* disable CPU FDI tx and PCH FDI rx */
  2401. reg = FDI_TX_CTL(pipe);
  2402. temp = I915_READ(reg);
  2403. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2404. POSTING_READ(reg);
  2405. reg = FDI_RX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. temp &= ~(0x7 << 16);
  2408. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2409. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2410. POSTING_READ(reg);
  2411. udelay(100);
  2412. /* Ironlake workaround, disable clock pointer after downing FDI */
  2413. if (HAS_PCH_IBX(dev)) {
  2414. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2415. }
  2416. /* still set train pattern 1 */
  2417. reg = FDI_TX_CTL(pipe);
  2418. temp = I915_READ(reg);
  2419. temp &= ~FDI_LINK_TRAIN_NONE;
  2420. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2421. I915_WRITE(reg, temp);
  2422. reg = FDI_RX_CTL(pipe);
  2423. temp = I915_READ(reg);
  2424. if (HAS_PCH_CPT(dev)) {
  2425. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2426. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2427. } else {
  2428. temp &= ~FDI_LINK_TRAIN_NONE;
  2429. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2430. }
  2431. /* BPC in FDI rx is consistent with that in PIPECONF */
  2432. temp &= ~(0x07 << 16);
  2433. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2434. I915_WRITE(reg, temp);
  2435. POSTING_READ(reg);
  2436. udelay(100);
  2437. }
  2438. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2439. {
  2440. struct drm_device *dev = crtc->dev;
  2441. struct drm_i915_private *dev_priv = dev->dev_private;
  2442. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2443. unsigned long flags;
  2444. bool pending;
  2445. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2446. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2447. return false;
  2448. spin_lock_irqsave(&dev->event_lock, flags);
  2449. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2450. spin_unlock_irqrestore(&dev->event_lock, flags);
  2451. return pending;
  2452. }
  2453. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2454. {
  2455. struct drm_device *dev = crtc->dev;
  2456. struct drm_i915_private *dev_priv = dev->dev_private;
  2457. if (crtc->fb == NULL)
  2458. return;
  2459. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2460. wait_event(dev_priv->pending_flip_queue,
  2461. !intel_crtc_has_pending_flip(crtc));
  2462. mutex_lock(&dev->struct_mutex);
  2463. intel_finish_fb(crtc->fb);
  2464. mutex_unlock(&dev->struct_mutex);
  2465. }
  2466. /* Program iCLKIP clock to the desired frequency */
  2467. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2468. {
  2469. struct drm_device *dev = crtc->dev;
  2470. struct drm_i915_private *dev_priv = dev->dev_private;
  2471. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2472. u32 temp;
  2473. mutex_lock(&dev_priv->dpio_lock);
  2474. /* It is necessary to ungate the pixclk gate prior to programming
  2475. * the divisors, and gate it back when it is done.
  2476. */
  2477. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2478. /* Disable SSCCTL */
  2479. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2480. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2481. SBI_SSCCTL_DISABLE,
  2482. SBI_ICLK);
  2483. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2484. if (crtc->mode.clock == 20000) {
  2485. auxdiv = 1;
  2486. divsel = 0x41;
  2487. phaseinc = 0x20;
  2488. } else {
  2489. /* The iCLK virtual clock root frequency is in MHz,
  2490. * but the crtc->mode.clock in in KHz. To get the divisors,
  2491. * it is necessary to divide one by another, so we
  2492. * convert the virtual clock precision to KHz here for higher
  2493. * precision.
  2494. */
  2495. u32 iclk_virtual_root_freq = 172800 * 1000;
  2496. u32 iclk_pi_range = 64;
  2497. u32 desired_divisor, msb_divisor_value, pi_value;
  2498. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2499. msb_divisor_value = desired_divisor / iclk_pi_range;
  2500. pi_value = desired_divisor % iclk_pi_range;
  2501. auxdiv = 0;
  2502. divsel = msb_divisor_value - 2;
  2503. phaseinc = pi_value;
  2504. }
  2505. /* This should not happen with any sane values */
  2506. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2507. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2508. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2509. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2510. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2511. crtc->mode.clock,
  2512. auxdiv,
  2513. divsel,
  2514. phasedir,
  2515. phaseinc);
  2516. /* Program SSCDIVINTPHASE6 */
  2517. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2518. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2519. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2520. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2521. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2522. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2523. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2524. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2525. /* Program SSCAUXDIV */
  2526. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2527. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2528. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2529. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2530. /* Enable modulator and associated divider */
  2531. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2532. temp &= ~SBI_SSCCTL_DISABLE;
  2533. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2534. /* Wait for initialization time */
  2535. udelay(24);
  2536. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2537. mutex_unlock(&dev_priv->dpio_lock);
  2538. }
  2539. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2540. enum pipe pch_transcoder)
  2541. {
  2542. struct drm_device *dev = crtc->base.dev;
  2543. struct drm_i915_private *dev_priv = dev->dev_private;
  2544. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2545. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2546. I915_READ(HTOTAL(cpu_transcoder)));
  2547. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2548. I915_READ(HBLANK(cpu_transcoder)));
  2549. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2550. I915_READ(HSYNC(cpu_transcoder)));
  2551. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2552. I915_READ(VTOTAL(cpu_transcoder)));
  2553. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2554. I915_READ(VBLANK(cpu_transcoder)));
  2555. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2556. I915_READ(VSYNC(cpu_transcoder)));
  2557. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2558. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2559. }
  2560. /*
  2561. * Enable PCH resources required for PCH ports:
  2562. * - PCH PLLs
  2563. * - FDI training & RX/TX
  2564. * - update transcoder timings
  2565. * - DP transcoding bits
  2566. * - transcoder
  2567. */
  2568. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2569. {
  2570. struct drm_device *dev = crtc->dev;
  2571. struct drm_i915_private *dev_priv = dev->dev_private;
  2572. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2573. int pipe = intel_crtc->pipe;
  2574. u32 reg, temp;
  2575. assert_pch_transcoder_disabled(dev_priv, pipe);
  2576. /* Write the TU size bits before fdi link training, so that error
  2577. * detection works. */
  2578. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2579. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2580. /* For PCH output, training FDI link */
  2581. dev_priv->display.fdi_link_train(crtc);
  2582. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2583. * transcoder, and we actually should do this to not upset any PCH
  2584. * transcoder that already use the clock when we share it.
  2585. *
  2586. * Note that enable_shared_dpll tries to do the right thing, but
  2587. * get_shared_dpll unconditionally resets the pll - we need that to have
  2588. * the right LVDS enable sequence. */
  2589. ironlake_enable_shared_dpll(intel_crtc);
  2590. if (HAS_PCH_CPT(dev)) {
  2591. u32 sel;
  2592. temp = I915_READ(PCH_DPLL_SEL);
  2593. temp |= TRANS_DPLL_ENABLE(pipe);
  2594. sel = TRANS_DPLLB_SEL(pipe);
  2595. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2596. temp |= sel;
  2597. else
  2598. temp &= ~sel;
  2599. I915_WRITE(PCH_DPLL_SEL, temp);
  2600. }
  2601. /* set transcoder timing, panel must allow it */
  2602. assert_panel_unlocked(dev_priv, pipe);
  2603. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2604. intel_fdi_normal_train(crtc);
  2605. /* For PCH DP, enable TRANS_DP_CTL */
  2606. if (HAS_PCH_CPT(dev) &&
  2607. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2608. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2609. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2610. reg = TRANS_DP_CTL(pipe);
  2611. temp = I915_READ(reg);
  2612. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2613. TRANS_DP_SYNC_MASK |
  2614. TRANS_DP_BPC_MASK);
  2615. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2616. TRANS_DP_ENH_FRAMING);
  2617. temp |= bpc << 9; /* same format but at 11:9 */
  2618. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2619. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2620. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2621. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2622. switch (intel_trans_dp_port_sel(crtc)) {
  2623. case PCH_DP_B:
  2624. temp |= TRANS_DP_PORT_SEL_B;
  2625. break;
  2626. case PCH_DP_C:
  2627. temp |= TRANS_DP_PORT_SEL_C;
  2628. break;
  2629. case PCH_DP_D:
  2630. temp |= TRANS_DP_PORT_SEL_D;
  2631. break;
  2632. default:
  2633. BUG();
  2634. }
  2635. I915_WRITE(reg, temp);
  2636. }
  2637. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2638. }
  2639. static void lpt_pch_enable(struct drm_crtc *crtc)
  2640. {
  2641. struct drm_device *dev = crtc->dev;
  2642. struct drm_i915_private *dev_priv = dev->dev_private;
  2643. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2644. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2645. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2646. lpt_program_iclkip(crtc);
  2647. /* Set transcoder timing. */
  2648. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2649. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2650. }
  2651. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2652. {
  2653. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2654. if (pll == NULL)
  2655. return;
  2656. if (pll->refcount == 0) {
  2657. WARN(1, "bad %s refcount\n", pll->name);
  2658. return;
  2659. }
  2660. if (--pll->refcount == 0) {
  2661. WARN_ON(pll->on);
  2662. WARN_ON(pll->active);
  2663. }
  2664. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2665. }
  2666. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2667. {
  2668. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2669. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2670. enum intel_dpll_id i;
  2671. if (pll) {
  2672. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2673. crtc->base.base.id, pll->name);
  2674. intel_put_shared_dpll(crtc);
  2675. }
  2676. if (HAS_PCH_IBX(dev_priv->dev)) {
  2677. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2678. i = (enum intel_dpll_id) crtc->pipe;
  2679. pll = &dev_priv->shared_dplls[i];
  2680. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2681. crtc->base.base.id, pll->name);
  2682. goto found;
  2683. }
  2684. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2685. pll = &dev_priv->shared_dplls[i];
  2686. /* Only want to check enabled timings first */
  2687. if (pll->refcount == 0)
  2688. continue;
  2689. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2690. sizeof(pll->hw_state)) == 0) {
  2691. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2692. crtc->base.base.id,
  2693. pll->name, pll->refcount, pll->active);
  2694. goto found;
  2695. }
  2696. }
  2697. /* Ok no matching timings, maybe there's a free one? */
  2698. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2699. pll = &dev_priv->shared_dplls[i];
  2700. if (pll->refcount == 0) {
  2701. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2702. crtc->base.base.id, pll->name);
  2703. goto found;
  2704. }
  2705. }
  2706. return NULL;
  2707. found:
  2708. crtc->config.shared_dpll = i;
  2709. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2710. pipe_name(crtc->pipe));
  2711. if (pll->active == 0) {
  2712. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2713. sizeof(pll->hw_state));
  2714. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2715. WARN_ON(pll->on);
  2716. assert_shared_dpll_disabled(dev_priv, pll);
  2717. pll->mode_set(dev_priv, pll);
  2718. }
  2719. pll->refcount++;
  2720. return pll;
  2721. }
  2722. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2723. {
  2724. struct drm_i915_private *dev_priv = dev->dev_private;
  2725. int dslreg = PIPEDSL(pipe);
  2726. u32 temp;
  2727. temp = I915_READ(dslreg);
  2728. udelay(500);
  2729. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2730. if (wait_for(I915_READ(dslreg) != temp, 5))
  2731. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2732. }
  2733. }
  2734. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2735. {
  2736. struct drm_device *dev = crtc->base.dev;
  2737. struct drm_i915_private *dev_priv = dev->dev_private;
  2738. int pipe = crtc->pipe;
  2739. if (crtc->config.pch_pfit.size) {
  2740. /* Force use of hard-coded filter coefficients
  2741. * as some pre-programmed values are broken,
  2742. * e.g. x201.
  2743. */
  2744. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2745. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2746. PF_PIPE_SEL_IVB(pipe));
  2747. else
  2748. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2749. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2750. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2751. }
  2752. }
  2753. static void intel_enable_planes(struct drm_crtc *crtc)
  2754. {
  2755. struct drm_device *dev = crtc->dev;
  2756. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2757. struct intel_plane *intel_plane;
  2758. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2759. if (intel_plane->pipe == pipe)
  2760. intel_plane_restore(&intel_plane->base);
  2761. }
  2762. static void intel_disable_planes(struct drm_crtc *crtc)
  2763. {
  2764. struct drm_device *dev = crtc->dev;
  2765. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2766. struct intel_plane *intel_plane;
  2767. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2768. if (intel_plane->pipe == pipe)
  2769. intel_plane_disable(&intel_plane->base);
  2770. }
  2771. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2772. {
  2773. struct drm_device *dev = crtc->dev;
  2774. struct drm_i915_private *dev_priv = dev->dev_private;
  2775. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2776. struct intel_encoder *encoder;
  2777. int pipe = intel_crtc->pipe;
  2778. int plane = intel_crtc->plane;
  2779. WARN_ON(!crtc->enabled);
  2780. if (intel_crtc->active)
  2781. return;
  2782. intel_crtc->active = true;
  2783. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2784. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2785. intel_update_watermarks(dev);
  2786. for_each_encoder_on_crtc(dev, crtc, encoder)
  2787. if (encoder->pre_enable)
  2788. encoder->pre_enable(encoder);
  2789. if (intel_crtc->config.has_pch_encoder) {
  2790. /* Note: FDI PLL enabling _must_ be done before we enable the
  2791. * cpu pipes, hence this is separate from all the other fdi/pch
  2792. * enabling. */
  2793. ironlake_fdi_pll_enable(intel_crtc);
  2794. } else {
  2795. assert_fdi_tx_disabled(dev_priv, pipe);
  2796. assert_fdi_rx_disabled(dev_priv, pipe);
  2797. }
  2798. ironlake_pfit_enable(intel_crtc);
  2799. /*
  2800. * On ILK+ LUT must be loaded before the pipe is running but with
  2801. * clocks enabled
  2802. */
  2803. intel_crtc_load_lut(crtc);
  2804. intel_enable_pipe(dev_priv, pipe,
  2805. intel_crtc->config.has_pch_encoder);
  2806. intel_enable_plane(dev_priv, plane, pipe);
  2807. intel_enable_planes(crtc);
  2808. intel_crtc_update_cursor(crtc, true);
  2809. if (intel_crtc->config.has_pch_encoder)
  2810. ironlake_pch_enable(crtc);
  2811. mutex_lock(&dev->struct_mutex);
  2812. intel_update_fbc(dev);
  2813. mutex_unlock(&dev->struct_mutex);
  2814. for_each_encoder_on_crtc(dev, crtc, encoder)
  2815. encoder->enable(encoder);
  2816. if (HAS_PCH_CPT(dev))
  2817. cpt_verify_modeset(dev, intel_crtc->pipe);
  2818. /*
  2819. * There seems to be a race in PCH platform hw (at least on some
  2820. * outputs) where an enabled pipe still completes any pageflip right
  2821. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2822. * as the first vblank happend, everything works as expected. Hence just
  2823. * wait for one vblank before returning to avoid strange things
  2824. * happening.
  2825. */
  2826. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2827. }
  2828. /* IPS only exists on ULT machines and is tied to pipe A. */
  2829. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2830. {
  2831. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2832. }
  2833. static void hsw_enable_ips(struct intel_crtc *crtc)
  2834. {
  2835. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2836. if (!crtc->config.ips_enabled)
  2837. return;
  2838. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2839. * We guarantee that the plane is enabled by calling intel_enable_ips
  2840. * only after intel_enable_plane. And intel_enable_plane already waits
  2841. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2842. assert_plane_enabled(dev_priv, crtc->plane);
  2843. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2844. }
  2845. static void hsw_disable_ips(struct intel_crtc *crtc)
  2846. {
  2847. struct drm_device *dev = crtc->base.dev;
  2848. struct drm_i915_private *dev_priv = dev->dev_private;
  2849. if (!crtc->config.ips_enabled)
  2850. return;
  2851. assert_plane_enabled(dev_priv, crtc->plane);
  2852. I915_WRITE(IPS_CTL, 0);
  2853. /* We need to wait for a vblank before we can disable the plane. */
  2854. intel_wait_for_vblank(dev, crtc->pipe);
  2855. }
  2856. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2857. {
  2858. struct drm_device *dev = crtc->dev;
  2859. struct drm_i915_private *dev_priv = dev->dev_private;
  2860. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2861. struct intel_encoder *encoder;
  2862. int pipe = intel_crtc->pipe;
  2863. int plane = intel_crtc->plane;
  2864. WARN_ON(!crtc->enabled);
  2865. if (intel_crtc->active)
  2866. return;
  2867. intel_crtc->active = true;
  2868. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2869. if (intel_crtc->config.has_pch_encoder)
  2870. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2871. intel_update_watermarks(dev);
  2872. if (intel_crtc->config.has_pch_encoder)
  2873. dev_priv->display.fdi_link_train(crtc);
  2874. for_each_encoder_on_crtc(dev, crtc, encoder)
  2875. if (encoder->pre_enable)
  2876. encoder->pre_enable(encoder);
  2877. intel_ddi_enable_pipe_clock(intel_crtc);
  2878. ironlake_pfit_enable(intel_crtc);
  2879. /*
  2880. * On ILK+ LUT must be loaded before the pipe is running but with
  2881. * clocks enabled
  2882. */
  2883. intel_crtc_load_lut(crtc);
  2884. intel_ddi_set_pipe_settings(crtc);
  2885. intel_ddi_enable_transcoder_func(crtc);
  2886. intel_enable_pipe(dev_priv, pipe,
  2887. intel_crtc->config.has_pch_encoder);
  2888. intel_enable_plane(dev_priv, plane, pipe);
  2889. intel_enable_planes(crtc);
  2890. intel_crtc_update_cursor(crtc, true);
  2891. hsw_enable_ips(intel_crtc);
  2892. if (intel_crtc->config.has_pch_encoder)
  2893. lpt_pch_enable(crtc);
  2894. mutex_lock(&dev->struct_mutex);
  2895. intel_update_fbc(dev);
  2896. mutex_unlock(&dev->struct_mutex);
  2897. for_each_encoder_on_crtc(dev, crtc, encoder)
  2898. encoder->enable(encoder);
  2899. /*
  2900. * There seems to be a race in PCH platform hw (at least on some
  2901. * outputs) where an enabled pipe still completes any pageflip right
  2902. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2903. * as the first vblank happend, everything works as expected. Hence just
  2904. * wait for one vblank before returning to avoid strange things
  2905. * happening.
  2906. */
  2907. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2908. }
  2909. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2910. {
  2911. struct drm_device *dev = crtc->base.dev;
  2912. struct drm_i915_private *dev_priv = dev->dev_private;
  2913. int pipe = crtc->pipe;
  2914. /* To avoid upsetting the power well on haswell only disable the pfit if
  2915. * it's in use. The hw state code will make sure we get this right. */
  2916. if (crtc->config.pch_pfit.size) {
  2917. I915_WRITE(PF_CTL(pipe), 0);
  2918. I915_WRITE(PF_WIN_POS(pipe), 0);
  2919. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2920. }
  2921. }
  2922. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2923. {
  2924. struct drm_device *dev = crtc->dev;
  2925. struct drm_i915_private *dev_priv = dev->dev_private;
  2926. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2927. struct intel_encoder *encoder;
  2928. int pipe = intel_crtc->pipe;
  2929. int plane = intel_crtc->plane;
  2930. u32 reg, temp;
  2931. if (!intel_crtc->active)
  2932. return;
  2933. for_each_encoder_on_crtc(dev, crtc, encoder)
  2934. encoder->disable(encoder);
  2935. intel_crtc_wait_for_pending_flips(crtc);
  2936. drm_vblank_off(dev, pipe);
  2937. if (dev_priv->fbc.plane == plane)
  2938. intel_disable_fbc(dev);
  2939. intel_crtc_update_cursor(crtc, false);
  2940. intel_disable_planes(crtc);
  2941. intel_disable_plane(dev_priv, plane, pipe);
  2942. if (intel_crtc->config.has_pch_encoder)
  2943. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2944. intel_disable_pipe(dev_priv, pipe);
  2945. ironlake_pfit_disable(intel_crtc);
  2946. for_each_encoder_on_crtc(dev, crtc, encoder)
  2947. if (encoder->post_disable)
  2948. encoder->post_disable(encoder);
  2949. if (intel_crtc->config.has_pch_encoder) {
  2950. ironlake_fdi_disable(crtc);
  2951. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2952. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2953. if (HAS_PCH_CPT(dev)) {
  2954. /* disable TRANS_DP_CTL */
  2955. reg = TRANS_DP_CTL(pipe);
  2956. temp = I915_READ(reg);
  2957. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2958. TRANS_DP_PORT_SEL_MASK);
  2959. temp |= TRANS_DP_PORT_SEL_NONE;
  2960. I915_WRITE(reg, temp);
  2961. /* disable DPLL_SEL */
  2962. temp = I915_READ(PCH_DPLL_SEL);
  2963. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2964. I915_WRITE(PCH_DPLL_SEL, temp);
  2965. }
  2966. /* disable PCH DPLL */
  2967. intel_disable_shared_dpll(intel_crtc);
  2968. ironlake_fdi_pll_disable(intel_crtc);
  2969. }
  2970. intel_crtc->active = false;
  2971. intel_update_watermarks(dev);
  2972. mutex_lock(&dev->struct_mutex);
  2973. intel_update_fbc(dev);
  2974. mutex_unlock(&dev->struct_mutex);
  2975. }
  2976. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2977. {
  2978. struct drm_device *dev = crtc->dev;
  2979. struct drm_i915_private *dev_priv = dev->dev_private;
  2980. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2981. struct intel_encoder *encoder;
  2982. int pipe = intel_crtc->pipe;
  2983. int plane = intel_crtc->plane;
  2984. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2985. if (!intel_crtc->active)
  2986. return;
  2987. for_each_encoder_on_crtc(dev, crtc, encoder)
  2988. encoder->disable(encoder);
  2989. intel_crtc_wait_for_pending_flips(crtc);
  2990. drm_vblank_off(dev, pipe);
  2991. /* FBC must be disabled before disabling the plane on HSW. */
  2992. if (dev_priv->fbc.plane == plane)
  2993. intel_disable_fbc(dev);
  2994. hsw_disable_ips(intel_crtc);
  2995. intel_crtc_update_cursor(crtc, false);
  2996. intel_disable_planes(crtc);
  2997. intel_disable_plane(dev_priv, plane, pipe);
  2998. if (intel_crtc->config.has_pch_encoder)
  2999. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3000. intel_disable_pipe(dev_priv, pipe);
  3001. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3002. ironlake_pfit_disable(intel_crtc);
  3003. intel_ddi_disable_pipe_clock(intel_crtc);
  3004. for_each_encoder_on_crtc(dev, crtc, encoder)
  3005. if (encoder->post_disable)
  3006. encoder->post_disable(encoder);
  3007. if (intel_crtc->config.has_pch_encoder) {
  3008. lpt_disable_pch_transcoder(dev_priv);
  3009. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3010. intel_ddi_fdi_disable(crtc);
  3011. }
  3012. intel_crtc->active = false;
  3013. intel_update_watermarks(dev);
  3014. mutex_lock(&dev->struct_mutex);
  3015. intel_update_fbc(dev);
  3016. mutex_unlock(&dev->struct_mutex);
  3017. }
  3018. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3019. {
  3020. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3021. intel_put_shared_dpll(intel_crtc);
  3022. }
  3023. static void haswell_crtc_off(struct drm_crtc *crtc)
  3024. {
  3025. intel_ddi_put_crtc_pll(crtc);
  3026. }
  3027. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3028. {
  3029. if (!enable && intel_crtc->overlay) {
  3030. struct drm_device *dev = intel_crtc->base.dev;
  3031. struct drm_i915_private *dev_priv = dev->dev_private;
  3032. mutex_lock(&dev->struct_mutex);
  3033. dev_priv->mm.interruptible = false;
  3034. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3035. dev_priv->mm.interruptible = true;
  3036. mutex_unlock(&dev->struct_mutex);
  3037. }
  3038. /* Let userspace switch the overlay on again. In most cases userspace
  3039. * has to recompute where to put it anyway.
  3040. */
  3041. }
  3042. /**
  3043. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3044. * cursor plane briefly if not already running after enabling the display
  3045. * plane.
  3046. * This workaround avoids occasional blank screens when self refresh is
  3047. * enabled.
  3048. */
  3049. static void
  3050. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3051. {
  3052. u32 cntl = I915_READ(CURCNTR(pipe));
  3053. if ((cntl & CURSOR_MODE) == 0) {
  3054. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3055. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3056. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3057. intel_wait_for_vblank(dev_priv->dev, pipe);
  3058. I915_WRITE(CURCNTR(pipe), cntl);
  3059. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3060. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3061. }
  3062. }
  3063. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3064. {
  3065. struct drm_device *dev = crtc->base.dev;
  3066. struct drm_i915_private *dev_priv = dev->dev_private;
  3067. struct intel_crtc_config *pipe_config = &crtc->config;
  3068. if (!crtc->config.gmch_pfit.control)
  3069. return;
  3070. /*
  3071. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3072. * according to register description and PRM.
  3073. */
  3074. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3075. assert_pipe_disabled(dev_priv, crtc->pipe);
  3076. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3077. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3078. /* Border color in case we don't scale up to the full screen. Black by
  3079. * default, change to something else for debugging. */
  3080. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3081. }
  3082. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3083. {
  3084. struct drm_device *dev = crtc->dev;
  3085. struct drm_i915_private *dev_priv = dev->dev_private;
  3086. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3087. struct intel_encoder *encoder;
  3088. int pipe = intel_crtc->pipe;
  3089. int plane = intel_crtc->plane;
  3090. WARN_ON(!crtc->enabled);
  3091. if (intel_crtc->active)
  3092. return;
  3093. intel_crtc->active = true;
  3094. intel_update_watermarks(dev);
  3095. mutex_lock(&dev_priv->dpio_lock);
  3096. for_each_encoder_on_crtc(dev, crtc, encoder)
  3097. if (encoder->pre_pll_enable)
  3098. encoder->pre_pll_enable(encoder);
  3099. vlv_enable_pll(dev_priv, pipe);
  3100. for_each_encoder_on_crtc(dev, crtc, encoder)
  3101. if (encoder->pre_enable)
  3102. encoder->pre_enable(encoder);
  3103. /* VLV wants encoder enabling _before_ the pipe is up. */
  3104. for_each_encoder_on_crtc(dev, crtc, encoder)
  3105. encoder->enable(encoder);
  3106. i9xx_pfit_enable(intel_crtc);
  3107. intel_crtc_load_lut(crtc);
  3108. intel_enable_pipe(dev_priv, pipe, false);
  3109. intel_enable_plane(dev_priv, plane, pipe);
  3110. intel_enable_planes(crtc);
  3111. intel_crtc_update_cursor(crtc, true);
  3112. intel_update_fbc(dev);
  3113. mutex_unlock(&dev_priv->dpio_lock);
  3114. }
  3115. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3116. {
  3117. struct drm_device *dev = crtc->dev;
  3118. struct drm_i915_private *dev_priv = dev->dev_private;
  3119. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3120. struct intel_encoder *encoder;
  3121. int pipe = intel_crtc->pipe;
  3122. int plane = intel_crtc->plane;
  3123. WARN_ON(!crtc->enabled);
  3124. if (intel_crtc->active)
  3125. return;
  3126. intel_crtc->active = true;
  3127. intel_update_watermarks(dev);
  3128. for_each_encoder_on_crtc(dev, crtc, encoder)
  3129. if (encoder->pre_enable)
  3130. encoder->pre_enable(encoder);
  3131. i9xx_enable_pll(intel_crtc);
  3132. i9xx_pfit_enable(intel_crtc);
  3133. intel_crtc_load_lut(crtc);
  3134. intel_enable_pipe(dev_priv, pipe, false);
  3135. intel_enable_plane(dev_priv, plane, pipe);
  3136. intel_enable_planes(crtc);
  3137. /* The fixup needs to happen before cursor is enabled */
  3138. if (IS_G4X(dev))
  3139. g4x_fixup_plane(dev_priv, pipe);
  3140. intel_crtc_update_cursor(crtc, true);
  3141. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3142. intel_crtc_dpms_overlay(intel_crtc, true);
  3143. intel_update_fbc(dev);
  3144. for_each_encoder_on_crtc(dev, crtc, encoder)
  3145. encoder->enable(encoder);
  3146. }
  3147. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3148. {
  3149. struct drm_device *dev = crtc->base.dev;
  3150. struct drm_i915_private *dev_priv = dev->dev_private;
  3151. if (!crtc->config.gmch_pfit.control)
  3152. return;
  3153. assert_pipe_disabled(dev_priv, crtc->pipe);
  3154. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3155. I915_READ(PFIT_CONTROL));
  3156. I915_WRITE(PFIT_CONTROL, 0);
  3157. }
  3158. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3159. {
  3160. struct drm_device *dev = crtc->dev;
  3161. struct drm_i915_private *dev_priv = dev->dev_private;
  3162. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3163. struct intel_encoder *encoder;
  3164. int pipe = intel_crtc->pipe;
  3165. int plane = intel_crtc->plane;
  3166. if (!intel_crtc->active)
  3167. return;
  3168. for_each_encoder_on_crtc(dev, crtc, encoder)
  3169. encoder->disable(encoder);
  3170. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3171. intel_crtc_wait_for_pending_flips(crtc);
  3172. drm_vblank_off(dev, pipe);
  3173. if (dev_priv->fbc.plane == plane)
  3174. intel_disable_fbc(dev);
  3175. intel_crtc_dpms_overlay(intel_crtc, false);
  3176. intel_crtc_update_cursor(crtc, false);
  3177. intel_disable_planes(crtc);
  3178. intel_disable_plane(dev_priv, plane, pipe);
  3179. intel_disable_pipe(dev_priv, pipe);
  3180. i9xx_pfit_disable(intel_crtc);
  3181. for_each_encoder_on_crtc(dev, crtc, encoder)
  3182. if (encoder->post_disable)
  3183. encoder->post_disable(encoder);
  3184. intel_disable_pll(dev_priv, pipe);
  3185. intel_crtc->active = false;
  3186. intel_update_fbc(dev);
  3187. intel_update_watermarks(dev);
  3188. }
  3189. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3190. {
  3191. }
  3192. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3193. bool enabled)
  3194. {
  3195. struct drm_device *dev = crtc->dev;
  3196. struct drm_i915_master_private *master_priv;
  3197. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3198. int pipe = intel_crtc->pipe;
  3199. if (!dev->primary->master)
  3200. return;
  3201. master_priv = dev->primary->master->driver_priv;
  3202. if (!master_priv->sarea_priv)
  3203. return;
  3204. switch (pipe) {
  3205. case 0:
  3206. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3207. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3208. break;
  3209. case 1:
  3210. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3211. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3212. break;
  3213. default:
  3214. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3215. break;
  3216. }
  3217. }
  3218. /**
  3219. * Sets the power management mode of the pipe and plane.
  3220. */
  3221. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3222. {
  3223. struct drm_device *dev = crtc->dev;
  3224. struct drm_i915_private *dev_priv = dev->dev_private;
  3225. struct intel_encoder *intel_encoder;
  3226. bool enable = false;
  3227. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3228. enable |= intel_encoder->connectors_active;
  3229. if (enable)
  3230. dev_priv->display.crtc_enable(crtc);
  3231. else
  3232. dev_priv->display.crtc_disable(crtc);
  3233. intel_crtc_update_sarea(crtc, enable);
  3234. }
  3235. static void intel_crtc_disable(struct drm_crtc *crtc)
  3236. {
  3237. struct drm_device *dev = crtc->dev;
  3238. struct drm_connector *connector;
  3239. struct drm_i915_private *dev_priv = dev->dev_private;
  3240. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3241. /* crtc should still be enabled when we disable it. */
  3242. WARN_ON(!crtc->enabled);
  3243. dev_priv->display.crtc_disable(crtc);
  3244. intel_crtc->eld_vld = false;
  3245. intel_crtc_update_sarea(crtc, false);
  3246. dev_priv->display.off(crtc);
  3247. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3248. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3249. if (crtc->fb) {
  3250. mutex_lock(&dev->struct_mutex);
  3251. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3252. mutex_unlock(&dev->struct_mutex);
  3253. crtc->fb = NULL;
  3254. }
  3255. /* Update computed state. */
  3256. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3257. if (!connector->encoder || !connector->encoder->crtc)
  3258. continue;
  3259. if (connector->encoder->crtc != crtc)
  3260. continue;
  3261. connector->dpms = DRM_MODE_DPMS_OFF;
  3262. to_intel_encoder(connector->encoder)->connectors_active = false;
  3263. }
  3264. }
  3265. void intel_modeset_disable(struct drm_device *dev)
  3266. {
  3267. struct drm_crtc *crtc;
  3268. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3269. if (crtc->enabled)
  3270. intel_crtc_disable(crtc);
  3271. }
  3272. }
  3273. void intel_encoder_destroy(struct drm_encoder *encoder)
  3274. {
  3275. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3276. drm_encoder_cleanup(encoder);
  3277. kfree(intel_encoder);
  3278. }
  3279. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3280. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3281. * state of the entire output pipe. */
  3282. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3283. {
  3284. if (mode == DRM_MODE_DPMS_ON) {
  3285. encoder->connectors_active = true;
  3286. intel_crtc_update_dpms(encoder->base.crtc);
  3287. } else {
  3288. encoder->connectors_active = false;
  3289. intel_crtc_update_dpms(encoder->base.crtc);
  3290. }
  3291. }
  3292. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3293. * internal consistency). */
  3294. static void intel_connector_check_state(struct intel_connector *connector)
  3295. {
  3296. if (connector->get_hw_state(connector)) {
  3297. struct intel_encoder *encoder = connector->encoder;
  3298. struct drm_crtc *crtc;
  3299. bool encoder_enabled;
  3300. enum pipe pipe;
  3301. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3302. connector->base.base.id,
  3303. drm_get_connector_name(&connector->base));
  3304. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3305. "wrong connector dpms state\n");
  3306. WARN(connector->base.encoder != &encoder->base,
  3307. "active connector not linked to encoder\n");
  3308. WARN(!encoder->connectors_active,
  3309. "encoder->connectors_active not set\n");
  3310. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3311. WARN(!encoder_enabled, "encoder not enabled\n");
  3312. if (WARN_ON(!encoder->base.crtc))
  3313. return;
  3314. crtc = encoder->base.crtc;
  3315. WARN(!crtc->enabled, "crtc not enabled\n");
  3316. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3317. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3318. "encoder active on the wrong pipe\n");
  3319. }
  3320. }
  3321. /* Even simpler default implementation, if there's really no special case to
  3322. * consider. */
  3323. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3324. {
  3325. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3326. /* All the simple cases only support two dpms states. */
  3327. if (mode != DRM_MODE_DPMS_ON)
  3328. mode = DRM_MODE_DPMS_OFF;
  3329. if (mode == connector->dpms)
  3330. return;
  3331. connector->dpms = mode;
  3332. /* Only need to change hw state when actually enabled */
  3333. if (encoder->base.crtc)
  3334. intel_encoder_dpms(encoder, mode);
  3335. else
  3336. WARN_ON(encoder->connectors_active != false);
  3337. intel_modeset_check_state(connector->dev);
  3338. }
  3339. /* Simple connector->get_hw_state implementation for encoders that support only
  3340. * one connector and no cloning and hence the encoder state determines the state
  3341. * of the connector. */
  3342. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3343. {
  3344. enum pipe pipe = 0;
  3345. struct intel_encoder *encoder = connector->encoder;
  3346. return encoder->get_hw_state(encoder, &pipe);
  3347. }
  3348. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3349. struct intel_crtc_config *pipe_config)
  3350. {
  3351. struct drm_i915_private *dev_priv = dev->dev_private;
  3352. struct intel_crtc *pipe_B_crtc =
  3353. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3354. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3355. pipe_name(pipe), pipe_config->fdi_lanes);
  3356. if (pipe_config->fdi_lanes > 4) {
  3357. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3358. pipe_name(pipe), pipe_config->fdi_lanes);
  3359. return false;
  3360. }
  3361. if (IS_HASWELL(dev)) {
  3362. if (pipe_config->fdi_lanes > 2) {
  3363. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3364. pipe_config->fdi_lanes);
  3365. return false;
  3366. } else {
  3367. return true;
  3368. }
  3369. }
  3370. if (INTEL_INFO(dev)->num_pipes == 2)
  3371. return true;
  3372. /* Ivybridge 3 pipe is really complicated */
  3373. switch (pipe) {
  3374. case PIPE_A:
  3375. return true;
  3376. case PIPE_B:
  3377. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3378. pipe_config->fdi_lanes > 2) {
  3379. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3380. pipe_name(pipe), pipe_config->fdi_lanes);
  3381. return false;
  3382. }
  3383. return true;
  3384. case PIPE_C:
  3385. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3386. pipe_B_crtc->config.fdi_lanes <= 2) {
  3387. if (pipe_config->fdi_lanes > 2) {
  3388. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3389. pipe_name(pipe), pipe_config->fdi_lanes);
  3390. return false;
  3391. }
  3392. } else {
  3393. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3394. return false;
  3395. }
  3396. return true;
  3397. default:
  3398. BUG();
  3399. }
  3400. }
  3401. #define RETRY 1
  3402. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3403. struct intel_crtc_config *pipe_config)
  3404. {
  3405. struct drm_device *dev = intel_crtc->base.dev;
  3406. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3407. int lane, link_bw, fdi_dotclock;
  3408. bool setup_ok, needs_recompute = false;
  3409. retry:
  3410. /* FDI is a binary signal running at ~2.7GHz, encoding
  3411. * each output octet as 10 bits. The actual frequency
  3412. * is stored as a divider into a 100MHz clock, and the
  3413. * mode pixel clock is stored in units of 1KHz.
  3414. * Hence the bw of each lane in terms of the mode signal
  3415. * is:
  3416. */
  3417. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3418. fdi_dotclock = adjusted_mode->clock;
  3419. fdi_dotclock /= pipe_config->pixel_multiplier;
  3420. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3421. pipe_config->pipe_bpp);
  3422. pipe_config->fdi_lanes = lane;
  3423. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3424. link_bw, &pipe_config->fdi_m_n);
  3425. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3426. intel_crtc->pipe, pipe_config);
  3427. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3428. pipe_config->pipe_bpp -= 2*3;
  3429. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3430. pipe_config->pipe_bpp);
  3431. needs_recompute = true;
  3432. pipe_config->bw_constrained = true;
  3433. goto retry;
  3434. }
  3435. if (needs_recompute)
  3436. return RETRY;
  3437. return setup_ok ? 0 : -EINVAL;
  3438. }
  3439. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3440. struct intel_crtc_config *pipe_config)
  3441. {
  3442. pipe_config->ips_enabled = i915_enable_ips &&
  3443. hsw_crtc_supports_ips(crtc) &&
  3444. pipe_config->pipe_bpp == 24;
  3445. }
  3446. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3447. struct intel_crtc_config *pipe_config)
  3448. {
  3449. struct drm_device *dev = crtc->base.dev;
  3450. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3451. if (HAS_PCH_SPLIT(dev)) {
  3452. /* FDI link clock is fixed at 2.7G */
  3453. if (pipe_config->requested_mode.clock * 3
  3454. > IRONLAKE_FDI_FREQ * 4)
  3455. return -EINVAL;
  3456. }
  3457. /* All interlaced capable intel hw wants timings in frames. Note though
  3458. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3459. * timings, so we need to be careful not to clobber these.*/
  3460. if (!pipe_config->timings_set)
  3461. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3462. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3463. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3464. */
  3465. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3466. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3467. return -EINVAL;
  3468. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3469. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3470. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3471. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3472. * for lvds. */
  3473. pipe_config->pipe_bpp = 8*3;
  3474. }
  3475. if (HAS_IPS(dev))
  3476. hsw_compute_ips_config(crtc, pipe_config);
  3477. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3478. * clock survives for now. */
  3479. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3480. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3481. if (pipe_config->has_pch_encoder)
  3482. return ironlake_fdi_compute_config(crtc, pipe_config);
  3483. return 0;
  3484. }
  3485. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3486. {
  3487. return 400000; /* FIXME */
  3488. }
  3489. static int i945_get_display_clock_speed(struct drm_device *dev)
  3490. {
  3491. return 400000;
  3492. }
  3493. static int i915_get_display_clock_speed(struct drm_device *dev)
  3494. {
  3495. return 333000;
  3496. }
  3497. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3498. {
  3499. return 200000;
  3500. }
  3501. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3502. {
  3503. u16 gcfgc = 0;
  3504. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3505. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3506. return 133000;
  3507. else {
  3508. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3509. case GC_DISPLAY_CLOCK_333_MHZ:
  3510. return 333000;
  3511. default:
  3512. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3513. return 190000;
  3514. }
  3515. }
  3516. }
  3517. static int i865_get_display_clock_speed(struct drm_device *dev)
  3518. {
  3519. return 266000;
  3520. }
  3521. static int i855_get_display_clock_speed(struct drm_device *dev)
  3522. {
  3523. u16 hpllcc = 0;
  3524. /* Assume that the hardware is in the high speed state. This
  3525. * should be the default.
  3526. */
  3527. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3528. case GC_CLOCK_133_200:
  3529. case GC_CLOCK_100_200:
  3530. return 200000;
  3531. case GC_CLOCK_166_250:
  3532. return 250000;
  3533. case GC_CLOCK_100_133:
  3534. return 133000;
  3535. }
  3536. /* Shouldn't happen */
  3537. return 0;
  3538. }
  3539. static int i830_get_display_clock_speed(struct drm_device *dev)
  3540. {
  3541. return 133000;
  3542. }
  3543. static void
  3544. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3545. {
  3546. while (*num > DATA_LINK_M_N_MASK ||
  3547. *den > DATA_LINK_M_N_MASK) {
  3548. *num >>= 1;
  3549. *den >>= 1;
  3550. }
  3551. }
  3552. static void compute_m_n(unsigned int m, unsigned int n,
  3553. uint32_t *ret_m, uint32_t *ret_n)
  3554. {
  3555. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3556. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3557. intel_reduce_m_n_ratio(ret_m, ret_n);
  3558. }
  3559. void
  3560. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3561. int pixel_clock, int link_clock,
  3562. struct intel_link_m_n *m_n)
  3563. {
  3564. m_n->tu = 64;
  3565. compute_m_n(bits_per_pixel * pixel_clock,
  3566. link_clock * nlanes * 8,
  3567. &m_n->gmch_m, &m_n->gmch_n);
  3568. compute_m_n(pixel_clock, link_clock,
  3569. &m_n->link_m, &m_n->link_n);
  3570. }
  3571. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3572. {
  3573. if (i915_panel_use_ssc >= 0)
  3574. return i915_panel_use_ssc != 0;
  3575. return dev_priv->vbt.lvds_use_ssc
  3576. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3577. }
  3578. static int vlv_get_refclk(struct drm_crtc *crtc)
  3579. {
  3580. struct drm_device *dev = crtc->dev;
  3581. struct drm_i915_private *dev_priv = dev->dev_private;
  3582. int refclk = 27000; /* for DP & HDMI */
  3583. return 100000; /* only one validated so far */
  3584. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3585. refclk = 96000;
  3586. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3587. if (intel_panel_use_ssc(dev_priv))
  3588. refclk = 100000;
  3589. else
  3590. refclk = 96000;
  3591. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3592. refclk = 100000;
  3593. }
  3594. return refclk;
  3595. }
  3596. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3597. {
  3598. struct drm_device *dev = crtc->dev;
  3599. struct drm_i915_private *dev_priv = dev->dev_private;
  3600. int refclk;
  3601. if (IS_VALLEYVIEW(dev)) {
  3602. refclk = vlv_get_refclk(crtc);
  3603. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3604. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3605. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3606. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3607. refclk / 1000);
  3608. } else if (!IS_GEN2(dev)) {
  3609. refclk = 96000;
  3610. } else {
  3611. refclk = 48000;
  3612. }
  3613. return refclk;
  3614. }
  3615. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3616. {
  3617. return (1 << dpll->n) << 16 | dpll->m2;
  3618. }
  3619. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3620. {
  3621. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3622. }
  3623. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3624. intel_clock_t *reduced_clock)
  3625. {
  3626. struct drm_device *dev = crtc->base.dev;
  3627. struct drm_i915_private *dev_priv = dev->dev_private;
  3628. int pipe = crtc->pipe;
  3629. u32 fp, fp2 = 0;
  3630. if (IS_PINEVIEW(dev)) {
  3631. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3632. if (reduced_clock)
  3633. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3634. } else {
  3635. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3636. if (reduced_clock)
  3637. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3638. }
  3639. I915_WRITE(FP0(pipe), fp);
  3640. crtc->config.dpll_hw_state.fp0 = fp;
  3641. crtc->lowfreq_avail = false;
  3642. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3643. reduced_clock && i915_powersave) {
  3644. I915_WRITE(FP1(pipe), fp2);
  3645. crtc->config.dpll_hw_state.fp1 = fp2;
  3646. crtc->lowfreq_avail = true;
  3647. } else {
  3648. I915_WRITE(FP1(pipe), fp);
  3649. crtc->config.dpll_hw_state.fp1 = fp;
  3650. }
  3651. }
  3652. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3653. {
  3654. u32 reg_val;
  3655. /*
  3656. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3657. * and set it to a reasonable value instead.
  3658. */
  3659. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3660. reg_val &= 0xffffff00;
  3661. reg_val |= 0x00000030;
  3662. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3663. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3664. reg_val &= 0x8cffffff;
  3665. reg_val = 0x8c000000;
  3666. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3667. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3668. reg_val &= 0xffffff00;
  3669. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3670. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3671. reg_val &= 0x00ffffff;
  3672. reg_val |= 0xb0000000;
  3673. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3674. }
  3675. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3676. struct intel_link_m_n *m_n)
  3677. {
  3678. struct drm_device *dev = crtc->base.dev;
  3679. struct drm_i915_private *dev_priv = dev->dev_private;
  3680. int pipe = crtc->pipe;
  3681. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3682. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3683. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3684. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3685. }
  3686. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3687. struct intel_link_m_n *m_n)
  3688. {
  3689. struct drm_device *dev = crtc->base.dev;
  3690. struct drm_i915_private *dev_priv = dev->dev_private;
  3691. int pipe = crtc->pipe;
  3692. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3693. if (INTEL_INFO(dev)->gen >= 5) {
  3694. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3695. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3696. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3697. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3698. } else {
  3699. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3700. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3701. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3702. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3703. }
  3704. }
  3705. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3706. {
  3707. if (crtc->config.has_pch_encoder)
  3708. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3709. else
  3710. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3711. }
  3712. static void vlv_update_pll(struct intel_crtc *crtc)
  3713. {
  3714. struct drm_device *dev = crtc->base.dev;
  3715. struct drm_i915_private *dev_priv = dev->dev_private;
  3716. struct intel_encoder *encoder;
  3717. int pipe = crtc->pipe;
  3718. u32 dpll, mdiv;
  3719. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3720. bool is_hdmi;
  3721. u32 coreclk, reg_val, dpll_md;
  3722. mutex_lock(&dev_priv->dpio_lock);
  3723. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3724. bestn = crtc->config.dpll.n;
  3725. bestm1 = crtc->config.dpll.m1;
  3726. bestm2 = crtc->config.dpll.m2;
  3727. bestp1 = crtc->config.dpll.p1;
  3728. bestp2 = crtc->config.dpll.p2;
  3729. /* See eDP HDMI DPIO driver vbios notes doc */
  3730. /* PLL B needs special handling */
  3731. if (pipe)
  3732. vlv_pllb_recal_opamp(dev_priv);
  3733. /* Set up Tx target for periodic Rcomp update */
  3734. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3735. /* Disable target IRef on PLL */
  3736. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3737. reg_val &= 0x00ffffff;
  3738. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3739. /* Disable fast lock */
  3740. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3741. /* Set idtafcrecal before PLL is enabled */
  3742. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3743. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3744. mdiv |= ((bestn << DPIO_N_SHIFT));
  3745. mdiv |= (1 << DPIO_K_SHIFT);
  3746. /*
  3747. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3748. * but we don't support that).
  3749. * Note: don't use the DAC post divider as it seems unstable.
  3750. */
  3751. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3752. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3753. mdiv |= DPIO_ENABLE_CALIBRATION;
  3754. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3755. /* Set HBR and RBR LPF coefficients */
  3756. if (crtc->config.port_clock == 162000 ||
  3757. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3758. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3759. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3760. 0x005f0021);
  3761. else
  3762. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3763. 0x00d0000f);
  3764. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3765. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3766. /* Use SSC source */
  3767. if (!pipe)
  3768. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3769. 0x0df40000);
  3770. else
  3771. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3772. 0x0df70000);
  3773. } else { /* HDMI or VGA */
  3774. /* Use bend source */
  3775. if (!pipe)
  3776. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3777. 0x0df70000);
  3778. else
  3779. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3780. 0x0df40000);
  3781. }
  3782. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3783. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3784. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3785. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3786. coreclk |= 0x01000000;
  3787. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3788. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3789. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3790. if (encoder->pre_pll_enable)
  3791. encoder->pre_pll_enable(encoder);
  3792. /* Enable DPIO clock input */
  3793. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3794. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3795. if (pipe)
  3796. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3797. dpll |= DPLL_VCO_ENABLE;
  3798. crtc->config.dpll_hw_state.dpll = dpll;
  3799. I915_WRITE(DPLL(pipe), dpll);
  3800. POSTING_READ(DPLL(pipe));
  3801. udelay(150);
  3802. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3803. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3804. dpll_md = (crtc->config.pixel_multiplier - 1)
  3805. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3806. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3807. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3808. POSTING_READ(DPLL_MD(pipe));
  3809. if (crtc->config.has_dp_encoder)
  3810. intel_dp_set_m_n(crtc);
  3811. mutex_unlock(&dev_priv->dpio_lock);
  3812. }
  3813. static void i9xx_update_pll(struct intel_crtc *crtc,
  3814. intel_clock_t *reduced_clock,
  3815. int num_connectors)
  3816. {
  3817. struct drm_device *dev = crtc->base.dev;
  3818. struct drm_i915_private *dev_priv = dev->dev_private;
  3819. u32 dpll;
  3820. bool is_sdvo;
  3821. struct dpll *clock = &crtc->config.dpll;
  3822. i9xx_update_pll_dividers(crtc, reduced_clock);
  3823. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3824. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3825. dpll = DPLL_VGA_MODE_DIS;
  3826. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3827. dpll |= DPLLB_MODE_LVDS;
  3828. else
  3829. dpll |= DPLLB_MODE_DAC_SERIAL;
  3830. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3831. dpll |= (crtc->config.pixel_multiplier - 1)
  3832. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3833. }
  3834. if (is_sdvo)
  3835. dpll |= DPLL_DVO_HIGH_SPEED;
  3836. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3837. dpll |= DPLL_DVO_HIGH_SPEED;
  3838. /* compute bitmask from p1 value */
  3839. if (IS_PINEVIEW(dev))
  3840. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3841. else {
  3842. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3843. if (IS_G4X(dev) && reduced_clock)
  3844. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3845. }
  3846. switch (clock->p2) {
  3847. case 5:
  3848. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3849. break;
  3850. case 7:
  3851. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3852. break;
  3853. case 10:
  3854. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3855. break;
  3856. case 14:
  3857. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3858. break;
  3859. }
  3860. if (INTEL_INFO(dev)->gen >= 4)
  3861. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3862. if (crtc->config.sdvo_tv_clock)
  3863. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3864. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3865. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3866. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3867. else
  3868. dpll |= PLL_REF_INPUT_DREFCLK;
  3869. dpll |= DPLL_VCO_ENABLE;
  3870. crtc->config.dpll_hw_state.dpll = dpll;
  3871. if (INTEL_INFO(dev)->gen >= 4) {
  3872. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3873. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3874. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3875. }
  3876. if (crtc->config.has_dp_encoder)
  3877. intel_dp_set_m_n(crtc);
  3878. }
  3879. static void i8xx_update_pll(struct intel_crtc *crtc,
  3880. intel_clock_t *reduced_clock,
  3881. int num_connectors)
  3882. {
  3883. struct drm_device *dev = crtc->base.dev;
  3884. struct drm_i915_private *dev_priv = dev->dev_private;
  3885. u32 dpll;
  3886. struct dpll *clock = &crtc->config.dpll;
  3887. i9xx_update_pll_dividers(crtc, reduced_clock);
  3888. dpll = DPLL_VGA_MODE_DIS;
  3889. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3890. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3891. } else {
  3892. if (clock->p1 == 2)
  3893. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3894. else
  3895. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3896. if (clock->p2 == 4)
  3897. dpll |= PLL_P2_DIVIDE_BY_4;
  3898. }
  3899. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3900. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3901. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3902. else
  3903. dpll |= PLL_REF_INPUT_DREFCLK;
  3904. dpll |= DPLL_VCO_ENABLE;
  3905. crtc->config.dpll_hw_state.dpll = dpll;
  3906. }
  3907. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3908. {
  3909. struct drm_device *dev = intel_crtc->base.dev;
  3910. struct drm_i915_private *dev_priv = dev->dev_private;
  3911. enum pipe pipe = intel_crtc->pipe;
  3912. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3913. struct drm_display_mode *adjusted_mode =
  3914. &intel_crtc->config.adjusted_mode;
  3915. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3916. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3917. /* We need to be careful not to changed the adjusted mode, for otherwise
  3918. * the hw state checker will get angry at the mismatch. */
  3919. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3920. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3921. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3922. /* the chip adds 2 halflines automatically */
  3923. crtc_vtotal -= 1;
  3924. crtc_vblank_end -= 1;
  3925. vsyncshift = adjusted_mode->crtc_hsync_start
  3926. - adjusted_mode->crtc_htotal / 2;
  3927. } else {
  3928. vsyncshift = 0;
  3929. }
  3930. if (INTEL_INFO(dev)->gen > 3)
  3931. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3932. I915_WRITE(HTOTAL(cpu_transcoder),
  3933. (adjusted_mode->crtc_hdisplay - 1) |
  3934. ((adjusted_mode->crtc_htotal - 1) << 16));
  3935. I915_WRITE(HBLANK(cpu_transcoder),
  3936. (adjusted_mode->crtc_hblank_start - 1) |
  3937. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3938. I915_WRITE(HSYNC(cpu_transcoder),
  3939. (adjusted_mode->crtc_hsync_start - 1) |
  3940. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3941. I915_WRITE(VTOTAL(cpu_transcoder),
  3942. (adjusted_mode->crtc_vdisplay - 1) |
  3943. ((crtc_vtotal - 1) << 16));
  3944. I915_WRITE(VBLANK(cpu_transcoder),
  3945. (adjusted_mode->crtc_vblank_start - 1) |
  3946. ((crtc_vblank_end - 1) << 16));
  3947. I915_WRITE(VSYNC(cpu_transcoder),
  3948. (adjusted_mode->crtc_vsync_start - 1) |
  3949. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3950. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3951. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3952. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3953. * bits. */
  3954. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3955. (pipe == PIPE_B || pipe == PIPE_C))
  3956. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3957. /* pipesrc controls the size that is scaled from, which should
  3958. * always be the user's requested size.
  3959. */
  3960. I915_WRITE(PIPESRC(pipe),
  3961. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3962. }
  3963. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3964. struct intel_crtc_config *pipe_config)
  3965. {
  3966. struct drm_device *dev = crtc->base.dev;
  3967. struct drm_i915_private *dev_priv = dev->dev_private;
  3968. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3969. uint32_t tmp;
  3970. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3971. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3972. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3973. tmp = I915_READ(HBLANK(cpu_transcoder));
  3974. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3975. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3976. tmp = I915_READ(HSYNC(cpu_transcoder));
  3977. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3978. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3979. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3980. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3981. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3982. tmp = I915_READ(VBLANK(cpu_transcoder));
  3983. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3984. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  3985. tmp = I915_READ(VSYNC(cpu_transcoder));
  3986. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  3987. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  3988. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  3989. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  3990. pipe_config->adjusted_mode.crtc_vtotal += 1;
  3991. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  3992. }
  3993. tmp = I915_READ(PIPESRC(crtc->pipe));
  3994. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  3995. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  3996. }
  3997. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  3998. struct intel_crtc_config *pipe_config)
  3999. {
  4000. struct drm_crtc *crtc = &intel_crtc->base;
  4001. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4002. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4003. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4004. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4005. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4006. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4007. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4008. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4009. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4010. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4011. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4012. }
  4013. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4014. {
  4015. struct drm_device *dev = intel_crtc->base.dev;
  4016. struct drm_i915_private *dev_priv = dev->dev_private;
  4017. uint32_t pipeconf;
  4018. pipeconf = 0;
  4019. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4020. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4021. * core speed.
  4022. *
  4023. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4024. * pipe == 0 check?
  4025. */
  4026. if (intel_crtc->config.requested_mode.clock >
  4027. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4028. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4029. }
  4030. /* only g4x and later have fancy bpc/dither controls */
  4031. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4032. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4033. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4034. pipeconf |= PIPECONF_DITHER_EN |
  4035. PIPECONF_DITHER_TYPE_SP;
  4036. switch (intel_crtc->config.pipe_bpp) {
  4037. case 18:
  4038. pipeconf |= PIPECONF_6BPC;
  4039. break;
  4040. case 24:
  4041. pipeconf |= PIPECONF_8BPC;
  4042. break;
  4043. case 30:
  4044. pipeconf |= PIPECONF_10BPC;
  4045. break;
  4046. default:
  4047. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4048. BUG();
  4049. }
  4050. }
  4051. if (HAS_PIPE_CXSR(dev)) {
  4052. if (intel_crtc->lowfreq_avail) {
  4053. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4054. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4055. } else {
  4056. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4057. }
  4058. }
  4059. if (!IS_GEN2(dev) &&
  4060. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4061. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4062. else
  4063. pipeconf |= PIPECONF_PROGRESSIVE;
  4064. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4065. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4066. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4067. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4068. }
  4069. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4070. int x, int y,
  4071. struct drm_framebuffer *fb)
  4072. {
  4073. struct drm_device *dev = crtc->dev;
  4074. struct drm_i915_private *dev_priv = dev->dev_private;
  4075. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4076. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4077. int pipe = intel_crtc->pipe;
  4078. int plane = intel_crtc->plane;
  4079. int refclk, num_connectors = 0;
  4080. intel_clock_t clock, reduced_clock;
  4081. u32 dspcntr;
  4082. bool ok, has_reduced_clock = false;
  4083. bool is_lvds = false;
  4084. struct intel_encoder *encoder;
  4085. const intel_limit_t *limit;
  4086. int ret;
  4087. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4088. switch (encoder->type) {
  4089. case INTEL_OUTPUT_LVDS:
  4090. is_lvds = true;
  4091. break;
  4092. }
  4093. num_connectors++;
  4094. }
  4095. refclk = i9xx_get_refclk(crtc, num_connectors);
  4096. /*
  4097. * Returns a set of divisors for the desired target clock with the given
  4098. * refclk, or FALSE. The returned values represent the clock equation:
  4099. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4100. */
  4101. limit = intel_limit(crtc, refclk);
  4102. ok = dev_priv->display.find_dpll(limit, crtc,
  4103. intel_crtc->config.port_clock,
  4104. refclk, NULL, &clock);
  4105. if (!ok && !intel_crtc->config.clock_set) {
  4106. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4107. return -EINVAL;
  4108. }
  4109. /* Ensure that the cursor is valid for the new mode before changing... */
  4110. intel_crtc_update_cursor(crtc, true);
  4111. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4112. /*
  4113. * Ensure we match the reduced clock's P to the target clock.
  4114. * If the clocks don't match, we can't switch the display clock
  4115. * by using the FP0/FP1. In such case we will disable the LVDS
  4116. * downclock feature.
  4117. */
  4118. has_reduced_clock =
  4119. dev_priv->display.find_dpll(limit, crtc,
  4120. dev_priv->lvds_downclock,
  4121. refclk, &clock,
  4122. &reduced_clock);
  4123. }
  4124. /* Compat-code for transition, will disappear. */
  4125. if (!intel_crtc->config.clock_set) {
  4126. intel_crtc->config.dpll.n = clock.n;
  4127. intel_crtc->config.dpll.m1 = clock.m1;
  4128. intel_crtc->config.dpll.m2 = clock.m2;
  4129. intel_crtc->config.dpll.p1 = clock.p1;
  4130. intel_crtc->config.dpll.p2 = clock.p2;
  4131. }
  4132. if (IS_GEN2(dev))
  4133. i8xx_update_pll(intel_crtc,
  4134. has_reduced_clock ? &reduced_clock : NULL,
  4135. num_connectors);
  4136. else if (IS_VALLEYVIEW(dev))
  4137. vlv_update_pll(intel_crtc);
  4138. else
  4139. i9xx_update_pll(intel_crtc,
  4140. has_reduced_clock ? &reduced_clock : NULL,
  4141. num_connectors);
  4142. /* Set up the display plane register */
  4143. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4144. if (!IS_VALLEYVIEW(dev)) {
  4145. if (pipe == 0)
  4146. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4147. else
  4148. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4149. }
  4150. intel_set_pipe_timings(intel_crtc);
  4151. /* pipesrc and dspsize control the size that is scaled from,
  4152. * which should always be the user's requested size.
  4153. */
  4154. I915_WRITE(DSPSIZE(plane),
  4155. ((mode->vdisplay - 1) << 16) |
  4156. (mode->hdisplay - 1));
  4157. I915_WRITE(DSPPOS(plane), 0);
  4158. i9xx_set_pipeconf(intel_crtc);
  4159. I915_WRITE(DSPCNTR(plane), dspcntr);
  4160. POSTING_READ(DSPCNTR(plane));
  4161. ret = intel_pipe_set_base(crtc, x, y, fb);
  4162. intel_update_watermarks(dev);
  4163. return ret;
  4164. }
  4165. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4166. struct intel_crtc_config *pipe_config)
  4167. {
  4168. struct drm_device *dev = crtc->base.dev;
  4169. struct drm_i915_private *dev_priv = dev->dev_private;
  4170. uint32_t tmp;
  4171. tmp = I915_READ(PFIT_CONTROL);
  4172. if (INTEL_INFO(dev)->gen < 4) {
  4173. if (crtc->pipe != PIPE_B)
  4174. return;
  4175. /* gen2/3 store dither state in pfit control, needs to match */
  4176. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4177. } else {
  4178. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4179. return;
  4180. }
  4181. if (!(tmp & PFIT_ENABLE))
  4182. return;
  4183. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4184. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4185. if (INTEL_INFO(dev)->gen < 5)
  4186. pipe_config->gmch_pfit.lvds_border_bits =
  4187. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4188. }
  4189. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4190. struct intel_crtc_config *pipe_config)
  4191. {
  4192. struct drm_device *dev = crtc->base.dev;
  4193. struct drm_i915_private *dev_priv = dev->dev_private;
  4194. uint32_t tmp;
  4195. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4196. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4197. tmp = I915_READ(PIPECONF(crtc->pipe));
  4198. if (!(tmp & PIPECONF_ENABLE))
  4199. return false;
  4200. intel_get_pipe_timings(crtc, pipe_config);
  4201. i9xx_get_pfit_config(crtc, pipe_config);
  4202. if (INTEL_INFO(dev)->gen >= 4) {
  4203. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4204. pipe_config->pixel_multiplier =
  4205. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4206. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4207. pipe_config->dpll_hw_state.dpll_md = tmp;
  4208. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4209. tmp = I915_READ(DPLL(crtc->pipe));
  4210. pipe_config->pixel_multiplier =
  4211. ((tmp & SDVO_MULTIPLIER_MASK)
  4212. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4213. } else {
  4214. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4215. * port and will be fixed up in the encoder->get_config
  4216. * function. */
  4217. pipe_config->pixel_multiplier = 1;
  4218. }
  4219. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4220. if (!IS_VALLEYVIEW(dev)) {
  4221. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4222. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4223. } else {
  4224. /* Mask out read-only status bits. */
  4225. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4226. DPLL_PORTC_READY_MASK |
  4227. DPLL_PORTB_READY_MASK);
  4228. }
  4229. return true;
  4230. }
  4231. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4232. {
  4233. struct drm_i915_private *dev_priv = dev->dev_private;
  4234. struct drm_mode_config *mode_config = &dev->mode_config;
  4235. struct intel_encoder *encoder;
  4236. u32 val, final;
  4237. bool has_lvds = false;
  4238. bool has_cpu_edp = false;
  4239. bool has_panel = false;
  4240. bool has_ck505 = false;
  4241. bool can_ssc = false;
  4242. /* We need to take the global config into account */
  4243. list_for_each_entry(encoder, &mode_config->encoder_list,
  4244. base.head) {
  4245. switch (encoder->type) {
  4246. case INTEL_OUTPUT_LVDS:
  4247. has_panel = true;
  4248. has_lvds = true;
  4249. break;
  4250. case INTEL_OUTPUT_EDP:
  4251. has_panel = true;
  4252. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4253. has_cpu_edp = true;
  4254. break;
  4255. }
  4256. }
  4257. if (HAS_PCH_IBX(dev)) {
  4258. has_ck505 = dev_priv->vbt.display_clock_mode;
  4259. can_ssc = has_ck505;
  4260. } else {
  4261. has_ck505 = false;
  4262. can_ssc = true;
  4263. }
  4264. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4265. has_panel, has_lvds, has_ck505);
  4266. /* Ironlake: try to setup display ref clock before DPLL
  4267. * enabling. This is only under driver's control after
  4268. * PCH B stepping, previous chipset stepping should be
  4269. * ignoring this setting.
  4270. */
  4271. val = I915_READ(PCH_DREF_CONTROL);
  4272. /* As we must carefully and slowly disable/enable each source in turn,
  4273. * compute the final state we want first and check if we need to
  4274. * make any changes at all.
  4275. */
  4276. final = val;
  4277. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4278. if (has_ck505)
  4279. final |= DREF_NONSPREAD_CK505_ENABLE;
  4280. else
  4281. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4282. final &= ~DREF_SSC_SOURCE_MASK;
  4283. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4284. final &= ~DREF_SSC1_ENABLE;
  4285. if (has_panel) {
  4286. final |= DREF_SSC_SOURCE_ENABLE;
  4287. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4288. final |= DREF_SSC1_ENABLE;
  4289. if (has_cpu_edp) {
  4290. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4291. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4292. else
  4293. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4294. } else
  4295. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4296. } else {
  4297. final |= DREF_SSC_SOURCE_DISABLE;
  4298. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4299. }
  4300. if (final == val)
  4301. return;
  4302. /* Always enable nonspread source */
  4303. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4304. if (has_ck505)
  4305. val |= DREF_NONSPREAD_CK505_ENABLE;
  4306. else
  4307. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4308. if (has_panel) {
  4309. val &= ~DREF_SSC_SOURCE_MASK;
  4310. val |= DREF_SSC_SOURCE_ENABLE;
  4311. /* SSC must be turned on before enabling the CPU output */
  4312. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4313. DRM_DEBUG_KMS("Using SSC on panel\n");
  4314. val |= DREF_SSC1_ENABLE;
  4315. } else
  4316. val &= ~DREF_SSC1_ENABLE;
  4317. /* Get SSC going before enabling the outputs */
  4318. I915_WRITE(PCH_DREF_CONTROL, val);
  4319. POSTING_READ(PCH_DREF_CONTROL);
  4320. udelay(200);
  4321. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4322. /* Enable CPU source on CPU attached eDP */
  4323. if (has_cpu_edp) {
  4324. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4325. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4326. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4327. }
  4328. else
  4329. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4330. } else
  4331. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4332. I915_WRITE(PCH_DREF_CONTROL, val);
  4333. POSTING_READ(PCH_DREF_CONTROL);
  4334. udelay(200);
  4335. } else {
  4336. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4337. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4338. /* Turn off CPU output */
  4339. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4340. I915_WRITE(PCH_DREF_CONTROL, val);
  4341. POSTING_READ(PCH_DREF_CONTROL);
  4342. udelay(200);
  4343. /* Turn off the SSC source */
  4344. val &= ~DREF_SSC_SOURCE_MASK;
  4345. val |= DREF_SSC_SOURCE_DISABLE;
  4346. /* Turn off SSC1 */
  4347. val &= ~DREF_SSC1_ENABLE;
  4348. I915_WRITE(PCH_DREF_CONTROL, val);
  4349. POSTING_READ(PCH_DREF_CONTROL);
  4350. udelay(200);
  4351. }
  4352. BUG_ON(val != final);
  4353. }
  4354. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4355. static void lpt_init_pch_refclk(struct drm_device *dev)
  4356. {
  4357. struct drm_i915_private *dev_priv = dev->dev_private;
  4358. struct drm_mode_config *mode_config = &dev->mode_config;
  4359. struct intel_encoder *encoder;
  4360. bool has_vga = false;
  4361. bool is_sdv = false;
  4362. u32 tmp;
  4363. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4364. switch (encoder->type) {
  4365. case INTEL_OUTPUT_ANALOG:
  4366. has_vga = true;
  4367. break;
  4368. }
  4369. }
  4370. if (!has_vga)
  4371. return;
  4372. mutex_lock(&dev_priv->dpio_lock);
  4373. /* XXX: Rip out SDV support once Haswell ships for real. */
  4374. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4375. is_sdv = true;
  4376. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4377. tmp &= ~SBI_SSCCTL_DISABLE;
  4378. tmp |= SBI_SSCCTL_PATHALT;
  4379. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4380. udelay(24);
  4381. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4382. tmp &= ~SBI_SSCCTL_PATHALT;
  4383. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4384. if (!is_sdv) {
  4385. tmp = I915_READ(SOUTH_CHICKEN2);
  4386. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4387. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4388. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4389. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4390. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4391. tmp = I915_READ(SOUTH_CHICKEN2);
  4392. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4393. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4394. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4395. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4396. 100))
  4397. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4398. }
  4399. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4400. tmp &= ~(0xFF << 24);
  4401. tmp |= (0x12 << 24);
  4402. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4403. if (is_sdv) {
  4404. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4405. tmp |= 0x7FFF;
  4406. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4407. }
  4408. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4409. tmp |= (1 << 11);
  4410. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4411. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4412. tmp |= (1 << 11);
  4413. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4414. if (is_sdv) {
  4415. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4416. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4417. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4418. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4419. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4420. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4421. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4422. tmp |= (0x3F << 8);
  4423. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4424. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4425. tmp |= (0x3F << 8);
  4426. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4427. }
  4428. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4429. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4430. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4431. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4432. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4433. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4434. if (!is_sdv) {
  4435. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4436. tmp &= ~(7 << 13);
  4437. tmp |= (5 << 13);
  4438. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4439. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4440. tmp &= ~(7 << 13);
  4441. tmp |= (5 << 13);
  4442. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4443. }
  4444. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4445. tmp &= ~0xFF;
  4446. tmp |= 0x1C;
  4447. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4448. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4449. tmp &= ~0xFF;
  4450. tmp |= 0x1C;
  4451. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4452. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4453. tmp &= ~(0xFF << 16);
  4454. tmp |= (0x1C << 16);
  4455. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4456. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4457. tmp &= ~(0xFF << 16);
  4458. tmp |= (0x1C << 16);
  4459. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4460. if (!is_sdv) {
  4461. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4462. tmp |= (1 << 27);
  4463. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4464. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4465. tmp |= (1 << 27);
  4466. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4467. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4468. tmp &= ~(0xF << 28);
  4469. tmp |= (4 << 28);
  4470. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4471. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4472. tmp &= ~(0xF << 28);
  4473. tmp |= (4 << 28);
  4474. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4475. }
  4476. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4477. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4478. tmp |= SBI_DBUFF0_ENABLE;
  4479. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4480. mutex_unlock(&dev_priv->dpio_lock);
  4481. }
  4482. /*
  4483. * Initialize reference clocks when the driver loads
  4484. */
  4485. void intel_init_pch_refclk(struct drm_device *dev)
  4486. {
  4487. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4488. ironlake_init_pch_refclk(dev);
  4489. else if (HAS_PCH_LPT(dev))
  4490. lpt_init_pch_refclk(dev);
  4491. }
  4492. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4493. {
  4494. struct drm_device *dev = crtc->dev;
  4495. struct drm_i915_private *dev_priv = dev->dev_private;
  4496. struct intel_encoder *encoder;
  4497. int num_connectors = 0;
  4498. bool is_lvds = false;
  4499. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4500. switch (encoder->type) {
  4501. case INTEL_OUTPUT_LVDS:
  4502. is_lvds = true;
  4503. break;
  4504. }
  4505. num_connectors++;
  4506. }
  4507. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4508. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4509. dev_priv->vbt.lvds_ssc_freq);
  4510. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4511. }
  4512. return 120000;
  4513. }
  4514. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4515. {
  4516. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4517. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4518. int pipe = intel_crtc->pipe;
  4519. uint32_t val;
  4520. val = 0;
  4521. switch (intel_crtc->config.pipe_bpp) {
  4522. case 18:
  4523. val |= PIPECONF_6BPC;
  4524. break;
  4525. case 24:
  4526. val |= PIPECONF_8BPC;
  4527. break;
  4528. case 30:
  4529. val |= PIPECONF_10BPC;
  4530. break;
  4531. case 36:
  4532. val |= PIPECONF_12BPC;
  4533. break;
  4534. default:
  4535. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4536. BUG();
  4537. }
  4538. if (intel_crtc->config.dither)
  4539. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4540. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4541. val |= PIPECONF_INTERLACED_ILK;
  4542. else
  4543. val |= PIPECONF_PROGRESSIVE;
  4544. if (intel_crtc->config.limited_color_range)
  4545. val |= PIPECONF_COLOR_RANGE_SELECT;
  4546. I915_WRITE(PIPECONF(pipe), val);
  4547. POSTING_READ(PIPECONF(pipe));
  4548. }
  4549. /*
  4550. * Set up the pipe CSC unit.
  4551. *
  4552. * Currently only full range RGB to limited range RGB conversion
  4553. * is supported, but eventually this should handle various
  4554. * RGB<->YCbCr scenarios as well.
  4555. */
  4556. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4557. {
  4558. struct drm_device *dev = crtc->dev;
  4559. struct drm_i915_private *dev_priv = dev->dev_private;
  4560. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4561. int pipe = intel_crtc->pipe;
  4562. uint16_t coeff = 0x7800; /* 1.0 */
  4563. /*
  4564. * TODO: Check what kind of values actually come out of the pipe
  4565. * with these coeff/postoff values and adjust to get the best
  4566. * accuracy. Perhaps we even need to take the bpc value into
  4567. * consideration.
  4568. */
  4569. if (intel_crtc->config.limited_color_range)
  4570. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4571. /*
  4572. * GY/GU and RY/RU should be the other way around according
  4573. * to BSpec, but reality doesn't agree. Just set them up in
  4574. * a way that results in the correct picture.
  4575. */
  4576. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4577. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4578. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4579. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4580. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4581. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4582. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4583. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4584. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4585. if (INTEL_INFO(dev)->gen > 6) {
  4586. uint16_t postoff = 0;
  4587. if (intel_crtc->config.limited_color_range)
  4588. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4589. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4590. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4591. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4592. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4593. } else {
  4594. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4595. if (intel_crtc->config.limited_color_range)
  4596. mode |= CSC_BLACK_SCREEN_OFFSET;
  4597. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4598. }
  4599. }
  4600. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4601. {
  4602. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4603. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4604. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4605. uint32_t val;
  4606. val = 0;
  4607. if (intel_crtc->config.dither)
  4608. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4609. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4610. val |= PIPECONF_INTERLACED_ILK;
  4611. else
  4612. val |= PIPECONF_PROGRESSIVE;
  4613. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4614. POSTING_READ(PIPECONF(cpu_transcoder));
  4615. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4616. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4617. }
  4618. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4619. intel_clock_t *clock,
  4620. bool *has_reduced_clock,
  4621. intel_clock_t *reduced_clock)
  4622. {
  4623. struct drm_device *dev = crtc->dev;
  4624. struct drm_i915_private *dev_priv = dev->dev_private;
  4625. struct intel_encoder *intel_encoder;
  4626. int refclk;
  4627. const intel_limit_t *limit;
  4628. bool ret, is_lvds = false;
  4629. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4630. switch (intel_encoder->type) {
  4631. case INTEL_OUTPUT_LVDS:
  4632. is_lvds = true;
  4633. break;
  4634. }
  4635. }
  4636. refclk = ironlake_get_refclk(crtc);
  4637. /*
  4638. * Returns a set of divisors for the desired target clock with the given
  4639. * refclk, or FALSE. The returned values represent the clock equation:
  4640. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4641. */
  4642. limit = intel_limit(crtc, refclk);
  4643. ret = dev_priv->display.find_dpll(limit, crtc,
  4644. to_intel_crtc(crtc)->config.port_clock,
  4645. refclk, NULL, clock);
  4646. if (!ret)
  4647. return false;
  4648. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4649. /*
  4650. * Ensure we match the reduced clock's P to the target clock.
  4651. * If the clocks don't match, we can't switch the display clock
  4652. * by using the FP0/FP1. In such case we will disable the LVDS
  4653. * downclock feature.
  4654. */
  4655. *has_reduced_clock =
  4656. dev_priv->display.find_dpll(limit, crtc,
  4657. dev_priv->lvds_downclock,
  4658. refclk, clock,
  4659. reduced_clock);
  4660. }
  4661. return true;
  4662. }
  4663. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4664. {
  4665. struct drm_i915_private *dev_priv = dev->dev_private;
  4666. uint32_t temp;
  4667. temp = I915_READ(SOUTH_CHICKEN1);
  4668. if (temp & FDI_BC_BIFURCATION_SELECT)
  4669. return;
  4670. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4671. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4672. temp |= FDI_BC_BIFURCATION_SELECT;
  4673. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4674. I915_WRITE(SOUTH_CHICKEN1, temp);
  4675. POSTING_READ(SOUTH_CHICKEN1);
  4676. }
  4677. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4678. {
  4679. struct drm_device *dev = intel_crtc->base.dev;
  4680. struct drm_i915_private *dev_priv = dev->dev_private;
  4681. switch (intel_crtc->pipe) {
  4682. case PIPE_A:
  4683. break;
  4684. case PIPE_B:
  4685. if (intel_crtc->config.fdi_lanes > 2)
  4686. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4687. else
  4688. cpt_enable_fdi_bc_bifurcation(dev);
  4689. break;
  4690. case PIPE_C:
  4691. cpt_enable_fdi_bc_bifurcation(dev);
  4692. break;
  4693. default:
  4694. BUG();
  4695. }
  4696. }
  4697. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4698. {
  4699. /*
  4700. * Account for spread spectrum to avoid
  4701. * oversubscribing the link. Max center spread
  4702. * is 2.5%; use 5% for safety's sake.
  4703. */
  4704. u32 bps = target_clock * bpp * 21 / 20;
  4705. return bps / (link_bw * 8) + 1;
  4706. }
  4707. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4708. {
  4709. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4710. }
  4711. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4712. u32 *fp,
  4713. intel_clock_t *reduced_clock, u32 *fp2)
  4714. {
  4715. struct drm_crtc *crtc = &intel_crtc->base;
  4716. struct drm_device *dev = crtc->dev;
  4717. struct drm_i915_private *dev_priv = dev->dev_private;
  4718. struct intel_encoder *intel_encoder;
  4719. uint32_t dpll;
  4720. int factor, num_connectors = 0;
  4721. bool is_lvds = false, is_sdvo = false;
  4722. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4723. switch (intel_encoder->type) {
  4724. case INTEL_OUTPUT_LVDS:
  4725. is_lvds = true;
  4726. break;
  4727. case INTEL_OUTPUT_SDVO:
  4728. case INTEL_OUTPUT_HDMI:
  4729. is_sdvo = true;
  4730. break;
  4731. }
  4732. num_connectors++;
  4733. }
  4734. /* Enable autotuning of the PLL clock (if permissible) */
  4735. factor = 21;
  4736. if (is_lvds) {
  4737. if ((intel_panel_use_ssc(dev_priv) &&
  4738. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4739. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4740. factor = 25;
  4741. } else if (intel_crtc->config.sdvo_tv_clock)
  4742. factor = 20;
  4743. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4744. *fp |= FP_CB_TUNE;
  4745. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4746. *fp2 |= FP_CB_TUNE;
  4747. dpll = 0;
  4748. if (is_lvds)
  4749. dpll |= DPLLB_MODE_LVDS;
  4750. else
  4751. dpll |= DPLLB_MODE_DAC_SERIAL;
  4752. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4753. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4754. if (is_sdvo)
  4755. dpll |= DPLL_DVO_HIGH_SPEED;
  4756. if (intel_crtc->config.has_dp_encoder)
  4757. dpll |= DPLL_DVO_HIGH_SPEED;
  4758. /* compute bitmask from p1 value */
  4759. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4760. /* also FPA1 */
  4761. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4762. switch (intel_crtc->config.dpll.p2) {
  4763. case 5:
  4764. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4765. break;
  4766. case 7:
  4767. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4768. break;
  4769. case 10:
  4770. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4771. break;
  4772. case 14:
  4773. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4774. break;
  4775. }
  4776. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4777. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4778. else
  4779. dpll |= PLL_REF_INPUT_DREFCLK;
  4780. return dpll | DPLL_VCO_ENABLE;
  4781. }
  4782. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4783. int x, int y,
  4784. struct drm_framebuffer *fb)
  4785. {
  4786. struct drm_device *dev = crtc->dev;
  4787. struct drm_i915_private *dev_priv = dev->dev_private;
  4788. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4789. int pipe = intel_crtc->pipe;
  4790. int plane = intel_crtc->plane;
  4791. int num_connectors = 0;
  4792. intel_clock_t clock, reduced_clock;
  4793. u32 dpll = 0, fp = 0, fp2 = 0;
  4794. bool ok, has_reduced_clock = false;
  4795. bool is_lvds = false;
  4796. struct intel_encoder *encoder;
  4797. struct intel_shared_dpll *pll;
  4798. int ret;
  4799. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4800. switch (encoder->type) {
  4801. case INTEL_OUTPUT_LVDS:
  4802. is_lvds = true;
  4803. break;
  4804. }
  4805. num_connectors++;
  4806. }
  4807. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4808. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4809. ok = ironlake_compute_clocks(crtc, &clock,
  4810. &has_reduced_clock, &reduced_clock);
  4811. if (!ok && !intel_crtc->config.clock_set) {
  4812. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4813. return -EINVAL;
  4814. }
  4815. /* Compat-code for transition, will disappear. */
  4816. if (!intel_crtc->config.clock_set) {
  4817. intel_crtc->config.dpll.n = clock.n;
  4818. intel_crtc->config.dpll.m1 = clock.m1;
  4819. intel_crtc->config.dpll.m2 = clock.m2;
  4820. intel_crtc->config.dpll.p1 = clock.p1;
  4821. intel_crtc->config.dpll.p2 = clock.p2;
  4822. }
  4823. /* Ensure that the cursor is valid for the new mode before changing... */
  4824. intel_crtc_update_cursor(crtc, true);
  4825. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4826. if (intel_crtc->config.has_pch_encoder) {
  4827. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4828. if (has_reduced_clock)
  4829. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4830. dpll = ironlake_compute_dpll(intel_crtc,
  4831. &fp, &reduced_clock,
  4832. has_reduced_clock ? &fp2 : NULL);
  4833. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4834. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4835. if (has_reduced_clock)
  4836. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4837. else
  4838. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4839. pll = intel_get_shared_dpll(intel_crtc);
  4840. if (pll == NULL) {
  4841. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4842. pipe_name(pipe));
  4843. return -EINVAL;
  4844. }
  4845. } else
  4846. intel_put_shared_dpll(intel_crtc);
  4847. if (intel_crtc->config.has_dp_encoder)
  4848. intel_dp_set_m_n(intel_crtc);
  4849. if (is_lvds && has_reduced_clock && i915_powersave)
  4850. intel_crtc->lowfreq_avail = true;
  4851. else
  4852. intel_crtc->lowfreq_avail = false;
  4853. if (intel_crtc->config.has_pch_encoder) {
  4854. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4855. }
  4856. intel_set_pipe_timings(intel_crtc);
  4857. if (intel_crtc->config.has_pch_encoder) {
  4858. intel_cpu_transcoder_set_m_n(intel_crtc,
  4859. &intel_crtc->config.fdi_m_n);
  4860. }
  4861. if (IS_IVYBRIDGE(dev))
  4862. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4863. ironlake_set_pipeconf(crtc);
  4864. /* Set up the display plane register */
  4865. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4866. POSTING_READ(DSPCNTR(plane));
  4867. ret = intel_pipe_set_base(crtc, x, y, fb);
  4868. intel_update_watermarks(dev);
  4869. return ret;
  4870. }
  4871. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4872. struct intel_crtc_config *pipe_config)
  4873. {
  4874. struct drm_device *dev = crtc->base.dev;
  4875. struct drm_i915_private *dev_priv = dev->dev_private;
  4876. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4877. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4878. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4879. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4880. & ~TU_SIZE_MASK;
  4881. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4882. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4883. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4884. }
  4885. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4886. struct intel_crtc_config *pipe_config)
  4887. {
  4888. struct drm_device *dev = crtc->base.dev;
  4889. struct drm_i915_private *dev_priv = dev->dev_private;
  4890. uint32_t tmp;
  4891. tmp = I915_READ(PF_CTL(crtc->pipe));
  4892. if (tmp & PF_ENABLE) {
  4893. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4894. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4895. /* We currently do not free assignements of panel fitters on
  4896. * ivb/hsw (since we don't use the higher upscaling modes which
  4897. * differentiates them) so just WARN about this case for now. */
  4898. if (IS_GEN7(dev)) {
  4899. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4900. PF_PIPE_SEL_IVB(crtc->pipe));
  4901. }
  4902. }
  4903. }
  4904. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4905. struct intel_crtc_config *pipe_config)
  4906. {
  4907. struct drm_device *dev = crtc->base.dev;
  4908. struct drm_i915_private *dev_priv = dev->dev_private;
  4909. uint32_t tmp;
  4910. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4911. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4912. tmp = I915_READ(PIPECONF(crtc->pipe));
  4913. if (!(tmp & PIPECONF_ENABLE))
  4914. return false;
  4915. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4916. struct intel_shared_dpll *pll;
  4917. pipe_config->has_pch_encoder = true;
  4918. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4919. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4920. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4921. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4922. if (HAS_PCH_IBX(dev_priv->dev)) {
  4923. pipe_config->shared_dpll =
  4924. (enum intel_dpll_id) crtc->pipe;
  4925. } else {
  4926. tmp = I915_READ(PCH_DPLL_SEL);
  4927. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4928. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4929. else
  4930. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4931. }
  4932. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4933. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4934. &pipe_config->dpll_hw_state));
  4935. tmp = pipe_config->dpll_hw_state.dpll;
  4936. pipe_config->pixel_multiplier =
  4937. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  4938. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  4939. } else {
  4940. pipe_config->pixel_multiplier = 1;
  4941. }
  4942. intel_get_pipe_timings(crtc, pipe_config);
  4943. ironlake_get_pfit_config(crtc, pipe_config);
  4944. return true;
  4945. }
  4946. static void haswell_modeset_global_resources(struct drm_device *dev)
  4947. {
  4948. bool enable = false;
  4949. struct intel_crtc *crtc;
  4950. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4951. if (!crtc->base.enabled)
  4952. continue;
  4953. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4954. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4955. enable = true;
  4956. }
  4957. intel_set_power_well(dev, enable);
  4958. }
  4959. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4960. int x, int y,
  4961. struct drm_framebuffer *fb)
  4962. {
  4963. struct drm_device *dev = crtc->dev;
  4964. struct drm_i915_private *dev_priv = dev->dev_private;
  4965. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4966. int plane = intel_crtc->plane;
  4967. int ret;
  4968. if (!intel_ddi_pll_mode_set(crtc))
  4969. return -EINVAL;
  4970. /* Ensure that the cursor is valid for the new mode before changing... */
  4971. intel_crtc_update_cursor(crtc, true);
  4972. if (intel_crtc->config.has_dp_encoder)
  4973. intel_dp_set_m_n(intel_crtc);
  4974. intel_crtc->lowfreq_avail = false;
  4975. intel_set_pipe_timings(intel_crtc);
  4976. if (intel_crtc->config.has_pch_encoder) {
  4977. intel_cpu_transcoder_set_m_n(intel_crtc,
  4978. &intel_crtc->config.fdi_m_n);
  4979. }
  4980. haswell_set_pipeconf(crtc);
  4981. intel_set_pipe_csc(crtc);
  4982. /* Set up the display plane register */
  4983. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4984. POSTING_READ(DSPCNTR(plane));
  4985. ret = intel_pipe_set_base(crtc, x, y, fb);
  4986. intel_update_watermarks(dev);
  4987. return ret;
  4988. }
  4989. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4990. struct intel_crtc_config *pipe_config)
  4991. {
  4992. struct drm_device *dev = crtc->base.dev;
  4993. struct drm_i915_private *dev_priv = dev->dev_private;
  4994. enum intel_display_power_domain pfit_domain;
  4995. uint32_t tmp;
  4996. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4997. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4998. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4999. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5000. enum pipe trans_edp_pipe;
  5001. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5002. default:
  5003. WARN(1, "unknown pipe linked to edp transcoder\n");
  5004. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5005. case TRANS_DDI_EDP_INPUT_A_ON:
  5006. trans_edp_pipe = PIPE_A;
  5007. break;
  5008. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5009. trans_edp_pipe = PIPE_B;
  5010. break;
  5011. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5012. trans_edp_pipe = PIPE_C;
  5013. break;
  5014. }
  5015. if (trans_edp_pipe == crtc->pipe)
  5016. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5017. }
  5018. if (!intel_display_power_enabled(dev,
  5019. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5020. return false;
  5021. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5022. if (!(tmp & PIPECONF_ENABLE))
  5023. return false;
  5024. /*
  5025. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5026. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5027. * the PCH transcoder is on.
  5028. */
  5029. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5030. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5031. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5032. pipe_config->has_pch_encoder = true;
  5033. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5034. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5035. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5036. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5037. }
  5038. intel_get_pipe_timings(crtc, pipe_config);
  5039. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5040. if (intel_display_power_enabled(dev, pfit_domain))
  5041. ironlake_get_pfit_config(crtc, pipe_config);
  5042. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5043. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5044. pipe_config->pixel_multiplier = 1;
  5045. return true;
  5046. }
  5047. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5048. int x, int y,
  5049. struct drm_framebuffer *fb)
  5050. {
  5051. struct drm_device *dev = crtc->dev;
  5052. struct drm_i915_private *dev_priv = dev->dev_private;
  5053. struct drm_encoder_helper_funcs *encoder_funcs;
  5054. struct intel_encoder *encoder;
  5055. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5056. struct drm_display_mode *adjusted_mode =
  5057. &intel_crtc->config.adjusted_mode;
  5058. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5059. int pipe = intel_crtc->pipe;
  5060. int ret;
  5061. drm_vblank_pre_modeset(dev, pipe);
  5062. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5063. drm_vblank_post_modeset(dev, pipe);
  5064. if (ret != 0)
  5065. return ret;
  5066. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5067. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5068. encoder->base.base.id,
  5069. drm_get_encoder_name(&encoder->base),
  5070. mode->base.id, mode->name);
  5071. if (encoder->mode_set) {
  5072. encoder->mode_set(encoder);
  5073. } else {
  5074. encoder_funcs = encoder->base.helper_private;
  5075. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5076. }
  5077. }
  5078. return 0;
  5079. }
  5080. static bool intel_eld_uptodate(struct drm_connector *connector,
  5081. int reg_eldv, uint32_t bits_eldv,
  5082. int reg_elda, uint32_t bits_elda,
  5083. int reg_edid)
  5084. {
  5085. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5086. uint8_t *eld = connector->eld;
  5087. uint32_t i;
  5088. i = I915_READ(reg_eldv);
  5089. i &= bits_eldv;
  5090. if (!eld[0])
  5091. return !i;
  5092. if (!i)
  5093. return false;
  5094. i = I915_READ(reg_elda);
  5095. i &= ~bits_elda;
  5096. I915_WRITE(reg_elda, i);
  5097. for (i = 0; i < eld[2]; i++)
  5098. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5099. return false;
  5100. return true;
  5101. }
  5102. static void g4x_write_eld(struct drm_connector *connector,
  5103. struct drm_crtc *crtc)
  5104. {
  5105. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5106. uint8_t *eld = connector->eld;
  5107. uint32_t eldv;
  5108. uint32_t len;
  5109. uint32_t i;
  5110. i = I915_READ(G4X_AUD_VID_DID);
  5111. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5112. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5113. else
  5114. eldv = G4X_ELDV_DEVCTG;
  5115. if (intel_eld_uptodate(connector,
  5116. G4X_AUD_CNTL_ST, eldv,
  5117. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5118. G4X_HDMIW_HDMIEDID))
  5119. return;
  5120. i = I915_READ(G4X_AUD_CNTL_ST);
  5121. i &= ~(eldv | G4X_ELD_ADDR);
  5122. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5123. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5124. if (!eld[0])
  5125. return;
  5126. len = min_t(uint8_t, eld[2], len);
  5127. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5128. for (i = 0; i < len; i++)
  5129. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5130. i = I915_READ(G4X_AUD_CNTL_ST);
  5131. i |= eldv;
  5132. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5133. }
  5134. static void haswell_write_eld(struct drm_connector *connector,
  5135. struct drm_crtc *crtc)
  5136. {
  5137. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5138. uint8_t *eld = connector->eld;
  5139. struct drm_device *dev = crtc->dev;
  5140. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5141. uint32_t eldv;
  5142. uint32_t i;
  5143. int len;
  5144. int pipe = to_intel_crtc(crtc)->pipe;
  5145. int tmp;
  5146. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5147. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5148. int aud_config = HSW_AUD_CFG(pipe);
  5149. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5150. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5151. /* Audio output enable */
  5152. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5153. tmp = I915_READ(aud_cntrl_st2);
  5154. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5155. I915_WRITE(aud_cntrl_st2, tmp);
  5156. /* Wait for 1 vertical blank */
  5157. intel_wait_for_vblank(dev, pipe);
  5158. /* Set ELD valid state */
  5159. tmp = I915_READ(aud_cntrl_st2);
  5160. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5161. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5162. I915_WRITE(aud_cntrl_st2, tmp);
  5163. tmp = I915_READ(aud_cntrl_st2);
  5164. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5165. /* Enable HDMI mode */
  5166. tmp = I915_READ(aud_config);
  5167. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5168. /* clear N_programing_enable and N_value_index */
  5169. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5170. I915_WRITE(aud_config, tmp);
  5171. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5172. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5173. intel_crtc->eld_vld = true;
  5174. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5175. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5176. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5177. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5178. } else
  5179. I915_WRITE(aud_config, 0);
  5180. if (intel_eld_uptodate(connector,
  5181. aud_cntrl_st2, eldv,
  5182. aud_cntl_st, IBX_ELD_ADDRESS,
  5183. hdmiw_hdmiedid))
  5184. return;
  5185. i = I915_READ(aud_cntrl_st2);
  5186. i &= ~eldv;
  5187. I915_WRITE(aud_cntrl_st2, i);
  5188. if (!eld[0])
  5189. return;
  5190. i = I915_READ(aud_cntl_st);
  5191. i &= ~IBX_ELD_ADDRESS;
  5192. I915_WRITE(aud_cntl_st, i);
  5193. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5194. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5195. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5196. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5197. for (i = 0; i < len; i++)
  5198. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5199. i = I915_READ(aud_cntrl_st2);
  5200. i |= eldv;
  5201. I915_WRITE(aud_cntrl_st2, i);
  5202. }
  5203. static void ironlake_write_eld(struct drm_connector *connector,
  5204. struct drm_crtc *crtc)
  5205. {
  5206. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5207. uint8_t *eld = connector->eld;
  5208. uint32_t eldv;
  5209. uint32_t i;
  5210. int len;
  5211. int hdmiw_hdmiedid;
  5212. int aud_config;
  5213. int aud_cntl_st;
  5214. int aud_cntrl_st2;
  5215. int pipe = to_intel_crtc(crtc)->pipe;
  5216. if (HAS_PCH_IBX(connector->dev)) {
  5217. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5218. aud_config = IBX_AUD_CFG(pipe);
  5219. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5220. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5221. } else {
  5222. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5223. aud_config = CPT_AUD_CFG(pipe);
  5224. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5225. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5226. }
  5227. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5228. i = I915_READ(aud_cntl_st);
  5229. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5230. if (!i) {
  5231. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5232. /* operate blindly on all ports */
  5233. eldv = IBX_ELD_VALIDB;
  5234. eldv |= IBX_ELD_VALIDB << 4;
  5235. eldv |= IBX_ELD_VALIDB << 8;
  5236. } else {
  5237. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5238. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5239. }
  5240. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5241. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5242. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5243. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5244. } else
  5245. I915_WRITE(aud_config, 0);
  5246. if (intel_eld_uptodate(connector,
  5247. aud_cntrl_st2, eldv,
  5248. aud_cntl_st, IBX_ELD_ADDRESS,
  5249. hdmiw_hdmiedid))
  5250. return;
  5251. i = I915_READ(aud_cntrl_st2);
  5252. i &= ~eldv;
  5253. I915_WRITE(aud_cntrl_st2, i);
  5254. if (!eld[0])
  5255. return;
  5256. i = I915_READ(aud_cntl_st);
  5257. i &= ~IBX_ELD_ADDRESS;
  5258. I915_WRITE(aud_cntl_st, i);
  5259. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5260. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5261. for (i = 0; i < len; i++)
  5262. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5263. i = I915_READ(aud_cntrl_st2);
  5264. i |= eldv;
  5265. I915_WRITE(aud_cntrl_st2, i);
  5266. }
  5267. void intel_write_eld(struct drm_encoder *encoder,
  5268. struct drm_display_mode *mode)
  5269. {
  5270. struct drm_crtc *crtc = encoder->crtc;
  5271. struct drm_connector *connector;
  5272. struct drm_device *dev = encoder->dev;
  5273. struct drm_i915_private *dev_priv = dev->dev_private;
  5274. connector = drm_select_eld(encoder, mode);
  5275. if (!connector)
  5276. return;
  5277. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5278. connector->base.id,
  5279. drm_get_connector_name(connector),
  5280. connector->encoder->base.id,
  5281. drm_get_encoder_name(connector->encoder));
  5282. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5283. if (dev_priv->display.write_eld)
  5284. dev_priv->display.write_eld(connector, crtc);
  5285. }
  5286. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5287. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5288. {
  5289. struct drm_device *dev = crtc->dev;
  5290. struct drm_i915_private *dev_priv = dev->dev_private;
  5291. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5292. enum pipe pipe = intel_crtc->pipe;
  5293. int palreg = PALETTE(pipe);
  5294. int i;
  5295. bool reenable_ips = false;
  5296. /* The clocks have to be on to load the palette. */
  5297. if (!crtc->enabled || !intel_crtc->active)
  5298. return;
  5299. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5300. assert_pll_enabled(dev_priv, pipe);
  5301. /* use legacy palette for Ironlake */
  5302. if (HAS_PCH_SPLIT(dev))
  5303. palreg = LGC_PALETTE(pipe);
  5304. /* Workaround : Do not read or write the pipe palette/gamma data while
  5305. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5306. */
  5307. if (intel_crtc->config.ips_enabled &&
  5308. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5309. GAMMA_MODE_MODE_SPLIT)) {
  5310. hsw_disable_ips(intel_crtc);
  5311. reenable_ips = true;
  5312. }
  5313. for (i = 0; i < 256; i++) {
  5314. I915_WRITE(palreg + 4 * i,
  5315. (intel_crtc->lut_r[i] << 16) |
  5316. (intel_crtc->lut_g[i] << 8) |
  5317. intel_crtc->lut_b[i]);
  5318. }
  5319. if (reenable_ips)
  5320. hsw_enable_ips(intel_crtc);
  5321. }
  5322. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5323. {
  5324. struct drm_device *dev = crtc->dev;
  5325. struct drm_i915_private *dev_priv = dev->dev_private;
  5326. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5327. bool visible = base != 0;
  5328. u32 cntl;
  5329. if (intel_crtc->cursor_visible == visible)
  5330. return;
  5331. cntl = I915_READ(_CURACNTR);
  5332. if (visible) {
  5333. /* On these chipsets we can only modify the base whilst
  5334. * the cursor is disabled.
  5335. */
  5336. I915_WRITE(_CURABASE, base);
  5337. cntl &= ~(CURSOR_FORMAT_MASK);
  5338. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5339. cntl |= CURSOR_ENABLE |
  5340. CURSOR_GAMMA_ENABLE |
  5341. CURSOR_FORMAT_ARGB;
  5342. } else
  5343. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5344. I915_WRITE(_CURACNTR, cntl);
  5345. intel_crtc->cursor_visible = visible;
  5346. }
  5347. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5348. {
  5349. struct drm_device *dev = crtc->dev;
  5350. struct drm_i915_private *dev_priv = dev->dev_private;
  5351. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5352. int pipe = intel_crtc->pipe;
  5353. bool visible = base != 0;
  5354. if (intel_crtc->cursor_visible != visible) {
  5355. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5356. if (base) {
  5357. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5358. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5359. cntl |= pipe << 28; /* Connect to correct pipe */
  5360. } else {
  5361. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5362. cntl |= CURSOR_MODE_DISABLE;
  5363. }
  5364. I915_WRITE(CURCNTR(pipe), cntl);
  5365. intel_crtc->cursor_visible = visible;
  5366. }
  5367. /* and commit changes on next vblank */
  5368. I915_WRITE(CURBASE(pipe), base);
  5369. }
  5370. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5371. {
  5372. struct drm_device *dev = crtc->dev;
  5373. struct drm_i915_private *dev_priv = dev->dev_private;
  5374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5375. int pipe = intel_crtc->pipe;
  5376. bool visible = base != 0;
  5377. if (intel_crtc->cursor_visible != visible) {
  5378. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5379. if (base) {
  5380. cntl &= ~CURSOR_MODE;
  5381. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5382. } else {
  5383. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5384. cntl |= CURSOR_MODE_DISABLE;
  5385. }
  5386. if (IS_HASWELL(dev))
  5387. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5388. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5389. intel_crtc->cursor_visible = visible;
  5390. }
  5391. /* and commit changes on next vblank */
  5392. I915_WRITE(CURBASE_IVB(pipe), base);
  5393. }
  5394. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5395. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5396. bool on)
  5397. {
  5398. struct drm_device *dev = crtc->dev;
  5399. struct drm_i915_private *dev_priv = dev->dev_private;
  5400. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5401. int pipe = intel_crtc->pipe;
  5402. int x = intel_crtc->cursor_x;
  5403. int y = intel_crtc->cursor_y;
  5404. u32 base, pos;
  5405. bool visible;
  5406. pos = 0;
  5407. if (on && crtc->enabled && crtc->fb) {
  5408. base = intel_crtc->cursor_addr;
  5409. if (x > (int) crtc->fb->width)
  5410. base = 0;
  5411. if (y > (int) crtc->fb->height)
  5412. base = 0;
  5413. } else
  5414. base = 0;
  5415. if (x < 0) {
  5416. if (x + intel_crtc->cursor_width < 0)
  5417. base = 0;
  5418. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5419. x = -x;
  5420. }
  5421. pos |= x << CURSOR_X_SHIFT;
  5422. if (y < 0) {
  5423. if (y + intel_crtc->cursor_height < 0)
  5424. base = 0;
  5425. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5426. y = -y;
  5427. }
  5428. pos |= y << CURSOR_Y_SHIFT;
  5429. visible = base != 0;
  5430. if (!visible && !intel_crtc->cursor_visible)
  5431. return;
  5432. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5433. I915_WRITE(CURPOS_IVB(pipe), pos);
  5434. ivb_update_cursor(crtc, base);
  5435. } else {
  5436. I915_WRITE(CURPOS(pipe), pos);
  5437. if (IS_845G(dev) || IS_I865G(dev))
  5438. i845_update_cursor(crtc, base);
  5439. else
  5440. i9xx_update_cursor(crtc, base);
  5441. }
  5442. }
  5443. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5444. struct drm_file *file,
  5445. uint32_t handle,
  5446. uint32_t width, uint32_t height)
  5447. {
  5448. struct drm_device *dev = crtc->dev;
  5449. struct drm_i915_private *dev_priv = dev->dev_private;
  5450. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5451. struct drm_i915_gem_object *obj;
  5452. uint32_t addr;
  5453. int ret;
  5454. /* if we want to turn off the cursor ignore width and height */
  5455. if (!handle) {
  5456. DRM_DEBUG_KMS("cursor off\n");
  5457. addr = 0;
  5458. obj = NULL;
  5459. mutex_lock(&dev->struct_mutex);
  5460. goto finish;
  5461. }
  5462. /* Currently we only support 64x64 cursors */
  5463. if (width != 64 || height != 64) {
  5464. DRM_ERROR("we currently only support 64x64 cursors\n");
  5465. return -EINVAL;
  5466. }
  5467. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5468. if (&obj->base == NULL)
  5469. return -ENOENT;
  5470. if (obj->base.size < width * height * 4) {
  5471. DRM_ERROR("buffer is to small\n");
  5472. ret = -ENOMEM;
  5473. goto fail;
  5474. }
  5475. /* we only need to pin inside GTT if cursor is non-phy */
  5476. mutex_lock(&dev->struct_mutex);
  5477. if (!dev_priv->info->cursor_needs_physical) {
  5478. unsigned alignment;
  5479. if (obj->tiling_mode) {
  5480. DRM_ERROR("cursor cannot be tiled\n");
  5481. ret = -EINVAL;
  5482. goto fail_locked;
  5483. }
  5484. /* Note that the w/a also requires 2 PTE of padding following
  5485. * the bo. We currently fill all unused PTE with the shadow
  5486. * page and so we should always have valid PTE following the
  5487. * cursor preventing the VT-d warning.
  5488. */
  5489. alignment = 0;
  5490. if (need_vtd_wa(dev))
  5491. alignment = 64*1024;
  5492. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5493. if (ret) {
  5494. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5495. goto fail_locked;
  5496. }
  5497. ret = i915_gem_object_put_fence(obj);
  5498. if (ret) {
  5499. DRM_ERROR("failed to release fence for cursor");
  5500. goto fail_unpin;
  5501. }
  5502. addr = i915_gem_obj_ggtt_offset(obj);
  5503. } else {
  5504. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5505. ret = i915_gem_attach_phys_object(dev, obj,
  5506. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5507. align);
  5508. if (ret) {
  5509. DRM_ERROR("failed to attach phys object\n");
  5510. goto fail_locked;
  5511. }
  5512. addr = obj->phys_obj->handle->busaddr;
  5513. }
  5514. if (IS_GEN2(dev))
  5515. I915_WRITE(CURSIZE, (height << 12) | width);
  5516. finish:
  5517. if (intel_crtc->cursor_bo) {
  5518. if (dev_priv->info->cursor_needs_physical) {
  5519. if (intel_crtc->cursor_bo != obj)
  5520. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5521. } else
  5522. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5523. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5524. }
  5525. mutex_unlock(&dev->struct_mutex);
  5526. intel_crtc->cursor_addr = addr;
  5527. intel_crtc->cursor_bo = obj;
  5528. intel_crtc->cursor_width = width;
  5529. intel_crtc->cursor_height = height;
  5530. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5531. return 0;
  5532. fail_unpin:
  5533. i915_gem_object_unpin(obj);
  5534. fail_locked:
  5535. mutex_unlock(&dev->struct_mutex);
  5536. fail:
  5537. drm_gem_object_unreference_unlocked(&obj->base);
  5538. return ret;
  5539. }
  5540. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5541. {
  5542. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5543. intel_crtc->cursor_x = x;
  5544. intel_crtc->cursor_y = y;
  5545. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5546. return 0;
  5547. }
  5548. /** Sets the color ramps on behalf of RandR */
  5549. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5550. u16 blue, int regno)
  5551. {
  5552. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5553. intel_crtc->lut_r[regno] = red >> 8;
  5554. intel_crtc->lut_g[regno] = green >> 8;
  5555. intel_crtc->lut_b[regno] = blue >> 8;
  5556. }
  5557. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5558. u16 *blue, int regno)
  5559. {
  5560. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5561. *red = intel_crtc->lut_r[regno] << 8;
  5562. *green = intel_crtc->lut_g[regno] << 8;
  5563. *blue = intel_crtc->lut_b[regno] << 8;
  5564. }
  5565. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5566. u16 *blue, uint32_t start, uint32_t size)
  5567. {
  5568. int end = (start + size > 256) ? 256 : start + size, i;
  5569. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5570. for (i = start; i < end; i++) {
  5571. intel_crtc->lut_r[i] = red[i] >> 8;
  5572. intel_crtc->lut_g[i] = green[i] >> 8;
  5573. intel_crtc->lut_b[i] = blue[i] >> 8;
  5574. }
  5575. intel_crtc_load_lut(crtc);
  5576. }
  5577. /* VESA 640x480x72Hz mode to set on the pipe */
  5578. static struct drm_display_mode load_detect_mode = {
  5579. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5580. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5581. };
  5582. static struct drm_framebuffer *
  5583. intel_framebuffer_create(struct drm_device *dev,
  5584. struct drm_mode_fb_cmd2 *mode_cmd,
  5585. struct drm_i915_gem_object *obj)
  5586. {
  5587. struct intel_framebuffer *intel_fb;
  5588. int ret;
  5589. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5590. if (!intel_fb) {
  5591. drm_gem_object_unreference_unlocked(&obj->base);
  5592. return ERR_PTR(-ENOMEM);
  5593. }
  5594. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5595. if (ret) {
  5596. drm_gem_object_unreference_unlocked(&obj->base);
  5597. kfree(intel_fb);
  5598. return ERR_PTR(ret);
  5599. }
  5600. return &intel_fb->base;
  5601. }
  5602. static u32
  5603. intel_framebuffer_pitch_for_width(int width, int bpp)
  5604. {
  5605. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5606. return ALIGN(pitch, 64);
  5607. }
  5608. static u32
  5609. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5610. {
  5611. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5612. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5613. }
  5614. static struct drm_framebuffer *
  5615. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5616. struct drm_display_mode *mode,
  5617. int depth, int bpp)
  5618. {
  5619. struct drm_i915_gem_object *obj;
  5620. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5621. obj = i915_gem_alloc_object(dev,
  5622. intel_framebuffer_size_for_mode(mode, bpp));
  5623. if (obj == NULL)
  5624. return ERR_PTR(-ENOMEM);
  5625. mode_cmd.width = mode->hdisplay;
  5626. mode_cmd.height = mode->vdisplay;
  5627. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5628. bpp);
  5629. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5630. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5631. }
  5632. static struct drm_framebuffer *
  5633. mode_fits_in_fbdev(struct drm_device *dev,
  5634. struct drm_display_mode *mode)
  5635. {
  5636. struct drm_i915_private *dev_priv = dev->dev_private;
  5637. struct drm_i915_gem_object *obj;
  5638. struct drm_framebuffer *fb;
  5639. if (dev_priv->fbdev == NULL)
  5640. return NULL;
  5641. obj = dev_priv->fbdev->ifb.obj;
  5642. if (obj == NULL)
  5643. return NULL;
  5644. fb = &dev_priv->fbdev->ifb.base;
  5645. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5646. fb->bits_per_pixel))
  5647. return NULL;
  5648. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5649. return NULL;
  5650. return fb;
  5651. }
  5652. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5653. struct drm_display_mode *mode,
  5654. struct intel_load_detect_pipe *old)
  5655. {
  5656. struct intel_crtc *intel_crtc;
  5657. struct intel_encoder *intel_encoder =
  5658. intel_attached_encoder(connector);
  5659. struct drm_crtc *possible_crtc;
  5660. struct drm_encoder *encoder = &intel_encoder->base;
  5661. struct drm_crtc *crtc = NULL;
  5662. struct drm_device *dev = encoder->dev;
  5663. struct drm_framebuffer *fb;
  5664. int i = -1;
  5665. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5666. connector->base.id, drm_get_connector_name(connector),
  5667. encoder->base.id, drm_get_encoder_name(encoder));
  5668. /*
  5669. * Algorithm gets a little messy:
  5670. *
  5671. * - if the connector already has an assigned crtc, use it (but make
  5672. * sure it's on first)
  5673. *
  5674. * - try to find the first unused crtc that can drive this connector,
  5675. * and use that if we find one
  5676. */
  5677. /* See if we already have a CRTC for this connector */
  5678. if (encoder->crtc) {
  5679. crtc = encoder->crtc;
  5680. mutex_lock(&crtc->mutex);
  5681. old->dpms_mode = connector->dpms;
  5682. old->load_detect_temp = false;
  5683. /* Make sure the crtc and connector are running */
  5684. if (connector->dpms != DRM_MODE_DPMS_ON)
  5685. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5686. return true;
  5687. }
  5688. /* Find an unused one (if possible) */
  5689. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5690. i++;
  5691. if (!(encoder->possible_crtcs & (1 << i)))
  5692. continue;
  5693. if (!possible_crtc->enabled) {
  5694. crtc = possible_crtc;
  5695. break;
  5696. }
  5697. }
  5698. /*
  5699. * If we didn't find an unused CRTC, don't use any.
  5700. */
  5701. if (!crtc) {
  5702. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5703. return false;
  5704. }
  5705. mutex_lock(&crtc->mutex);
  5706. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5707. to_intel_connector(connector)->new_encoder = intel_encoder;
  5708. intel_crtc = to_intel_crtc(crtc);
  5709. old->dpms_mode = connector->dpms;
  5710. old->load_detect_temp = true;
  5711. old->release_fb = NULL;
  5712. if (!mode)
  5713. mode = &load_detect_mode;
  5714. /* We need a framebuffer large enough to accommodate all accesses
  5715. * that the plane may generate whilst we perform load detection.
  5716. * We can not rely on the fbcon either being present (we get called
  5717. * during its initialisation to detect all boot displays, or it may
  5718. * not even exist) or that it is large enough to satisfy the
  5719. * requested mode.
  5720. */
  5721. fb = mode_fits_in_fbdev(dev, mode);
  5722. if (fb == NULL) {
  5723. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5724. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5725. old->release_fb = fb;
  5726. } else
  5727. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5728. if (IS_ERR(fb)) {
  5729. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5730. mutex_unlock(&crtc->mutex);
  5731. return false;
  5732. }
  5733. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5734. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5735. if (old->release_fb)
  5736. old->release_fb->funcs->destroy(old->release_fb);
  5737. mutex_unlock(&crtc->mutex);
  5738. return false;
  5739. }
  5740. /* let the connector get through one full cycle before testing */
  5741. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5742. return true;
  5743. }
  5744. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5745. struct intel_load_detect_pipe *old)
  5746. {
  5747. struct intel_encoder *intel_encoder =
  5748. intel_attached_encoder(connector);
  5749. struct drm_encoder *encoder = &intel_encoder->base;
  5750. struct drm_crtc *crtc = encoder->crtc;
  5751. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5752. connector->base.id, drm_get_connector_name(connector),
  5753. encoder->base.id, drm_get_encoder_name(encoder));
  5754. if (old->load_detect_temp) {
  5755. to_intel_connector(connector)->new_encoder = NULL;
  5756. intel_encoder->new_crtc = NULL;
  5757. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5758. if (old->release_fb) {
  5759. drm_framebuffer_unregister_private(old->release_fb);
  5760. drm_framebuffer_unreference(old->release_fb);
  5761. }
  5762. mutex_unlock(&crtc->mutex);
  5763. return;
  5764. }
  5765. /* Switch crtc and encoder back off if necessary */
  5766. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5767. connector->funcs->dpms(connector, old->dpms_mode);
  5768. mutex_unlock(&crtc->mutex);
  5769. }
  5770. /* Returns the clock of the currently programmed mode of the given pipe. */
  5771. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  5772. struct intel_crtc_config *pipe_config)
  5773. {
  5774. struct drm_device *dev = crtc->base.dev;
  5775. struct drm_i915_private *dev_priv = dev->dev_private;
  5776. int pipe = pipe_config->cpu_transcoder;
  5777. u32 dpll = I915_READ(DPLL(pipe));
  5778. u32 fp;
  5779. intel_clock_t clock;
  5780. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5781. fp = I915_READ(FP0(pipe));
  5782. else
  5783. fp = I915_READ(FP1(pipe));
  5784. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5785. if (IS_PINEVIEW(dev)) {
  5786. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5787. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5788. } else {
  5789. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5790. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5791. }
  5792. if (!IS_GEN2(dev)) {
  5793. if (IS_PINEVIEW(dev))
  5794. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5795. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5796. else
  5797. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5798. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5799. switch (dpll & DPLL_MODE_MASK) {
  5800. case DPLLB_MODE_DAC_SERIAL:
  5801. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5802. 5 : 10;
  5803. break;
  5804. case DPLLB_MODE_LVDS:
  5805. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5806. 7 : 14;
  5807. break;
  5808. default:
  5809. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5810. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5811. pipe_config->adjusted_mode.clock = 0;
  5812. return;
  5813. }
  5814. if (IS_PINEVIEW(dev))
  5815. pineview_clock(96000, &clock);
  5816. else
  5817. i9xx_clock(96000, &clock);
  5818. } else {
  5819. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5820. if (is_lvds) {
  5821. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5822. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5823. clock.p2 = 14;
  5824. if ((dpll & PLL_REF_INPUT_MASK) ==
  5825. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5826. /* XXX: might not be 66MHz */
  5827. i9xx_clock(66000, &clock);
  5828. } else
  5829. i9xx_clock(48000, &clock);
  5830. } else {
  5831. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5832. clock.p1 = 2;
  5833. else {
  5834. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5835. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5836. }
  5837. if (dpll & PLL_P2_DIVIDE_BY_4)
  5838. clock.p2 = 4;
  5839. else
  5840. clock.p2 = 2;
  5841. i9xx_clock(48000, &clock);
  5842. }
  5843. }
  5844. pipe_config->adjusted_mode.clock = clock.dot *
  5845. pipe_config->pixel_multiplier;
  5846. }
  5847. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  5848. struct intel_crtc_config *pipe_config)
  5849. {
  5850. struct drm_device *dev = crtc->base.dev;
  5851. struct drm_i915_private *dev_priv = dev->dev_private;
  5852. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  5853. int link_freq, repeat;
  5854. u64 clock;
  5855. u32 link_m, link_n;
  5856. repeat = pipe_config->pixel_multiplier;
  5857. /*
  5858. * The calculation for the data clock is:
  5859. * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
  5860. * But we want to avoid losing precison if possible, so:
  5861. * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
  5862. *
  5863. * and the link clock is simpler:
  5864. * link_clock = (m * link_clock * repeat) / n
  5865. */
  5866. /*
  5867. * We need to get the FDI or DP link clock here to derive
  5868. * the M/N dividers.
  5869. *
  5870. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  5871. * For DP, it's either 1.62GHz or 2.7GHz.
  5872. * We do our calculations in 10*MHz since we don't need much precison.
  5873. */
  5874. if (pipe_config->has_pch_encoder)
  5875. link_freq = intel_fdi_link_freq(dev) * 10000;
  5876. else
  5877. link_freq = pipe_config->port_clock;
  5878. link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  5879. link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  5880. if (!link_m || !link_n)
  5881. return;
  5882. clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
  5883. do_div(clock, link_n);
  5884. pipe_config->adjusted_mode.clock = clock;
  5885. }
  5886. /** Returns the currently programmed mode of the given pipe. */
  5887. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5888. struct drm_crtc *crtc)
  5889. {
  5890. struct drm_i915_private *dev_priv = dev->dev_private;
  5891. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5892. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5893. struct drm_display_mode *mode;
  5894. struct intel_crtc_config pipe_config;
  5895. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5896. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5897. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5898. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5899. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5900. if (!mode)
  5901. return NULL;
  5902. /*
  5903. * Construct a pipe_config sufficient for getting the clock info
  5904. * back out of crtc_clock_get.
  5905. *
  5906. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  5907. * to use a real value here instead.
  5908. */
  5909. pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  5910. pipe_config.pixel_multiplier = 1;
  5911. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  5912. mode->clock = pipe_config.adjusted_mode.clock;
  5913. mode->hdisplay = (htot & 0xffff) + 1;
  5914. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5915. mode->hsync_start = (hsync & 0xffff) + 1;
  5916. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5917. mode->vdisplay = (vtot & 0xffff) + 1;
  5918. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5919. mode->vsync_start = (vsync & 0xffff) + 1;
  5920. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5921. drm_mode_set_name(mode);
  5922. return mode;
  5923. }
  5924. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5925. {
  5926. struct drm_device *dev = crtc->dev;
  5927. drm_i915_private_t *dev_priv = dev->dev_private;
  5928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5929. int pipe = intel_crtc->pipe;
  5930. int dpll_reg = DPLL(pipe);
  5931. int dpll;
  5932. if (HAS_PCH_SPLIT(dev))
  5933. return;
  5934. if (!dev_priv->lvds_downclock_avail)
  5935. return;
  5936. dpll = I915_READ(dpll_reg);
  5937. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5938. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5939. assert_panel_unlocked(dev_priv, pipe);
  5940. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5941. I915_WRITE(dpll_reg, dpll);
  5942. intel_wait_for_vblank(dev, pipe);
  5943. dpll = I915_READ(dpll_reg);
  5944. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5945. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5946. }
  5947. }
  5948. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5949. {
  5950. struct drm_device *dev = crtc->dev;
  5951. drm_i915_private_t *dev_priv = dev->dev_private;
  5952. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5953. if (HAS_PCH_SPLIT(dev))
  5954. return;
  5955. if (!dev_priv->lvds_downclock_avail)
  5956. return;
  5957. /*
  5958. * Since this is called by a timer, we should never get here in
  5959. * the manual case.
  5960. */
  5961. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5962. int pipe = intel_crtc->pipe;
  5963. int dpll_reg = DPLL(pipe);
  5964. int dpll;
  5965. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5966. assert_panel_unlocked(dev_priv, pipe);
  5967. dpll = I915_READ(dpll_reg);
  5968. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5969. I915_WRITE(dpll_reg, dpll);
  5970. intel_wait_for_vblank(dev, pipe);
  5971. dpll = I915_READ(dpll_reg);
  5972. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5973. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5974. }
  5975. }
  5976. void intel_mark_busy(struct drm_device *dev)
  5977. {
  5978. i915_update_gfx_val(dev->dev_private);
  5979. }
  5980. void intel_mark_idle(struct drm_device *dev)
  5981. {
  5982. struct drm_crtc *crtc;
  5983. if (!i915_powersave)
  5984. return;
  5985. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5986. if (!crtc->fb)
  5987. continue;
  5988. intel_decrease_pllclock(crtc);
  5989. }
  5990. }
  5991. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  5992. struct intel_ring_buffer *ring)
  5993. {
  5994. struct drm_device *dev = obj->base.dev;
  5995. struct drm_crtc *crtc;
  5996. if (!i915_powersave)
  5997. return;
  5998. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5999. if (!crtc->fb)
  6000. continue;
  6001. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6002. continue;
  6003. intel_increase_pllclock(crtc);
  6004. if (ring && intel_fbc_enabled(dev))
  6005. ring->fbc_dirty = true;
  6006. }
  6007. }
  6008. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6009. {
  6010. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6011. struct drm_device *dev = crtc->dev;
  6012. struct intel_unpin_work *work;
  6013. unsigned long flags;
  6014. spin_lock_irqsave(&dev->event_lock, flags);
  6015. work = intel_crtc->unpin_work;
  6016. intel_crtc->unpin_work = NULL;
  6017. spin_unlock_irqrestore(&dev->event_lock, flags);
  6018. if (work) {
  6019. cancel_work_sync(&work->work);
  6020. kfree(work);
  6021. }
  6022. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6023. drm_crtc_cleanup(crtc);
  6024. kfree(intel_crtc);
  6025. }
  6026. static void intel_unpin_work_fn(struct work_struct *__work)
  6027. {
  6028. struct intel_unpin_work *work =
  6029. container_of(__work, struct intel_unpin_work, work);
  6030. struct drm_device *dev = work->crtc->dev;
  6031. mutex_lock(&dev->struct_mutex);
  6032. intel_unpin_fb_obj(work->old_fb_obj);
  6033. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6034. drm_gem_object_unreference(&work->old_fb_obj->base);
  6035. intel_update_fbc(dev);
  6036. mutex_unlock(&dev->struct_mutex);
  6037. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6038. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6039. kfree(work);
  6040. }
  6041. static void do_intel_finish_page_flip(struct drm_device *dev,
  6042. struct drm_crtc *crtc)
  6043. {
  6044. drm_i915_private_t *dev_priv = dev->dev_private;
  6045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6046. struct intel_unpin_work *work;
  6047. unsigned long flags;
  6048. /* Ignore early vblank irqs */
  6049. if (intel_crtc == NULL)
  6050. return;
  6051. spin_lock_irqsave(&dev->event_lock, flags);
  6052. work = intel_crtc->unpin_work;
  6053. /* Ensure we don't miss a work->pending update ... */
  6054. smp_rmb();
  6055. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6056. spin_unlock_irqrestore(&dev->event_lock, flags);
  6057. return;
  6058. }
  6059. /* and that the unpin work is consistent wrt ->pending. */
  6060. smp_rmb();
  6061. intel_crtc->unpin_work = NULL;
  6062. if (work->event)
  6063. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6064. drm_vblank_put(dev, intel_crtc->pipe);
  6065. spin_unlock_irqrestore(&dev->event_lock, flags);
  6066. wake_up_all(&dev_priv->pending_flip_queue);
  6067. queue_work(dev_priv->wq, &work->work);
  6068. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6069. }
  6070. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6071. {
  6072. drm_i915_private_t *dev_priv = dev->dev_private;
  6073. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6074. do_intel_finish_page_flip(dev, crtc);
  6075. }
  6076. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6077. {
  6078. drm_i915_private_t *dev_priv = dev->dev_private;
  6079. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6080. do_intel_finish_page_flip(dev, crtc);
  6081. }
  6082. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6083. {
  6084. drm_i915_private_t *dev_priv = dev->dev_private;
  6085. struct intel_crtc *intel_crtc =
  6086. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6087. unsigned long flags;
  6088. /* NB: An MMIO update of the plane base pointer will also
  6089. * generate a page-flip completion irq, i.e. every modeset
  6090. * is also accompanied by a spurious intel_prepare_page_flip().
  6091. */
  6092. spin_lock_irqsave(&dev->event_lock, flags);
  6093. if (intel_crtc->unpin_work)
  6094. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6095. spin_unlock_irqrestore(&dev->event_lock, flags);
  6096. }
  6097. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6098. {
  6099. /* Ensure that the work item is consistent when activating it ... */
  6100. smp_wmb();
  6101. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6102. /* and that it is marked active as soon as the irq could fire. */
  6103. smp_wmb();
  6104. }
  6105. static int intel_gen2_queue_flip(struct drm_device *dev,
  6106. struct drm_crtc *crtc,
  6107. struct drm_framebuffer *fb,
  6108. struct drm_i915_gem_object *obj)
  6109. {
  6110. struct drm_i915_private *dev_priv = dev->dev_private;
  6111. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6112. u32 flip_mask;
  6113. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6114. int ret;
  6115. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6116. if (ret)
  6117. goto err;
  6118. ret = intel_ring_begin(ring, 6);
  6119. if (ret)
  6120. goto err_unpin;
  6121. /* Can't queue multiple flips, so wait for the previous
  6122. * one to finish before executing the next.
  6123. */
  6124. if (intel_crtc->plane)
  6125. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6126. else
  6127. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6128. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6129. intel_ring_emit(ring, MI_NOOP);
  6130. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6131. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6132. intel_ring_emit(ring, fb->pitches[0]);
  6133. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6134. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6135. intel_mark_page_flip_active(intel_crtc);
  6136. intel_ring_advance(ring);
  6137. return 0;
  6138. err_unpin:
  6139. intel_unpin_fb_obj(obj);
  6140. err:
  6141. return ret;
  6142. }
  6143. static int intel_gen3_queue_flip(struct drm_device *dev,
  6144. struct drm_crtc *crtc,
  6145. struct drm_framebuffer *fb,
  6146. struct drm_i915_gem_object *obj)
  6147. {
  6148. struct drm_i915_private *dev_priv = dev->dev_private;
  6149. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6150. u32 flip_mask;
  6151. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6152. int ret;
  6153. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6154. if (ret)
  6155. goto err;
  6156. ret = intel_ring_begin(ring, 6);
  6157. if (ret)
  6158. goto err_unpin;
  6159. if (intel_crtc->plane)
  6160. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6161. else
  6162. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6163. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6164. intel_ring_emit(ring, MI_NOOP);
  6165. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6166. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6167. intel_ring_emit(ring, fb->pitches[0]);
  6168. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6169. intel_ring_emit(ring, MI_NOOP);
  6170. intel_mark_page_flip_active(intel_crtc);
  6171. intel_ring_advance(ring);
  6172. return 0;
  6173. err_unpin:
  6174. intel_unpin_fb_obj(obj);
  6175. err:
  6176. return ret;
  6177. }
  6178. static int intel_gen4_queue_flip(struct drm_device *dev,
  6179. struct drm_crtc *crtc,
  6180. struct drm_framebuffer *fb,
  6181. struct drm_i915_gem_object *obj)
  6182. {
  6183. struct drm_i915_private *dev_priv = dev->dev_private;
  6184. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6185. uint32_t pf, pipesrc;
  6186. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6187. int ret;
  6188. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6189. if (ret)
  6190. goto err;
  6191. ret = intel_ring_begin(ring, 4);
  6192. if (ret)
  6193. goto err_unpin;
  6194. /* i965+ uses the linear or tiled offsets from the
  6195. * Display Registers (which do not change across a page-flip)
  6196. * so we need only reprogram the base address.
  6197. */
  6198. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6199. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6200. intel_ring_emit(ring, fb->pitches[0]);
  6201. intel_ring_emit(ring,
  6202. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6203. obj->tiling_mode);
  6204. /* XXX Enabling the panel-fitter across page-flip is so far
  6205. * untested on non-native modes, so ignore it for now.
  6206. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6207. */
  6208. pf = 0;
  6209. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6210. intel_ring_emit(ring, pf | pipesrc);
  6211. intel_mark_page_flip_active(intel_crtc);
  6212. intel_ring_advance(ring);
  6213. return 0;
  6214. err_unpin:
  6215. intel_unpin_fb_obj(obj);
  6216. err:
  6217. return ret;
  6218. }
  6219. static int intel_gen6_queue_flip(struct drm_device *dev,
  6220. struct drm_crtc *crtc,
  6221. struct drm_framebuffer *fb,
  6222. struct drm_i915_gem_object *obj)
  6223. {
  6224. struct drm_i915_private *dev_priv = dev->dev_private;
  6225. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6226. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6227. uint32_t pf, pipesrc;
  6228. int ret;
  6229. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6230. if (ret)
  6231. goto err;
  6232. ret = intel_ring_begin(ring, 4);
  6233. if (ret)
  6234. goto err_unpin;
  6235. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6236. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6237. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6238. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6239. /* Contrary to the suggestions in the documentation,
  6240. * "Enable Panel Fitter" does not seem to be required when page
  6241. * flipping with a non-native mode, and worse causes a normal
  6242. * modeset to fail.
  6243. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6244. */
  6245. pf = 0;
  6246. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6247. intel_ring_emit(ring, pf | pipesrc);
  6248. intel_mark_page_flip_active(intel_crtc);
  6249. intel_ring_advance(ring);
  6250. return 0;
  6251. err_unpin:
  6252. intel_unpin_fb_obj(obj);
  6253. err:
  6254. return ret;
  6255. }
  6256. /*
  6257. * On gen7 we currently use the blit ring because (in early silicon at least)
  6258. * the render ring doesn't give us interrpts for page flip completion, which
  6259. * means clients will hang after the first flip is queued. Fortunately the
  6260. * blit ring generates interrupts properly, so use it instead.
  6261. */
  6262. static int intel_gen7_queue_flip(struct drm_device *dev,
  6263. struct drm_crtc *crtc,
  6264. struct drm_framebuffer *fb,
  6265. struct drm_i915_gem_object *obj)
  6266. {
  6267. struct drm_i915_private *dev_priv = dev->dev_private;
  6268. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6269. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6270. uint32_t plane_bit = 0;
  6271. int ret;
  6272. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6273. if (ret)
  6274. goto err;
  6275. switch(intel_crtc->plane) {
  6276. case PLANE_A:
  6277. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6278. break;
  6279. case PLANE_B:
  6280. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6281. break;
  6282. case PLANE_C:
  6283. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6284. break;
  6285. default:
  6286. WARN_ONCE(1, "unknown plane in flip command\n");
  6287. ret = -ENODEV;
  6288. goto err_unpin;
  6289. }
  6290. ret = intel_ring_begin(ring, 4);
  6291. if (ret)
  6292. goto err_unpin;
  6293. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6294. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6295. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6296. intel_ring_emit(ring, (MI_NOOP));
  6297. intel_mark_page_flip_active(intel_crtc);
  6298. intel_ring_advance(ring);
  6299. return 0;
  6300. err_unpin:
  6301. intel_unpin_fb_obj(obj);
  6302. err:
  6303. return ret;
  6304. }
  6305. static int intel_default_queue_flip(struct drm_device *dev,
  6306. struct drm_crtc *crtc,
  6307. struct drm_framebuffer *fb,
  6308. struct drm_i915_gem_object *obj)
  6309. {
  6310. return -ENODEV;
  6311. }
  6312. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6313. struct drm_framebuffer *fb,
  6314. struct drm_pending_vblank_event *event)
  6315. {
  6316. struct drm_device *dev = crtc->dev;
  6317. struct drm_i915_private *dev_priv = dev->dev_private;
  6318. struct drm_framebuffer *old_fb = crtc->fb;
  6319. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6320. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6321. struct intel_unpin_work *work;
  6322. unsigned long flags;
  6323. int ret;
  6324. /* Can't change pixel format via MI display flips. */
  6325. if (fb->pixel_format != crtc->fb->pixel_format)
  6326. return -EINVAL;
  6327. /*
  6328. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6329. * Note that pitch changes could also affect these register.
  6330. */
  6331. if (INTEL_INFO(dev)->gen > 3 &&
  6332. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6333. fb->pitches[0] != crtc->fb->pitches[0]))
  6334. return -EINVAL;
  6335. work = kzalloc(sizeof *work, GFP_KERNEL);
  6336. if (work == NULL)
  6337. return -ENOMEM;
  6338. work->event = event;
  6339. work->crtc = crtc;
  6340. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6341. INIT_WORK(&work->work, intel_unpin_work_fn);
  6342. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6343. if (ret)
  6344. goto free_work;
  6345. /* We borrow the event spin lock for protecting unpin_work */
  6346. spin_lock_irqsave(&dev->event_lock, flags);
  6347. if (intel_crtc->unpin_work) {
  6348. spin_unlock_irqrestore(&dev->event_lock, flags);
  6349. kfree(work);
  6350. drm_vblank_put(dev, intel_crtc->pipe);
  6351. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6352. return -EBUSY;
  6353. }
  6354. intel_crtc->unpin_work = work;
  6355. spin_unlock_irqrestore(&dev->event_lock, flags);
  6356. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6357. flush_workqueue(dev_priv->wq);
  6358. ret = i915_mutex_lock_interruptible(dev);
  6359. if (ret)
  6360. goto cleanup;
  6361. /* Reference the objects for the scheduled work. */
  6362. drm_gem_object_reference(&work->old_fb_obj->base);
  6363. drm_gem_object_reference(&obj->base);
  6364. crtc->fb = fb;
  6365. work->pending_flip_obj = obj;
  6366. work->enable_stall_check = true;
  6367. atomic_inc(&intel_crtc->unpin_work_count);
  6368. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6369. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6370. if (ret)
  6371. goto cleanup_pending;
  6372. intel_disable_fbc(dev);
  6373. intel_mark_fb_busy(obj, NULL);
  6374. mutex_unlock(&dev->struct_mutex);
  6375. trace_i915_flip_request(intel_crtc->plane, obj);
  6376. return 0;
  6377. cleanup_pending:
  6378. atomic_dec(&intel_crtc->unpin_work_count);
  6379. crtc->fb = old_fb;
  6380. drm_gem_object_unreference(&work->old_fb_obj->base);
  6381. drm_gem_object_unreference(&obj->base);
  6382. mutex_unlock(&dev->struct_mutex);
  6383. cleanup:
  6384. spin_lock_irqsave(&dev->event_lock, flags);
  6385. intel_crtc->unpin_work = NULL;
  6386. spin_unlock_irqrestore(&dev->event_lock, flags);
  6387. drm_vblank_put(dev, intel_crtc->pipe);
  6388. free_work:
  6389. kfree(work);
  6390. return ret;
  6391. }
  6392. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6393. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6394. .load_lut = intel_crtc_load_lut,
  6395. };
  6396. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6397. struct drm_crtc *crtc)
  6398. {
  6399. struct drm_device *dev;
  6400. struct drm_crtc *tmp;
  6401. int crtc_mask = 1;
  6402. WARN(!crtc, "checking null crtc?\n");
  6403. dev = crtc->dev;
  6404. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6405. if (tmp == crtc)
  6406. break;
  6407. crtc_mask <<= 1;
  6408. }
  6409. if (encoder->possible_crtcs & crtc_mask)
  6410. return true;
  6411. return false;
  6412. }
  6413. /**
  6414. * intel_modeset_update_staged_output_state
  6415. *
  6416. * Updates the staged output configuration state, e.g. after we've read out the
  6417. * current hw state.
  6418. */
  6419. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6420. {
  6421. struct intel_encoder *encoder;
  6422. struct intel_connector *connector;
  6423. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6424. base.head) {
  6425. connector->new_encoder =
  6426. to_intel_encoder(connector->base.encoder);
  6427. }
  6428. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6429. base.head) {
  6430. encoder->new_crtc =
  6431. to_intel_crtc(encoder->base.crtc);
  6432. }
  6433. }
  6434. /**
  6435. * intel_modeset_commit_output_state
  6436. *
  6437. * This function copies the stage display pipe configuration to the real one.
  6438. */
  6439. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6440. {
  6441. struct intel_encoder *encoder;
  6442. struct intel_connector *connector;
  6443. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6444. base.head) {
  6445. connector->base.encoder = &connector->new_encoder->base;
  6446. }
  6447. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6448. base.head) {
  6449. encoder->base.crtc = &encoder->new_crtc->base;
  6450. }
  6451. }
  6452. static void
  6453. connected_sink_compute_bpp(struct intel_connector * connector,
  6454. struct intel_crtc_config *pipe_config)
  6455. {
  6456. int bpp = pipe_config->pipe_bpp;
  6457. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6458. connector->base.base.id,
  6459. drm_get_connector_name(&connector->base));
  6460. /* Don't use an invalid EDID bpc value */
  6461. if (connector->base.display_info.bpc &&
  6462. connector->base.display_info.bpc * 3 < bpp) {
  6463. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6464. bpp, connector->base.display_info.bpc*3);
  6465. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6466. }
  6467. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6468. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6469. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6470. bpp);
  6471. pipe_config->pipe_bpp = 24;
  6472. }
  6473. }
  6474. static int
  6475. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6476. struct drm_framebuffer *fb,
  6477. struct intel_crtc_config *pipe_config)
  6478. {
  6479. struct drm_device *dev = crtc->base.dev;
  6480. struct intel_connector *connector;
  6481. int bpp;
  6482. switch (fb->pixel_format) {
  6483. case DRM_FORMAT_C8:
  6484. bpp = 8*3; /* since we go through a colormap */
  6485. break;
  6486. case DRM_FORMAT_XRGB1555:
  6487. case DRM_FORMAT_ARGB1555:
  6488. /* checked in intel_framebuffer_init already */
  6489. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6490. return -EINVAL;
  6491. case DRM_FORMAT_RGB565:
  6492. bpp = 6*3; /* min is 18bpp */
  6493. break;
  6494. case DRM_FORMAT_XBGR8888:
  6495. case DRM_FORMAT_ABGR8888:
  6496. /* checked in intel_framebuffer_init already */
  6497. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6498. return -EINVAL;
  6499. case DRM_FORMAT_XRGB8888:
  6500. case DRM_FORMAT_ARGB8888:
  6501. bpp = 8*3;
  6502. break;
  6503. case DRM_FORMAT_XRGB2101010:
  6504. case DRM_FORMAT_ARGB2101010:
  6505. case DRM_FORMAT_XBGR2101010:
  6506. case DRM_FORMAT_ABGR2101010:
  6507. /* checked in intel_framebuffer_init already */
  6508. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6509. return -EINVAL;
  6510. bpp = 10*3;
  6511. break;
  6512. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6513. default:
  6514. DRM_DEBUG_KMS("unsupported depth\n");
  6515. return -EINVAL;
  6516. }
  6517. pipe_config->pipe_bpp = bpp;
  6518. /* Clamp display bpp to EDID value */
  6519. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6520. base.head) {
  6521. if (!connector->new_encoder ||
  6522. connector->new_encoder->new_crtc != crtc)
  6523. continue;
  6524. connected_sink_compute_bpp(connector, pipe_config);
  6525. }
  6526. return bpp;
  6527. }
  6528. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6529. struct intel_crtc_config *pipe_config,
  6530. const char *context)
  6531. {
  6532. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6533. context, pipe_name(crtc->pipe));
  6534. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6535. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6536. pipe_config->pipe_bpp, pipe_config->dither);
  6537. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6538. pipe_config->has_pch_encoder,
  6539. pipe_config->fdi_lanes,
  6540. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6541. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6542. pipe_config->fdi_m_n.tu);
  6543. DRM_DEBUG_KMS("requested mode:\n");
  6544. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6545. DRM_DEBUG_KMS("adjusted mode:\n");
  6546. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6547. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6548. pipe_config->gmch_pfit.control,
  6549. pipe_config->gmch_pfit.pgm_ratios,
  6550. pipe_config->gmch_pfit.lvds_border_bits);
  6551. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6552. pipe_config->pch_pfit.pos,
  6553. pipe_config->pch_pfit.size);
  6554. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6555. }
  6556. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6557. {
  6558. int num_encoders = 0;
  6559. bool uncloneable_encoders = false;
  6560. struct intel_encoder *encoder;
  6561. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6562. base.head) {
  6563. if (&encoder->new_crtc->base != crtc)
  6564. continue;
  6565. num_encoders++;
  6566. if (!encoder->cloneable)
  6567. uncloneable_encoders = true;
  6568. }
  6569. return !(num_encoders > 1 && uncloneable_encoders);
  6570. }
  6571. static struct intel_crtc_config *
  6572. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6573. struct drm_framebuffer *fb,
  6574. struct drm_display_mode *mode)
  6575. {
  6576. struct drm_device *dev = crtc->dev;
  6577. struct drm_encoder_helper_funcs *encoder_funcs;
  6578. struct intel_encoder *encoder;
  6579. struct intel_crtc_config *pipe_config;
  6580. int plane_bpp, ret = -EINVAL;
  6581. bool retry = true;
  6582. if (!check_encoder_cloning(crtc)) {
  6583. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6584. return ERR_PTR(-EINVAL);
  6585. }
  6586. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6587. if (!pipe_config)
  6588. return ERR_PTR(-ENOMEM);
  6589. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6590. drm_mode_copy(&pipe_config->requested_mode, mode);
  6591. pipe_config->cpu_transcoder =
  6592. (enum transcoder) to_intel_crtc(crtc)->pipe;
  6593. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6594. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6595. * plane pixel format and any sink constraints into account. Returns the
  6596. * source plane bpp so that dithering can be selected on mismatches
  6597. * after encoders and crtc also have had their say. */
  6598. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6599. fb, pipe_config);
  6600. if (plane_bpp < 0)
  6601. goto fail;
  6602. encoder_retry:
  6603. /* Ensure the port clock defaults are reset when retrying. */
  6604. pipe_config->port_clock = 0;
  6605. pipe_config->pixel_multiplier = 1;
  6606. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6607. * adjust it according to limitations or connector properties, and also
  6608. * a chance to reject the mode entirely.
  6609. */
  6610. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6611. base.head) {
  6612. if (&encoder->new_crtc->base != crtc)
  6613. continue;
  6614. if (encoder->compute_config) {
  6615. if (!(encoder->compute_config(encoder, pipe_config))) {
  6616. DRM_DEBUG_KMS("Encoder config failure\n");
  6617. goto fail;
  6618. }
  6619. continue;
  6620. }
  6621. encoder_funcs = encoder->base.helper_private;
  6622. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6623. &pipe_config->requested_mode,
  6624. &pipe_config->adjusted_mode))) {
  6625. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6626. goto fail;
  6627. }
  6628. }
  6629. /* Set default port clock if not overwritten by the encoder. Needs to be
  6630. * done afterwards in case the encoder adjusts the mode. */
  6631. if (!pipe_config->port_clock)
  6632. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6633. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6634. if (ret < 0) {
  6635. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6636. goto fail;
  6637. }
  6638. if (ret == RETRY) {
  6639. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6640. ret = -EINVAL;
  6641. goto fail;
  6642. }
  6643. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6644. retry = false;
  6645. goto encoder_retry;
  6646. }
  6647. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6648. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6649. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6650. return pipe_config;
  6651. fail:
  6652. kfree(pipe_config);
  6653. return ERR_PTR(ret);
  6654. }
  6655. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6656. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6657. static void
  6658. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6659. unsigned *prepare_pipes, unsigned *disable_pipes)
  6660. {
  6661. struct intel_crtc *intel_crtc;
  6662. struct drm_device *dev = crtc->dev;
  6663. struct intel_encoder *encoder;
  6664. struct intel_connector *connector;
  6665. struct drm_crtc *tmp_crtc;
  6666. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6667. /* Check which crtcs have changed outputs connected to them, these need
  6668. * to be part of the prepare_pipes mask. We don't (yet) support global
  6669. * modeset across multiple crtcs, so modeset_pipes will only have one
  6670. * bit set at most. */
  6671. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6672. base.head) {
  6673. if (connector->base.encoder == &connector->new_encoder->base)
  6674. continue;
  6675. if (connector->base.encoder) {
  6676. tmp_crtc = connector->base.encoder->crtc;
  6677. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6678. }
  6679. if (connector->new_encoder)
  6680. *prepare_pipes |=
  6681. 1 << connector->new_encoder->new_crtc->pipe;
  6682. }
  6683. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6684. base.head) {
  6685. if (encoder->base.crtc == &encoder->new_crtc->base)
  6686. continue;
  6687. if (encoder->base.crtc) {
  6688. tmp_crtc = encoder->base.crtc;
  6689. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6690. }
  6691. if (encoder->new_crtc)
  6692. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6693. }
  6694. /* Check for any pipes that will be fully disabled ... */
  6695. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6696. base.head) {
  6697. bool used = false;
  6698. /* Don't try to disable disabled crtcs. */
  6699. if (!intel_crtc->base.enabled)
  6700. continue;
  6701. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6702. base.head) {
  6703. if (encoder->new_crtc == intel_crtc)
  6704. used = true;
  6705. }
  6706. if (!used)
  6707. *disable_pipes |= 1 << intel_crtc->pipe;
  6708. }
  6709. /* set_mode is also used to update properties on life display pipes. */
  6710. intel_crtc = to_intel_crtc(crtc);
  6711. if (crtc->enabled)
  6712. *prepare_pipes |= 1 << intel_crtc->pipe;
  6713. /*
  6714. * For simplicity do a full modeset on any pipe where the output routing
  6715. * changed. We could be more clever, but that would require us to be
  6716. * more careful with calling the relevant encoder->mode_set functions.
  6717. */
  6718. if (*prepare_pipes)
  6719. *modeset_pipes = *prepare_pipes;
  6720. /* ... and mask these out. */
  6721. *modeset_pipes &= ~(*disable_pipes);
  6722. *prepare_pipes &= ~(*disable_pipes);
  6723. /*
  6724. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6725. * obies this rule, but the modeset restore mode of
  6726. * intel_modeset_setup_hw_state does not.
  6727. */
  6728. *modeset_pipes &= 1 << intel_crtc->pipe;
  6729. *prepare_pipes &= 1 << intel_crtc->pipe;
  6730. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6731. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6732. }
  6733. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6734. {
  6735. struct drm_encoder *encoder;
  6736. struct drm_device *dev = crtc->dev;
  6737. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6738. if (encoder->crtc == crtc)
  6739. return true;
  6740. return false;
  6741. }
  6742. static void
  6743. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6744. {
  6745. struct intel_encoder *intel_encoder;
  6746. struct intel_crtc *intel_crtc;
  6747. struct drm_connector *connector;
  6748. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6749. base.head) {
  6750. if (!intel_encoder->base.crtc)
  6751. continue;
  6752. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6753. if (prepare_pipes & (1 << intel_crtc->pipe))
  6754. intel_encoder->connectors_active = false;
  6755. }
  6756. intel_modeset_commit_output_state(dev);
  6757. /* Update computed state. */
  6758. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6759. base.head) {
  6760. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6761. }
  6762. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6763. if (!connector->encoder || !connector->encoder->crtc)
  6764. continue;
  6765. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6766. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6767. struct drm_property *dpms_property =
  6768. dev->mode_config.dpms_property;
  6769. connector->dpms = DRM_MODE_DPMS_ON;
  6770. drm_object_property_set_value(&connector->base,
  6771. dpms_property,
  6772. DRM_MODE_DPMS_ON);
  6773. intel_encoder = to_intel_encoder(connector->encoder);
  6774. intel_encoder->connectors_active = true;
  6775. }
  6776. }
  6777. }
  6778. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  6779. struct intel_crtc_config *new)
  6780. {
  6781. int clock1, clock2, diff;
  6782. clock1 = cur->adjusted_mode.clock;
  6783. clock2 = new->adjusted_mode.clock;
  6784. if (clock1 == clock2)
  6785. return true;
  6786. if (!clock1 || !clock2)
  6787. return false;
  6788. diff = abs(clock1 - clock2);
  6789. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  6790. return true;
  6791. return false;
  6792. }
  6793. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6794. list_for_each_entry((intel_crtc), \
  6795. &(dev)->mode_config.crtc_list, \
  6796. base.head) \
  6797. if (mask & (1 <<(intel_crtc)->pipe))
  6798. static bool
  6799. intel_pipe_config_compare(struct drm_device *dev,
  6800. struct intel_crtc_config *current_config,
  6801. struct intel_crtc_config *pipe_config)
  6802. {
  6803. #define PIPE_CONF_CHECK_X(name) \
  6804. if (current_config->name != pipe_config->name) { \
  6805. DRM_ERROR("mismatch in " #name " " \
  6806. "(expected 0x%08x, found 0x%08x)\n", \
  6807. current_config->name, \
  6808. pipe_config->name); \
  6809. return false; \
  6810. }
  6811. #define PIPE_CONF_CHECK_I(name) \
  6812. if (current_config->name != pipe_config->name) { \
  6813. DRM_ERROR("mismatch in " #name " " \
  6814. "(expected %i, found %i)\n", \
  6815. current_config->name, \
  6816. pipe_config->name); \
  6817. return false; \
  6818. }
  6819. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6820. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6821. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  6822. "(expected %i, found %i)\n", \
  6823. current_config->name & (mask), \
  6824. pipe_config->name & (mask)); \
  6825. return false; \
  6826. }
  6827. #define PIPE_CONF_QUIRK(quirk) \
  6828. ((current_config->quirks | pipe_config->quirks) & (quirk))
  6829. PIPE_CONF_CHECK_I(cpu_transcoder);
  6830. PIPE_CONF_CHECK_I(has_pch_encoder);
  6831. PIPE_CONF_CHECK_I(fdi_lanes);
  6832. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6833. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6834. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6835. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6836. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6837. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6838. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6839. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6840. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6841. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6842. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6843. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6844. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6845. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6846. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6847. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6848. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6849. PIPE_CONF_CHECK_I(pixel_multiplier);
  6850. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6851. DRM_MODE_FLAG_INTERLACE);
  6852. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  6853. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6854. DRM_MODE_FLAG_PHSYNC);
  6855. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6856. DRM_MODE_FLAG_NHSYNC);
  6857. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6858. DRM_MODE_FLAG_PVSYNC);
  6859. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6860. DRM_MODE_FLAG_NVSYNC);
  6861. }
  6862. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6863. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6864. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6865. /* pfit ratios are autocomputed by the hw on gen4+ */
  6866. if (INTEL_INFO(dev)->gen < 4)
  6867. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6868. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6869. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6870. PIPE_CONF_CHECK_I(pch_pfit.size);
  6871. PIPE_CONF_CHECK_I(ips_enabled);
  6872. PIPE_CONF_CHECK_I(shared_dpll);
  6873. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  6874. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  6875. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  6876. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  6877. #undef PIPE_CONF_CHECK_X
  6878. #undef PIPE_CONF_CHECK_I
  6879. #undef PIPE_CONF_CHECK_FLAGS
  6880. #undef PIPE_CONF_QUIRK
  6881. if (!IS_HASWELL(dev)) {
  6882. if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  6883. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  6884. current_config->adjusted_mode.clock,
  6885. pipe_config->adjusted_mode.clock);
  6886. return false;
  6887. }
  6888. }
  6889. return true;
  6890. }
  6891. static void
  6892. check_connector_state(struct drm_device *dev)
  6893. {
  6894. struct intel_connector *connector;
  6895. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6896. base.head) {
  6897. /* This also checks the encoder/connector hw state with the
  6898. * ->get_hw_state callbacks. */
  6899. intel_connector_check_state(connector);
  6900. WARN(&connector->new_encoder->base != connector->base.encoder,
  6901. "connector's staged encoder doesn't match current encoder\n");
  6902. }
  6903. }
  6904. static void
  6905. check_encoder_state(struct drm_device *dev)
  6906. {
  6907. struct intel_encoder *encoder;
  6908. struct intel_connector *connector;
  6909. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6910. base.head) {
  6911. bool enabled = false;
  6912. bool active = false;
  6913. enum pipe pipe, tracked_pipe;
  6914. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6915. encoder->base.base.id,
  6916. drm_get_encoder_name(&encoder->base));
  6917. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6918. "encoder's stage crtc doesn't match current crtc\n");
  6919. WARN(encoder->connectors_active && !encoder->base.crtc,
  6920. "encoder's active_connectors set, but no crtc\n");
  6921. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6922. base.head) {
  6923. if (connector->base.encoder != &encoder->base)
  6924. continue;
  6925. enabled = true;
  6926. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6927. active = true;
  6928. }
  6929. WARN(!!encoder->base.crtc != enabled,
  6930. "encoder's enabled state mismatch "
  6931. "(expected %i, found %i)\n",
  6932. !!encoder->base.crtc, enabled);
  6933. WARN(active && !encoder->base.crtc,
  6934. "active encoder with no crtc\n");
  6935. WARN(encoder->connectors_active != active,
  6936. "encoder's computed active state doesn't match tracked active state "
  6937. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6938. active = encoder->get_hw_state(encoder, &pipe);
  6939. WARN(active != encoder->connectors_active,
  6940. "encoder's hw state doesn't match sw tracking "
  6941. "(expected %i, found %i)\n",
  6942. encoder->connectors_active, active);
  6943. if (!encoder->base.crtc)
  6944. continue;
  6945. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6946. WARN(active && pipe != tracked_pipe,
  6947. "active encoder's pipe doesn't match"
  6948. "(expected %i, found %i)\n",
  6949. tracked_pipe, pipe);
  6950. }
  6951. }
  6952. static void
  6953. check_crtc_state(struct drm_device *dev)
  6954. {
  6955. drm_i915_private_t *dev_priv = dev->dev_private;
  6956. struct intel_crtc *crtc;
  6957. struct intel_encoder *encoder;
  6958. struct intel_crtc_config pipe_config;
  6959. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6960. base.head) {
  6961. bool enabled = false;
  6962. bool active = false;
  6963. memset(&pipe_config, 0, sizeof(pipe_config));
  6964. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6965. crtc->base.base.id);
  6966. WARN(crtc->active && !crtc->base.enabled,
  6967. "active crtc, but not enabled in sw tracking\n");
  6968. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6969. base.head) {
  6970. if (encoder->base.crtc != &crtc->base)
  6971. continue;
  6972. enabled = true;
  6973. if (encoder->connectors_active)
  6974. active = true;
  6975. }
  6976. WARN(active != crtc->active,
  6977. "crtc's computed active state doesn't match tracked active state "
  6978. "(expected %i, found %i)\n", active, crtc->active);
  6979. WARN(enabled != crtc->base.enabled,
  6980. "crtc's computed enabled state doesn't match tracked enabled state "
  6981. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6982. active = dev_priv->display.get_pipe_config(crtc,
  6983. &pipe_config);
  6984. /* hw state is inconsistent with the pipe A quirk */
  6985. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  6986. active = crtc->active;
  6987. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6988. base.head) {
  6989. if (encoder->base.crtc != &crtc->base)
  6990. continue;
  6991. if (encoder->get_config)
  6992. encoder->get_config(encoder, &pipe_config);
  6993. }
  6994. if (dev_priv->display.get_clock)
  6995. dev_priv->display.get_clock(crtc, &pipe_config);
  6996. WARN(crtc->active != active,
  6997. "crtc active state doesn't match with hw state "
  6998. "(expected %i, found %i)\n", crtc->active, active);
  6999. if (active &&
  7000. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7001. WARN(1, "pipe state doesn't match!\n");
  7002. intel_dump_pipe_config(crtc, &pipe_config,
  7003. "[hw state]");
  7004. intel_dump_pipe_config(crtc, &crtc->config,
  7005. "[sw state]");
  7006. }
  7007. }
  7008. }
  7009. static void
  7010. check_shared_dpll_state(struct drm_device *dev)
  7011. {
  7012. drm_i915_private_t *dev_priv = dev->dev_private;
  7013. struct intel_crtc *crtc;
  7014. struct intel_dpll_hw_state dpll_hw_state;
  7015. int i;
  7016. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7017. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7018. int enabled_crtcs = 0, active_crtcs = 0;
  7019. bool active;
  7020. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7021. DRM_DEBUG_KMS("%s\n", pll->name);
  7022. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7023. WARN(pll->active > pll->refcount,
  7024. "more active pll users than references: %i vs %i\n",
  7025. pll->active, pll->refcount);
  7026. WARN(pll->active && !pll->on,
  7027. "pll in active use but not on in sw tracking\n");
  7028. WARN(pll->on != active,
  7029. "pll on state mismatch (expected %i, found %i)\n",
  7030. pll->on, active);
  7031. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7032. base.head) {
  7033. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7034. enabled_crtcs++;
  7035. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7036. active_crtcs++;
  7037. }
  7038. WARN(pll->active != active_crtcs,
  7039. "pll active crtcs mismatch (expected %i, found %i)\n",
  7040. pll->active, active_crtcs);
  7041. WARN(pll->refcount != enabled_crtcs,
  7042. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7043. pll->refcount, enabled_crtcs);
  7044. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7045. sizeof(dpll_hw_state)),
  7046. "pll hw state mismatch\n");
  7047. }
  7048. }
  7049. void
  7050. intel_modeset_check_state(struct drm_device *dev)
  7051. {
  7052. check_connector_state(dev);
  7053. check_encoder_state(dev);
  7054. check_crtc_state(dev);
  7055. check_shared_dpll_state(dev);
  7056. }
  7057. static int __intel_set_mode(struct drm_crtc *crtc,
  7058. struct drm_display_mode *mode,
  7059. int x, int y, struct drm_framebuffer *fb)
  7060. {
  7061. struct drm_device *dev = crtc->dev;
  7062. drm_i915_private_t *dev_priv = dev->dev_private;
  7063. struct drm_display_mode *saved_mode, *saved_hwmode;
  7064. struct intel_crtc_config *pipe_config = NULL;
  7065. struct intel_crtc *intel_crtc;
  7066. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7067. int ret = 0;
  7068. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7069. if (!saved_mode)
  7070. return -ENOMEM;
  7071. saved_hwmode = saved_mode + 1;
  7072. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7073. &prepare_pipes, &disable_pipes);
  7074. *saved_hwmode = crtc->hwmode;
  7075. *saved_mode = crtc->mode;
  7076. /* Hack: Because we don't (yet) support global modeset on multiple
  7077. * crtcs, we don't keep track of the new mode for more than one crtc.
  7078. * Hence simply check whether any bit is set in modeset_pipes in all the
  7079. * pieces of code that are not yet converted to deal with mutliple crtcs
  7080. * changing their mode at the same time. */
  7081. if (modeset_pipes) {
  7082. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7083. if (IS_ERR(pipe_config)) {
  7084. ret = PTR_ERR(pipe_config);
  7085. pipe_config = NULL;
  7086. goto out;
  7087. }
  7088. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7089. "[modeset]");
  7090. }
  7091. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7092. intel_crtc_disable(&intel_crtc->base);
  7093. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7094. if (intel_crtc->base.enabled)
  7095. dev_priv->display.crtc_disable(&intel_crtc->base);
  7096. }
  7097. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7098. * to set it here already despite that we pass it down the callchain.
  7099. */
  7100. if (modeset_pipes) {
  7101. crtc->mode = *mode;
  7102. /* mode_set/enable/disable functions rely on a correct pipe
  7103. * config. */
  7104. to_intel_crtc(crtc)->config = *pipe_config;
  7105. }
  7106. /* Only after disabling all output pipelines that will be changed can we
  7107. * update the the output configuration. */
  7108. intel_modeset_update_state(dev, prepare_pipes);
  7109. if (dev_priv->display.modeset_global_resources)
  7110. dev_priv->display.modeset_global_resources(dev);
  7111. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7112. * on the DPLL.
  7113. */
  7114. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7115. ret = intel_crtc_mode_set(&intel_crtc->base,
  7116. x, y, fb);
  7117. if (ret)
  7118. goto done;
  7119. }
  7120. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7121. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7122. dev_priv->display.crtc_enable(&intel_crtc->base);
  7123. if (modeset_pipes) {
  7124. /* Store real post-adjustment hardware mode. */
  7125. crtc->hwmode = pipe_config->adjusted_mode;
  7126. /* Calculate and store various constants which
  7127. * are later needed by vblank and swap-completion
  7128. * timestamping. They are derived from true hwmode.
  7129. */
  7130. drm_calc_timestamping_constants(crtc);
  7131. }
  7132. /* FIXME: add subpixel order */
  7133. done:
  7134. if (ret && crtc->enabled) {
  7135. crtc->hwmode = *saved_hwmode;
  7136. crtc->mode = *saved_mode;
  7137. }
  7138. out:
  7139. kfree(pipe_config);
  7140. kfree(saved_mode);
  7141. return ret;
  7142. }
  7143. int intel_set_mode(struct drm_crtc *crtc,
  7144. struct drm_display_mode *mode,
  7145. int x, int y, struct drm_framebuffer *fb)
  7146. {
  7147. int ret;
  7148. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7149. if (ret == 0)
  7150. intel_modeset_check_state(crtc->dev);
  7151. return ret;
  7152. }
  7153. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7154. {
  7155. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7156. }
  7157. #undef for_each_intel_crtc_masked
  7158. static void intel_set_config_free(struct intel_set_config *config)
  7159. {
  7160. if (!config)
  7161. return;
  7162. kfree(config->save_connector_encoders);
  7163. kfree(config->save_encoder_crtcs);
  7164. kfree(config);
  7165. }
  7166. static int intel_set_config_save_state(struct drm_device *dev,
  7167. struct intel_set_config *config)
  7168. {
  7169. struct drm_encoder *encoder;
  7170. struct drm_connector *connector;
  7171. int count;
  7172. config->save_encoder_crtcs =
  7173. kcalloc(dev->mode_config.num_encoder,
  7174. sizeof(struct drm_crtc *), GFP_KERNEL);
  7175. if (!config->save_encoder_crtcs)
  7176. return -ENOMEM;
  7177. config->save_connector_encoders =
  7178. kcalloc(dev->mode_config.num_connector,
  7179. sizeof(struct drm_encoder *), GFP_KERNEL);
  7180. if (!config->save_connector_encoders)
  7181. return -ENOMEM;
  7182. /* Copy data. Note that driver private data is not affected.
  7183. * Should anything bad happen only the expected state is
  7184. * restored, not the drivers personal bookkeeping.
  7185. */
  7186. count = 0;
  7187. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7188. config->save_encoder_crtcs[count++] = encoder->crtc;
  7189. }
  7190. count = 0;
  7191. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7192. config->save_connector_encoders[count++] = connector->encoder;
  7193. }
  7194. return 0;
  7195. }
  7196. static void intel_set_config_restore_state(struct drm_device *dev,
  7197. struct intel_set_config *config)
  7198. {
  7199. struct intel_encoder *encoder;
  7200. struct intel_connector *connector;
  7201. int count;
  7202. count = 0;
  7203. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7204. encoder->new_crtc =
  7205. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7206. }
  7207. count = 0;
  7208. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7209. connector->new_encoder =
  7210. to_intel_encoder(config->save_connector_encoders[count++]);
  7211. }
  7212. }
  7213. static bool
  7214. is_crtc_connector_off(struct drm_crtc *crtc, struct drm_connector *connectors,
  7215. int num_connectors)
  7216. {
  7217. int i;
  7218. for (i = 0; i < num_connectors; i++)
  7219. if (connectors[i].encoder &&
  7220. connectors[i].encoder->crtc == crtc &&
  7221. connectors[i].dpms != DRM_MODE_DPMS_ON)
  7222. return true;
  7223. return false;
  7224. }
  7225. static void
  7226. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7227. struct intel_set_config *config)
  7228. {
  7229. /* We should be able to check here if the fb has the same properties
  7230. * and then just flip_or_move it */
  7231. if (set->connectors != NULL &&
  7232. is_crtc_connector_off(set->crtc, *set->connectors,
  7233. set->num_connectors)) {
  7234. config->mode_changed = true;
  7235. } else if (set->crtc->fb != set->fb) {
  7236. /* If we have no fb then treat it as a full mode set */
  7237. if (set->crtc->fb == NULL) {
  7238. struct intel_crtc *intel_crtc =
  7239. to_intel_crtc(set->crtc);
  7240. if (intel_crtc->active && i915_fastboot) {
  7241. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7242. config->fb_changed = true;
  7243. } else {
  7244. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7245. config->mode_changed = true;
  7246. }
  7247. } else if (set->fb == NULL) {
  7248. config->mode_changed = true;
  7249. } else if (set->fb->pixel_format !=
  7250. set->crtc->fb->pixel_format) {
  7251. config->mode_changed = true;
  7252. } else {
  7253. config->fb_changed = true;
  7254. }
  7255. }
  7256. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7257. config->fb_changed = true;
  7258. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7259. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7260. drm_mode_debug_printmodeline(&set->crtc->mode);
  7261. drm_mode_debug_printmodeline(set->mode);
  7262. config->mode_changed = true;
  7263. }
  7264. }
  7265. static int
  7266. intel_modeset_stage_output_state(struct drm_device *dev,
  7267. struct drm_mode_set *set,
  7268. struct intel_set_config *config)
  7269. {
  7270. struct drm_crtc *new_crtc;
  7271. struct intel_connector *connector;
  7272. struct intel_encoder *encoder;
  7273. int count, ro;
  7274. /* The upper layers ensure that we either disable a crtc or have a list
  7275. * of connectors. For paranoia, double-check this. */
  7276. WARN_ON(!set->fb && (set->num_connectors != 0));
  7277. WARN_ON(set->fb && (set->num_connectors == 0));
  7278. count = 0;
  7279. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7280. base.head) {
  7281. /* Otherwise traverse passed in connector list and get encoders
  7282. * for them. */
  7283. for (ro = 0; ro < set->num_connectors; ro++) {
  7284. if (set->connectors[ro] == &connector->base) {
  7285. connector->new_encoder = connector->encoder;
  7286. break;
  7287. }
  7288. }
  7289. /* If we disable the crtc, disable all its connectors. Also, if
  7290. * the connector is on the changing crtc but not on the new
  7291. * connector list, disable it. */
  7292. if ((!set->fb || ro == set->num_connectors) &&
  7293. connector->base.encoder &&
  7294. connector->base.encoder->crtc == set->crtc) {
  7295. connector->new_encoder = NULL;
  7296. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7297. connector->base.base.id,
  7298. drm_get_connector_name(&connector->base));
  7299. }
  7300. if (&connector->new_encoder->base != connector->base.encoder) {
  7301. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7302. config->mode_changed = true;
  7303. }
  7304. }
  7305. /* connector->new_encoder is now updated for all connectors. */
  7306. /* Update crtc of enabled connectors. */
  7307. count = 0;
  7308. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7309. base.head) {
  7310. if (!connector->new_encoder)
  7311. continue;
  7312. new_crtc = connector->new_encoder->base.crtc;
  7313. for (ro = 0; ro < set->num_connectors; ro++) {
  7314. if (set->connectors[ro] == &connector->base)
  7315. new_crtc = set->crtc;
  7316. }
  7317. /* Make sure the new CRTC will work with the encoder */
  7318. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7319. new_crtc)) {
  7320. return -EINVAL;
  7321. }
  7322. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7323. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7324. connector->base.base.id,
  7325. drm_get_connector_name(&connector->base),
  7326. new_crtc->base.id);
  7327. }
  7328. /* Check for any encoders that needs to be disabled. */
  7329. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7330. base.head) {
  7331. list_for_each_entry(connector,
  7332. &dev->mode_config.connector_list,
  7333. base.head) {
  7334. if (connector->new_encoder == encoder) {
  7335. WARN_ON(!connector->new_encoder->new_crtc);
  7336. goto next_encoder;
  7337. }
  7338. }
  7339. encoder->new_crtc = NULL;
  7340. next_encoder:
  7341. /* Only now check for crtc changes so we don't miss encoders
  7342. * that will be disabled. */
  7343. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7344. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7345. config->mode_changed = true;
  7346. }
  7347. }
  7348. /* Now we've also updated encoder->new_crtc for all encoders. */
  7349. return 0;
  7350. }
  7351. static int intel_crtc_set_config(struct drm_mode_set *set)
  7352. {
  7353. struct drm_device *dev;
  7354. struct drm_mode_set save_set;
  7355. struct intel_set_config *config;
  7356. int ret;
  7357. BUG_ON(!set);
  7358. BUG_ON(!set->crtc);
  7359. BUG_ON(!set->crtc->helper_private);
  7360. /* Enforce sane interface api - has been abused by the fb helper. */
  7361. BUG_ON(!set->mode && set->fb);
  7362. BUG_ON(set->fb && set->num_connectors == 0);
  7363. if (set->fb) {
  7364. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7365. set->crtc->base.id, set->fb->base.id,
  7366. (int)set->num_connectors, set->x, set->y);
  7367. } else {
  7368. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7369. }
  7370. dev = set->crtc->dev;
  7371. ret = -ENOMEM;
  7372. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7373. if (!config)
  7374. goto out_config;
  7375. ret = intel_set_config_save_state(dev, config);
  7376. if (ret)
  7377. goto out_config;
  7378. save_set.crtc = set->crtc;
  7379. save_set.mode = &set->crtc->mode;
  7380. save_set.x = set->crtc->x;
  7381. save_set.y = set->crtc->y;
  7382. save_set.fb = set->crtc->fb;
  7383. /* Compute whether we need a full modeset, only an fb base update or no
  7384. * change at all. In the future we might also check whether only the
  7385. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7386. * such cases. */
  7387. intel_set_config_compute_mode_changes(set, config);
  7388. ret = intel_modeset_stage_output_state(dev, set, config);
  7389. if (ret)
  7390. goto fail;
  7391. if (config->mode_changed) {
  7392. ret = intel_set_mode(set->crtc, set->mode,
  7393. set->x, set->y, set->fb);
  7394. } else if (config->fb_changed) {
  7395. intel_crtc_wait_for_pending_flips(set->crtc);
  7396. ret = intel_pipe_set_base(set->crtc,
  7397. set->x, set->y, set->fb);
  7398. }
  7399. if (ret) {
  7400. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7401. set->crtc->base.id, ret);
  7402. fail:
  7403. intel_set_config_restore_state(dev, config);
  7404. /* Try to restore the config */
  7405. if (config->mode_changed &&
  7406. intel_set_mode(save_set.crtc, save_set.mode,
  7407. save_set.x, save_set.y, save_set.fb))
  7408. DRM_ERROR("failed to restore config after modeset failure\n");
  7409. }
  7410. out_config:
  7411. intel_set_config_free(config);
  7412. return ret;
  7413. }
  7414. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7415. .cursor_set = intel_crtc_cursor_set,
  7416. .cursor_move = intel_crtc_cursor_move,
  7417. .gamma_set = intel_crtc_gamma_set,
  7418. .set_config = intel_crtc_set_config,
  7419. .destroy = intel_crtc_destroy,
  7420. .page_flip = intel_crtc_page_flip,
  7421. };
  7422. static void intel_cpu_pll_init(struct drm_device *dev)
  7423. {
  7424. if (HAS_DDI(dev))
  7425. intel_ddi_pll_init(dev);
  7426. }
  7427. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7428. struct intel_shared_dpll *pll,
  7429. struct intel_dpll_hw_state *hw_state)
  7430. {
  7431. uint32_t val;
  7432. val = I915_READ(PCH_DPLL(pll->id));
  7433. hw_state->dpll = val;
  7434. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7435. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7436. return val & DPLL_VCO_ENABLE;
  7437. }
  7438. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7439. struct intel_shared_dpll *pll)
  7440. {
  7441. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7442. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7443. }
  7444. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7445. struct intel_shared_dpll *pll)
  7446. {
  7447. /* PCH refclock must be enabled first */
  7448. assert_pch_refclk_enabled(dev_priv);
  7449. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7450. /* Wait for the clocks to stabilize. */
  7451. POSTING_READ(PCH_DPLL(pll->id));
  7452. udelay(150);
  7453. /* The pixel multiplier can only be updated once the
  7454. * DPLL is enabled and the clocks are stable.
  7455. *
  7456. * So write it again.
  7457. */
  7458. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7459. POSTING_READ(PCH_DPLL(pll->id));
  7460. udelay(200);
  7461. }
  7462. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7463. struct intel_shared_dpll *pll)
  7464. {
  7465. struct drm_device *dev = dev_priv->dev;
  7466. struct intel_crtc *crtc;
  7467. /* Make sure no transcoder isn't still depending on us. */
  7468. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7469. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7470. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7471. }
  7472. I915_WRITE(PCH_DPLL(pll->id), 0);
  7473. POSTING_READ(PCH_DPLL(pll->id));
  7474. udelay(200);
  7475. }
  7476. static char *ibx_pch_dpll_names[] = {
  7477. "PCH DPLL A",
  7478. "PCH DPLL B",
  7479. };
  7480. static void ibx_pch_dpll_init(struct drm_device *dev)
  7481. {
  7482. struct drm_i915_private *dev_priv = dev->dev_private;
  7483. int i;
  7484. dev_priv->num_shared_dpll = 2;
  7485. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7486. dev_priv->shared_dplls[i].id = i;
  7487. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7488. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7489. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7490. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7491. dev_priv->shared_dplls[i].get_hw_state =
  7492. ibx_pch_dpll_get_hw_state;
  7493. }
  7494. }
  7495. static void intel_shared_dpll_init(struct drm_device *dev)
  7496. {
  7497. struct drm_i915_private *dev_priv = dev->dev_private;
  7498. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7499. ibx_pch_dpll_init(dev);
  7500. else
  7501. dev_priv->num_shared_dpll = 0;
  7502. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7503. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7504. dev_priv->num_shared_dpll);
  7505. }
  7506. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7507. {
  7508. drm_i915_private_t *dev_priv = dev->dev_private;
  7509. struct intel_crtc *intel_crtc;
  7510. int i;
  7511. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7512. if (intel_crtc == NULL)
  7513. return;
  7514. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7515. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7516. for (i = 0; i < 256; i++) {
  7517. intel_crtc->lut_r[i] = i;
  7518. intel_crtc->lut_g[i] = i;
  7519. intel_crtc->lut_b[i] = i;
  7520. }
  7521. /* Swap pipes & planes for FBC on pre-965 */
  7522. intel_crtc->pipe = pipe;
  7523. intel_crtc->plane = pipe;
  7524. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7525. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7526. intel_crtc->plane = !pipe;
  7527. }
  7528. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7529. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7530. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7531. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7532. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7533. }
  7534. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7535. struct drm_file *file)
  7536. {
  7537. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7538. struct drm_mode_object *drmmode_obj;
  7539. struct intel_crtc *crtc;
  7540. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7541. return -ENODEV;
  7542. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7543. DRM_MODE_OBJECT_CRTC);
  7544. if (!drmmode_obj) {
  7545. DRM_ERROR("no such CRTC id\n");
  7546. return -EINVAL;
  7547. }
  7548. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7549. pipe_from_crtc_id->pipe = crtc->pipe;
  7550. return 0;
  7551. }
  7552. static int intel_encoder_clones(struct intel_encoder *encoder)
  7553. {
  7554. struct drm_device *dev = encoder->base.dev;
  7555. struct intel_encoder *source_encoder;
  7556. int index_mask = 0;
  7557. int entry = 0;
  7558. list_for_each_entry(source_encoder,
  7559. &dev->mode_config.encoder_list, base.head) {
  7560. if (encoder == source_encoder)
  7561. index_mask |= (1 << entry);
  7562. /* Intel hw has only one MUX where enocoders could be cloned. */
  7563. if (encoder->cloneable && source_encoder->cloneable)
  7564. index_mask |= (1 << entry);
  7565. entry++;
  7566. }
  7567. return index_mask;
  7568. }
  7569. static bool has_edp_a(struct drm_device *dev)
  7570. {
  7571. struct drm_i915_private *dev_priv = dev->dev_private;
  7572. if (!IS_MOBILE(dev))
  7573. return false;
  7574. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7575. return false;
  7576. if (IS_GEN5(dev) &&
  7577. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7578. return false;
  7579. return true;
  7580. }
  7581. static void intel_setup_outputs(struct drm_device *dev)
  7582. {
  7583. struct drm_i915_private *dev_priv = dev->dev_private;
  7584. struct intel_encoder *encoder;
  7585. bool dpd_is_edp = false;
  7586. intel_lvds_init(dev);
  7587. if (!IS_ULT(dev))
  7588. intel_crt_init(dev);
  7589. if (HAS_DDI(dev)) {
  7590. int found;
  7591. /* Haswell uses DDI functions to detect digital outputs */
  7592. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7593. /* DDI A only supports eDP */
  7594. if (found)
  7595. intel_ddi_init(dev, PORT_A);
  7596. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7597. * register */
  7598. found = I915_READ(SFUSE_STRAP);
  7599. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7600. intel_ddi_init(dev, PORT_B);
  7601. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7602. intel_ddi_init(dev, PORT_C);
  7603. if (found & SFUSE_STRAP_DDID_DETECTED)
  7604. intel_ddi_init(dev, PORT_D);
  7605. } else if (HAS_PCH_SPLIT(dev)) {
  7606. int found;
  7607. dpd_is_edp = intel_dpd_is_edp(dev);
  7608. if (has_edp_a(dev))
  7609. intel_dp_init(dev, DP_A, PORT_A);
  7610. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7611. /* PCH SDVOB multiplex with HDMIB */
  7612. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7613. if (!found)
  7614. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7615. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7616. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7617. }
  7618. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7619. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7620. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7621. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7622. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7623. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7624. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7625. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7626. } else if (IS_VALLEYVIEW(dev)) {
  7627. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7628. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7629. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7630. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7631. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7632. PORT_B);
  7633. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7634. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7635. }
  7636. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7637. bool found = false;
  7638. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7639. DRM_DEBUG_KMS("probing SDVOB\n");
  7640. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7641. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7642. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7643. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7644. }
  7645. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7646. intel_dp_init(dev, DP_B, PORT_B);
  7647. }
  7648. /* Before G4X SDVOC doesn't have its own detect register */
  7649. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7650. DRM_DEBUG_KMS("probing SDVOC\n");
  7651. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7652. }
  7653. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7654. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7655. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7656. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7657. }
  7658. if (SUPPORTS_INTEGRATED_DP(dev))
  7659. intel_dp_init(dev, DP_C, PORT_C);
  7660. }
  7661. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7662. (I915_READ(DP_D) & DP_DETECTED))
  7663. intel_dp_init(dev, DP_D, PORT_D);
  7664. } else if (IS_GEN2(dev))
  7665. intel_dvo_init(dev);
  7666. if (SUPPORTS_TV(dev))
  7667. intel_tv_init(dev);
  7668. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7669. encoder->base.possible_crtcs = encoder->crtc_mask;
  7670. encoder->base.possible_clones =
  7671. intel_encoder_clones(encoder);
  7672. }
  7673. intel_init_pch_refclk(dev);
  7674. drm_helper_move_panel_connectors_to_head(dev);
  7675. }
  7676. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7677. {
  7678. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7679. drm_framebuffer_cleanup(fb);
  7680. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7681. kfree(intel_fb);
  7682. }
  7683. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7684. struct drm_file *file,
  7685. unsigned int *handle)
  7686. {
  7687. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7688. struct drm_i915_gem_object *obj = intel_fb->obj;
  7689. return drm_gem_handle_create(file, &obj->base, handle);
  7690. }
  7691. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7692. .destroy = intel_user_framebuffer_destroy,
  7693. .create_handle = intel_user_framebuffer_create_handle,
  7694. };
  7695. int intel_framebuffer_init(struct drm_device *dev,
  7696. struct intel_framebuffer *intel_fb,
  7697. struct drm_mode_fb_cmd2 *mode_cmd,
  7698. struct drm_i915_gem_object *obj)
  7699. {
  7700. int pitch_limit;
  7701. int ret;
  7702. if (obj->tiling_mode == I915_TILING_Y) {
  7703. DRM_DEBUG("hardware does not support tiling Y\n");
  7704. return -EINVAL;
  7705. }
  7706. if (mode_cmd->pitches[0] & 63) {
  7707. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7708. mode_cmd->pitches[0]);
  7709. return -EINVAL;
  7710. }
  7711. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  7712. pitch_limit = 32*1024;
  7713. } else if (INTEL_INFO(dev)->gen >= 4) {
  7714. if (obj->tiling_mode)
  7715. pitch_limit = 16*1024;
  7716. else
  7717. pitch_limit = 32*1024;
  7718. } else if (INTEL_INFO(dev)->gen >= 3) {
  7719. if (obj->tiling_mode)
  7720. pitch_limit = 8*1024;
  7721. else
  7722. pitch_limit = 16*1024;
  7723. } else
  7724. /* XXX DSPC is limited to 4k tiled */
  7725. pitch_limit = 8*1024;
  7726. if (mode_cmd->pitches[0] > pitch_limit) {
  7727. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  7728. obj->tiling_mode ? "tiled" : "linear",
  7729. mode_cmd->pitches[0], pitch_limit);
  7730. return -EINVAL;
  7731. }
  7732. if (obj->tiling_mode != I915_TILING_NONE &&
  7733. mode_cmd->pitches[0] != obj->stride) {
  7734. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7735. mode_cmd->pitches[0], obj->stride);
  7736. return -EINVAL;
  7737. }
  7738. /* Reject formats not supported by any plane early. */
  7739. switch (mode_cmd->pixel_format) {
  7740. case DRM_FORMAT_C8:
  7741. case DRM_FORMAT_RGB565:
  7742. case DRM_FORMAT_XRGB8888:
  7743. case DRM_FORMAT_ARGB8888:
  7744. break;
  7745. case DRM_FORMAT_XRGB1555:
  7746. case DRM_FORMAT_ARGB1555:
  7747. if (INTEL_INFO(dev)->gen > 3) {
  7748. DRM_DEBUG("unsupported pixel format: %s\n",
  7749. drm_get_format_name(mode_cmd->pixel_format));
  7750. return -EINVAL;
  7751. }
  7752. break;
  7753. case DRM_FORMAT_XBGR8888:
  7754. case DRM_FORMAT_ABGR8888:
  7755. case DRM_FORMAT_XRGB2101010:
  7756. case DRM_FORMAT_ARGB2101010:
  7757. case DRM_FORMAT_XBGR2101010:
  7758. case DRM_FORMAT_ABGR2101010:
  7759. if (INTEL_INFO(dev)->gen < 4) {
  7760. DRM_DEBUG("unsupported pixel format: %s\n",
  7761. drm_get_format_name(mode_cmd->pixel_format));
  7762. return -EINVAL;
  7763. }
  7764. break;
  7765. case DRM_FORMAT_YUYV:
  7766. case DRM_FORMAT_UYVY:
  7767. case DRM_FORMAT_YVYU:
  7768. case DRM_FORMAT_VYUY:
  7769. if (INTEL_INFO(dev)->gen < 5) {
  7770. DRM_DEBUG("unsupported pixel format: %s\n",
  7771. drm_get_format_name(mode_cmd->pixel_format));
  7772. return -EINVAL;
  7773. }
  7774. break;
  7775. default:
  7776. DRM_DEBUG("unsupported pixel format: %s\n",
  7777. drm_get_format_name(mode_cmd->pixel_format));
  7778. return -EINVAL;
  7779. }
  7780. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7781. if (mode_cmd->offsets[0] != 0)
  7782. return -EINVAL;
  7783. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7784. intel_fb->obj = obj;
  7785. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7786. if (ret) {
  7787. DRM_ERROR("framebuffer init failed %d\n", ret);
  7788. return ret;
  7789. }
  7790. return 0;
  7791. }
  7792. static struct drm_framebuffer *
  7793. intel_user_framebuffer_create(struct drm_device *dev,
  7794. struct drm_file *filp,
  7795. struct drm_mode_fb_cmd2 *mode_cmd)
  7796. {
  7797. struct drm_i915_gem_object *obj;
  7798. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7799. mode_cmd->handles[0]));
  7800. if (&obj->base == NULL)
  7801. return ERR_PTR(-ENOENT);
  7802. return intel_framebuffer_create(dev, mode_cmd, obj);
  7803. }
  7804. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7805. .fb_create = intel_user_framebuffer_create,
  7806. .output_poll_changed = intel_fb_output_poll_changed,
  7807. };
  7808. /* Set up chip specific display functions */
  7809. static void intel_init_display(struct drm_device *dev)
  7810. {
  7811. struct drm_i915_private *dev_priv = dev->dev_private;
  7812. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  7813. dev_priv->display.find_dpll = g4x_find_best_dpll;
  7814. else if (IS_VALLEYVIEW(dev))
  7815. dev_priv->display.find_dpll = vlv_find_best_dpll;
  7816. else if (IS_PINEVIEW(dev))
  7817. dev_priv->display.find_dpll = pnv_find_best_dpll;
  7818. else
  7819. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  7820. if (HAS_DDI(dev)) {
  7821. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7822. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7823. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7824. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7825. dev_priv->display.off = haswell_crtc_off;
  7826. dev_priv->display.update_plane = ironlake_update_plane;
  7827. } else if (HAS_PCH_SPLIT(dev)) {
  7828. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7829. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  7830. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7831. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7832. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7833. dev_priv->display.off = ironlake_crtc_off;
  7834. dev_priv->display.update_plane = ironlake_update_plane;
  7835. } else if (IS_VALLEYVIEW(dev)) {
  7836. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7837. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  7838. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7839. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7840. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7841. dev_priv->display.off = i9xx_crtc_off;
  7842. dev_priv->display.update_plane = i9xx_update_plane;
  7843. } else {
  7844. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7845. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  7846. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7847. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7848. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7849. dev_priv->display.off = i9xx_crtc_off;
  7850. dev_priv->display.update_plane = i9xx_update_plane;
  7851. }
  7852. /* Returns the core display clock speed */
  7853. if (IS_VALLEYVIEW(dev))
  7854. dev_priv->display.get_display_clock_speed =
  7855. valleyview_get_display_clock_speed;
  7856. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7857. dev_priv->display.get_display_clock_speed =
  7858. i945_get_display_clock_speed;
  7859. else if (IS_I915G(dev))
  7860. dev_priv->display.get_display_clock_speed =
  7861. i915_get_display_clock_speed;
  7862. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7863. dev_priv->display.get_display_clock_speed =
  7864. i9xx_misc_get_display_clock_speed;
  7865. else if (IS_I915GM(dev))
  7866. dev_priv->display.get_display_clock_speed =
  7867. i915gm_get_display_clock_speed;
  7868. else if (IS_I865G(dev))
  7869. dev_priv->display.get_display_clock_speed =
  7870. i865_get_display_clock_speed;
  7871. else if (IS_I85X(dev))
  7872. dev_priv->display.get_display_clock_speed =
  7873. i855_get_display_clock_speed;
  7874. else /* 852, 830 */
  7875. dev_priv->display.get_display_clock_speed =
  7876. i830_get_display_clock_speed;
  7877. if (HAS_PCH_SPLIT(dev)) {
  7878. if (IS_GEN5(dev)) {
  7879. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7880. dev_priv->display.write_eld = ironlake_write_eld;
  7881. } else if (IS_GEN6(dev)) {
  7882. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7883. dev_priv->display.write_eld = ironlake_write_eld;
  7884. } else if (IS_IVYBRIDGE(dev)) {
  7885. /* FIXME: detect B0+ stepping and use auto training */
  7886. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7887. dev_priv->display.write_eld = ironlake_write_eld;
  7888. dev_priv->display.modeset_global_resources =
  7889. ivb_modeset_global_resources;
  7890. } else if (IS_HASWELL(dev)) {
  7891. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7892. dev_priv->display.write_eld = haswell_write_eld;
  7893. dev_priv->display.modeset_global_resources =
  7894. haswell_modeset_global_resources;
  7895. }
  7896. } else if (IS_G4X(dev)) {
  7897. dev_priv->display.write_eld = g4x_write_eld;
  7898. }
  7899. /* Default just returns -ENODEV to indicate unsupported */
  7900. dev_priv->display.queue_flip = intel_default_queue_flip;
  7901. switch (INTEL_INFO(dev)->gen) {
  7902. case 2:
  7903. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7904. break;
  7905. case 3:
  7906. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7907. break;
  7908. case 4:
  7909. case 5:
  7910. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7911. break;
  7912. case 6:
  7913. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7914. break;
  7915. case 7:
  7916. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7917. break;
  7918. }
  7919. }
  7920. /*
  7921. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7922. * resume, or other times. This quirk makes sure that's the case for
  7923. * affected systems.
  7924. */
  7925. static void quirk_pipea_force(struct drm_device *dev)
  7926. {
  7927. struct drm_i915_private *dev_priv = dev->dev_private;
  7928. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7929. DRM_INFO("applying pipe a force quirk\n");
  7930. }
  7931. /*
  7932. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7933. */
  7934. static void quirk_ssc_force_disable(struct drm_device *dev)
  7935. {
  7936. struct drm_i915_private *dev_priv = dev->dev_private;
  7937. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7938. DRM_INFO("applying lvds SSC disable quirk\n");
  7939. }
  7940. /*
  7941. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7942. * brightness value
  7943. */
  7944. static void quirk_invert_brightness(struct drm_device *dev)
  7945. {
  7946. struct drm_i915_private *dev_priv = dev->dev_private;
  7947. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7948. DRM_INFO("applying inverted panel brightness quirk\n");
  7949. }
  7950. struct intel_quirk {
  7951. int device;
  7952. int subsystem_vendor;
  7953. int subsystem_device;
  7954. void (*hook)(struct drm_device *dev);
  7955. };
  7956. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7957. struct intel_dmi_quirk {
  7958. void (*hook)(struct drm_device *dev);
  7959. const struct dmi_system_id (*dmi_id_list)[];
  7960. };
  7961. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7962. {
  7963. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7964. return 1;
  7965. }
  7966. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7967. {
  7968. .dmi_id_list = &(const struct dmi_system_id[]) {
  7969. {
  7970. .callback = intel_dmi_reverse_brightness,
  7971. .ident = "NCR Corporation",
  7972. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7973. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7974. },
  7975. },
  7976. { } /* terminating entry */
  7977. },
  7978. .hook = quirk_invert_brightness,
  7979. },
  7980. };
  7981. static struct intel_quirk intel_quirks[] = {
  7982. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7983. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7984. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7985. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7986. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7987. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7988. /* 830/845 need to leave pipe A & dpll A up */
  7989. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7990. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7991. /* Lenovo U160 cannot use SSC on LVDS */
  7992. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7993. /* Sony Vaio Y cannot use SSC on LVDS */
  7994. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7995. /* Acer Aspire 5734Z must invert backlight brightness */
  7996. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7997. /* Acer/eMachines G725 */
  7998. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7999. /* Acer/eMachines e725 */
  8000. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8001. /* Acer/Packard Bell NCL20 */
  8002. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8003. /* Acer Aspire 4736Z */
  8004. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8005. };
  8006. static void intel_init_quirks(struct drm_device *dev)
  8007. {
  8008. struct pci_dev *d = dev->pdev;
  8009. int i;
  8010. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8011. struct intel_quirk *q = &intel_quirks[i];
  8012. if (d->device == q->device &&
  8013. (d->subsystem_vendor == q->subsystem_vendor ||
  8014. q->subsystem_vendor == PCI_ANY_ID) &&
  8015. (d->subsystem_device == q->subsystem_device ||
  8016. q->subsystem_device == PCI_ANY_ID))
  8017. q->hook(dev);
  8018. }
  8019. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8020. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8021. intel_dmi_quirks[i].hook(dev);
  8022. }
  8023. }
  8024. /* Disable the VGA plane that we never use */
  8025. static void i915_disable_vga(struct drm_device *dev)
  8026. {
  8027. struct drm_i915_private *dev_priv = dev->dev_private;
  8028. u8 sr1;
  8029. u32 vga_reg = i915_vgacntrl_reg(dev);
  8030. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8031. outb(SR01, VGA_SR_INDEX);
  8032. sr1 = inb(VGA_SR_DATA);
  8033. outb(sr1 | 1<<5, VGA_SR_DATA);
  8034. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8035. udelay(300);
  8036. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8037. POSTING_READ(vga_reg);
  8038. }
  8039. void intel_modeset_init_hw(struct drm_device *dev)
  8040. {
  8041. intel_init_power_well(dev);
  8042. intel_prepare_ddi(dev);
  8043. intel_init_clock_gating(dev);
  8044. mutex_lock(&dev->struct_mutex);
  8045. intel_enable_gt_powersave(dev);
  8046. mutex_unlock(&dev->struct_mutex);
  8047. }
  8048. void intel_modeset_suspend_hw(struct drm_device *dev)
  8049. {
  8050. intel_suspend_hw(dev);
  8051. }
  8052. void intel_modeset_init(struct drm_device *dev)
  8053. {
  8054. struct drm_i915_private *dev_priv = dev->dev_private;
  8055. int i, j, ret;
  8056. drm_mode_config_init(dev);
  8057. dev->mode_config.min_width = 0;
  8058. dev->mode_config.min_height = 0;
  8059. dev->mode_config.preferred_depth = 24;
  8060. dev->mode_config.prefer_shadow = 1;
  8061. dev->mode_config.funcs = &intel_mode_funcs;
  8062. intel_init_quirks(dev);
  8063. intel_init_pm(dev);
  8064. if (INTEL_INFO(dev)->num_pipes == 0)
  8065. return;
  8066. intel_init_display(dev);
  8067. if (IS_GEN2(dev)) {
  8068. dev->mode_config.max_width = 2048;
  8069. dev->mode_config.max_height = 2048;
  8070. } else if (IS_GEN3(dev)) {
  8071. dev->mode_config.max_width = 4096;
  8072. dev->mode_config.max_height = 4096;
  8073. } else {
  8074. dev->mode_config.max_width = 8192;
  8075. dev->mode_config.max_height = 8192;
  8076. }
  8077. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8078. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8079. INTEL_INFO(dev)->num_pipes,
  8080. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8081. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  8082. intel_crtc_init(dev, i);
  8083. for (j = 0; j < dev_priv->num_plane; j++) {
  8084. ret = intel_plane_init(dev, i, j);
  8085. if (ret)
  8086. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8087. pipe_name(i), sprite_name(i, j), ret);
  8088. }
  8089. }
  8090. intel_cpu_pll_init(dev);
  8091. intel_shared_dpll_init(dev);
  8092. /* Just disable it once at startup */
  8093. i915_disable_vga(dev);
  8094. intel_setup_outputs(dev);
  8095. /* Just in case the BIOS is doing something questionable. */
  8096. intel_disable_fbc(dev);
  8097. }
  8098. static void
  8099. intel_connector_break_all_links(struct intel_connector *connector)
  8100. {
  8101. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8102. connector->base.encoder = NULL;
  8103. connector->encoder->connectors_active = false;
  8104. connector->encoder->base.crtc = NULL;
  8105. }
  8106. static void intel_enable_pipe_a(struct drm_device *dev)
  8107. {
  8108. struct intel_connector *connector;
  8109. struct drm_connector *crt = NULL;
  8110. struct intel_load_detect_pipe load_detect_temp;
  8111. /* We can't just switch on the pipe A, we need to set things up with a
  8112. * proper mode and output configuration. As a gross hack, enable pipe A
  8113. * by enabling the load detect pipe once. */
  8114. list_for_each_entry(connector,
  8115. &dev->mode_config.connector_list,
  8116. base.head) {
  8117. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8118. crt = &connector->base;
  8119. break;
  8120. }
  8121. }
  8122. if (!crt)
  8123. return;
  8124. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8125. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8126. }
  8127. static bool
  8128. intel_check_plane_mapping(struct intel_crtc *crtc)
  8129. {
  8130. struct drm_device *dev = crtc->base.dev;
  8131. struct drm_i915_private *dev_priv = dev->dev_private;
  8132. u32 reg, val;
  8133. if (INTEL_INFO(dev)->num_pipes == 1)
  8134. return true;
  8135. reg = DSPCNTR(!crtc->plane);
  8136. val = I915_READ(reg);
  8137. if ((val & DISPLAY_PLANE_ENABLE) &&
  8138. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8139. return false;
  8140. return true;
  8141. }
  8142. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8143. {
  8144. struct drm_device *dev = crtc->base.dev;
  8145. struct drm_i915_private *dev_priv = dev->dev_private;
  8146. u32 reg;
  8147. /* Clear any frame start delays used for debugging left by the BIOS */
  8148. reg = PIPECONF(crtc->config.cpu_transcoder);
  8149. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8150. /* We need to sanitize the plane -> pipe mapping first because this will
  8151. * disable the crtc (and hence change the state) if it is wrong. Note
  8152. * that gen4+ has a fixed plane -> pipe mapping. */
  8153. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8154. struct intel_connector *connector;
  8155. bool plane;
  8156. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8157. crtc->base.base.id);
  8158. /* Pipe has the wrong plane attached and the plane is active.
  8159. * Temporarily change the plane mapping and disable everything
  8160. * ... */
  8161. plane = crtc->plane;
  8162. crtc->plane = !plane;
  8163. dev_priv->display.crtc_disable(&crtc->base);
  8164. crtc->plane = plane;
  8165. /* ... and break all links. */
  8166. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8167. base.head) {
  8168. if (connector->encoder->base.crtc != &crtc->base)
  8169. continue;
  8170. intel_connector_break_all_links(connector);
  8171. }
  8172. WARN_ON(crtc->active);
  8173. crtc->base.enabled = false;
  8174. }
  8175. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8176. crtc->pipe == PIPE_A && !crtc->active) {
  8177. /* BIOS forgot to enable pipe A, this mostly happens after
  8178. * resume. Force-enable the pipe to fix this, the update_dpms
  8179. * call below we restore the pipe to the right state, but leave
  8180. * the required bits on. */
  8181. intel_enable_pipe_a(dev);
  8182. }
  8183. /* Adjust the state of the output pipe according to whether we
  8184. * have active connectors/encoders. */
  8185. intel_crtc_update_dpms(&crtc->base);
  8186. if (crtc->active != crtc->base.enabled) {
  8187. struct intel_encoder *encoder;
  8188. /* This can happen either due to bugs in the get_hw_state
  8189. * functions or because the pipe is force-enabled due to the
  8190. * pipe A quirk. */
  8191. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8192. crtc->base.base.id,
  8193. crtc->base.enabled ? "enabled" : "disabled",
  8194. crtc->active ? "enabled" : "disabled");
  8195. crtc->base.enabled = crtc->active;
  8196. /* Because we only establish the connector -> encoder ->
  8197. * crtc links if something is active, this means the
  8198. * crtc is now deactivated. Break the links. connector
  8199. * -> encoder links are only establish when things are
  8200. * actually up, hence no need to break them. */
  8201. WARN_ON(crtc->active);
  8202. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8203. WARN_ON(encoder->connectors_active);
  8204. encoder->base.crtc = NULL;
  8205. }
  8206. }
  8207. }
  8208. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8209. {
  8210. struct intel_connector *connector;
  8211. struct drm_device *dev = encoder->base.dev;
  8212. /* We need to check both for a crtc link (meaning that the
  8213. * encoder is active and trying to read from a pipe) and the
  8214. * pipe itself being active. */
  8215. bool has_active_crtc = encoder->base.crtc &&
  8216. to_intel_crtc(encoder->base.crtc)->active;
  8217. if (encoder->connectors_active && !has_active_crtc) {
  8218. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8219. encoder->base.base.id,
  8220. drm_get_encoder_name(&encoder->base));
  8221. /* Connector is active, but has no active pipe. This is
  8222. * fallout from our resume register restoring. Disable
  8223. * the encoder manually again. */
  8224. if (encoder->base.crtc) {
  8225. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8226. encoder->base.base.id,
  8227. drm_get_encoder_name(&encoder->base));
  8228. encoder->disable(encoder);
  8229. }
  8230. /* Inconsistent output/port/pipe state happens presumably due to
  8231. * a bug in one of the get_hw_state functions. Or someplace else
  8232. * in our code, like the register restore mess on resume. Clamp
  8233. * things to off as a safer default. */
  8234. list_for_each_entry(connector,
  8235. &dev->mode_config.connector_list,
  8236. base.head) {
  8237. if (connector->encoder != encoder)
  8238. continue;
  8239. intel_connector_break_all_links(connector);
  8240. }
  8241. }
  8242. /* Enabled encoders without active connectors will be fixed in
  8243. * the crtc fixup. */
  8244. }
  8245. void i915_redisable_vga(struct drm_device *dev)
  8246. {
  8247. struct drm_i915_private *dev_priv = dev->dev_private;
  8248. u32 vga_reg = i915_vgacntrl_reg(dev);
  8249. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8250. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8251. i915_disable_vga(dev);
  8252. }
  8253. }
  8254. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8255. {
  8256. struct drm_i915_private *dev_priv = dev->dev_private;
  8257. enum pipe pipe;
  8258. struct intel_crtc *crtc;
  8259. struct intel_encoder *encoder;
  8260. struct intel_connector *connector;
  8261. int i;
  8262. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8263. base.head) {
  8264. memset(&crtc->config, 0, sizeof(crtc->config));
  8265. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8266. &crtc->config);
  8267. crtc->base.enabled = crtc->active;
  8268. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8269. crtc->base.base.id,
  8270. crtc->active ? "enabled" : "disabled");
  8271. }
  8272. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8273. if (HAS_DDI(dev))
  8274. intel_ddi_setup_hw_pll_state(dev);
  8275. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8276. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8277. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8278. pll->active = 0;
  8279. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8280. base.head) {
  8281. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8282. pll->active++;
  8283. }
  8284. pll->refcount = pll->active;
  8285. DRM_DEBUG_KMS("%s hw state readout: refcount %i\n",
  8286. pll->name, pll->refcount);
  8287. }
  8288. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8289. base.head) {
  8290. pipe = 0;
  8291. if (encoder->get_hw_state(encoder, &pipe)) {
  8292. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8293. encoder->base.crtc = &crtc->base;
  8294. if (encoder->get_config)
  8295. encoder->get_config(encoder, &crtc->config);
  8296. } else {
  8297. encoder->base.crtc = NULL;
  8298. }
  8299. encoder->connectors_active = false;
  8300. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8301. encoder->base.base.id,
  8302. drm_get_encoder_name(&encoder->base),
  8303. encoder->base.crtc ? "enabled" : "disabled",
  8304. pipe);
  8305. }
  8306. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8307. base.head) {
  8308. if (!crtc->active)
  8309. continue;
  8310. if (dev_priv->display.get_clock)
  8311. dev_priv->display.get_clock(crtc,
  8312. &crtc->config);
  8313. }
  8314. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8315. base.head) {
  8316. if (connector->get_hw_state(connector)) {
  8317. connector->base.dpms = DRM_MODE_DPMS_ON;
  8318. connector->encoder->connectors_active = true;
  8319. connector->base.encoder = &connector->encoder->base;
  8320. } else {
  8321. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8322. connector->base.encoder = NULL;
  8323. }
  8324. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8325. connector->base.base.id,
  8326. drm_get_connector_name(&connector->base),
  8327. connector->base.encoder ? "enabled" : "disabled");
  8328. }
  8329. }
  8330. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8331. * and i915 state tracking structures. */
  8332. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8333. bool force_restore)
  8334. {
  8335. struct drm_i915_private *dev_priv = dev->dev_private;
  8336. enum pipe pipe;
  8337. struct drm_plane *plane;
  8338. struct intel_crtc *crtc;
  8339. struct intel_encoder *encoder;
  8340. intel_modeset_readout_hw_state(dev);
  8341. /*
  8342. * Now that we have the config, copy it to each CRTC struct
  8343. * Note that this could go away if we move to using crtc_config
  8344. * checking everywhere.
  8345. */
  8346. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8347. base.head) {
  8348. if (crtc->active && i915_fastboot) {
  8349. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8350. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8351. crtc->base.base.id);
  8352. drm_mode_debug_printmodeline(&crtc->base.mode);
  8353. }
  8354. }
  8355. /* HW state is read out, now we need to sanitize this mess. */
  8356. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8357. base.head) {
  8358. intel_sanitize_encoder(encoder);
  8359. }
  8360. for_each_pipe(pipe) {
  8361. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8362. intel_sanitize_crtc(crtc);
  8363. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8364. }
  8365. if (force_restore) {
  8366. /*
  8367. * We need to use raw interfaces for restoring state to avoid
  8368. * checking (bogus) intermediate states.
  8369. */
  8370. for_each_pipe(pipe) {
  8371. struct drm_crtc *crtc =
  8372. dev_priv->pipe_to_crtc_mapping[pipe];
  8373. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8374. crtc->fb);
  8375. }
  8376. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8377. intel_plane_restore(plane);
  8378. i915_redisable_vga(dev);
  8379. } else {
  8380. intel_modeset_update_staged_output_state(dev);
  8381. }
  8382. intel_modeset_check_state(dev);
  8383. drm_mode_config_reset(dev);
  8384. }
  8385. void intel_modeset_gem_init(struct drm_device *dev)
  8386. {
  8387. intel_modeset_init_hw(dev);
  8388. intel_setup_overlay(dev);
  8389. intel_modeset_setup_hw_state(dev, false);
  8390. }
  8391. void intel_modeset_cleanup(struct drm_device *dev)
  8392. {
  8393. struct drm_i915_private *dev_priv = dev->dev_private;
  8394. struct drm_crtc *crtc;
  8395. struct intel_crtc *intel_crtc;
  8396. /*
  8397. * Interrupts and polling as the first thing to avoid creating havoc.
  8398. * Too much stuff here (turning of rps, connectors, ...) would
  8399. * experience fancy races otherwise.
  8400. */
  8401. drm_irq_uninstall(dev);
  8402. cancel_work_sync(&dev_priv->hotplug_work);
  8403. /*
  8404. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8405. * poll handlers. Hence disable polling after hpd handling is shut down.
  8406. */
  8407. drm_kms_helper_poll_fini(dev);
  8408. mutex_lock(&dev->struct_mutex);
  8409. intel_unregister_dsm_handler();
  8410. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8411. /* Skip inactive CRTCs */
  8412. if (!crtc->fb)
  8413. continue;
  8414. intel_crtc = to_intel_crtc(crtc);
  8415. intel_increase_pllclock(crtc);
  8416. }
  8417. intel_disable_fbc(dev);
  8418. intel_disable_gt_powersave(dev);
  8419. ironlake_teardown_rc6(dev);
  8420. mutex_unlock(&dev->struct_mutex);
  8421. /* flush any delayed tasks or pending work */
  8422. flush_scheduled_work();
  8423. /* destroy backlight, if any, before the connectors */
  8424. intel_panel_destroy_backlight(dev);
  8425. drm_mode_config_cleanup(dev);
  8426. intel_cleanup_overlay(dev);
  8427. }
  8428. /*
  8429. * Return which encoder is currently attached for connector.
  8430. */
  8431. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8432. {
  8433. return &intel_attached_encoder(connector)->base;
  8434. }
  8435. void intel_connector_attach_encoder(struct intel_connector *connector,
  8436. struct intel_encoder *encoder)
  8437. {
  8438. connector->encoder = encoder;
  8439. drm_mode_connector_attach_encoder(&connector->base,
  8440. &encoder->base);
  8441. }
  8442. /*
  8443. * set vga decode state - true == enable VGA decode
  8444. */
  8445. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8446. {
  8447. struct drm_i915_private *dev_priv = dev->dev_private;
  8448. u16 gmch_ctrl;
  8449. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8450. if (state)
  8451. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8452. else
  8453. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8454. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8455. return 0;
  8456. }
  8457. #ifdef CONFIG_DEBUG_FS
  8458. #include <linux/seq_file.h>
  8459. struct intel_display_error_state {
  8460. u32 power_well_driver;
  8461. struct intel_cursor_error_state {
  8462. u32 control;
  8463. u32 position;
  8464. u32 base;
  8465. u32 size;
  8466. } cursor[I915_MAX_PIPES];
  8467. struct intel_pipe_error_state {
  8468. enum transcoder cpu_transcoder;
  8469. u32 conf;
  8470. u32 source;
  8471. u32 htotal;
  8472. u32 hblank;
  8473. u32 hsync;
  8474. u32 vtotal;
  8475. u32 vblank;
  8476. u32 vsync;
  8477. } pipe[I915_MAX_PIPES];
  8478. struct intel_plane_error_state {
  8479. u32 control;
  8480. u32 stride;
  8481. u32 size;
  8482. u32 pos;
  8483. u32 addr;
  8484. u32 surface;
  8485. u32 tile_offset;
  8486. } plane[I915_MAX_PIPES];
  8487. };
  8488. struct intel_display_error_state *
  8489. intel_display_capture_error_state(struct drm_device *dev)
  8490. {
  8491. drm_i915_private_t *dev_priv = dev->dev_private;
  8492. struct intel_display_error_state *error;
  8493. enum transcoder cpu_transcoder;
  8494. int i;
  8495. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8496. if (error == NULL)
  8497. return NULL;
  8498. if (HAS_POWER_WELL(dev))
  8499. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8500. for_each_pipe(i) {
  8501. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8502. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8503. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8504. error->cursor[i].control = I915_READ(CURCNTR(i));
  8505. error->cursor[i].position = I915_READ(CURPOS(i));
  8506. error->cursor[i].base = I915_READ(CURBASE(i));
  8507. } else {
  8508. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8509. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8510. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8511. }
  8512. error->plane[i].control = I915_READ(DSPCNTR(i));
  8513. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8514. if (INTEL_INFO(dev)->gen <= 3) {
  8515. error->plane[i].size = I915_READ(DSPSIZE(i));
  8516. error->plane[i].pos = I915_READ(DSPPOS(i));
  8517. }
  8518. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8519. error->plane[i].addr = I915_READ(DSPADDR(i));
  8520. if (INTEL_INFO(dev)->gen >= 4) {
  8521. error->plane[i].surface = I915_READ(DSPSURF(i));
  8522. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8523. }
  8524. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8525. error->pipe[i].source = I915_READ(PIPESRC(i));
  8526. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8527. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8528. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8529. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8530. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8531. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8532. }
  8533. /* In the code above we read the registers without checking if the power
  8534. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8535. * prevent the next I915_WRITE from detecting it and printing an error
  8536. * message. */
  8537. if (HAS_POWER_WELL(dev))
  8538. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8539. return error;
  8540. }
  8541. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8542. void
  8543. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8544. struct drm_device *dev,
  8545. struct intel_display_error_state *error)
  8546. {
  8547. int i;
  8548. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8549. if (HAS_POWER_WELL(dev))
  8550. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8551. error->power_well_driver);
  8552. for_each_pipe(i) {
  8553. err_printf(m, "Pipe [%d]:\n", i);
  8554. err_printf(m, " CPU transcoder: %c\n",
  8555. transcoder_name(error->pipe[i].cpu_transcoder));
  8556. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8557. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8558. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8559. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8560. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8561. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8562. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8563. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8564. err_printf(m, "Plane [%d]:\n", i);
  8565. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8566. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8567. if (INTEL_INFO(dev)->gen <= 3) {
  8568. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8569. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8570. }
  8571. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8572. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8573. if (INTEL_INFO(dev)->gen >= 4) {
  8574. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8575. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8576. }
  8577. err_printf(m, "Cursor [%d]:\n", i);
  8578. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8579. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8580. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8581. }
  8582. }
  8583. #endif