sched.c 219 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define NICE_0_LOAD SCHED_LOAD_SCALE
  97. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  98. /*
  99. * These are the 'tuning knobs' of the scheduler:
  100. *
  101. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. /*
  106. * single value that denotes runtime == period, ie unlimited time.
  107. */
  108. #define RUNTIME_INF ((u64)~0ULL)
  109. #ifdef CONFIG_SMP
  110. /*
  111. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  112. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  113. */
  114. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  115. {
  116. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  117. }
  118. /*
  119. * Each time a sched group cpu_power is changed,
  120. * we must compute its reciprocal value
  121. */
  122. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  123. {
  124. sg->__cpu_power += val;
  125. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  126. }
  127. #endif
  128. static inline int rt_policy(int policy)
  129. {
  130. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  131. return 1;
  132. return 0;
  133. }
  134. static inline int task_has_rt_policy(struct task_struct *p)
  135. {
  136. return rt_policy(p->policy);
  137. }
  138. /*
  139. * This is the priority-queue data structure of the RT scheduling class:
  140. */
  141. struct rt_prio_array {
  142. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  143. struct list_head queue[MAX_RT_PRIO];
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start(&rt_b->rt_period_timer,
  195. rt_b->rt_period_timer.expires,
  196. HRTIMER_MODE_ABS);
  197. }
  198. spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. struct task_group *parent;
  235. struct list_head siblings;
  236. struct list_head children;
  237. };
  238. #ifdef CONFIG_USER_SCHED
  239. /*
  240. * Root task group.
  241. * Every UID task group (including init_task_group aka UID-0) will
  242. * be a child to this group.
  243. */
  244. struct task_group root_task_group;
  245. #ifdef CONFIG_FAIR_GROUP_SCHED
  246. /* Default task group's sched entity on each cpu */
  247. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  248. /* Default task group's cfs_rq on each cpu */
  249. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  250. #endif /* CONFIG_FAIR_GROUP_SCHED */
  251. #ifdef CONFIG_RT_GROUP_SCHED
  252. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  253. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_RT_GROUP_SCHED */
  255. #else /* !CONFIG_FAIR_GROUP_SCHED */
  256. #define root_task_group init_task_group
  257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  258. /* task_group_lock serializes add/remove of task groups and also changes to
  259. * a task group's cpu shares.
  260. */
  261. static DEFINE_SPINLOCK(task_group_lock);
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. #ifdef CONFIG_USER_SCHED
  264. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  265. #else /* !CONFIG_USER_SCHED */
  266. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  267. #endif /* CONFIG_USER_SCHED */
  268. /*
  269. * A weight of 0 or 1 can cause arithmetics problems.
  270. * A weight of a cfs_rq is the sum of weights of which entities
  271. * are queued on this cfs_rq, so a weight of a entity should not be
  272. * too large, so as the shares value of a task group.
  273. * (The default weight is 1024 - so there's no practical
  274. * limitation from this.)
  275. */
  276. #define MIN_SHARES 2
  277. #define MAX_SHARES (1UL << 18)
  278. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  279. #endif
  280. /* Default task group.
  281. * Every task in system belong to this group at bootup.
  282. */
  283. struct task_group init_task_group;
  284. /* return group to which a task belongs */
  285. static inline struct task_group *task_group(struct task_struct *p)
  286. {
  287. struct task_group *tg;
  288. #ifdef CONFIG_USER_SCHED
  289. tg = p->user->tg;
  290. #elif defined(CONFIG_CGROUP_SCHED)
  291. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  292. struct task_group, css);
  293. #else
  294. tg = &init_task_group;
  295. #endif
  296. return tg;
  297. }
  298. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  299. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  300. {
  301. #ifdef CONFIG_FAIR_GROUP_SCHED
  302. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  303. p->se.parent = task_group(p)->se[cpu];
  304. #endif
  305. #ifdef CONFIG_RT_GROUP_SCHED
  306. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  307. p->rt.parent = task_group(p)->rt_se[cpu];
  308. #endif
  309. }
  310. #else
  311. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  312. static inline struct task_group *task_group(struct task_struct *p)
  313. {
  314. return NULL;
  315. }
  316. #endif /* CONFIG_GROUP_SCHED */
  317. /* CFS-related fields in a runqueue */
  318. struct cfs_rq {
  319. struct load_weight load;
  320. unsigned long nr_running;
  321. u64 exec_clock;
  322. u64 min_vruntime;
  323. u64 pair_start;
  324. struct rb_root tasks_timeline;
  325. struct rb_node *rb_leftmost;
  326. struct list_head tasks;
  327. struct list_head *balance_iterator;
  328. /*
  329. * 'curr' points to currently running entity on this cfs_rq.
  330. * It is set to NULL otherwise (i.e when none are currently running).
  331. */
  332. struct sched_entity *curr, *next;
  333. unsigned long nr_spread_over;
  334. #ifdef CONFIG_FAIR_GROUP_SCHED
  335. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  336. /*
  337. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  338. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  339. * (like users, containers etc.)
  340. *
  341. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  342. * list is used during load balance.
  343. */
  344. struct list_head leaf_cfs_rq_list;
  345. struct task_group *tg; /* group that "owns" this runqueue */
  346. #ifdef CONFIG_SMP
  347. /*
  348. * the part of load.weight contributed by tasks
  349. */
  350. unsigned long task_weight;
  351. /*
  352. * h_load = weight * f(tg)
  353. *
  354. * Where f(tg) is the recursive weight fraction assigned to
  355. * this group.
  356. */
  357. unsigned long h_load;
  358. /*
  359. * this cpu's part of tg->shares
  360. */
  361. unsigned long shares;
  362. /*
  363. * load.weight at the time we set shares
  364. */
  365. unsigned long rq_weight;
  366. #endif
  367. #endif
  368. };
  369. /* Real-Time classes' related field in a runqueue: */
  370. struct rt_rq {
  371. struct rt_prio_array active;
  372. unsigned long rt_nr_running;
  373. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  374. int highest_prio; /* highest queued rt task prio */
  375. #endif
  376. #ifdef CONFIG_SMP
  377. unsigned long rt_nr_migratory;
  378. int overloaded;
  379. #endif
  380. int rt_throttled;
  381. u64 rt_time;
  382. u64 rt_runtime;
  383. /* Nests inside the rq lock: */
  384. spinlock_t rt_runtime_lock;
  385. #ifdef CONFIG_RT_GROUP_SCHED
  386. unsigned long rt_nr_boosted;
  387. struct rq *rq;
  388. struct list_head leaf_rt_rq_list;
  389. struct task_group *tg;
  390. struct sched_rt_entity *rt_se;
  391. #endif
  392. };
  393. #ifdef CONFIG_SMP
  394. /*
  395. * We add the notion of a root-domain which will be used to define per-domain
  396. * variables. Each exclusive cpuset essentially defines an island domain by
  397. * fully partitioning the member cpus from any other cpuset. Whenever a new
  398. * exclusive cpuset is created, we also create and attach a new root-domain
  399. * object.
  400. *
  401. */
  402. struct root_domain {
  403. atomic_t refcount;
  404. cpumask_t span;
  405. cpumask_t online;
  406. /*
  407. * The "RT overload" flag: it gets set if a CPU has more than
  408. * one runnable RT task.
  409. */
  410. cpumask_t rto_mask;
  411. atomic_t rto_count;
  412. #ifdef CONFIG_SMP
  413. struct cpupri cpupri;
  414. #endif
  415. };
  416. /*
  417. * By default the system creates a single root-domain with all cpus as
  418. * members (mimicking the global state we have today).
  419. */
  420. static struct root_domain def_root_domain;
  421. #endif
  422. /*
  423. * This is the main, per-CPU runqueue data structure.
  424. *
  425. * Locking rule: those places that want to lock multiple runqueues
  426. * (such as the load balancing or the thread migration code), lock
  427. * acquire operations must be ordered by ascending &runqueue.
  428. */
  429. struct rq {
  430. /* runqueue lock: */
  431. spinlock_t lock;
  432. /*
  433. * nr_running and cpu_load should be in the same cacheline because
  434. * remote CPUs use both these fields when doing load calculation.
  435. */
  436. unsigned long nr_running;
  437. #define CPU_LOAD_IDX_MAX 5
  438. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  439. unsigned char idle_at_tick;
  440. #ifdef CONFIG_NO_HZ
  441. unsigned long last_tick_seen;
  442. unsigned char in_nohz_recently;
  443. #endif
  444. /* capture load from *all* tasks on this cpu: */
  445. struct load_weight load;
  446. unsigned long nr_load_updates;
  447. u64 nr_switches;
  448. struct cfs_rq cfs;
  449. struct rt_rq rt;
  450. #ifdef CONFIG_FAIR_GROUP_SCHED
  451. /* list of leaf cfs_rq on this cpu: */
  452. struct list_head leaf_cfs_rq_list;
  453. #endif
  454. #ifdef CONFIG_RT_GROUP_SCHED
  455. struct list_head leaf_rt_rq_list;
  456. #endif
  457. /*
  458. * This is part of a global counter where only the total sum
  459. * over all CPUs matters. A task can increase this counter on
  460. * one CPU and if it got migrated afterwards it may decrease
  461. * it on another CPU. Always updated under the runqueue lock:
  462. */
  463. unsigned long nr_uninterruptible;
  464. struct task_struct *curr, *idle;
  465. unsigned long next_balance;
  466. struct mm_struct *prev_mm;
  467. u64 clock;
  468. atomic_t nr_iowait;
  469. #ifdef CONFIG_SMP
  470. struct root_domain *rd;
  471. struct sched_domain *sd;
  472. /* For active balancing */
  473. int active_balance;
  474. int push_cpu;
  475. /* cpu of this runqueue: */
  476. int cpu;
  477. int online;
  478. unsigned long avg_load_per_task;
  479. struct task_struct *migration_thread;
  480. struct list_head migration_queue;
  481. #endif
  482. #ifdef CONFIG_SCHED_HRTICK
  483. #ifdef CONFIG_SMP
  484. int hrtick_csd_pending;
  485. struct call_single_data hrtick_csd;
  486. #endif
  487. struct hrtimer hrtick_timer;
  488. #endif
  489. #ifdef CONFIG_SCHEDSTATS
  490. /* latency stats */
  491. struct sched_info rq_sched_info;
  492. /* sys_sched_yield() stats */
  493. unsigned int yld_exp_empty;
  494. unsigned int yld_act_empty;
  495. unsigned int yld_both_empty;
  496. unsigned int yld_count;
  497. /* schedule() stats */
  498. unsigned int sched_switch;
  499. unsigned int sched_count;
  500. unsigned int sched_goidle;
  501. /* try_to_wake_up() stats */
  502. unsigned int ttwu_count;
  503. unsigned int ttwu_local;
  504. /* BKL stats */
  505. unsigned int bkl_count;
  506. #endif
  507. };
  508. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  509. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  510. {
  511. rq->curr->sched_class->check_preempt_curr(rq, p);
  512. }
  513. static inline int cpu_of(struct rq *rq)
  514. {
  515. #ifdef CONFIG_SMP
  516. return rq->cpu;
  517. #else
  518. return 0;
  519. #endif
  520. }
  521. /*
  522. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  523. * See detach_destroy_domains: synchronize_sched for details.
  524. *
  525. * The domain tree of any CPU may only be accessed from within
  526. * preempt-disabled sections.
  527. */
  528. #define for_each_domain(cpu, __sd) \
  529. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  530. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  531. #define this_rq() (&__get_cpu_var(runqueues))
  532. #define task_rq(p) cpu_rq(task_cpu(p))
  533. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  534. static inline void update_rq_clock(struct rq *rq)
  535. {
  536. rq->clock = sched_clock_cpu(cpu_of(rq));
  537. }
  538. /*
  539. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  540. */
  541. #ifdef CONFIG_SCHED_DEBUG
  542. # define const_debug __read_mostly
  543. #else
  544. # define const_debug static const
  545. #endif
  546. /**
  547. * runqueue_is_locked
  548. *
  549. * Returns true if the current cpu runqueue is locked.
  550. * This interface allows printk to be called with the runqueue lock
  551. * held and know whether or not it is OK to wake up the klogd.
  552. */
  553. int runqueue_is_locked(void)
  554. {
  555. int cpu = get_cpu();
  556. struct rq *rq = cpu_rq(cpu);
  557. int ret;
  558. ret = spin_is_locked(&rq->lock);
  559. put_cpu();
  560. return ret;
  561. }
  562. /*
  563. * Debugging: various feature bits
  564. */
  565. #define SCHED_FEAT(name, enabled) \
  566. __SCHED_FEAT_##name ,
  567. enum {
  568. #include "sched_features.h"
  569. };
  570. #undef SCHED_FEAT
  571. #define SCHED_FEAT(name, enabled) \
  572. (1UL << __SCHED_FEAT_##name) * enabled |
  573. const_debug unsigned int sysctl_sched_features =
  574. #include "sched_features.h"
  575. 0;
  576. #undef SCHED_FEAT
  577. #ifdef CONFIG_SCHED_DEBUG
  578. #define SCHED_FEAT(name, enabled) \
  579. #name ,
  580. static __read_mostly char *sched_feat_names[] = {
  581. #include "sched_features.h"
  582. NULL
  583. };
  584. #undef SCHED_FEAT
  585. static int sched_feat_open(struct inode *inode, struct file *filp)
  586. {
  587. filp->private_data = inode->i_private;
  588. return 0;
  589. }
  590. static ssize_t
  591. sched_feat_read(struct file *filp, char __user *ubuf,
  592. size_t cnt, loff_t *ppos)
  593. {
  594. char *buf;
  595. int r = 0;
  596. int len = 0;
  597. int i;
  598. for (i = 0; sched_feat_names[i]; i++) {
  599. len += strlen(sched_feat_names[i]);
  600. len += 4;
  601. }
  602. buf = kmalloc(len + 2, GFP_KERNEL);
  603. if (!buf)
  604. return -ENOMEM;
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. if (sysctl_sched_features & (1UL << i))
  607. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  608. else
  609. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  610. }
  611. r += sprintf(buf + r, "\n");
  612. WARN_ON(r >= len + 2);
  613. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  614. kfree(buf);
  615. return r;
  616. }
  617. static ssize_t
  618. sched_feat_write(struct file *filp, const char __user *ubuf,
  619. size_t cnt, loff_t *ppos)
  620. {
  621. char buf[64];
  622. char *cmp = buf;
  623. int neg = 0;
  624. int i;
  625. if (cnt > 63)
  626. cnt = 63;
  627. if (copy_from_user(&buf, ubuf, cnt))
  628. return -EFAULT;
  629. buf[cnt] = 0;
  630. if (strncmp(buf, "NO_", 3) == 0) {
  631. neg = 1;
  632. cmp += 3;
  633. }
  634. for (i = 0; sched_feat_names[i]; i++) {
  635. int len = strlen(sched_feat_names[i]);
  636. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  637. if (neg)
  638. sysctl_sched_features &= ~(1UL << i);
  639. else
  640. sysctl_sched_features |= (1UL << i);
  641. break;
  642. }
  643. }
  644. if (!sched_feat_names[i])
  645. return -EINVAL;
  646. filp->f_pos += cnt;
  647. return cnt;
  648. }
  649. static struct file_operations sched_feat_fops = {
  650. .open = sched_feat_open,
  651. .read = sched_feat_read,
  652. .write = sched_feat_write,
  653. };
  654. static __init int sched_init_debug(void)
  655. {
  656. debugfs_create_file("sched_features", 0644, NULL, NULL,
  657. &sched_feat_fops);
  658. return 0;
  659. }
  660. late_initcall(sched_init_debug);
  661. #endif
  662. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  663. /*
  664. * Number of tasks to iterate in a single balance run.
  665. * Limited because this is done with IRQs disabled.
  666. */
  667. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  668. /*
  669. * ratelimit for updating the group shares.
  670. * default: 0.5ms
  671. */
  672. const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
  673. /*
  674. * period over which we measure -rt task cpu usage in us.
  675. * default: 1s
  676. */
  677. unsigned int sysctl_sched_rt_period = 1000000;
  678. static __read_mostly int scheduler_running;
  679. /*
  680. * part of the period that we allow rt tasks to run in us.
  681. * default: 0.95s
  682. */
  683. int sysctl_sched_rt_runtime = 950000;
  684. static inline u64 global_rt_period(void)
  685. {
  686. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  687. }
  688. static inline u64 global_rt_runtime(void)
  689. {
  690. if (sysctl_sched_rt_runtime < 0)
  691. return RUNTIME_INF;
  692. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  693. }
  694. #ifndef prepare_arch_switch
  695. # define prepare_arch_switch(next) do { } while (0)
  696. #endif
  697. #ifndef finish_arch_switch
  698. # define finish_arch_switch(prev) do { } while (0)
  699. #endif
  700. static inline int task_current(struct rq *rq, struct task_struct *p)
  701. {
  702. return rq->curr == p;
  703. }
  704. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  705. static inline int task_running(struct rq *rq, struct task_struct *p)
  706. {
  707. return task_current(rq, p);
  708. }
  709. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  710. {
  711. }
  712. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  713. {
  714. #ifdef CONFIG_DEBUG_SPINLOCK
  715. /* this is a valid case when another task releases the spinlock */
  716. rq->lock.owner = current;
  717. #endif
  718. /*
  719. * If we are tracking spinlock dependencies then we have to
  720. * fix up the runqueue lock - which gets 'carried over' from
  721. * prev into current:
  722. */
  723. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  724. spin_unlock_irq(&rq->lock);
  725. }
  726. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  727. static inline int task_running(struct rq *rq, struct task_struct *p)
  728. {
  729. #ifdef CONFIG_SMP
  730. return p->oncpu;
  731. #else
  732. return task_current(rq, p);
  733. #endif
  734. }
  735. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * We can optimise this out completely for !SMP, because the
  740. * SMP rebalancing from interrupt is the only thing that cares
  741. * here.
  742. */
  743. next->oncpu = 1;
  744. #endif
  745. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  746. spin_unlock_irq(&rq->lock);
  747. #else
  748. spin_unlock(&rq->lock);
  749. #endif
  750. }
  751. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  752. {
  753. #ifdef CONFIG_SMP
  754. /*
  755. * After ->oncpu is cleared, the task can be moved to a different CPU.
  756. * We must ensure this doesn't happen until the switch is completely
  757. * finished.
  758. */
  759. smp_wmb();
  760. prev->oncpu = 0;
  761. #endif
  762. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  763. local_irq_enable();
  764. #endif
  765. }
  766. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. /*
  768. * __task_rq_lock - lock the runqueue a given task resides on.
  769. * Must be called interrupts disabled.
  770. */
  771. static inline struct rq *__task_rq_lock(struct task_struct *p)
  772. __acquires(rq->lock)
  773. {
  774. for (;;) {
  775. struct rq *rq = task_rq(p);
  776. spin_lock(&rq->lock);
  777. if (likely(rq == task_rq(p)))
  778. return rq;
  779. spin_unlock(&rq->lock);
  780. }
  781. }
  782. /*
  783. * task_rq_lock - lock the runqueue a given task resides on and disable
  784. * interrupts. Note the ordering: we can safely lookup the task_rq without
  785. * explicitly disabling preemption.
  786. */
  787. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  788. __acquires(rq->lock)
  789. {
  790. struct rq *rq;
  791. for (;;) {
  792. local_irq_save(*flags);
  793. rq = task_rq(p);
  794. spin_lock(&rq->lock);
  795. if (likely(rq == task_rq(p)))
  796. return rq;
  797. spin_unlock_irqrestore(&rq->lock, *flags);
  798. }
  799. }
  800. static void __task_rq_unlock(struct rq *rq)
  801. __releases(rq->lock)
  802. {
  803. spin_unlock(&rq->lock);
  804. }
  805. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  806. __releases(rq->lock)
  807. {
  808. spin_unlock_irqrestore(&rq->lock, *flags);
  809. }
  810. /*
  811. * this_rq_lock - lock this runqueue and disable interrupts.
  812. */
  813. static struct rq *this_rq_lock(void)
  814. __acquires(rq->lock)
  815. {
  816. struct rq *rq;
  817. local_irq_disable();
  818. rq = this_rq();
  819. spin_lock(&rq->lock);
  820. return rq;
  821. }
  822. #ifdef CONFIG_SCHED_HRTICK
  823. /*
  824. * Use HR-timers to deliver accurate preemption points.
  825. *
  826. * Its all a bit involved since we cannot program an hrt while holding the
  827. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  828. * reschedule event.
  829. *
  830. * When we get rescheduled we reprogram the hrtick_timer outside of the
  831. * rq->lock.
  832. */
  833. /*
  834. * Use hrtick when:
  835. * - enabled by features
  836. * - hrtimer is actually high res
  837. */
  838. static inline int hrtick_enabled(struct rq *rq)
  839. {
  840. if (!sched_feat(HRTICK))
  841. return 0;
  842. if (!cpu_active(cpu_of(rq)))
  843. return 0;
  844. return hrtimer_is_hres_active(&rq->hrtick_timer);
  845. }
  846. static void hrtick_clear(struct rq *rq)
  847. {
  848. if (hrtimer_active(&rq->hrtick_timer))
  849. hrtimer_cancel(&rq->hrtick_timer);
  850. }
  851. /*
  852. * High-resolution timer tick.
  853. * Runs from hardirq context with interrupts disabled.
  854. */
  855. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  856. {
  857. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  858. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  859. spin_lock(&rq->lock);
  860. update_rq_clock(rq);
  861. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  862. spin_unlock(&rq->lock);
  863. return HRTIMER_NORESTART;
  864. }
  865. #ifdef CONFIG_SMP
  866. /*
  867. * called from hardirq (IPI) context
  868. */
  869. static void __hrtick_start(void *arg)
  870. {
  871. struct rq *rq = arg;
  872. spin_lock(&rq->lock);
  873. hrtimer_restart(&rq->hrtick_timer);
  874. rq->hrtick_csd_pending = 0;
  875. spin_unlock(&rq->lock);
  876. }
  877. /*
  878. * Called to set the hrtick timer state.
  879. *
  880. * called with rq->lock held and irqs disabled
  881. */
  882. static void hrtick_start(struct rq *rq, u64 delay)
  883. {
  884. struct hrtimer *timer = &rq->hrtick_timer;
  885. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  886. timer->expires = time;
  887. if (rq == this_rq()) {
  888. hrtimer_restart(timer);
  889. } else if (!rq->hrtick_csd_pending) {
  890. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  891. rq->hrtick_csd_pending = 1;
  892. }
  893. }
  894. static int
  895. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  896. {
  897. int cpu = (int)(long)hcpu;
  898. switch (action) {
  899. case CPU_UP_CANCELED:
  900. case CPU_UP_CANCELED_FROZEN:
  901. case CPU_DOWN_PREPARE:
  902. case CPU_DOWN_PREPARE_FROZEN:
  903. case CPU_DEAD:
  904. case CPU_DEAD_FROZEN:
  905. hrtick_clear(cpu_rq(cpu));
  906. return NOTIFY_OK;
  907. }
  908. return NOTIFY_DONE;
  909. }
  910. static void init_hrtick(void)
  911. {
  912. hotcpu_notifier(hotplug_hrtick, 0);
  913. }
  914. #else
  915. /*
  916. * Called to set the hrtick timer state.
  917. *
  918. * called with rq->lock held and irqs disabled
  919. */
  920. static void hrtick_start(struct rq *rq, u64 delay)
  921. {
  922. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  923. }
  924. static void init_hrtick(void)
  925. {
  926. }
  927. #endif /* CONFIG_SMP */
  928. static void init_rq_hrtick(struct rq *rq)
  929. {
  930. #ifdef CONFIG_SMP
  931. rq->hrtick_csd_pending = 0;
  932. rq->hrtick_csd.flags = 0;
  933. rq->hrtick_csd.func = __hrtick_start;
  934. rq->hrtick_csd.info = rq;
  935. #endif
  936. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  937. rq->hrtick_timer.function = hrtick;
  938. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  939. }
  940. #else
  941. static inline void hrtick_clear(struct rq *rq)
  942. {
  943. }
  944. static inline void init_rq_hrtick(struct rq *rq)
  945. {
  946. }
  947. static inline void init_hrtick(void)
  948. {
  949. }
  950. #endif
  951. /*
  952. * resched_task - mark a task 'to be rescheduled now'.
  953. *
  954. * On UP this means the setting of the need_resched flag, on SMP it
  955. * might also involve a cross-CPU call to trigger the scheduler on
  956. * the target CPU.
  957. */
  958. #ifdef CONFIG_SMP
  959. #ifndef tsk_is_polling
  960. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  961. #endif
  962. static void resched_task(struct task_struct *p)
  963. {
  964. int cpu;
  965. assert_spin_locked(&task_rq(p)->lock);
  966. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  967. return;
  968. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  969. cpu = task_cpu(p);
  970. if (cpu == smp_processor_id())
  971. return;
  972. /* NEED_RESCHED must be visible before we test polling */
  973. smp_mb();
  974. if (!tsk_is_polling(p))
  975. smp_send_reschedule(cpu);
  976. }
  977. static void resched_cpu(int cpu)
  978. {
  979. struct rq *rq = cpu_rq(cpu);
  980. unsigned long flags;
  981. if (!spin_trylock_irqsave(&rq->lock, flags))
  982. return;
  983. resched_task(cpu_curr(cpu));
  984. spin_unlock_irqrestore(&rq->lock, flags);
  985. }
  986. #ifdef CONFIG_NO_HZ
  987. /*
  988. * When add_timer_on() enqueues a timer into the timer wheel of an
  989. * idle CPU then this timer might expire before the next timer event
  990. * which is scheduled to wake up that CPU. In case of a completely
  991. * idle system the next event might even be infinite time into the
  992. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  993. * leaves the inner idle loop so the newly added timer is taken into
  994. * account when the CPU goes back to idle and evaluates the timer
  995. * wheel for the next timer event.
  996. */
  997. void wake_up_idle_cpu(int cpu)
  998. {
  999. struct rq *rq = cpu_rq(cpu);
  1000. if (cpu == smp_processor_id())
  1001. return;
  1002. /*
  1003. * This is safe, as this function is called with the timer
  1004. * wheel base lock of (cpu) held. When the CPU is on the way
  1005. * to idle and has not yet set rq->curr to idle then it will
  1006. * be serialized on the timer wheel base lock and take the new
  1007. * timer into account automatically.
  1008. */
  1009. if (rq->curr != rq->idle)
  1010. return;
  1011. /*
  1012. * We can set TIF_RESCHED on the idle task of the other CPU
  1013. * lockless. The worst case is that the other CPU runs the
  1014. * idle task through an additional NOOP schedule()
  1015. */
  1016. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1017. /* NEED_RESCHED must be visible before we test polling */
  1018. smp_mb();
  1019. if (!tsk_is_polling(rq->idle))
  1020. smp_send_reschedule(cpu);
  1021. }
  1022. #endif /* CONFIG_NO_HZ */
  1023. #else /* !CONFIG_SMP */
  1024. static void resched_task(struct task_struct *p)
  1025. {
  1026. assert_spin_locked(&task_rq(p)->lock);
  1027. set_tsk_need_resched(p);
  1028. }
  1029. #endif /* CONFIG_SMP */
  1030. #if BITS_PER_LONG == 32
  1031. # define WMULT_CONST (~0UL)
  1032. #else
  1033. # define WMULT_CONST (1UL << 32)
  1034. #endif
  1035. #define WMULT_SHIFT 32
  1036. /*
  1037. * Shift right and round:
  1038. */
  1039. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1040. /*
  1041. * delta *= weight / lw
  1042. */
  1043. static unsigned long
  1044. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1045. struct load_weight *lw)
  1046. {
  1047. u64 tmp;
  1048. if (!lw->inv_weight) {
  1049. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1050. lw->inv_weight = 1;
  1051. else
  1052. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1053. / (lw->weight+1);
  1054. }
  1055. tmp = (u64)delta_exec * weight;
  1056. /*
  1057. * Check whether we'd overflow the 64-bit multiplication:
  1058. */
  1059. if (unlikely(tmp > WMULT_CONST))
  1060. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1061. WMULT_SHIFT/2);
  1062. else
  1063. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1064. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1065. }
  1066. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1067. {
  1068. lw->weight += inc;
  1069. lw->inv_weight = 0;
  1070. }
  1071. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1072. {
  1073. lw->weight -= dec;
  1074. lw->inv_weight = 0;
  1075. }
  1076. /*
  1077. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1078. * of tasks with abnormal "nice" values across CPUs the contribution that
  1079. * each task makes to its run queue's load is weighted according to its
  1080. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1081. * scaled version of the new time slice allocation that they receive on time
  1082. * slice expiry etc.
  1083. */
  1084. #define WEIGHT_IDLEPRIO 2
  1085. #define WMULT_IDLEPRIO (1 << 31)
  1086. /*
  1087. * Nice levels are multiplicative, with a gentle 10% change for every
  1088. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1089. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1090. * that remained on nice 0.
  1091. *
  1092. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1093. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1094. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1095. * If a task goes up by ~10% and another task goes down by ~10% then
  1096. * the relative distance between them is ~25%.)
  1097. */
  1098. static const int prio_to_weight[40] = {
  1099. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1100. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1101. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1102. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1103. /* 0 */ 1024, 820, 655, 526, 423,
  1104. /* 5 */ 335, 272, 215, 172, 137,
  1105. /* 10 */ 110, 87, 70, 56, 45,
  1106. /* 15 */ 36, 29, 23, 18, 15,
  1107. };
  1108. /*
  1109. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1110. *
  1111. * In cases where the weight does not change often, we can use the
  1112. * precalculated inverse to speed up arithmetics by turning divisions
  1113. * into multiplications:
  1114. */
  1115. static const u32 prio_to_wmult[40] = {
  1116. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1117. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1118. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1119. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1120. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1121. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1122. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1123. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1124. };
  1125. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1126. /*
  1127. * runqueue iterator, to support SMP load-balancing between different
  1128. * scheduling classes, without having to expose their internal data
  1129. * structures to the load-balancing proper:
  1130. */
  1131. struct rq_iterator {
  1132. void *arg;
  1133. struct task_struct *(*start)(void *);
  1134. struct task_struct *(*next)(void *);
  1135. };
  1136. #ifdef CONFIG_SMP
  1137. static unsigned long
  1138. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1139. unsigned long max_load_move, struct sched_domain *sd,
  1140. enum cpu_idle_type idle, int *all_pinned,
  1141. int *this_best_prio, struct rq_iterator *iterator);
  1142. static int
  1143. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1144. struct sched_domain *sd, enum cpu_idle_type idle,
  1145. struct rq_iterator *iterator);
  1146. #endif
  1147. #ifdef CONFIG_CGROUP_CPUACCT
  1148. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1149. #else
  1150. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1151. #endif
  1152. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1153. {
  1154. update_load_add(&rq->load, load);
  1155. }
  1156. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1157. {
  1158. update_load_sub(&rq->load, load);
  1159. }
  1160. #ifdef CONFIG_SMP
  1161. static unsigned long source_load(int cpu, int type);
  1162. static unsigned long target_load(int cpu, int type);
  1163. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1164. static unsigned long cpu_avg_load_per_task(int cpu)
  1165. {
  1166. struct rq *rq = cpu_rq(cpu);
  1167. if (rq->nr_running)
  1168. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1169. return rq->avg_load_per_task;
  1170. }
  1171. #ifdef CONFIG_FAIR_GROUP_SCHED
  1172. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1173. /*
  1174. * Iterate the full tree, calling @down when first entering a node and @up when
  1175. * leaving it for the final time.
  1176. */
  1177. static void
  1178. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1179. {
  1180. struct task_group *parent, *child;
  1181. rcu_read_lock();
  1182. parent = &root_task_group;
  1183. down:
  1184. (*down)(parent, cpu, sd);
  1185. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1186. parent = child;
  1187. goto down;
  1188. up:
  1189. continue;
  1190. }
  1191. (*up)(parent, cpu, sd);
  1192. child = parent;
  1193. parent = parent->parent;
  1194. if (parent)
  1195. goto up;
  1196. rcu_read_unlock();
  1197. }
  1198. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1199. /*
  1200. * Calculate and set the cpu's group shares.
  1201. */
  1202. static void
  1203. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1204. unsigned long sd_shares, unsigned long sd_rq_weight)
  1205. {
  1206. int boost = 0;
  1207. unsigned long shares;
  1208. unsigned long rq_weight;
  1209. if (!tg->se[cpu])
  1210. return;
  1211. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1212. /*
  1213. * If there are currently no tasks on the cpu pretend there is one of
  1214. * average load so that when a new task gets to run here it will not
  1215. * get delayed by group starvation.
  1216. */
  1217. if (!rq_weight) {
  1218. boost = 1;
  1219. rq_weight = NICE_0_LOAD;
  1220. }
  1221. if (unlikely(rq_weight > sd_rq_weight))
  1222. rq_weight = sd_rq_weight;
  1223. /*
  1224. * \Sum shares * rq_weight
  1225. * shares = -----------------------
  1226. * \Sum rq_weight
  1227. *
  1228. */
  1229. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1230. /*
  1231. * record the actual number of shares, not the boosted amount.
  1232. */
  1233. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1234. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1235. if (shares < MIN_SHARES)
  1236. shares = MIN_SHARES;
  1237. else if (shares > MAX_SHARES)
  1238. shares = MAX_SHARES;
  1239. __set_se_shares(tg->se[cpu], shares);
  1240. }
  1241. /*
  1242. * Re-compute the task group their per cpu shares over the given domain.
  1243. * This needs to be done in a bottom-up fashion because the rq weight of a
  1244. * parent group depends on the shares of its child groups.
  1245. */
  1246. static void
  1247. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1248. {
  1249. unsigned long rq_weight = 0;
  1250. unsigned long shares = 0;
  1251. int i;
  1252. for_each_cpu_mask(i, sd->span) {
  1253. rq_weight += tg->cfs_rq[i]->load.weight;
  1254. shares += tg->cfs_rq[i]->shares;
  1255. }
  1256. if ((!shares && rq_weight) || shares > tg->shares)
  1257. shares = tg->shares;
  1258. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1259. shares = tg->shares;
  1260. if (!rq_weight)
  1261. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1262. for_each_cpu_mask(i, sd->span) {
  1263. struct rq *rq = cpu_rq(i);
  1264. unsigned long flags;
  1265. spin_lock_irqsave(&rq->lock, flags);
  1266. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1267. spin_unlock_irqrestore(&rq->lock, flags);
  1268. }
  1269. }
  1270. /*
  1271. * Compute the cpu's hierarchical load factor for each task group.
  1272. * This needs to be done in a top-down fashion because the load of a child
  1273. * group is a fraction of its parents load.
  1274. */
  1275. static void
  1276. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1277. {
  1278. unsigned long load;
  1279. if (!tg->parent) {
  1280. load = cpu_rq(cpu)->load.weight;
  1281. } else {
  1282. load = tg->parent->cfs_rq[cpu]->h_load;
  1283. load *= tg->cfs_rq[cpu]->shares;
  1284. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1285. }
  1286. tg->cfs_rq[cpu]->h_load = load;
  1287. }
  1288. static void
  1289. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1290. {
  1291. }
  1292. static void update_shares(struct sched_domain *sd)
  1293. {
  1294. u64 now = cpu_clock(raw_smp_processor_id());
  1295. s64 elapsed = now - sd->last_update;
  1296. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1297. sd->last_update = now;
  1298. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1299. }
  1300. }
  1301. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1302. {
  1303. spin_unlock(&rq->lock);
  1304. update_shares(sd);
  1305. spin_lock(&rq->lock);
  1306. }
  1307. static void update_h_load(int cpu)
  1308. {
  1309. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1310. }
  1311. #else
  1312. static inline void update_shares(struct sched_domain *sd)
  1313. {
  1314. }
  1315. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1316. {
  1317. }
  1318. #endif
  1319. #endif
  1320. #ifdef CONFIG_FAIR_GROUP_SCHED
  1321. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1322. {
  1323. #ifdef CONFIG_SMP
  1324. cfs_rq->shares = shares;
  1325. #endif
  1326. }
  1327. #endif
  1328. #include "sched_stats.h"
  1329. #include "sched_idletask.c"
  1330. #include "sched_fair.c"
  1331. #include "sched_rt.c"
  1332. #ifdef CONFIG_SCHED_DEBUG
  1333. # include "sched_debug.c"
  1334. #endif
  1335. #define sched_class_highest (&rt_sched_class)
  1336. #define for_each_class(class) \
  1337. for (class = sched_class_highest; class; class = class->next)
  1338. static void inc_nr_running(struct rq *rq)
  1339. {
  1340. rq->nr_running++;
  1341. }
  1342. static void dec_nr_running(struct rq *rq)
  1343. {
  1344. rq->nr_running--;
  1345. }
  1346. static void set_load_weight(struct task_struct *p)
  1347. {
  1348. if (task_has_rt_policy(p)) {
  1349. p->se.load.weight = prio_to_weight[0] * 2;
  1350. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1351. return;
  1352. }
  1353. /*
  1354. * SCHED_IDLE tasks get minimal weight:
  1355. */
  1356. if (p->policy == SCHED_IDLE) {
  1357. p->se.load.weight = WEIGHT_IDLEPRIO;
  1358. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1359. return;
  1360. }
  1361. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1362. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1363. }
  1364. static void update_avg(u64 *avg, u64 sample)
  1365. {
  1366. s64 diff = sample - *avg;
  1367. *avg += diff >> 3;
  1368. }
  1369. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1370. {
  1371. sched_info_queued(p);
  1372. p->sched_class->enqueue_task(rq, p, wakeup);
  1373. p->se.on_rq = 1;
  1374. }
  1375. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1376. {
  1377. if (sleep && p->se.last_wakeup) {
  1378. update_avg(&p->se.avg_overlap,
  1379. p->se.sum_exec_runtime - p->se.last_wakeup);
  1380. p->se.last_wakeup = 0;
  1381. }
  1382. sched_info_dequeued(p);
  1383. p->sched_class->dequeue_task(rq, p, sleep);
  1384. p->se.on_rq = 0;
  1385. }
  1386. /*
  1387. * __normal_prio - return the priority that is based on the static prio
  1388. */
  1389. static inline int __normal_prio(struct task_struct *p)
  1390. {
  1391. return p->static_prio;
  1392. }
  1393. /*
  1394. * Calculate the expected normal priority: i.e. priority
  1395. * without taking RT-inheritance into account. Might be
  1396. * boosted by interactivity modifiers. Changes upon fork,
  1397. * setprio syscalls, and whenever the interactivity
  1398. * estimator recalculates.
  1399. */
  1400. static inline int normal_prio(struct task_struct *p)
  1401. {
  1402. int prio;
  1403. if (task_has_rt_policy(p))
  1404. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1405. else
  1406. prio = __normal_prio(p);
  1407. return prio;
  1408. }
  1409. /*
  1410. * Calculate the current priority, i.e. the priority
  1411. * taken into account by the scheduler. This value might
  1412. * be boosted by RT tasks, or might be boosted by
  1413. * interactivity modifiers. Will be RT if the task got
  1414. * RT-boosted. If not then it returns p->normal_prio.
  1415. */
  1416. static int effective_prio(struct task_struct *p)
  1417. {
  1418. p->normal_prio = normal_prio(p);
  1419. /*
  1420. * If we are RT tasks or we were boosted to RT priority,
  1421. * keep the priority unchanged. Otherwise, update priority
  1422. * to the normal priority:
  1423. */
  1424. if (!rt_prio(p->prio))
  1425. return p->normal_prio;
  1426. return p->prio;
  1427. }
  1428. /*
  1429. * activate_task - move a task to the runqueue.
  1430. */
  1431. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1432. {
  1433. if (task_contributes_to_load(p))
  1434. rq->nr_uninterruptible--;
  1435. enqueue_task(rq, p, wakeup);
  1436. inc_nr_running(rq);
  1437. }
  1438. /*
  1439. * deactivate_task - remove a task from the runqueue.
  1440. */
  1441. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1442. {
  1443. if (task_contributes_to_load(p))
  1444. rq->nr_uninterruptible++;
  1445. dequeue_task(rq, p, sleep);
  1446. dec_nr_running(rq);
  1447. }
  1448. /**
  1449. * task_curr - is this task currently executing on a CPU?
  1450. * @p: the task in question.
  1451. */
  1452. inline int task_curr(const struct task_struct *p)
  1453. {
  1454. return cpu_curr(task_cpu(p)) == p;
  1455. }
  1456. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1457. {
  1458. set_task_rq(p, cpu);
  1459. #ifdef CONFIG_SMP
  1460. /*
  1461. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1462. * successfuly executed on another CPU. We must ensure that updates of
  1463. * per-task data have been completed by this moment.
  1464. */
  1465. smp_wmb();
  1466. task_thread_info(p)->cpu = cpu;
  1467. #endif
  1468. }
  1469. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1470. const struct sched_class *prev_class,
  1471. int oldprio, int running)
  1472. {
  1473. if (prev_class != p->sched_class) {
  1474. if (prev_class->switched_from)
  1475. prev_class->switched_from(rq, p, running);
  1476. p->sched_class->switched_to(rq, p, running);
  1477. } else
  1478. p->sched_class->prio_changed(rq, p, oldprio, running);
  1479. }
  1480. #ifdef CONFIG_SMP
  1481. /* Used instead of source_load when we know the type == 0 */
  1482. static unsigned long weighted_cpuload(const int cpu)
  1483. {
  1484. return cpu_rq(cpu)->load.weight;
  1485. }
  1486. /*
  1487. * Is this task likely cache-hot:
  1488. */
  1489. static int
  1490. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1491. {
  1492. s64 delta;
  1493. /*
  1494. * Buddy candidates are cache hot:
  1495. */
  1496. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1497. return 1;
  1498. if (p->sched_class != &fair_sched_class)
  1499. return 0;
  1500. if (sysctl_sched_migration_cost == -1)
  1501. return 1;
  1502. if (sysctl_sched_migration_cost == 0)
  1503. return 0;
  1504. delta = now - p->se.exec_start;
  1505. return delta < (s64)sysctl_sched_migration_cost;
  1506. }
  1507. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1508. {
  1509. int old_cpu = task_cpu(p);
  1510. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1511. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1512. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1513. u64 clock_offset;
  1514. clock_offset = old_rq->clock - new_rq->clock;
  1515. #ifdef CONFIG_SCHEDSTATS
  1516. if (p->se.wait_start)
  1517. p->se.wait_start -= clock_offset;
  1518. if (p->se.sleep_start)
  1519. p->se.sleep_start -= clock_offset;
  1520. if (p->se.block_start)
  1521. p->se.block_start -= clock_offset;
  1522. if (old_cpu != new_cpu) {
  1523. schedstat_inc(p, se.nr_migrations);
  1524. if (task_hot(p, old_rq->clock, NULL))
  1525. schedstat_inc(p, se.nr_forced2_migrations);
  1526. }
  1527. #endif
  1528. p->se.vruntime -= old_cfsrq->min_vruntime -
  1529. new_cfsrq->min_vruntime;
  1530. __set_task_cpu(p, new_cpu);
  1531. }
  1532. struct migration_req {
  1533. struct list_head list;
  1534. struct task_struct *task;
  1535. int dest_cpu;
  1536. struct completion done;
  1537. };
  1538. /*
  1539. * The task's runqueue lock must be held.
  1540. * Returns true if you have to wait for migration thread.
  1541. */
  1542. static int
  1543. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1544. {
  1545. struct rq *rq = task_rq(p);
  1546. /*
  1547. * If the task is not on a runqueue (and not running), then
  1548. * it is sufficient to simply update the task's cpu field.
  1549. */
  1550. if (!p->se.on_rq && !task_running(rq, p)) {
  1551. set_task_cpu(p, dest_cpu);
  1552. return 0;
  1553. }
  1554. init_completion(&req->done);
  1555. req->task = p;
  1556. req->dest_cpu = dest_cpu;
  1557. list_add(&req->list, &rq->migration_queue);
  1558. return 1;
  1559. }
  1560. /*
  1561. * wait_task_inactive - wait for a thread to unschedule.
  1562. *
  1563. * If @match_state is nonzero, it's the @p->state value just checked and
  1564. * not expected to change. If it changes, i.e. @p might have woken up,
  1565. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1566. * we return a positive number (its total switch count). If a second call
  1567. * a short while later returns the same number, the caller can be sure that
  1568. * @p has remained unscheduled the whole time.
  1569. *
  1570. * The caller must ensure that the task *will* unschedule sometime soon,
  1571. * else this function might spin for a *long* time. This function can't
  1572. * be called with interrupts off, or it may introduce deadlock with
  1573. * smp_call_function() if an IPI is sent by the same process we are
  1574. * waiting to become inactive.
  1575. */
  1576. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1577. {
  1578. unsigned long flags;
  1579. int running, on_rq;
  1580. unsigned long ncsw;
  1581. struct rq *rq;
  1582. for (;;) {
  1583. /*
  1584. * We do the initial early heuristics without holding
  1585. * any task-queue locks at all. We'll only try to get
  1586. * the runqueue lock when things look like they will
  1587. * work out!
  1588. */
  1589. rq = task_rq(p);
  1590. /*
  1591. * If the task is actively running on another CPU
  1592. * still, just relax and busy-wait without holding
  1593. * any locks.
  1594. *
  1595. * NOTE! Since we don't hold any locks, it's not
  1596. * even sure that "rq" stays as the right runqueue!
  1597. * But we don't care, since "task_running()" will
  1598. * return false if the runqueue has changed and p
  1599. * is actually now running somewhere else!
  1600. */
  1601. while (task_running(rq, p)) {
  1602. if (match_state && unlikely(p->state != match_state))
  1603. return 0;
  1604. cpu_relax();
  1605. }
  1606. /*
  1607. * Ok, time to look more closely! We need the rq
  1608. * lock now, to be *sure*. If we're wrong, we'll
  1609. * just go back and repeat.
  1610. */
  1611. rq = task_rq_lock(p, &flags);
  1612. running = task_running(rq, p);
  1613. on_rq = p->se.on_rq;
  1614. ncsw = 0;
  1615. if (!match_state || p->state == match_state)
  1616. ncsw = p->nvcsw ?: 1;
  1617. task_rq_unlock(rq, &flags);
  1618. /*
  1619. * If it changed from the expected state, bail out now.
  1620. */
  1621. if (unlikely(!ncsw))
  1622. break;
  1623. /*
  1624. * Was it really running after all now that we
  1625. * checked with the proper locks actually held?
  1626. *
  1627. * Oops. Go back and try again..
  1628. */
  1629. if (unlikely(running)) {
  1630. cpu_relax();
  1631. continue;
  1632. }
  1633. /*
  1634. * It's not enough that it's not actively running,
  1635. * it must be off the runqueue _entirely_, and not
  1636. * preempted!
  1637. *
  1638. * So if it wa still runnable (but just not actively
  1639. * running right now), it's preempted, and we should
  1640. * yield - it could be a while.
  1641. */
  1642. if (unlikely(on_rq)) {
  1643. schedule_timeout_uninterruptible(1);
  1644. continue;
  1645. }
  1646. /*
  1647. * Ahh, all good. It wasn't running, and it wasn't
  1648. * runnable, which means that it will never become
  1649. * running in the future either. We're all done!
  1650. */
  1651. break;
  1652. }
  1653. return ncsw;
  1654. }
  1655. /***
  1656. * kick_process - kick a running thread to enter/exit the kernel
  1657. * @p: the to-be-kicked thread
  1658. *
  1659. * Cause a process which is running on another CPU to enter
  1660. * kernel-mode, without any delay. (to get signals handled.)
  1661. *
  1662. * NOTE: this function doesnt have to take the runqueue lock,
  1663. * because all it wants to ensure is that the remote task enters
  1664. * the kernel. If the IPI races and the task has been migrated
  1665. * to another CPU then no harm is done and the purpose has been
  1666. * achieved as well.
  1667. */
  1668. void kick_process(struct task_struct *p)
  1669. {
  1670. int cpu;
  1671. preempt_disable();
  1672. cpu = task_cpu(p);
  1673. if ((cpu != smp_processor_id()) && task_curr(p))
  1674. smp_send_reschedule(cpu);
  1675. preempt_enable();
  1676. }
  1677. /*
  1678. * Return a low guess at the load of a migration-source cpu weighted
  1679. * according to the scheduling class and "nice" value.
  1680. *
  1681. * We want to under-estimate the load of migration sources, to
  1682. * balance conservatively.
  1683. */
  1684. static unsigned long source_load(int cpu, int type)
  1685. {
  1686. struct rq *rq = cpu_rq(cpu);
  1687. unsigned long total = weighted_cpuload(cpu);
  1688. if (type == 0 || !sched_feat(LB_BIAS))
  1689. return total;
  1690. return min(rq->cpu_load[type-1], total);
  1691. }
  1692. /*
  1693. * Return a high guess at the load of a migration-target cpu weighted
  1694. * according to the scheduling class and "nice" value.
  1695. */
  1696. static unsigned long target_load(int cpu, int type)
  1697. {
  1698. struct rq *rq = cpu_rq(cpu);
  1699. unsigned long total = weighted_cpuload(cpu);
  1700. if (type == 0 || !sched_feat(LB_BIAS))
  1701. return total;
  1702. return max(rq->cpu_load[type-1], total);
  1703. }
  1704. /*
  1705. * find_idlest_group finds and returns the least busy CPU group within the
  1706. * domain.
  1707. */
  1708. static struct sched_group *
  1709. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1710. {
  1711. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1712. unsigned long min_load = ULONG_MAX, this_load = 0;
  1713. int load_idx = sd->forkexec_idx;
  1714. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1715. do {
  1716. unsigned long load, avg_load;
  1717. int local_group;
  1718. int i;
  1719. /* Skip over this group if it has no CPUs allowed */
  1720. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1721. continue;
  1722. local_group = cpu_isset(this_cpu, group->cpumask);
  1723. /* Tally up the load of all CPUs in the group */
  1724. avg_load = 0;
  1725. for_each_cpu_mask_nr(i, group->cpumask) {
  1726. /* Bias balancing toward cpus of our domain */
  1727. if (local_group)
  1728. load = source_load(i, load_idx);
  1729. else
  1730. load = target_load(i, load_idx);
  1731. avg_load += load;
  1732. }
  1733. /* Adjust by relative CPU power of the group */
  1734. avg_load = sg_div_cpu_power(group,
  1735. avg_load * SCHED_LOAD_SCALE);
  1736. if (local_group) {
  1737. this_load = avg_load;
  1738. this = group;
  1739. } else if (avg_load < min_load) {
  1740. min_load = avg_load;
  1741. idlest = group;
  1742. }
  1743. } while (group = group->next, group != sd->groups);
  1744. if (!idlest || 100*this_load < imbalance*min_load)
  1745. return NULL;
  1746. return idlest;
  1747. }
  1748. /*
  1749. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1750. */
  1751. static int
  1752. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1753. cpumask_t *tmp)
  1754. {
  1755. unsigned long load, min_load = ULONG_MAX;
  1756. int idlest = -1;
  1757. int i;
  1758. /* Traverse only the allowed CPUs */
  1759. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1760. for_each_cpu_mask_nr(i, *tmp) {
  1761. load = weighted_cpuload(i);
  1762. if (load < min_load || (load == min_load && i == this_cpu)) {
  1763. min_load = load;
  1764. idlest = i;
  1765. }
  1766. }
  1767. return idlest;
  1768. }
  1769. /*
  1770. * sched_balance_self: balance the current task (running on cpu) in domains
  1771. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1772. * SD_BALANCE_EXEC.
  1773. *
  1774. * Balance, ie. select the least loaded group.
  1775. *
  1776. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1777. *
  1778. * preempt must be disabled.
  1779. */
  1780. static int sched_balance_self(int cpu, int flag)
  1781. {
  1782. struct task_struct *t = current;
  1783. struct sched_domain *tmp, *sd = NULL;
  1784. for_each_domain(cpu, tmp) {
  1785. /*
  1786. * If power savings logic is enabled for a domain, stop there.
  1787. */
  1788. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1789. break;
  1790. if (tmp->flags & flag)
  1791. sd = tmp;
  1792. }
  1793. if (sd)
  1794. update_shares(sd);
  1795. while (sd) {
  1796. cpumask_t span, tmpmask;
  1797. struct sched_group *group;
  1798. int new_cpu, weight;
  1799. if (!(sd->flags & flag)) {
  1800. sd = sd->child;
  1801. continue;
  1802. }
  1803. span = sd->span;
  1804. group = find_idlest_group(sd, t, cpu);
  1805. if (!group) {
  1806. sd = sd->child;
  1807. continue;
  1808. }
  1809. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1810. if (new_cpu == -1 || new_cpu == cpu) {
  1811. /* Now try balancing at a lower domain level of cpu */
  1812. sd = sd->child;
  1813. continue;
  1814. }
  1815. /* Now try balancing at a lower domain level of new_cpu */
  1816. cpu = new_cpu;
  1817. sd = NULL;
  1818. weight = cpus_weight(span);
  1819. for_each_domain(cpu, tmp) {
  1820. if (weight <= cpus_weight(tmp->span))
  1821. break;
  1822. if (tmp->flags & flag)
  1823. sd = tmp;
  1824. }
  1825. /* while loop will break here if sd == NULL */
  1826. }
  1827. return cpu;
  1828. }
  1829. #endif /* CONFIG_SMP */
  1830. /***
  1831. * try_to_wake_up - wake up a thread
  1832. * @p: the to-be-woken-up thread
  1833. * @state: the mask of task states that can be woken
  1834. * @sync: do a synchronous wakeup?
  1835. *
  1836. * Put it on the run-queue if it's not already there. The "current"
  1837. * thread is always on the run-queue (except when the actual
  1838. * re-schedule is in progress), and as such you're allowed to do
  1839. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1840. * runnable without the overhead of this.
  1841. *
  1842. * returns failure only if the task is already active.
  1843. */
  1844. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1845. {
  1846. int cpu, orig_cpu, this_cpu, success = 0;
  1847. unsigned long flags;
  1848. long old_state;
  1849. struct rq *rq;
  1850. if (!sched_feat(SYNC_WAKEUPS))
  1851. sync = 0;
  1852. #ifdef CONFIG_SMP
  1853. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1854. struct sched_domain *sd;
  1855. this_cpu = raw_smp_processor_id();
  1856. cpu = task_cpu(p);
  1857. for_each_domain(this_cpu, sd) {
  1858. if (cpu_isset(cpu, sd->span)) {
  1859. update_shares(sd);
  1860. break;
  1861. }
  1862. }
  1863. }
  1864. #endif
  1865. smp_wmb();
  1866. rq = task_rq_lock(p, &flags);
  1867. old_state = p->state;
  1868. if (!(old_state & state))
  1869. goto out;
  1870. if (p->se.on_rq)
  1871. goto out_running;
  1872. cpu = task_cpu(p);
  1873. orig_cpu = cpu;
  1874. this_cpu = smp_processor_id();
  1875. #ifdef CONFIG_SMP
  1876. if (unlikely(task_running(rq, p)))
  1877. goto out_activate;
  1878. cpu = p->sched_class->select_task_rq(p, sync);
  1879. if (cpu != orig_cpu) {
  1880. set_task_cpu(p, cpu);
  1881. task_rq_unlock(rq, &flags);
  1882. /* might preempt at this point */
  1883. rq = task_rq_lock(p, &flags);
  1884. old_state = p->state;
  1885. if (!(old_state & state))
  1886. goto out;
  1887. if (p->se.on_rq)
  1888. goto out_running;
  1889. this_cpu = smp_processor_id();
  1890. cpu = task_cpu(p);
  1891. }
  1892. #ifdef CONFIG_SCHEDSTATS
  1893. schedstat_inc(rq, ttwu_count);
  1894. if (cpu == this_cpu)
  1895. schedstat_inc(rq, ttwu_local);
  1896. else {
  1897. struct sched_domain *sd;
  1898. for_each_domain(this_cpu, sd) {
  1899. if (cpu_isset(cpu, sd->span)) {
  1900. schedstat_inc(sd, ttwu_wake_remote);
  1901. break;
  1902. }
  1903. }
  1904. }
  1905. #endif /* CONFIG_SCHEDSTATS */
  1906. out_activate:
  1907. #endif /* CONFIG_SMP */
  1908. schedstat_inc(p, se.nr_wakeups);
  1909. if (sync)
  1910. schedstat_inc(p, se.nr_wakeups_sync);
  1911. if (orig_cpu != cpu)
  1912. schedstat_inc(p, se.nr_wakeups_migrate);
  1913. if (cpu == this_cpu)
  1914. schedstat_inc(p, se.nr_wakeups_local);
  1915. else
  1916. schedstat_inc(p, se.nr_wakeups_remote);
  1917. update_rq_clock(rq);
  1918. activate_task(rq, p, 1);
  1919. success = 1;
  1920. out_running:
  1921. trace_mark(kernel_sched_wakeup,
  1922. "pid %d state %ld ## rq %p task %p rq->curr %p",
  1923. p->pid, p->state, rq, p, rq->curr);
  1924. check_preempt_curr(rq, p);
  1925. p->state = TASK_RUNNING;
  1926. #ifdef CONFIG_SMP
  1927. if (p->sched_class->task_wake_up)
  1928. p->sched_class->task_wake_up(rq, p);
  1929. #endif
  1930. out:
  1931. current->se.last_wakeup = current->se.sum_exec_runtime;
  1932. task_rq_unlock(rq, &flags);
  1933. return success;
  1934. }
  1935. int wake_up_process(struct task_struct *p)
  1936. {
  1937. return try_to_wake_up(p, TASK_ALL, 0);
  1938. }
  1939. EXPORT_SYMBOL(wake_up_process);
  1940. int wake_up_state(struct task_struct *p, unsigned int state)
  1941. {
  1942. return try_to_wake_up(p, state, 0);
  1943. }
  1944. /*
  1945. * Perform scheduler related setup for a newly forked process p.
  1946. * p is forked by current.
  1947. *
  1948. * __sched_fork() is basic setup used by init_idle() too:
  1949. */
  1950. static void __sched_fork(struct task_struct *p)
  1951. {
  1952. p->se.exec_start = 0;
  1953. p->se.sum_exec_runtime = 0;
  1954. p->se.prev_sum_exec_runtime = 0;
  1955. p->se.last_wakeup = 0;
  1956. p->se.avg_overlap = 0;
  1957. #ifdef CONFIG_SCHEDSTATS
  1958. p->se.wait_start = 0;
  1959. p->se.sum_sleep_runtime = 0;
  1960. p->se.sleep_start = 0;
  1961. p->se.block_start = 0;
  1962. p->se.sleep_max = 0;
  1963. p->se.block_max = 0;
  1964. p->se.exec_max = 0;
  1965. p->se.slice_max = 0;
  1966. p->se.wait_max = 0;
  1967. #endif
  1968. INIT_LIST_HEAD(&p->rt.run_list);
  1969. p->se.on_rq = 0;
  1970. INIT_LIST_HEAD(&p->se.group_node);
  1971. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1972. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1973. #endif
  1974. /*
  1975. * We mark the process as running here, but have not actually
  1976. * inserted it onto the runqueue yet. This guarantees that
  1977. * nobody will actually run it, and a signal or other external
  1978. * event cannot wake it up and insert it on the runqueue either.
  1979. */
  1980. p->state = TASK_RUNNING;
  1981. }
  1982. /*
  1983. * fork()/clone()-time setup:
  1984. */
  1985. void sched_fork(struct task_struct *p, int clone_flags)
  1986. {
  1987. int cpu = get_cpu();
  1988. __sched_fork(p);
  1989. #ifdef CONFIG_SMP
  1990. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1991. #endif
  1992. set_task_cpu(p, cpu);
  1993. /*
  1994. * Make sure we do not leak PI boosting priority to the child:
  1995. */
  1996. p->prio = current->normal_prio;
  1997. if (!rt_prio(p->prio))
  1998. p->sched_class = &fair_sched_class;
  1999. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2000. if (likely(sched_info_on()))
  2001. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2002. #endif
  2003. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2004. p->oncpu = 0;
  2005. #endif
  2006. #ifdef CONFIG_PREEMPT
  2007. /* Want to start with kernel preemption disabled. */
  2008. task_thread_info(p)->preempt_count = 1;
  2009. #endif
  2010. put_cpu();
  2011. }
  2012. /*
  2013. * wake_up_new_task - wake up a newly created task for the first time.
  2014. *
  2015. * This function will do some initial scheduler statistics housekeeping
  2016. * that must be done for every newly created context, then puts the task
  2017. * on the runqueue and wakes it.
  2018. */
  2019. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2020. {
  2021. unsigned long flags;
  2022. struct rq *rq;
  2023. rq = task_rq_lock(p, &flags);
  2024. BUG_ON(p->state != TASK_RUNNING);
  2025. update_rq_clock(rq);
  2026. p->prio = effective_prio(p);
  2027. if (!p->sched_class->task_new || !current->se.on_rq) {
  2028. activate_task(rq, p, 0);
  2029. } else {
  2030. /*
  2031. * Let the scheduling class do new task startup
  2032. * management (if any):
  2033. */
  2034. p->sched_class->task_new(rq, p);
  2035. inc_nr_running(rq);
  2036. }
  2037. trace_mark(kernel_sched_wakeup_new,
  2038. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2039. p->pid, p->state, rq, p, rq->curr);
  2040. check_preempt_curr(rq, p);
  2041. #ifdef CONFIG_SMP
  2042. if (p->sched_class->task_wake_up)
  2043. p->sched_class->task_wake_up(rq, p);
  2044. #endif
  2045. task_rq_unlock(rq, &flags);
  2046. }
  2047. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2048. /**
  2049. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2050. * @notifier: notifier struct to register
  2051. */
  2052. void preempt_notifier_register(struct preempt_notifier *notifier)
  2053. {
  2054. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2055. }
  2056. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2057. /**
  2058. * preempt_notifier_unregister - no longer interested in preemption notifications
  2059. * @notifier: notifier struct to unregister
  2060. *
  2061. * This is safe to call from within a preemption notifier.
  2062. */
  2063. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2064. {
  2065. hlist_del(&notifier->link);
  2066. }
  2067. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2068. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2069. {
  2070. struct preempt_notifier *notifier;
  2071. struct hlist_node *node;
  2072. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2073. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2074. }
  2075. static void
  2076. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2077. struct task_struct *next)
  2078. {
  2079. struct preempt_notifier *notifier;
  2080. struct hlist_node *node;
  2081. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2082. notifier->ops->sched_out(notifier, next);
  2083. }
  2084. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2085. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2086. {
  2087. }
  2088. static void
  2089. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2090. struct task_struct *next)
  2091. {
  2092. }
  2093. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2094. /**
  2095. * prepare_task_switch - prepare to switch tasks
  2096. * @rq: the runqueue preparing to switch
  2097. * @prev: the current task that is being switched out
  2098. * @next: the task we are going to switch to.
  2099. *
  2100. * This is called with the rq lock held and interrupts off. It must
  2101. * be paired with a subsequent finish_task_switch after the context
  2102. * switch.
  2103. *
  2104. * prepare_task_switch sets up locking and calls architecture specific
  2105. * hooks.
  2106. */
  2107. static inline void
  2108. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2109. struct task_struct *next)
  2110. {
  2111. fire_sched_out_preempt_notifiers(prev, next);
  2112. prepare_lock_switch(rq, next);
  2113. prepare_arch_switch(next);
  2114. }
  2115. /**
  2116. * finish_task_switch - clean up after a task-switch
  2117. * @rq: runqueue associated with task-switch
  2118. * @prev: the thread we just switched away from.
  2119. *
  2120. * finish_task_switch must be called after the context switch, paired
  2121. * with a prepare_task_switch call before the context switch.
  2122. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2123. * and do any other architecture-specific cleanup actions.
  2124. *
  2125. * Note that we may have delayed dropping an mm in context_switch(). If
  2126. * so, we finish that here outside of the runqueue lock. (Doing it
  2127. * with the lock held can cause deadlocks; see schedule() for
  2128. * details.)
  2129. */
  2130. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2131. __releases(rq->lock)
  2132. {
  2133. struct mm_struct *mm = rq->prev_mm;
  2134. long prev_state;
  2135. rq->prev_mm = NULL;
  2136. /*
  2137. * A task struct has one reference for the use as "current".
  2138. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2139. * schedule one last time. The schedule call will never return, and
  2140. * the scheduled task must drop that reference.
  2141. * The test for TASK_DEAD must occur while the runqueue locks are
  2142. * still held, otherwise prev could be scheduled on another cpu, die
  2143. * there before we look at prev->state, and then the reference would
  2144. * be dropped twice.
  2145. * Manfred Spraul <manfred@colorfullife.com>
  2146. */
  2147. prev_state = prev->state;
  2148. finish_arch_switch(prev);
  2149. finish_lock_switch(rq, prev);
  2150. #ifdef CONFIG_SMP
  2151. if (current->sched_class->post_schedule)
  2152. current->sched_class->post_schedule(rq);
  2153. #endif
  2154. fire_sched_in_preempt_notifiers(current);
  2155. if (mm)
  2156. mmdrop(mm);
  2157. if (unlikely(prev_state == TASK_DEAD)) {
  2158. /*
  2159. * Remove function-return probe instances associated with this
  2160. * task and put them back on the free list.
  2161. */
  2162. kprobe_flush_task(prev);
  2163. put_task_struct(prev);
  2164. }
  2165. }
  2166. /**
  2167. * schedule_tail - first thing a freshly forked thread must call.
  2168. * @prev: the thread we just switched away from.
  2169. */
  2170. asmlinkage void schedule_tail(struct task_struct *prev)
  2171. __releases(rq->lock)
  2172. {
  2173. struct rq *rq = this_rq();
  2174. finish_task_switch(rq, prev);
  2175. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2176. /* In this case, finish_task_switch does not reenable preemption */
  2177. preempt_enable();
  2178. #endif
  2179. if (current->set_child_tid)
  2180. put_user(task_pid_vnr(current), current->set_child_tid);
  2181. }
  2182. /*
  2183. * context_switch - switch to the new MM and the new
  2184. * thread's register state.
  2185. */
  2186. static inline void
  2187. context_switch(struct rq *rq, struct task_struct *prev,
  2188. struct task_struct *next)
  2189. {
  2190. struct mm_struct *mm, *oldmm;
  2191. prepare_task_switch(rq, prev, next);
  2192. trace_mark(kernel_sched_schedule,
  2193. "prev_pid %d next_pid %d prev_state %ld "
  2194. "## rq %p prev %p next %p",
  2195. prev->pid, next->pid, prev->state,
  2196. rq, prev, next);
  2197. mm = next->mm;
  2198. oldmm = prev->active_mm;
  2199. /*
  2200. * For paravirt, this is coupled with an exit in switch_to to
  2201. * combine the page table reload and the switch backend into
  2202. * one hypercall.
  2203. */
  2204. arch_enter_lazy_cpu_mode();
  2205. if (unlikely(!mm)) {
  2206. next->active_mm = oldmm;
  2207. atomic_inc(&oldmm->mm_count);
  2208. enter_lazy_tlb(oldmm, next);
  2209. } else
  2210. switch_mm(oldmm, mm, next);
  2211. if (unlikely(!prev->mm)) {
  2212. prev->active_mm = NULL;
  2213. rq->prev_mm = oldmm;
  2214. }
  2215. /*
  2216. * Since the runqueue lock will be released by the next
  2217. * task (which is an invalid locking op but in the case
  2218. * of the scheduler it's an obvious special-case), so we
  2219. * do an early lockdep release here:
  2220. */
  2221. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2222. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2223. #endif
  2224. /* Here we just switch the register state and the stack. */
  2225. switch_to(prev, next, prev);
  2226. barrier();
  2227. /*
  2228. * this_rq must be evaluated again because prev may have moved
  2229. * CPUs since it called schedule(), thus the 'rq' on its stack
  2230. * frame will be invalid.
  2231. */
  2232. finish_task_switch(this_rq(), prev);
  2233. }
  2234. /*
  2235. * nr_running, nr_uninterruptible and nr_context_switches:
  2236. *
  2237. * externally visible scheduler statistics: current number of runnable
  2238. * threads, current number of uninterruptible-sleeping threads, total
  2239. * number of context switches performed since bootup.
  2240. */
  2241. unsigned long nr_running(void)
  2242. {
  2243. unsigned long i, sum = 0;
  2244. for_each_online_cpu(i)
  2245. sum += cpu_rq(i)->nr_running;
  2246. return sum;
  2247. }
  2248. unsigned long nr_uninterruptible(void)
  2249. {
  2250. unsigned long i, sum = 0;
  2251. for_each_possible_cpu(i)
  2252. sum += cpu_rq(i)->nr_uninterruptible;
  2253. /*
  2254. * Since we read the counters lockless, it might be slightly
  2255. * inaccurate. Do not allow it to go below zero though:
  2256. */
  2257. if (unlikely((long)sum < 0))
  2258. sum = 0;
  2259. return sum;
  2260. }
  2261. unsigned long long nr_context_switches(void)
  2262. {
  2263. int i;
  2264. unsigned long long sum = 0;
  2265. for_each_possible_cpu(i)
  2266. sum += cpu_rq(i)->nr_switches;
  2267. return sum;
  2268. }
  2269. unsigned long nr_iowait(void)
  2270. {
  2271. unsigned long i, sum = 0;
  2272. for_each_possible_cpu(i)
  2273. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2274. return sum;
  2275. }
  2276. unsigned long nr_active(void)
  2277. {
  2278. unsigned long i, running = 0, uninterruptible = 0;
  2279. for_each_online_cpu(i) {
  2280. running += cpu_rq(i)->nr_running;
  2281. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2282. }
  2283. if (unlikely((long)uninterruptible < 0))
  2284. uninterruptible = 0;
  2285. return running + uninterruptible;
  2286. }
  2287. /*
  2288. * Update rq->cpu_load[] statistics. This function is usually called every
  2289. * scheduler tick (TICK_NSEC).
  2290. */
  2291. static void update_cpu_load(struct rq *this_rq)
  2292. {
  2293. unsigned long this_load = this_rq->load.weight;
  2294. int i, scale;
  2295. this_rq->nr_load_updates++;
  2296. /* Update our load: */
  2297. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2298. unsigned long old_load, new_load;
  2299. /* scale is effectively 1 << i now, and >> i divides by scale */
  2300. old_load = this_rq->cpu_load[i];
  2301. new_load = this_load;
  2302. /*
  2303. * Round up the averaging division if load is increasing. This
  2304. * prevents us from getting stuck on 9 if the load is 10, for
  2305. * example.
  2306. */
  2307. if (new_load > old_load)
  2308. new_load += scale-1;
  2309. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2310. }
  2311. }
  2312. #ifdef CONFIG_SMP
  2313. /*
  2314. * double_rq_lock - safely lock two runqueues
  2315. *
  2316. * Note this does not disable interrupts like task_rq_lock,
  2317. * you need to do so manually before calling.
  2318. */
  2319. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2320. __acquires(rq1->lock)
  2321. __acquires(rq2->lock)
  2322. {
  2323. BUG_ON(!irqs_disabled());
  2324. if (rq1 == rq2) {
  2325. spin_lock(&rq1->lock);
  2326. __acquire(rq2->lock); /* Fake it out ;) */
  2327. } else {
  2328. if (rq1 < rq2) {
  2329. spin_lock(&rq1->lock);
  2330. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2331. } else {
  2332. spin_lock(&rq2->lock);
  2333. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2334. }
  2335. }
  2336. update_rq_clock(rq1);
  2337. update_rq_clock(rq2);
  2338. }
  2339. /*
  2340. * double_rq_unlock - safely unlock two runqueues
  2341. *
  2342. * Note this does not restore interrupts like task_rq_unlock,
  2343. * you need to do so manually after calling.
  2344. */
  2345. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2346. __releases(rq1->lock)
  2347. __releases(rq2->lock)
  2348. {
  2349. spin_unlock(&rq1->lock);
  2350. if (rq1 != rq2)
  2351. spin_unlock(&rq2->lock);
  2352. else
  2353. __release(rq2->lock);
  2354. }
  2355. /*
  2356. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2357. */
  2358. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2359. __releases(this_rq->lock)
  2360. __acquires(busiest->lock)
  2361. __acquires(this_rq->lock)
  2362. {
  2363. int ret = 0;
  2364. if (unlikely(!irqs_disabled())) {
  2365. /* printk() doesn't work good under rq->lock */
  2366. spin_unlock(&this_rq->lock);
  2367. BUG_ON(1);
  2368. }
  2369. if (unlikely(!spin_trylock(&busiest->lock))) {
  2370. if (busiest < this_rq) {
  2371. spin_unlock(&this_rq->lock);
  2372. spin_lock(&busiest->lock);
  2373. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2374. ret = 1;
  2375. } else
  2376. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2377. }
  2378. return ret;
  2379. }
  2380. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2381. __releases(busiest->lock)
  2382. {
  2383. spin_unlock(&busiest->lock);
  2384. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2385. }
  2386. /*
  2387. * If dest_cpu is allowed for this process, migrate the task to it.
  2388. * This is accomplished by forcing the cpu_allowed mask to only
  2389. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2390. * the cpu_allowed mask is restored.
  2391. */
  2392. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2393. {
  2394. struct migration_req req;
  2395. unsigned long flags;
  2396. struct rq *rq;
  2397. rq = task_rq_lock(p, &flags);
  2398. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2399. || unlikely(!cpu_active(dest_cpu)))
  2400. goto out;
  2401. /* force the process onto the specified CPU */
  2402. if (migrate_task(p, dest_cpu, &req)) {
  2403. /* Need to wait for migration thread (might exit: take ref). */
  2404. struct task_struct *mt = rq->migration_thread;
  2405. get_task_struct(mt);
  2406. task_rq_unlock(rq, &flags);
  2407. wake_up_process(mt);
  2408. put_task_struct(mt);
  2409. wait_for_completion(&req.done);
  2410. return;
  2411. }
  2412. out:
  2413. task_rq_unlock(rq, &flags);
  2414. }
  2415. /*
  2416. * sched_exec - execve() is a valuable balancing opportunity, because at
  2417. * this point the task has the smallest effective memory and cache footprint.
  2418. */
  2419. void sched_exec(void)
  2420. {
  2421. int new_cpu, this_cpu = get_cpu();
  2422. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2423. put_cpu();
  2424. if (new_cpu != this_cpu)
  2425. sched_migrate_task(current, new_cpu);
  2426. }
  2427. /*
  2428. * pull_task - move a task from a remote runqueue to the local runqueue.
  2429. * Both runqueues must be locked.
  2430. */
  2431. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2432. struct rq *this_rq, int this_cpu)
  2433. {
  2434. deactivate_task(src_rq, p, 0);
  2435. set_task_cpu(p, this_cpu);
  2436. activate_task(this_rq, p, 0);
  2437. /*
  2438. * Note that idle threads have a prio of MAX_PRIO, for this test
  2439. * to be always true for them.
  2440. */
  2441. check_preempt_curr(this_rq, p);
  2442. }
  2443. /*
  2444. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2445. */
  2446. static
  2447. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2448. struct sched_domain *sd, enum cpu_idle_type idle,
  2449. int *all_pinned)
  2450. {
  2451. /*
  2452. * We do not migrate tasks that are:
  2453. * 1) running (obviously), or
  2454. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2455. * 3) are cache-hot on their current CPU.
  2456. */
  2457. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2458. schedstat_inc(p, se.nr_failed_migrations_affine);
  2459. return 0;
  2460. }
  2461. *all_pinned = 0;
  2462. if (task_running(rq, p)) {
  2463. schedstat_inc(p, se.nr_failed_migrations_running);
  2464. return 0;
  2465. }
  2466. /*
  2467. * Aggressive migration if:
  2468. * 1) task is cache cold, or
  2469. * 2) too many balance attempts have failed.
  2470. */
  2471. if (!task_hot(p, rq->clock, sd) ||
  2472. sd->nr_balance_failed > sd->cache_nice_tries) {
  2473. #ifdef CONFIG_SCHEDSTATS
  2474. if (task_hot(p, rq->clock, sd)) {
  2475. schedstat_inc(sd, lb_hot_gained[idle]);
  2476. schedstat_inc(p, se.nr_forced_migrations);
  2477. }
  2478. #endif
  2479. return 1;
  2480. }
  2481. if (task_hot(p, rq->clock, sd)) {
  2482. schedstat_inc(p, se.nr_failed_migrations_hot);
  2483. return 0;
  2484. }
  2485. return 1;
  2486. }
  2487. static unsigned long
  2488. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2489. unsigned long max_load_move, struct sched_domain *sd,
  2490. enum cpu_idle_type idle, int *all_pinned,
  2491. int *this_best_prio, struct rq_iterator *iterator)
  2492. {
  2493. int loops = 0, pulled = 0, pinned = 0;
  2494. struct task_struct *p;
  2495. long rem_load_move = max_load_move;
  2496. if (max_load_move == 0)
  2497. goto out;
  2498. pinned = 1;
  2499. /*
  2500. * Start the load-balancing iterator:
  2501. */
  2502. p = iterator->start(iterator->arg);
  2503. next:
  2504. if (!p || loops++ > sysctl_sched_nr_migrate)
  2505. goto out;
  2506. if ((p->se.load.weight >> 1) > rem_load_move ||
  2507. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2508. p = iterator->next(iterator->arg);
  2509. goto next;
  2510. }
  2511. pull_task(busiest, p, this_rq, this_cpu);
  2512. pulled++;
  2513. rem_load_move -= p->se.load.weight;
  2514. /*
  2515. * We only want to steal up to the prescribed amount of weighted load.
  2516. */
  2517. if (rem_load_move > 0) {
  2518. if (p->prio < *this_best_prio)
  2519. *this_best_prio = p->prio;
  2520. p = iterator->next(iterator->arg);
  2521. goto next;
  2522. }
  2523. out:
  2524. /*
  2525. * Right now, this is one of only two places pull_task() is called,
  2526. * so we can safely collect pull_task() stats here rather than
  2527. * inside pull_task().
  2528. */
  2529. schedstat_add(sd, lb_gained[idle], pulled);
  2530. if (all_pinned)
  2531. *all_pinned = pinned;
  2532. return max_load_move - rem_load_move;
  2533. }
  2534. /*
  2535. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2536. * this_rq, as part of a balancing operation within domain "sd".
  2537. * Returns 1 if successful and 0 otherwise.
  2538. *
  2539. * Called with both runqueues locked.
  2540. */
  2541. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2542. unsigned long max_load_move,
  2543. struct sched_domain *sd, enum cpu_idle_type idle,
  2544. int *all_pinned)
  2545. {
  2546. const struct sched_class *class = sched_class_highest;
  2547. unsigned long total_load_moved = 0;
  2548. int this_best_prio = this_rq->curr->prio;
  2549. do {
  2550. total_load_moved +=
  2551. class->load_balance(this_rq, this_cpu, busiest,
  2552. max_load_move - total_load_moved,
  2553. sd, idle, all_pinned, &this_best_prio);
  2554. class = class->next;
  2555. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2556. break;
  2557. } while (class && max_load_move > total_load_moved);
  2558. return total_load_moved > 0;
  2559. }
  2560. static int
  2561. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2562. struct sched_domain *sd, enum cpu_idle_type idle,
  2563. struct rq_iterator *iterator)
  2564. {
  2565. struct task_struct *p = iterator->start(iterator->arg);
  2566. int pinned = 0;
  2567. while (p) {
  2568. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2569. pull_task(busiest, p, this_rq, this_cpu);
  2570. /*
  2571. * Right now, this is only the second place pull_task()
  2572. * is called, so we can safely collect pull_task()
  2573. * stats here rather than inside pull_task().
  2574. */
  2575. schedstat_inc(sd, lb_gained[idle]);
  2576. return 1;
  2577. }
  2578. p = iterator->next(iterator->arg);
  2579. }
  2580. return 0;
  2581. }
  2582. /*
  2583. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2584. * part of active balancing operations within "domain".
  2585. * Returns 1 if successful and 0 otherwise.
  2586. *
  2587. * Called with both runqueues locked.
  2588. */
  2589. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2590. struct sched_domain *sd, enum cpu_idle_type idle)
  2591. {
  2592. const struct sched_class *class;
  2593. for (class = sched_class_highest; class; class = class->next)
  2594. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2595. return 1;
  2596. return 0;
  2597. }
  2598. /*
  2599. * find_busiest_group finds and returns the busiest CPU group within the
  2600. * domain. It calculates and returns the amount of weighted load which
  2601. * should be moved to restore balance via the imbalance parameter.
  2602. */
  2603. static struct sched_group *
  2604. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2605. unsigned long *imbalance, enum cpu_idle_type idle,
  2606. int *sd_idle, const cpumask_t *cpus, int *balance)
  2607. {
  2608. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2609. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2610. unsigned long max_pull;
  2611. unsigned long busiest_load_per_task, busiest_nr_running;
  2612. unsigned long this_load_per_task, this_nr_running;
  2613. int load_idx, group_imb = 0;
  2614. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2615. int power_savings_balance = 1;
  2616. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2617. unsigned long min_nr_running = ULONG_MAX;
  2618. struct sched_group *group_min = NULL, *group_leader = NULL;
  2619. #endif
  2620. max_load = this_load = total_load = total_pwr = 0;
  2621. busiest_load_per_task = busiest_nr_running = 0;
  2622. this_load_per_task = this_nr_running = 0;
  2623. if (idle == CPU_NOT_IDLE)
  2624. load_idx = sd->busy_idx;
  2625. else if (idle == CPU_NEWLY_IDLE)
  2626. load_idx = sd->newidle_idx;
  2627. else
  2628. load_idx = sd->idle_idx;
  2629. do {
  2630. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2631. int local_group;
  2632. int i;
  2633. int __group_imb = 0;
  2634. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2635. unsigned long sum_nr_running, sum_weighted_load;
  2636. unsigned long sum_avg_load_per_task;
  2637. unsigned long avg_load_per_task;
  2638. local_group = cpu_isset(this_cpu, group->cpumask);
  2639. if (local_group)
  2640. balance_cpu = first_cpu(group->cpumask);
  2641. /* Tally up the load of all CPUs in the group */
  2642. sum_weighted_load = sum_nr_running = avg_load = 0;
  2643. sum_avg_load_per_task = avg_load_per_task = 0;
  2644. max_cpu_load = 0;
  2645. min_cpu_load = ~0UL;
  2646. for_each_cpu_mask_nr(i, group->cpumask) {
  2647. struct rq *rq;
  2648. if (!cpu_isset(i, *cpus))
  2649. continue;
  2650. rq = cpu_rq(i);
  2651. if (*sd_idle && rq->nr_running)
  2652. *sd_idle = 0;
  2653. /* Bias balancing toward cpus of our domain */
  2654. if (local_group) {
  2655. if (idle_cpu(i) && !first_idle_cpu) {
  2656. first_idle_cpu = 1;
  2657. balance_cpu = i;
  2658. }
  2659. load = target_load(i, load_idx);
  2660. } else {
  2661. load = source_load(i, load_idx);
  2662. if (load > max_cpu_load)
  2663. max_cpu_load = load;
  2664. if (min_cpu_load > load)
  2665. min_cpu_load = load;
  2666. }
  2667. avg_load += load;
  2668. sum_nr_running += rq->nr_running;
  2669. sum_weighted_load += weighted_cpuload(i);
  2670. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2671. }
  2672. /*
  2673. * First idle cpu or the first cpu(busiest) in this sched group
  2674. * is eligible for doing load balancing at this and above
  2675. * domains. In the newly idle case, we will allow all the cpu's
  2676. * to do the newly idle load balance.
  2677. */
  2678. if (idle != CPU_NEWLY_IDLE && local_group &&
  2679. balance_cpu != this_cpu && balance) {
  2680. *balance = 0;
  2681. goto ret;
  2682. }
  2683. total_load += avg_load;
  2684. total_pwr += group->__cpu_power;
  2685. /* Adjust by relative CPU power of the group */
  2686. avg_load = sg_div_cpu_power(group,
  2687. avg_load * SCHED_LOAD_SCALE);
  2688. /*
  2689. * Consider the group unbalanced when the imbalance is larger
  2690. * than the average weight of two tasks.
  2691. *
  2692. * APZ: with cgroup the avg task weight can vary wildly and
  2693. * might not be a suitable number - should we keep a
  2694. * normalized nr_running number somewhere that negates
  2695. * the hierarchy?
  2696. */
  2697. avg_load_per_task = sg_div_cpu_power(group,
  2698. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2699. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2700. __group_imb = 1;
  2701. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2702. if (local_group) {
  2703. this_load = avg_load;
  2704. this = group;
  2705. this_nr_running = sum_nr_running;
  2706. this_load_per_task = sum_weighted_load;
  2707. } else if (avg_load > max_load &&
  2708. (sum_nr_running > group_capacity || __group_imb)) {
  2709. max_load = avg_load;
  2710. busiest = group;
  2711. busiest_nr_running = sum_nr_running;
  2712. busiest_load_per_task = sum_weighted_load;
  2713. group_imb = __group_imb;
  2714. }
  2715. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2716. /*
  2717. * Busy processors will not participate in power savings
  2718. * balance.
  2719. */
  2720. if (idle == CPU_NOT_IDLE ||
  2721. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2722. goto group_next;
  2723. /*
  2724. * If the local group is idle or completely loaded
  2725. * no need to do power savings balance at this domain
  2726. */
  2727. if (local_group && (this_nr_running >= group_capacity ||
  2728. !this_nr_running))
  2729. power_savings_balance = 0;
  2730. /*
  2731. * If a group is already running at full capacity or idle,
  2732. * don't include that group in power savings calculations
  2733. */
  2734. if (!power_savings_balance || sum_nr_running >= group_capacity
  2735. || !sum_nr_running)
  2736. goto group_next;
  2737. /*
  2738. * Calculate the group which has the least non-idle load.
  2739. * This is the group from where we need to pick up the load
  2740. * for saving power
  2741. */
  2742. if ((sum_nr_running < min_nr_running) ||
  2743. (sum_nr_running == min_nr_running &&
  2744. first_cpu(group->cpumask) <
  2745. first_cpu(group_min->cpumask))) {
  2746. group_min = group;
  2747. min_nr_running = sum_nr_running;
  2748. min_load_per_task = sum_weighted_load /
  2749. sum_nr_running;
  2750. }
  2751. /*
  2752. * Calculate the group which is almost near its
  2753. * capacity but still has some space to pick up some load
  2754. * from other group and save more power
  2755. */
  2756. if (sum_nr_running <= group_capacity - 1) {
  2757. if (sum_nr_running > leader_nr_running ||
  2758. (sum_nr_running == leader_nr_running &&
  2759. first_cpu(group->cpumask) >
  2760. first_cpu(group_leader->cpumask))) {
  2761. group_leader = group;
  2762. leader_nr_running = sum_nr_running;
  2763. }
  2764. }
  2765. group_next:
  2766. #endif
  2767. group = group->next;
  2768. } while (group != sd->groups);
  2769. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2770. goto out_balanced;
  2771. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2772. if (this_load >= avg_load ||
  2773. 100*max_load <= sd->imbalance_pct*this_load)
  2774. goto out_balanced;
  2775. busiest_load_per_task /= busiest_nr_running;
  2776. if (group_imb)
  2777. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2778. /*
  2779. * We're trying to get all the cpus to the average_load, so we don't
  2780. * want to push ourselves above the average load, nor do we wish to
  2781. * reduce the max loaded cpu below the average load, as either of these
  2782. * actions would just result in more rebalancing later, and ping-pong
  2783. * tasks around. Thus we look for the minimum possible imbalance.
  2784. * Negative imbalances (*we* are more loaded than anyone else) will
  2785. * be counted as no imbalance for these purposes -- we can't fix that
  2786. * by pulling tasks to us. Be careful of negative numbers as they'll
  2787. * appear as very large values with unsigned longs.
  2788. */
  2789. if (max_load <= busiest_load_per_task)
  2790. goto out_balanced;
  2791. /*
  2792. * In the presence of smp nice balancing, certain scenarios can have
  2793. * max load less than avg load(as we skip the groups at or below
  2794. * its cpu_power, while calculating max_load..)
  2795. */
  2796. if (max_load < avg_load) {
  2797. *imbalance = 0;
  2798. goto small_imbalance;
  2799. }
  2800. /* Don't want to pull so many tasks that a group would go idle */
  2801. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2802. /* How much load to actually move to equalise the imbalance */
  2803. *imbalance = min(max_pull * busiest->__cpu_power,
  2804. (avg_load - this_load) * this->__cpu_power)
  2805. / SCHED_LOAD_SCALE;
  2806. /*
  2807. * if *imbalance is less than the average load per runnable task
  2808. * there is no gaurantee that any tasks will be moved so we'll have
  2809. * a think about bumping its value to force at least one task to be
  2810. * moved
  2811. */
  2812. if (*imbalance < busiest_load_per_task) {
  2813. unsigned long tmp, pwr_now, pwr_move;
  2814. unsigned int imbn;
  2815. small_imbalance:
  2816. pwr_move = pwr_now = 0;
  2817. imbn = 2;
  2818. if (this_nr_running) {
  2819. this_load_per_task /= this_nr_running;
  2820. if (busiest_load_per_task > this_load_per_task)
  2821. imbn = 1;
  2822. } else
  2823. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2824. if (max_load - this_load + 2*busiest_load_per_task >=
  2825. busiest_load_per_task * imbn) {
  2826. *imbalance = busiest_load_per_task;
  2827. return busiest;
  2828. }
  2829. /*
  2830. * OK, we don't have enough imbalance to justify moving tasks,
  2831. * however we may be able to increase total CPU power used by
  2832. * moving them.
  2833. */
  2834. pwr_now += busiest->__cpu_power *
  2835. min(busiest_load_per_task, max_load);
  2836. pwr_now += this->__cpu_power *
  2837. min(this_load_per_task, this_load);
  2838. pwr_now /= SCHED_LOAD_SCALE;
  2839. /* Amount of load we'd subtract */
  2840. tmp = sg_div_cpu_power(busiest,
  2841. busiest_load_per_task * SCHED_LOAD_SCALE);
  2842. if (max_load > tmp)
  2843. pwr_move += busiest->__cpu_power *
  2844. min(busiest_load_per_task, max_load - tmp);
  2845. /* Amount of load we'd add */
  2846. if (max_load * busiest->__cpu_power <
  2847. busiest_load_per_task * SCHED_LOAD_SCALE)
  2848. tmp = sg_div_cpu_power(this,
  2849. max_load * busiest->__cpu_power);
  2850. else
  2851. tmp = sg_div_cpu_power(this,
  2852. busiest_load_per_task * SCHED_LOAD_SCALE);
  2853. pwr_move += this->__cpu_power *
  2854. min(this_load_per_task, this_load + tmp);
  2855. pwr_move /= SCHED_LOAD_SCALE;
  2856. /* Move if we gain throughput */
  2857. if (pwr_move > pwr_now)
  2858. *imbalance = busiest_load_per_task;
  2859. }
  2860. return busiest;
  2861. out_balanced:
  2862. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2863. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2864. goto ret;
  2865. if (this == group_leader && group_leader != group_min) {
  2866. *imbalance = min_load_per_task;
  2867. return group_min;
  2868. }
  2869. #endif
  2870. ret:
  2871. *imbalance = 0;
  2872. return NULL;
  2873. }
  2874. /*
  2875. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2876. */
  2877. static struct rq *
  2878. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2879. unsigned long imbalance, const cpumask_t *cpus)
  2880. {
  2881. struct rq *busiest = NULL, *rq;
  2882. unsigned long max_load = 0;
  2883. int i;
  2884. for_each_cpu_mask_nr(i, group->cpumask) {
  2885. unsigned long wl;
  2886. if (!cpu_isset(i, *cpus))
  2887. continue;
  2888. rq = cpu_rq(i);
  2889. wl = weighted_cpuload(i);
  2890. if (rq->nr_running == 1 && wl > imbalance)
  2891. continue;
  2892. if (wl > max_load) {
  2893. max_load = wl;
  2894. busiest = rq;
  2895. }
  2896. }
  2897. return busiest;
  2898. }
  2899. /*
  2900. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2901. * so long as it is large enough.
  2902. */
  2903. #define MAX_PINNED_INTERVAL 512
  2904. /*
  2905. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2906. * tasks if there is an imbalance.
  2907. */
  2908. static int load_balance(int this_cpu, struct rq *this_rq,
  2909. struct sched_domain *sd, enum cpu_idle_type idle,
  2910. int *balance, cpumask_t *cpus)
  2911. {
  2912. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2913. struct sched_group *group;
  2914. unsigned long imbalance;
  2915. struct rq *busiest;
  2916. unsigned long flags;
  2917. cpus_setall(*cpus);
  2918. /*
  2919. * When power savings policy is enabled for the parent domain, idle
  2920. * sibling can pick up load irrespective of busy siblings. In this case,
  2921. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2922. * portraying it as CPU_NOT_IDLE.
  2923. */
  2924. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2925. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2926. sd_idle = 1;
  2927. schedstat_inc(sd, lb_count[idle]);
  2928. redo:
  2929. update_shares(sd);
  2930. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2931. cpus, balance);
  2932. if (*balance == 0)
  2933. goto out_balanced;
  2934. if (!group) {
  2935. schedstat_inc(sd, lb_nobusyg[idle]);
  2936. goto out_balanced;
  2937. }
  2938. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2939. if (!busiest) {
  2940. schedstat_inc(sd, lb_nobusyq[idle]);
  2941. goto out_balanced;
  2942. }
  2943. BUG_ON(busiest == this_rq);
  2944. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2945. ld_moved = 0;
  2946. if (busiest->nr_running > 1) {
  2947. /*
  2948. * Attempt to move tasks. If find_busiest_group has found
  2949. * an imbalance but busiest->nr_running <= 1, the group is
  2950. * still unbalanced. ld_moved simply stays zero, so it is
  2951. * correctly treated as an imbalance.
  2952. */
  2953. local_irq_save(flags);
  2954. double_rq_lock(this_rq, busiest);
  2955. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2956. imbalance, sd, idle, &all_pinned);
  2957. double_rq_unlock(this_rq, busiest);
  2958. local_irq_restore(flags);
  2959. /*
  2960. * some other cpu did the load balance for us.
  2961. */
  2962. if (ld_moved && this_cpu != smp_processor_id())
  2963. resched_cpu(this_cpu);
  2964. /* All tasks on this runqueue were pinned by CPU affinity */
  2965. if (unlikely(all_pinned)) {
  2966. cpu_clear(cpu_of(busiest), *cpus);
  2967. if (!cpus_empty(*cpus))
  2968. goto redo;
  2969. goto out_balanced;
  2970. }
  2971. }
  2972. if (!ld_moved) {
  2973. schedstat_inc(sd, lb_failed[idle]);
  2974. sd->nr_balance_failed++;
  2975. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2976. spin_lock_irqsave(&busiest->lock, flags);
  2977. /* don't kick the migration_thread, if the curr
  2978. * task on busiest cpu can't be moved to this_cpu
  2979. */
  2980. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2981. spin_unlock_irqrestore(&busiest->lock, flags);
  2982. all_pinned = 1;
  2983. goto out_one_pinned;
  2984. }
  2985. if (!busiest->active_balance) {
  2986. busiest->active_balance = 1;
  2987. busiest->push_cpu = this_cpu;
  2988. active_balance = 1;
  2989. }
  2990. spin_unlock_irqrestore(&busiest->lock, flags);
  2991. if (active_balance)
  2992. wake_up_process(busiest->migration_thread);
  2993. /*
  2994. * We've kicked active balancing, reset the failure
  2995. * counter.
  2996. */
  2997. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2998. }
  2999. } else
  3000. sd->nr_balance_failed = 0;
  3001. if (likely(!active_balance)) {
  3002. /* We were unbalanced, so reset the balancing interval */
  3003. sd->balance_interval = sd->min_interval;
  3004. } else {
  3005. /*
  3006. * If we've begun active balancing, start to back off. This
  3007. * case may not be covered by the all_pinned logic if there
  3008. * is only 1 task on the busy runqueue (because we don't call
  3009. * move_tasks).
  3010. */
  3011. if (sd->balance_interval < sd->max_interval)
  3012. sd->balance_interval *= 2;
  3013. }
  3014. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3015. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3016. ld_moved = -1;
  3017. goto out;
  3018. out_balanced:
  3019. schedstat_inc(sd, lb_balanced[idle]);
  3020. sd->nr_balance_failed = 0;
  3021. out_one_pinned:
  3022. /* tune up the balancing interval */
  3023. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3024. (sd->balance_interval < sd->max_interval))
  3025. sd->balance_interval *= 2;
  3026. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3027. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3028. ld_moved = -1;
  3029. else
  3030. ld_moved = 0;
  3031. out:
  3032. if (ld_moved)
  3033. update_shares(sd);
  3034. return ld_moved;
  3035. }
  3036. /*
  3037. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3038. * tasks if there is an imbalance.
  3039. *
  3040. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3041. * this_rq is locked.
  3042. */
  3043. static int
  3044. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3045. cpumask_t *cpus)
  3046. {
  3047. struct sched_group *group;
  3048. struct rq *busiest = NULL;
  3049. unsigned long imbalance;
  3050. int ld_moved = 0;
  3051. int sd_idle = 0;
  3052. int all_pinned = 0;
  3053. cpus_setall(*cpus);
  3054. /*
  3055. * When power savings policy is enabled for the parent domain, idle
  3056. * sibling can pick up load irrespective of busy siblings. In this case,
  3057. * let the state of idle sibling percolate up as IDLE, instead of
  3058. * portraying it as CPU_NOT_IDLE.
  3059. */
  3060. if (sd->flags & SD_SHARE_CPUPOWER &&
  3061. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3062. sd_idle = 1;
  3063. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3064. redo:
  3065. update_shares_locked(this_rq, sd);
  3066. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3067. &sd_idle, cpus, NULL);
  3068. if (!group) {
  3069. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3070. goto out_balanced;
  3071. }
  3072. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3073. if (!busiest) {
  3074. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3075. goto out_balanced;
  3076. }
  3077. BUG_ON(busiest == this_rq);
  3078. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3079. ld_moved = 0;
  3080. if (busiest->nr_running > 1) {
  3081. /* Attempt to move tasks */
  3082. double_lock_balance(this_rq, busiest);
  3083. /* this_rq->clock is already updated */
  3084. update_rq_clock(busiest);
  3085. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3086. imbalance, sd, CPU_NEWLY_IDLE,
  3087. &all_pinned);
  3088. double_unlock_balance(this_rq, busiest);
  3089. if (unlikely(all_pinned)) {
  3090. cpu_clear(cpu_of(busiest), *cpus);
  3091. if (!cpus_empty(*cpus))
  3092. goto redo;
  3093. }
  3094. }
  3095. if (!ld_moved) {
  3096. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3097. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3098. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3099. return -1;
  3100. } else
  3101. sd->nr_balance_failed = 0;
  3102. update_shares_locked(this_rq, sd);
  3103. return ld_moved;
  3104. out_balanced:
  3105. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3106. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3107. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3108. return -1;
  3109. sd->nr_balance_failed = 0;
  3110. return 0;
  3111. }
  3112. /*
  3113. * idle_balance is called by schedule() if this_cpu is about to become
  3114. * idle. Attempts to pull tasks from other CPUs.
  3115. */
  3116. static void idle_balance(int this_cpu, struct rq *this_rq)
  3117. {
  3118. struct sched_domain *sd;
  3119. int pulled_task = -1;
  3120. unsigned long next_balance = jiffies + HZ;
  3121. cpumask_t tmpmask;
  3122. for_each_domain(this_cpu, sd) {
  3123. unsigned long interval;
  3124. if (!(sd->flags & SD_LOAD_BALANCE))
  3125. continue;
  3126. if (sd->flags & SD_BALANCE_NEWIDLE)
  3127. /* If we've pulled tasks over stop searching: */
  3128. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3129. sd, &tmpmask);
  3130. interval = msecs_to_jiffies(sd->balance_interval);
  3131. if (time_after(next_balance, sd->last_balance + interval))
  3132. next_balance = sd->last_balance + interval;
  3133. if (pulled_task)
  3134. break;
  3135. }
  3136. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3137. /*
  3138. * We are going idle. next_balance may be set based on
  3139. * a busy processor. So reset next_balance.
  3140. */
  3141. this_rq->next_balance = next_balance;
  3142. }
  3143. }
  3144. /*
  3145. * active_load_balance is run by migration threads. It pushes running tasks
  3146. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3147. * running on each physical CPU where possible, and avoids physical /
  3148. * logical imbalances.
  3149. *
  3150. * Called with busiest_rq locked.
  3151. */
  3152. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3153. {
  3154. int target_cpu = busiest_rq->push_cpu;
  3155. struct sched_domain *sd;
  3156. struct rq *target_rq;
  3157. /* Is there any task to move? */
  3158. if (busiest_rq->nr_running <= 1)
  3159. return;
  3160. target_rq = cpu_rq(target_cpu);
  3161. /*
  3162. * This condition is "impossible", if it occurs
  3163. * we need to fix it. Originally reported by
  3164. * Bjorn Helgaas on a 128-cpu setup.
  3165. */
  3166. BUG_ON(busiest_rq == target_rq);
  3167. /* move a task from busiest_rq to target_rq */
  3168. double_lock_balance(busiest_rq, target_rq);
  3169. update_rq_clock(busiest_rq);
  3170. update_rq_clock(target_rq);
  3171. /* Search for an sd spanning us and the target CPU. */
  3172. for_each_domain(target_cpu, sd) {
  3173. if ((sd->flags & SD_LOAD_BALANCE) &&
  3174. cpu_isset(busiest_cpu, sd->span))
  3175. break;
  3176. }
  3177. if (likely(sd)) {
  3178. schedstat_inc(sd, alb_count);
  3179. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3180. sd, CPU_IDLE))
  3181. schedstat_inc(sd, alb_pushed);
  3182. else
  3183. schedstat_inc(sd, alb_failed);
  3184. }
  3185. double_unlock_balance(busiest_rq, target_rq);
  3186. }
  3187. #ifdef CONFIG_NO_HZ
  3188. static struct {
  3189. atomic_t load_balancer;
  3190. cpumask_t cpu_mask;
  3191. } nohz ____cacheline_aligned = {
  3192. .load_balancer = ATOMIC_INIT(-1),
  3193. .cpu_mask = CPU_MASK_NONE,
  3194. };
  3195. /*
  3196. * This routine will try to nominate the ilb (idle load balancing)
  3197. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3198. * load balancing on behalf of all those cpus. If all the cpus in the system
  3199. * go into this tickless mode, then there will be no ilb owner (as there is
  3200. * no need for one) and all the cpus will sleep till the next wakeup event
  3201. * arrives...
  3202. *
  3203. * For the ilb owner, tick is not stopped. And this tick will be used
  3204. * for idle load balancing. ilb owner will still be part of
  3205. * nohz.cpu_mask..
  3206. *
  3207. * While stopping the tick, this cpu will become the ilb owner if there
  3208. * is no other owner. And will be the owner till that cpu becomes busy
  3209. * or if all cpus in the system stop their ticks at which point
  3210. * there is no need for ilb owner.
  3211. *
  3212. * When the ilb owner becomes busy, it nominates another owner, during the
  3213. * next busy scheduler_tick()
  3214. */
  3215. int select_nohz_load_balancer(int stop_tick)
  3216. {
  3217. int cpu = smp_processor_id();
  3218. if (stop_tick) {
  3219. cpu_set(cpu, nohz.cpu_mask);
  3220. cpu_rq(cpu)->in_nohz_recently = 1;
  3221. /*
  3222. * If we are going offline and still the leader, give up!
  3223. */
  3224. if (!cpu_active(cpu) &&
  3225. atomic_read(&nohz.load_balancer) == cpu) {
  3226. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3227. BUG();
  3228. return 0;
  3229. }
  3230. /* time for ilb owner also to sleep */
  3231. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3232. if (atomic_read(&nohz.load_balancer) == cpu)
  3233. atomic_set(&nohz.load_balancer, -1);
  3234. return 0;
  3235. }
  3236. if (atomic_read(&nohz.load_balancer) == -1) {
  3237. /* make me the ilb owner */
  3238. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3239. return 1;
  3240. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3241. return 1;
  3242. } else {
  3243. if (!cpu_isset(cpu, nohz.cpu_mask))
  3244. return 0;
  3245. cpu_clear(cpu, nohz.cpu_mask);
  3246. if (atomic_read(&nohz.load_balancer) == cpu)
  3247. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3248. BUG();
  3249. }
  3250. return 0;
  3251. }
  3252. #endif
  3253. static DEFINE_SPINLOCK(balancing);
  3254. /*
  3255. * It checks each scheduling domain to see if it is due to be balanced,
  3256. * and initiates a balancing operation if so.
  3257. *
  3258. * Balancing parameters are set up in arch_init_sched_domains.
  3259. */
  3260. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3261. {
  3262. int balance = 1;
  3263. struct rq *rq = cpu_rq(cpu);
  3264. unsigned long interval;
  3265. struct sched_domain *sd;
  3266. /* Earliest time when we have to do rebalance again */
  3267. unsigned long next_balance = jiffies + 60*HZ;
  3268. int update_next_balance = 0;
  3269. int need_serialize;
  3270. cpumask_t tmp;
  3271. for_each_domain(cpu, sd) {
  3272. if (!(sd->flags & SD_LOAD_BALANCE))
  3273. continue;
  3274. interval = sd->balance_interval;
  3275. if (idle != CPU_IDLE)
  3276. interval *= sd->busy_factor;
  3277. /* scale ms to jiffies */
  3278. interval = msecs_to_jiffies(interval);
  3279. if (unlikely(!interval))
  3280. interval = 1;
  3281. if (interval > HZ*NR_CPUS/10)
  3282. interval = HZ*NR_CPUS/10;
  3283. need_serialize = sd->flags & SD_SERIALIZE;
  3284. if (need_serialize) {
  3285. if (!spin_trylock(&balancing))
  3286. goto out;
  3287. }
  3288. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3289. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3290. /*
  3291. * We've pulled tasks over so either we're no
  3292. * longer idle, or one of our SMT siblings is
  3293. * not idle.
  3294. */
  3295. idle = CPU_NOT_IDLE;
  3296. }
  3297. sd->last_balance = jiffies;
  3298. }
  3299. if (need_serialize)
  3300. spin_unlock(&balancing);
  3301. out:
  3302. if (time_after(next_balance, sd->last_balance + interval)) {
  3303. next_balance = sd->last_balance + interval;
  3304. update_next_balance = 1;
  3305. }
  3306. /*
  3307. * Stop the load balance at this level. There is another
  3308. * CPU in our sched group which is doing load balancing more
  3309. * actively.
  3310. */
  3311. if (!balance)
  3312. break;
  3313. }
  3314. /*
  3315. * next_balance will be updated only when there is a need.
  3316. * When the cpu is attached to null domain for ex, it will not be
  3317. * updated.
  3318. */
  3319. if (likely(update_next_balance))
  3320. rq->next_balance = next_balance;
  3321. }
  3322. /*
  3323. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3324. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3325. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3326. */
  3327. static void run_rebalance_domains(struct softirq_action *h)
  3328. {
  3329. int this_cpu = smp_processor_id();
  3330. struct rq *this_rq = cpu_rq(this_cpu);
  3331. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3332. CPU_IDLE : CPU_NOT_IDLE;
  3333. rebalance_domains(this_cpu, idle);
  3334. #ifdef CONFIG_NO_HZ
  3335. /*
  3336. * If this cpu is the owner for idle load balancing, then do the
  3337. * balancing on behalf of the other idle cpus whose ticks are
  3338. * stopped.
  3339. */
  3340. if (this_rq->idle_at_tick &&
  3341. atomic_read(&nohz.load_balancer) == this_cpu) {
  3342. cpumask_t cpus = nohz.cpu_mask;
  3343. struct rq *rq;
  3344. int balance_cpu;
  3345. cpu_clear(this_cpu, cpus);
  3346. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3347. /*
  3348. * If this cpu gets work to do, stop the load balancing
  3349. * work being done for other cpus. Next load
  3350. * balancing owner will pick it up.
  3351. */
  3352. if (need_resched())
  3353. break;
  3354. rebalance_domains(balance_cpu, CPU_IDLE);
  3355. rq = cpu_rq(balance_cpu);
  3356. if (time_after(this_rq->next_balance, rq->next_balance))
  3357. this_rq->next_balance = rq->next_balance;
  3358. }
  3359. }
  3360. #endif
  3361. }
  3362. /*
  3363. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3364. *
  3365. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3366. * idle load balancing owner or decide to stop the periodic load balancing,
  3367. * if the whole system is idle.
  3368. */
  3369. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3370. {
  3371. #ifdef CONFIG_NO_HZ
  3372. /*
  3373. * If we were in the nohz mode recently and busy at the current
  3374. * scheduler tick, then check if we need to nominate new idle
  3375. * load balancer.
  3376. */
  3377. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3378. rq->in_nohz_recently = 0;
  3379. if (atomic_read(&nohz.load_balancer) == cpu) {
  3380. cpu_clear(cpu, nohz.cpu_mask);
  3381. atomic_set(&nohz.load_balancer, -1);
  3382. }
  3383. if (atomic_read(&nohz.load_balancer) == -1) {
  3384. /*
  3385. * simple selection for now: Nominate the
  3386. * first cpu in the nohz list to be the next
  3387. * ilb owner.
  3388. *
  3389. * TBD: Traverse the sched domains and nominate
  3390. * the nearest cpu in the nohz.cpu_mask.
  3391. */
  3392. int ilb = first_cpu(nohz.cpu_mask);
  3393. if (ilb < nr_cpu_ids)
  3394. resched_cpu(ilb);
  3395. }
  3396. }
  3397. /*
  3398. * If this cpu is idle and doing idle load balancing for all the
  3399. * cpus with ticks stopped, is it time for that to stop?
  3400. */
  3401. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3402. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3403. resched_cpu(cpu);
  3404. return;
  3405. }
  3406. /*
  3407. * If this cpu is idle and the idle load balancing is done by
  3408. * someone else, then no need raise the SCHED_SOFTIRQ
  3409. */
  3410. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3411. cpu_isset(cpu, nohz.cpu_mask))
  3412. return;
  3413. #endif
  3414. if (time_after_eq(jiffies, rq->next_balance))
  3415. raise_softirq(SCHED_SOFTIRQ);
  3416. }
  3417. #else /* CONFIG_SMP */
  3418. /*
  3419. * on UP we do not need to balance between CPUs:
  3420. */
  3421. static inline void idle_balance(int cpu, struct rq *rq)
  3422. {
  3423. }
  3424. #endif
  3425. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3426. EXPORT_PER_CPU_SYMBOL(kstat);
  3427. /*
  3428. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3429. * that have not yet been banked in case the task is currently running.
  3430. */
  3431. unsigned long long task_sched_runtime(struct task_struct *p)
  3432. {
  3433. unsigned long flags;
  3434. u64 ns, delta_exec;
  3435. struct rq *rq;
  3436. rq = task_rq_lock(p, &flags);
  3437. ns = p->se.sum_exec_runtime;
  3438. if (task_current(rq, p)) {
  3439. update_rq_clock(rq);
  3440. delta_exec = rq->clock - p->se.exec_start;
  3441. if ((s64)delta_exec > 0)
  3442. ns += delta_exec;
  3443. }
  3444. task_rq_unlock(rq, &flags);
  3445. return ns;
  3446. }
  3447. /*
  3448. * Account user cpu time to a process.
  3449. * @p: the process that the cpu time gets accounted to
  3450. * @cputime: the cpu time spent in user space since the last update
  3451. */
  3452. void account_user_time(struct task_struct *p, cputime_t cputime)
  3453. {
  3454. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3455. cputime64_t tmp;
  3456. p->utime = cputime_add(p->utime, cputime);
  3457. /* Add user time to cpustat. */
  3458. tmp = cputime_to_cputime64(cputime);
  3459. if (TASK_NICE(p) > 0)
  3460. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3461. else
  3462. cpustat->user = cputime64_add(cpustat->user, tmp);
  3463. /* Account for user time used */
  3464. acct_update_integrals(p);
  3465. }
  3466. /*
  3467. * Account guest cpu time to a process.
  3468. * @p: the process that the cpu time gets accounted to
  3469. * @cputime: the cpu time spent in virtual machine since the last update
  3470. */
  3471. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3472. {
  3473. cputime64_t tmp;
  3474. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3475. tmp = cputime_to_cputime64(cputime);
  3476. p->utime = cputime_add(p->utime, cputime);
  3477. p->gtime = cputime_add(p->gtime, cputime);
  3478. cpustat->user = cputime64_add(cpustat->user, tmp);
  3479. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3480. }
  3481. /*
  3482. * Account scaled user cpu time to a process.
  3483. * @p: the process that the cpu time gets accounted to
  3484. * @cputime: the cpu time spent in user space since the last update
  3485. */
  3486. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3487. {
  3488. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3489. }
  3490. /*
  3491. * Account system cpu time to a process.
  3492. * @p: the process that the cpu time gets accounted to
  3493. * @hardirq_offset: the offset to subtract from hardirq_count()
  3494. * @cputime: the cpu time spent in kernel space since the last update
  3495. */
  3496. void account_system_time(struct task_struct *p, int hardirq_offset,
  3497. cputime_t cputime)
  3498. {
  3499. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3500. struct rq *rq = this_rq();
  3501. cputime64_t tmp;
  3502. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3503. account_guest_time(p, cputime);
  3504. return;
  3505. }
  3506. p->stime = cputime_add(p->stime, cputime);
  3507. /* Add system time to cpustat. */
  3508. tmp = cputime_to_cputime64(cputime);
  3509. if (hardirq_count() - hardirq_offset)
  3510. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3511. else if (softirq_count())
  3512. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3513. else if (p != rq->idle)
  3514. cpustat->system = cputime64_add(cpustat->system, tmp);
  3515. else if (atomic_read(&rq->nr_iowait) > 0)
  3516. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3517. else
  3518. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3519. /* Account for system time used */
  3520. acct_update_integrals(p);
  3521. }
  3522. /*
  3523. * Account scaled system cpu time to a process.
  3524. * @p: the process that the cpu time gets accounted to
  3525. * @hardirq_offset: the offset to subtract from hardirq_count()
  3526. * @cputime: the cpu time spent in kernel space since the last update
  3527. */
  3528. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3529. {
  3530. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3531. }
  3532. /*
  3533. * Account for involuntary wait time.
  3534. * @p: the process from which the cpu time has been stolen
  3535. * @steal: the cpu time spent in involuntary wait
  3536. */
  3537. void account_steal_time(struct task_struct *p, cputime_t steal)
  3538. {
  3539. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3540. cputime64_t tmp = cputime_to_cputime64(steal);
  3541. struct rq *rq = this_rq();
  3542. if (p == rq->idle) {
  3543. p->stime = cputime_add(p->stime, steal);
  3544. if (atomic_read(&rq->nr_iowait) > 0)
  3545. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3546. else
  3547. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3548. } else
  3549. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3550. }
  3551. /*
  3552. * This function gets called by the timer code, with HZ frequency.
  3553. * We call it with interrupts disabled.
  3554. *
  3555. * It also gets called by the fork code, when changing the parent's
  3556. * timeslices.
  3557. */
  3558. void scheduler_tick(void)
  3559. {
  3560. int cpu = smp_processor_id();
  3561. struct rq *rq = cpu_rq(cpu);
  3562. struct task_struct *curr = rq->curr;
  3563. sched_clock_tick();
  3564. spin_lock(&rq->lock);
  3565. update_rq_clock(rq);
  3566. update_cpu_load(rq);
  3567. curr->sched_class->task_tick(rq, curr, 0);
  3568. spin_unlock(&rq->lock);
  3569. #ifdef CONFIG_SMP
  3570. rq->idle_at_tick = idle_cpu(cpu);
  3571. trigger_load_balance(rq, cpu);
  3572. #endif
  3573. }
  3574. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3575. defined(CONFIG_PREEMPT_TRACER))
  3576. static inline unsigned long get_parent_ip(unsigned long addr)
  3577. {
  3578. if (in_lock_functions(addr)) {
  3579. addr = CALLER_ADDR2;
  3580. if (in_lock_functions(addr))
  3581. addr = CALLER_ADDR3;
  3582. }
  3583. return addr;
  3584. }
  3585. void __kprobes add_preempt_count(int val)
  3586. {
  3587. #ifdef CONFIG_DEBUG_PREEMPT
  3588. /*
  3589. * Underflow?
  3590. */
  3591. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3592. return;
  3593. #endif
  3594. preempt_count() += val;
  3595. #ifdef CONFIG_DEBUG_PREEMPT
  3596. /*
  3597. * Spinlock count overflowing soon?
  3598. */
  3599. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3600. PREEMPT_MASK - 10);
  3601. #endif
  3602. if (preempt_count() == val)
  3603. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3604. }
  3605. EXPORT_SYMBOL(add_preempt_count);
  3606. void __kprobes sub_preempt_count(int val)
  3607. {
  3608. #ifdef CONFIG_DEBUG_PREEMPT
  3609. /*
  3610. * Underflow?
  3611. */
  3612. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3613. return;
  3614. /*
  3615. * Is the spinlock portion underflowing?
  3616. */
  3617. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3618. !(preempt_count() & PREEMPT_MASK)))
  3619. return;
  3620. #endif
  3621. if (preempt_count() == val)
  3622. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3623. preempt_count() -= val;
  3624. }
  3625. EXPORT_SYMBOL(sub_preempt_count);
  3626. #endif
  3627. /*
  3628. * Print scheduling while atomic bug:
  3629. */
  3630. static noinline void __schedule_bug(struct task_struct *prev)
  3631. {
  3632. struct pt_regs *regs = get_irq_regs();
  3633. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3634. prev->comm, prev->pid, preempt_count());
  3635. debug_show_held_locks(prev);
  3636. print_modules();
  3637. if (irqs_disabled())
  3638. print_irqtrace_events(prev);
  3639. if (regs)
  3640. show_regs(regs);
  3641. else
  3642. dump_stack();
  3643. }
  3644. /*
  3645. * Various schedule()-time debugging checks and statistics:
  3646. */
  3647. static inline void schedule_debug(struct task_struct *prev)
  3648. {
  3649. /*
  3650. * Test if we are atomic. Since do_exit() needs to call into
  3651. * schedule() atomically, we ignore that path for now.
  3652. * Otherwise, whine if we are scheduling when we should not be.
  3653. */
  3654. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3655. __schedule_bug(prev);
  3656. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3657. schedstat_inc(this_rq(), sched_count);
  3658. #ifdef CONFIG_SCHEDSTATS
  3659. if (unlikely(prev->lock_depth >= 0)) {
  3660. schedstat_inc(this_rq(), bkl_count);
  3661. schedstat_inc(prev, sched_info.bkl_count);
  3662. }
  3663. #endif
  3664. }
  3665. /*
  3666. * Pick up the highest-prio task:
  3667. */
  3668. static inline struct task_struct *
  3669. pick_next_task(struct rq *rq, struct task_struct *prev)
  3670. {
  3671. const struct sched_class *class;
  3672. struct task_struct *p;
  3673. /*
  3674. * Optimization: we know that if all tasks are in
  3675. * the fair class we can call that function directly:
  3676. */
  3677. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3678. p = fair_sched_class.pick_next_task(rq);
  3679. if (likely(p))
  3680. return p;
  3681. }
  3682. class = sched_class_highest;
  3683. for ( ; ; ) {
  3684. p = class->pick_next_task(rq);
  3685. if (p)
  3686. return p;
  3687. /*
  3688. * Will never be NULL as the idle class always
  3689. * returns a non-NULL p:
  3690. */
  3691. class = class->next;
  3692. }
  3693. }
  3694. /*
  3695. * schedule() is the main scheduler function.
  3696. */
  3697. asmlinkage void __sched schedule(void)
  3698. {
  3699. struct task_struct *prev, *next;
  3700. unsigned long *switch_count;
  3701. struct rq *rq;
  3702. int cpu;
  3703. need_resched:
  3704. preempt_disable();
  3705. cpu = smp_processor_id();
  3706. rq = cpu_rq(cpu);
  3707. rcu_qsctr_inc(cpu);
  3708. prev = rq->curr;
  3709. switch_count = &prev->nivcsw;
  3710. release_kernel_lock(prev);
  3711. need_resched_nonpreemptible:
  3712. schedule_debug(prev);
  3713. if (sched_feat(HRTICK))
  3714. hrtick_clear(rq);
  3715. /*
  3716. * Do the rq-clock update outside the rq lock:
  3717. */
  3718. local_irq_disable();
  3719. update_rq_clock(rq);
  3720. spin_lock(&rq->lock);
  3721. clear_tsk_need_resched(prev);
  3722. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3723. if (unlikely(signal_pending_state(prev->state, prev)))
  3724. prev->state = TASK_RUNNING;
  3725. else
  3726. deactivate_task(rq, prev, 1);
  3727. switch_count = &prev->nvcsw;
  3728. }
  3729. #ifdef CONFIG_SMP
  3730. if (prev->sched_class->pre_schedule)
  3731. prev->sched_class->pre_schedule(rq, prev);
  3732. #endif
  3733. if (unlikely(!rq->nr_running))
  3734. idle_balance(cpu, rq);
  3735. prev->sched_class->put_prev_task(rq, prev);
  3736. next = pick_next_task(rq, prev);
  3737. if (likely(prev != next)) {
  3738. sched_info_switch(prev, next);
  3739. rq->nr_switches++;
  3740. rq->curr = next;
  3741. ++*switch_count;
  3742. context_switch(rq, prev, next); /* unlocks the rq */
  3743. /*
  3744. * the context switch might have flipped the stack from under
  3745. * us, hence refresh the local variables.
  3746. */
  3747. cpu = smp_processor_id();
  3748. rq = cpu_rq(cpu);
  3749. } else
  3750. spin_unlock_irq(&rq->lock);
  3751. if (unlikely(reacquire_kernel_lock(current) < 0))
  3752. goto need_resched_nonpreemptible;
  3753. preempt_enable_no_resched();
  3754. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3755. goto need_resched;
  3756. }
  3757. EXPORT_SYMBOL(schedule);
  3758. #ifdef CONFIG_PREEMPT
  3759. /*
  3760. * this is the entry point to schedule() from in-kernel preemption
  3761. * off of preempt_enable. Kernel preemptions off return from interrupt
  3762. * occur there and call schedule directly.
  3763. */
  3764. asmlinkage void __sched preempt_schedule(void)
  3765. {
  3766. struct thread_info *ti = current_thread_info();
  3767. /*
  3768. * If there is a non-zero preempt_count or interrupts are disabled,
  3769. * we do not want to preempt the current task. Just return..
  3770. */
  3771. if (likely(ti->preempt_count || irqs_disabled()))
  3772. return;
  3773. do {
  3774. add_preempt_count(PREEMPT_ACTIVE);
  3775. schedule();
  3776. sub_preempt_count(PREEMPT_ACTIVE);
  3777. /*
  3778. * Check again in case we missed a preemption opportunity
  3779. * between schedule and now.
  3780. */
  3781. barrier();
  3782. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3783. }
  3784. EXPORT_SYMBOL(preempt_schedule);
  3785. /*
  3786. * this is the entry point to schedule() from kernel preemption
  3787. * off of irq context.
  3788. * Note, that this is called and return with irqs disabled. This will
  3789. * protect us against recursive calling from irq.
  3790. */
  3791. asmlinkage void __sched preempt_schedule_irq(void)
  3792. {
  3793. struct thread_info *ti = current_thread_info();
  3794. /* Catch callers which need to be fixed */
  3795. BUG_ON(ti->preempt_count || !irqs_disabled());
  3796. do {
  3797. add_preempt_count(PREEMPT_ACTIVE);
  3798. local_irq_enable();
  3799. schedule();
  3800. local_irq_disable();
  3801. sub_preempt_count(PREEMPT_ACTIVE);
  3802. /*
  3803. * Check again in case we missed a preemption opportunity
  3804. * between schedule and now.
  3805. */
  3806. barrier();
  3807. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3808. }
  3809. #endif /* CONFIG_PREEMPT */
  3810. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3811. void *key)
  3812. {
  3813. return try_to_wake_up(curr->private, mode, sync);
  3814. }
  3815. EXPORT_SYMBOL(default_wake_function);
  3816. /*
  3817. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3818. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3819. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3820. *
  3821. * There are circumstances in which we can try to wake a task which has already
  3822. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3823. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3824. */
  3825. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3826. int nr_exclusive, int sync, void *key)
  3827. {
  3828. wait_queue_t *curr, *next;
  3829. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3830. unsigned flags = curr->flags;
  3831. if (curr->func(curr, mode, sync, key) &&
  3832. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3833. break;
  3834. }
  3835. }
  3836. /**
  3837. * __wake_up - wake up threads blocked on a waitqueue.
  3838. * @q: the waitqueue
  3839. * @mode: which threads
  3840. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3841. * @key: is directly passed to the wakeup function
  3842. */
  3843. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3844. int nr_exclusive, void *key)
  3845. {
  3846. unsigned long flags;
  3847. spin_lock_irqsave(&q->lock, flags);
  3848. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3849. spin_unlock_irqrestore(&q->lock, flags);
  3850. }
  3851. EXPORT_SYMBOL(__wake_up);
  3852. /*
  3853. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3854. */
  3855. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3856. {
  3857. __wake_up_common(q, mode, 1, 0, NULL);
  3858. }
  3859. /**
  3860. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3861. * @q: the waitqueue
  3862. * @mode: which threads
  3863. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3864. *
  3865. * The sync wakeup differs that the waker knows that it will schedule
  3866. * away soon, so while the target thread will be woken up, it will not
  3867. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3868. * with each other. This can prevent needless bouncing between CPUs.
  3869. *
  3870. * On UP it can prevent extra preemption.
  3871. */
  3872. void
  3873. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3874. {
  3875. unsigned long flags;
  3876. int sync = 1;
  3877. if (unlikely(!q))
  3878. return;
  3879. if (unlikely(!nr_exclusive))
  3880. sync = 0;
  3881. spin_lock_irqsave(&q->lock, flags);
  3882. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3883. spin_unlock_irqrestore(&q->lock, flags);
  3884. }
  3885. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3886. void complete(struct completion *x)
  3887. {
  3888. unsigned long flags;
  3889. spin_lock_irqsave(&x->wait.lock, flags);
  3890. x->done++;
  3891. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3892. spin_unlock_irqrestore(&x->wait.lock, flags);
  3893. }
  3894. EXPORT_SYMBOL(complete);
  3895. void complete_all(struct completion *x)
  3896. {
  3897. unsigned long flags;
  3898. spin_lock_irqsave(&x->wait.lock, flags);
  3899. x->done += UINT_MAX/2;
  3900. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3901. spin_unlock_irqrestore(&x->wait.lock, flags);
  3902. }
  3903. EXPORT_SYMBOL(complete_all);
  3904. static inline long __sched
  3905. do_wait_for_common(struct completion *x, long timeout, int state)
  3906. {
  3907. if (!x->done) {
  3908. DECLARE_WAITQUEUE(wait, current);
  3909. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3910. __add_wait_queue_tail(&x->wait, &wait);
  3911. do {
  3912. if (signal_pending_state(state, current)) {
  3913. timeout = -ERESTARTSYS;
  3914. break;
  3915. }
  3916. __set_current_state(state);
  3917. spin_unlock_irq(&x->wait.lock);
  3918. timeout = schedule_timeout(timeout);
  3919. spin_lock_irq(&x->wait.lock);
  3920. } while (!x->done && timeout);
  3921. __remove_wait_queue(&x->wait, &wait);
  3922. if (!x->done)
  3923. return timeout;
  3924. }
  3925. x->done--;
  3926. return timeout ?: 1;
  3927. }
  3928. static long __sched
  3929. wait_for_common(struct completion *x, long timeout, int state)
  3930. {
  3931. might_sleep();
  3932. spin_lock_irq(&x->wait.lock);
  3933. timeout = do_wait_for_common(x, timeout, state);
  3934. spin_unlock_irq(&x->wait.lock);
  3935. return timeout;
  3936. }
  3937. void __sched wait_for_completion(struct completion *x)
  3938. {
  3939. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3940. }
  3941. EXPORT_SYMBOL(wait_for_completion);
  3942. unsigned long __sched
  3943. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3944. {
  3945. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3946. }
  3947. EXPORT_SYMBOL(wait_for_completion_timeout);
  3948. int __sched wait_for_completion_interruptible(struct completion *x)
  3949. {
  3950. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3951. if (t == -ERESTARTSYS)
  3952. return t;
  3953. return 0;
  3954. }
  3955. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3956. unsigned long __sched
  3957. wait_for_completion_interruptible_timeout(struct completion *x,
  3958. unsigned long timeout)
  3959. {
  3960. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3961. }
  3962. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3963. int __sched wait_for_completion_killable(struct completion *x)
  3964. {
  3965. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3966. if (t == -ERESTARTSYS)
  3967. return t;
  3968. return 0;
  3969. }
  3970. EXPORT_SYMBOL(wait_for_completion_killable);
  3971. static long __sched
  3972. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3973. {
  3974. unsigned long flags;
  3975. wait_queue_t wait;
  3976. init_waitqueue_entry(&wait, current);
  3977. __set_current_state(state);
  3978. spin_lock_irqsave(&q->lock, flags);
  3979. __add_wait_queue(q, &wait);
  3980. spin_unlock(&q->lock);
  3981. timeout = schedule_timeout(timeout);
  3982. spin_lock_irq(&q->lock);
  3983. __remove_wait_queue(q, &wait);
  3984. spin_unlock_irqrestore(&q->lock, flags);
  3985. return timeout;
  3986. }
  3987. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3988. {
  3989. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3990. }
  3991. EXPORT_SYMBOL(interruptible_sleep_on);
  3992. long __sched
  3993. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3994. {
  3995. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3996. }
  3997. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3998. void __sched sleep_on(wait_queue_head_t *q)
  3999. {
  4000. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4001. }
  4002. EXPORT_SYMBOL(sleep_on);
  4003. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4004. {
  4005. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4006. }
  4007. EXPORT_SYMBOL(sleep_on_timeout);
  4008. #ifdef CONFIG_RT_MUTEXES
  4009. /*
  4010. * rt_mutex_setprio - set the current priority of a task
  4011. * @p: task
  4012. * @prio: prio value (kernel-internal form)
  4013. *
  4014. * This function changes the 'effective' priority of a task. It does
  4015. * not touch ->normal_prio like __setscheduler().
  4016. *
  4017. * Used by the rt_mutex code to implement priority inheritance logic.
  4018. */
  4019. void rt_mutex_setprio(struct task_struct *p, int prio)
  4020. {
  4021. unsigned long flags;
  4022. int oldprio, on_rq, running;
  4023. struct rq *rq;
  4024. const struct sched_class *prev_class = p->sched_class;
  4025. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4026. rq = task_rq_lock(p, &flags);
  4027. update_rq_clock(rq);
  4028. oldprio = p->prio;
  4029. on_rq = p->se.on_rq;
  4030. running = task_current(rq, p);
  4031. if (on_rq)
  4032. dequeue_task(rq, p, 0);
  4033. if (running)
  4034. p->sched_class->put_prev_task(rq, p);
  4035. if (rt_prio(prio))
  4036. p->sched_class = &rt_sched_class;
  4037. else
  4038. p->sched_class = &fair_sched_class;
  4039. p->prio = prio;
  4040. if (running)
  4041. p->sched_class->set_curr_task(rq);
  4042. if (on_rq) {
  4043. enqueue_task(rq, p, 0);
  4044. check_class_changed(rq, p, prev_class, oldprio, running);
  4045. }
  4046. task_rq_unlock(rq, &flags);
  4047. }
  4048. #endif
  4049. void set_user_nice(struct task_struct *p, long nice)
  4050. {
  4051. int old_prio, delta, on_rq;
  4052. unsigned long flags;
  4053. struct rq *rq;
  4054. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4055. return;
  4056. /*
  4057. * We have to be careful, if called from sys_setpriority(),
  4058. * the task might be in the middle of scheduling on another CPU.
  4059. */
  4060. rq = task_rq_lock(p, &flags);
  4061. update_rq_clock(rq);
  4062. /*
  4063. * The RT priorities are set via sched_setscheduler(), but we still
  4064. * allow the 'normal' nice value to be set - but as expected
  4065. * it wont have any effect on scheduling until the task is
  4066. * SCHED_FIFO/SCHED_RR:
  4067. */
  4068. if (task_has_rt_policy(p)) {
  4069. p->static_prio = NICE_TO_PRIO(nice);
  4070. goto out_unlock;
  4071. }
  4072. on_rq = p->se.on_rq;
  4073. if (on_rq)
  4074. dequeue_task(rq, p, 0);
  4075. p->static_prio = NICE_TO_PRIO(nice);
  4076. set_load_weight(p);
  4077. old_prio = p->prio;
  4078. p->prio = effective_prio(p);
  4079. delta = p->prio - old_prio;
  4080. if (on_rq) {
  4081. enqueue_task(rq, p, 0);
  4082. /*
  4083. * If the task increased its priority or is running and
  4084. * lowered its priority, then reschedule its CPU:
  4085. */
  4086. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4087. resched_task(rq->curr);
  4088. }
  4089. out_unlock:
  4090. task_rq_unlock(rq, &flags);
  4091. }
  4092. EXPORT_SYMBOL(set_user_nice);
  4093. /*
  4094. * can_nice - check if a task can reduce its nice value
  4095. * @p: task
  4096. * @nice: nice value
  4097. */
  4098. int can_nice(const struct task_struct *p, const int nice)
  4099. {
  4100. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4101. int nice_rlim = 20 - nice;
  4102. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4103. capable(CAP_SYS_NICE));
  4104. }
  4105. #ifdef __ARCH_WANT_SYS_NICE
  4106. /*
  4107. * sys_nice - change the priority of the current process.
  4108. * @increment: priority increment
  4109. *
  4110. * sys_setpriority is a more generic, but much slower function that
  4111. * does similar things.
  4112. */
  4113. asmlinkage long sys_nice(int increment)
  4114. {
  4115. long nice, retval;
  4116. /*
  4117. * Setpriority might change our priority at the same moment.
  4118. * We don't have to worry. Conceptually one call occurs first
  4119. * and we have a single winner.
  4120. */
  4121. if (increment < -40)
  4122. increment = -40;
  4123. if (increment > 40)
  4124. increment = 40;
  4125. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4126. if (nice < -20)
  4127. nice = -20;
  4128. if (nice > 19)
  4129. nice = 19;
  4130. if (increment < 0 && !can_nice(current, nice))
  4131. return -EPERM;
  4132. retval = security_task_setnice(current, nice);
  4133. if (retval)
  4134. return retval;
  4135. set_user_nice(current, nice);
  4136. return 0;
  4137. }
  4138. #endif
  4139. /**
  4140. * task_prio - return the priority value of a given task.
  4141. * @p: the task in question.
  4142. *
  4143. * This is the priority value as seen by users in /proc.
  4144. * RT tasks are offset by -200. Normal tasks are centered
  4145. * around 0, value goes from -16 to +15.
  4146. */
  4147. int task_prio(const struct task_struct *p)
  4148. {
  4149. return p->prio - MAX_RT_PRIO;
  4150. }
  4151. /**
  4152. * task_nice - return the nice value of a given task.
  4153. * @p: the task in question.
  4154. */
  4155. int task_nice(const struct task_struct *p)
  4156. {
  4157. return TASK_NICE(p);
  4158. }
  4159. EXPORT_SYMBOL(task_nice);
  4160. /**
  4161. * idle_cpu - is a given cpu idle currently?
  4162. * @cpu: the processor in question.
  4163. */
  4164. int idle_cpu(int cpu)
  4165. {
  4166. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4167. }
  4168. /**
  4169. * idle_task - return the idle task for a given cpu.
  4170. * @cpu: the processor in question.
  4171. */
  4172. struct task_struct *idle_task(int cpu)
  4173. {
  4174. return cpu_rq(cpu)->idle;
  4175. }
  4176. /**
  4177. * find_process_by_pid - find a process with a matching PID value.
  4178. * @pid: the pid in question.
  4179. */
  4180. static struct task_struct *find_process_by_pid(pid_t pid)
  4181. {
  4182. return pid ? find_task_by_vpid(pid) : current;
  4183. }
  4184. /* Actually do priority change: must hold rq lock. */
  4185. static void
  4186. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4187. {
  4188. BUG_ON(p->se.on_rq);
  4189. p->policy = policy;
  4190. switch (p->policy) {
  4191. case SCHED_NORMAL:
  4192. case SCHED_BATCH:
  4193. case SCHED_IDLE:
  4194. p->sched_class = &fair_sched_class;
  4195. break;
  4196. case SCHED_FIFO:
  4197. case SCHED_RR:
  4198. p->sched_class = &rt_sched_class;
  4199. break;
  4200. }
  4201. p->rt_priority = prio;
  4202. p->normal_prio = normal_prio(p);
  4203. /* we are holding p->pi_lock already */
  4204. p->prio = rt_mutex_getprio(p);
  4205. set_load_weight(p);
  4206. }
  4207. static int __sched_setscheduler(struct task_struct *p, int policy,
  4208. struct sched_param *param, bool user)
  4209. {
  4210. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4211. unsigned long flags;
  4212. const struct sched_class *prev_class = p->sched_class;
  4213. struct rq *rq;
  4214. /* may grab non-irq protected spin_locks */
  4215. BUG_ON(in_interrupt());
  4216. recheck:
  4217. /* double check policy once rq lock held */
  4218. if (policy < 0)
  4219. policy = oldpolicy = p->policy;
  4220. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4221. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4222. policy != SCHED_IDLE)
  4223. return -EINVAL;
  4224. /*
  4225. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4226. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4227. * SCHED_BATCH and SCHED_IDLE is 0.
  4228. */
  4229. if (param->sched_priority < 0 ||
  4230. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4231. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4232. return -EINVAL;
  4233. if (rt_policy(policy) != (param->sched_priority != 0))
  4234. return -EINVAL;
  4235. /*
  4236. * Allow unprivileged RT tasks to decrease priority:
  4237. */
  4238. if (user && !capable(CAP_SYS_NICE)) {
  4239. if (rt_policy(policy)) {
  4240. unsigned long rlim_rtprio;
  4241. if (!lock_task_sighand(p, &flags))
  4242. return -ESRCH;
  4243. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4244. unlock_task_sighand(p, &flags);
  4245. /* can't set/change the rt policy */
  4246. if (policy != p->policy && !rlim_rtprio)
  4247. return -EPERM;
  4248. /* can't increase priority */
  4249. if (param->sched_priority > p->rt_priority &&
  4250. param->sched_priority > rlim_rtprio)
  4251. return -EPERM;
  4252. }
  4253. /*
  4254. * Like positive nice levels, dont allow tasks to
  4255. * move out of SCHED_IDLE either:
  4256. */
  4257. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4258. return -EPERM;
  4259. /* can't change other user's priorities */
  4260. if ((current->euid != p->euid) &&
  4261. (current->euid != p->uid))
  4262. return -EPERM;
  4263. }
  4264. if (user) {
  4265. #ifdef CONFIG_RT_GROUP_SCHED
  4266. /*
  4267. * Do not allow realtime tasks into groups that have no runtime
  4268. * assigned.
  4269. */
  4270. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4271. return -EPERM;
  4272. #endif
  4273. retval = security_task_setscheduler(p, policy, param);
  4274. if (retval)
  4275. return retval;
  4276. }
  4277. /*
  4278. * make sure no PI-waiters arrive (or leave) while we are
  4279. * changing the priority of the task:
  4280. */
  4281. spin_lock_irqsave(&p->pi_lock, flags);
  4282. /*
  4283. * To be able to change p->policy safely, the apropriate
  4284. * runqueue lock must be held.
  4285. */
  4286. rq = __task_rq_lock(p);
  4287. /* recheck policy now with rq lock held */
  4288. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4289. policy = oldpolicy = -1;
  4290. __task_rq_unlock(rq);
  4291. spin_unlock_irqrestore(&p->pi_lock, flags);
  4292. goto recheck;
  4293. }
  4294. update_rq_clock(rq);
  4295. on_rq = p->se.on_rq;
  4296. running = task_current(rq, p);
  4297. if (on_rq)
  4298. deactivate_task(rq, p, 0);
  4299. if (running)
  4300. p->sched_class->put_prev_task(rq, p);
  4301. oldprio = p->prio;
  4302. __setscheduler(rq, p, policy, param->sched_priority);
  4303. if (running)
  4304. p->sched_class->set_curr_task(rq);
  4305. if (on_rq) {
  4306. activate_task(rq, p, 0);
  4307. check_class_changed(rq, p, prev_class, oldprio, running);
  4308. }
  4309. __task_rq_unlock(rq);
  4310. spin_unlock_irqrestore(&p->pi_lock, flags);
  4311. rt_mutex_adjust_pi(p);
  4312. return 0;
  4313. }
  4314. /**
  4315. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4316. * @p: the task in question.
  4317. * @policy: new policy.
  4318. * @param: structure containing the new RT priority.
  4319. *
  4320. * NOTE that the task may be already dead.
  4321. */
  4322. int sched_setscheduler(struct task_struct *p, int policy,
  4323. struct sched_param *param)
  4324. {
  4325. return __sched_setscheduler(p, policy, param, true);
  4326. }
  4327. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4328. /**
  4329. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4330. * @p: the task in question.
  4331. * @policy: new policy.
  4332. * @param: structure containing the new RT priority.
  4333. *
  4334. * Just like sched_setscheduler, only don't bother checking if the
  4335. * current context has permission. For example, this is needed in
  4336. * stop_machine(): we create temporary high priority worker threads,
  4337. * but our caller might not have that capability.
  4338. */
  4339. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4340. struct sched_param *param)
  4341. {
  4342. return __sched_setscheduler(p, policy, param, false);
  4343. }
  4344. static int
  4345. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4346. {
  4347. struct sched_param lparam;
  4348. struct task_struct *p;
  4349. int retval;
  4350. if (!param || pid < 0)
  4351. return -EINVAL;
  4352. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4353. return -EFAULT;
  4354. rcu_read_lock();
  4355. retval = -ESRCH;
  4356. p = find_process_by_pid(pid);
  4357. if (p != NULL)
  4358. retval = sched_setscheduler(p, policy, &lparam);
  4359. rcu_read_unlock();
  4360. return retval;
  4361. }
  4362. /**
  4363. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4364. * @pid: the pid in question.
  4365. * @policy: new policy.
  4366. * @param: structure containing the new RT priority.
  4367. */
  4368. asmlinkage long
  4369. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4370. {
  4371. /* negative values for policy are not valid */
  4372. if (policy < 0)
  4373. return -EINVAL;
  4374. return do_sched_setscheduler(pid, policy, param);
  4375. }
  4376. /**
  4377. * sys_sched_setparam - set/change the RT priority of a thread
  4378. * @pid: the pid in question.
  4379. * @param: structure containing the new RT priority.
  4380. */
  4381. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4382. {
  4383. return do_sched_setscheduler(pid, -1, param);
  4384. }
  4385. /**
  4386. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4387. * @pid: the pid in question.
  4388. */
  4389. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4390. {
  4391. struct task_struct *p;
  4392. int retval;
  4393. if (pid < 0)
  4394. return -EINVAL;
  4395. retval = -ESRCH;
  4396. read_lock(&tasklist_lock);
  4397. p = find_process_by_pid(pid);
  4398. if (p) {
  4399. retval = security_task_getscheduler(p);
  4400. if (!retval)
  4401. retval = p->policy;
  4402. }
  4403. read_unlock(&tasklist_lock);
  4404. return retval;
  4405. }
  4406. /**
  4407. * sys_sched_getscheduler - get the RT priority of a thread
  4408. * @pid: the pid in question.
  4409. * @param: structure containing the RT priority.
  4410. */
  4411. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4412. {
  4413. struct sched_param lp;
  4414. struct task_struct *p;
  4415. int retval;
  4416. if (!param || pid < 0)
  4417. return -EINVAL;
  4418. read_lock(&tasklist_lock);
  4419. p = find_process_by_pid(pid);
  4420. retval = -ESRCH;
  4421. if (!p)
  4422. goto out_unlock;
  4423. retval = security_task_getscheduler(p);
  4424. if (retval)
  4425. goto out_unlock;
  4426. lp.sched_priority = p->rt_priority;
  4427. read_unlock(&tasklist_lock);
  4428. /*
  4429. * This one might sleep, we cannot do it with a spinlock held ...
  4430. */
  4431. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4432. return retval;
  4433. out_unlock:
  4434. read_unlock(&tasklist_lock);
  4435. return retval;
  4436. }
  4437. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4438. {
  4439. cpumask_t cpus_allowed;
  4440. cpumask_t new_mask = *in_mask;
  4441. struct task_struct *p;
  4442. int retval;
  4443. get_online_cpus();
  4444. read_lock(&tasklist_lock);
  4445. p = find_process_by_pid(pid);
  4446. if (!p) {
  4447. read_unlock(&tasklist_lock);
  4448. put_online_cpus();
  4449. return -ESRCH;
  4450. }
  4451. /*
  4452. * It is not safe to call set_cpus_allowed with the
  4453. * tasklist_lock held. We will bump the task_struct's
  4454. * usage count and then drop tasklist_lock.
  4455. */
  4456. get_task_struct(p);
  4457. read_unlock(&tasklist_lock);
  4458. retval = -EPERM;
  4459. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4460. !capable(CAP_SYS_NICE))
  4461. goto out_unlock;
  4462. retval = security_task_setscheduler(p, 0, NULL);
  4463. if (retval)
  4464. goto out_unlock;
  4465. cpuset_cpus_allowed(p, &cpus_allowed);
  4466. cpus_and(new_mask, new_mask, cpus_allowed);
  4467. again:
  4468. retval = set_cpus_allowed_ptr(p, &new_mask);
  4469. if (!retval) {
  4470. cpuset_cpus_allowed(p, &cpus_allowed);
  4471. if (!cpus_subset(new_mask, cpus_allowed)) {
  4472. /*
  4473. * We must have raced with a concurrent cpuset
  4474. * update. Just reset the cpus_allowed to the
  4475. * cpuset's cpus_allowed
  4476. */
  4477. new_mask = cpus_allowed;
  4478. goto again;
  4479. }
  4480. }
  4481. out_unlock:
  4482. put_task_struct(p);
  4483. put_online_cpus();
  4484. return retval;
  4485. }
  4486. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4487. cpumask_t *new_mask)
  4488. {
  4489. if (len < sizeof(cpumask_t)) {
  4490. memset(new_mask, 0, sizeof(cpumask_t));
  4491. } else if (len > sizeof(cpumask_t)) {
  4492. len = sizeof(cpumask_t);
  4493. }
  4494. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4495. }
  4496. /**
  4497. * sys_sched_setaffinity - set the cpu affinity of a process
  4498. * @pid: pid of the process
  4499. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4500. * @user_mask_ptr: user-space pointer to the new cpu mask
  4501. */
  4502. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4503. unsigned long __user *user_mask_ptr)
  4504. {
  4505. cpumask_t new_mask;
  4506. int retval;
  4507. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4508. if (retval)
  4509. return retval;
  4510. return sched_setaffinity(pid, &new_mask);
  4511. }
  4512. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4513. {
  4514. struct task_struct *p;
  4515. int retval;
  4516. get_online_cpus();
  4517. read_lock(&tasklist_lock);
  4518. retval = -ESRCH;
  4519. p = find_process_by_pid(pid);
  4520. if (!p)
  4521. goto out_unlock;
  4522. retval = security_task_getscheduler(p);
  4523. if (retval)
  4524. goto out_unlock;
  4525. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4526. out_unlock:
  4527. read_unlock(&tasklist_lock);
  4528. put_online_cpus();
  4529. return retval;
  4530. }
  4531. /**
  4532. * sys_sched_getaffinity - get the cpu affinity of a process
  4533. * @pid: pid of the process
  4534. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4535. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4536. */
  4537. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4538. unsigned long __user *user_mask_ptr)
  4539. {
  4540. int ret;
  4541. cpumask_t mask;
  4542. if (len < sizeof(cpumask_t))
  4543. return -EINVAL;
  4544. ret = sched_getaffinity(pid, &mask);
  4545. if (ret < 0)
  4546. return ret;
  4547. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4548. return -EFAULT;
  4549. return sizeof(cpumask_t);
  4550. }
  4551. /**
  4552. * sys_sched_yield - yield the current processor to other threads.
  4553. *
  4554. * This function yields the current CPU to other tasks. If there are no
  4555. * other threads running on this CPU then this function will return.
  4556. */
  4557. asmlinkage long sys_sched_yield(void)
  4558. {
  4559. struct rq *rq = this_rq_lock();
  4560. schedstat_inc(rq, yld_count);
  4561. current->sched_class->yield_task(rq);
  4562. /*
  4563. * Since we are going to call schedule() anyway, there's
  4564. * no need to preempt or enable interrupts:
  4565. */
  4566. __release(rq->lock);
  4567. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4568. _raw_spin_unlock(&rq->lock);
  4569. preempt_enable_no_resched();
  4570. schedule();
  4571. return 0;
  4572. }
  4573. static void __cond_resched(void)
  4574. {
  4575. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4576. __might_sleep(__FILE__, __LINE__);
  4577. #endif
  4578. /*
  4579. * The BKS might be reacquired before we have dropped
  4580. * PREEMPT_ACTIVE, which could trigger a second
  4581. * cond_resched() call.
  4582. */
  4583. do {
  4584. add_preempt_count(PREEMPT_ACTIVE);
  4585. schedule();
  4586. sub_preempt_count(PREEMPT_ACTIVE);
  4587. } while (need_resched());
  4588. }
  4589. int __sched _cond_resched(void)
  4590. {
  4591. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4592. system_state == SYSTEM_RUNNING) {
  4593. __cond_resched();
  4594. return 1;
  4595. }
  4596. return 0;
  4597. }
  4598. EXPORT_SYMBOL(_cond_resched);
  4599. /*
  4600. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4601. * call schedule, and on return reacquire the lock.
  4602. *
  4603. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4604. * operations here to prevent schedule() from being called twice (once via
  4605. * spin_unlock(), once by hand).
  4606. */
  4607. int cond_resched_lock(spinlock_t *lock)
  4608. {
  4609. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4610. int ret = 0;
  4611. if (spin_needbreak(lock) || resched) {
  4612. spin_unlock(lock);
  4613. if (resched && need_resched())
  4614. __cond_resched();
  4615. else
  4616. cpu_relax();
  4617. ret = 1;
  4618. spin_lock(lock);
  4619. }
  4620. return ret;
  4621. }
  4622. EXPORT_SYMBOL(cond_resched_lock);
  4623. int __sched cond_resched_softirq(void)
  4624. {
  4625. BUG_ON(!in_softirq());
  4626. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4627. local_bh_enable();
  4628. __cond_resched();
  4629. local_bh_disable();
  4630. return 1;
  4631. }
  4632. return 0;
  4633. }
  4634. EXPORT_SYMBOL(cond_resched_softirq);
  4635. /**
  4636. * yield - yield the current processor to other threads.
  4637. *
  4638. * This is a shortcut for kernel-space yielding - it marks the
  4639. * thread runnable and calls sys_sched_yield().
  4640. */
  4641. void __sched yield(void)
  4642. {
  4643. set_current_state(TASK_RUNNING);
  4644. sys_sched_yield();
  4645. }
  4646. EXPORT_SYMBOL(yield);
  4647. /*
  4648. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4649. * that process accounting knows that this is a task in IO wait state.
  4650. *
  4651. * But don't do that if it is a deliberate, throttling IO wait (this task
  4652. * has set its backing_dev_info: the queue against which it should throttle)
  4653. */
  4654. void __sched io_schedule(void)
  4655. {
  4656. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4657. delayacct_blkio_start();
  4658. atomic_inc(&rq->nr_iowait);
  4659. schedule();
  4660. atomic_dec(&rq->nr_iowait);
  4661. delayacct_blkio_end();
  4662. }
  4663. EXPORT_SYMBOL(io_schedule);
  4664. long __sched io_schedule_timeout(long timeout)
  4665. {
  4666. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4667. long ret;
  4668. delayacct_blkio_start();
  4669. atomic_inc(&rq->nr_iowait);
  4670. ret = schedule_timeout(timeout);
  4671. atomic_dec(&rq->nr_iowait);
  4672. delayacct_blkio_end();
  4673. return ret;
  4674. }
  4675. /**
  4676. * sys_sched_get_priority_max - return maximum RT priority.
  4677. * @policy: scheduling class.
  4678. *
  4679. * this syscall returns the maximum rt_priority that can be used
  4680. * by a given scheduling class.
  4681. */
  4682. asmlinkage long sys_sched_get_priority_max(int policy)
  4683. {
  4684. int ret = -EINVAL;
  4685. switch (policy) {
  4686. case SCHED_FIFO:
  4687. case SCHED_RR:
  4688. ret = MAX_USER_RT_PRIO-1;
  4689. break;
  4690. case SCHED_NORMAL:
  4691. case SCHED_BATCH:
  4692. case SCHED_IDLE:
  4693. ret = 0;
  4694. break;
  4695. }
  4696. return ret;
  4697. }
  4698. /**
  4699. * sys_sched_get_priority_min - return minimum RT priority.
  4700. * @policy: scheduling class.
  4701. *
  4702. * this syscall returns the minimum rt_priority that can be used
  4703. * by a given scheduling class.
  4704. */
  4705. asmlinkage long sys_sched_get_priority_min(int policy)
  4706. {
  4707. int ret = -EINVAL;
  4708. switch (policy) {
  4709. case SCHED_FIFO:
  4710. case SCHED_RR:
  4711. ret = 1;
  4712. break;
  4713. case SCHED_NORMAL:
  4714. case SCHED_BATCH:
  4715. case SCHED_IDLE:
  4716. ret = 0;
  4717. }
  4718. return ret;
  4719. }
  4720. /**
  4721. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4722. * @pid: pid of the process.
  4723. * @interval: userspace pointer to the timeslice value.
  4724. *
  4725. * this syscall writes the default timeslice value of a given process
  4726. * into the user-space timespec buffer. A value of '0' means infinity.
  4727. */
  4728. asmlinkage
  4729. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4730. {
  4731. struct task_struct *p;
  4732. unsigned int time_slice;
  4733. int retval;
  4734. struct timespec t;
  4735. if (pid < 0)
  4736. return -EINVAL;
  4737. retval = -ESRCH;
  4738. read_lock(&tasklist_lock);
  4739. p = find_process_by_pid(pid);
  4740. if (!p)
  4741. goto out_unlock;
  4742. retval = security_task_getscheduler(p);
  4743. if (retval)
  4744. goto out_unlock;
  4745. /*
  4746. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4747. * tasks that are on an otherwise idle runqueue:
  4748. */
  4749. time_slice = 0;
  4750. if (p->policy == SCHED_RR) {
  4751. time_slice = DEF_TIMESLICE;
  4752. } else if (p->policy != SCHED_FIFO) {
  4753. struct sched_entity *se = &p->se;
  4754. unsigned long flags;
  4755. struct rq *rq;
  4756. rq = task_rq_lock(p, &flags);
  4757. if (rq->cfs.load.weight)
  4758. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4759. task_rq_unlock(rq, &flags);
  4760. }
  4761. read_unlock(&tasklist_lock);
  4762. jiffies_to_timespec(time_slice, &t);
  4763. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4764. return retval;
  4765. out_unlock:
  4766. read_unlock(&tasklist_lock);
  4767. return retval;
  4768. }
  4769. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4770. void sched_show_task(struct task_struct *p)
  4771. {
  4772. unsigned long free = 0;
  4773. unsigned state;
  4774. state = p->state ? __ffs(p->state) + 1 : 0;
  4775. printk(KERN_INFO "%-13.13s %c", p->comm,
  4776. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4777. #if BITS_PER_LONG == 32
  4778. if (state == TASK_RUNNING)
  4779. printk(KERN_CONT " running ");
  4780. else
  4781. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4782. #else
  4783. if (state == TASK_RUNNING)
  4784. printk(KERN_CONT " running task ");
  4785. else
  4786. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4787. #endif
  4788. #ifdef CONFIG_DEBUG_STACK_USAGE
  4789. {
  4790. unsigned long *n = end_of_stack(p);
  4791. while (!*n)
  4792. n++;
  4793. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4794. }
  4795. #endif
  4796. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4797. task_pid_nr(p), task_pid_nr(p->real_parent));
  4798. show_stack(p, NULL);
  4799. }
  4800. void show_state_filter(unsigned long state_filter)
  4801. {
  4802. struct task_struct *g, *p;
  4803. #if BITS_PER_LONG == 32
  4804. printk(KERN_INFO
  4805. " task PC stack pid father\n");
  4806. #else
  4807. printk(KERN_INFO
  4808. " task PC stack pid father\n");
  4809. #endif
  4810. read_lock(&tasklist_lock);
  4811. do_each_thread(g, p) {
  4812. /*
  4813. * reset the NMI-timeout, listing all files on a slow
  4814. * console might take alot of time:
  4815. */
  4816. touch_nmi_watchdog();
  4817. if (!state_filter || (p->state & state_filter))
  4818. sched_show_task(p);
  4819. } while_each_thread(g, p);
  4820. touch_all_softlockup_watchdogs();
  4821. #ifdef CONFIG_SCHED_DEBUG
  4822. sysrq_sched_debug_show();
  4823. #endif
  4824. read_unlock(&tasklist_lock);
  4825. /*
  4826. * Only show locks if all tasks are dumped:
  4827. */
  4828. if (state_filter == -1)
  4829. debug_show_all_locks();
  4830. }
  4831. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4832. {
  4833. idle->sched_class = &idle_sched_class;
  4834. }
  4835. /**
  4836. * init_idle - set up an idle thread for a given CPU
  4837. * @idle: task in question
  4838. * @cpu: cpu the idle task belongs to
  4839. *
  4840. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4841. * flag, to make booting more robust.
  4842. */
  4843. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4844. {
  4845. struct rq *rq = cpu_rq(cpu);
  4846. unsigned long flags;
  4847. __sched_fork(idle);
  4848. idle->se.exec_start = sched_clock();
  4849. idle->prio = idle->normal_prio = MAX_PRIO;
  4850. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4851. __set_task_cpu(idle, cpu);
  4852. spin_lock_irqsave(&rq->lock, flags);
  4853. rq->curr = rq->idle = idle;
  4854. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4855. idle->oncpu = 1;
  4856. #endif
  4857. spin_unlock_irqrestore(&rq->lock, flags);
  4858. /* Set the preempt count _outside_ the spinlocks! */
  4859. #if defined(CONFIG_PREEMPT)
  4860. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4861. #else
  4862. task_thread_info(idle)->preempt_count = 0;
  4863. #endif
  4864. /*
  4865. * The idle tasks have their own, simple scheduling class:
  4866. */
  4867. idle->sched_class = &idle_sched_class;
  4868. }
  4869. /*
  4870. * In a system that switches off the HZ timer nohz_cpu_mask
  4871. * indicates which cpus entered this state. This is used
  4872. * in the rcu update to wait only for active cpus. For system
  4873. * which do not switch off the HZ timer nohz_cpu_mask should
  4874. * always be CPU_MASK_NONE.
  4875. */
  4876. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4877. /*
  4878. * Increase the granularity value when there are more CPUs,
  4879. * because with more CPUs the 'effective latency' as visible
  4880. * to users decreases. But the relationship is not linear,
  4881. * so pick a second-best guess by going with the log2 of the
  4882. * number of CPUs.
  4883. *
  4884. * This idea comes from the SD scheduler of Con Kolivas:
  4885. */
  4886. static inline void sched_init_granularity(void)
  4887. {
  4888. unsigned int factor = 1 + ilog2(num_online_cpus());
  4889. const unsigned long limit = 200000000;
  4890. sysctl_sched_min_granularity *= factor;
  4891. if (sysctl_sched_min_granularity > limit)
  4892. sysctl_sched_min_granularity = limit;
  4893. sysctl_sched_latency *= factor;
  4894. if (sysctl_sched_latency > limit)
  4895. sysctl_sched_latency = limit;
  4896. sysctl_sched_wakeup_granularity *= factor;
  4897. }
  4898. #ifdef CONFIG_SMP
  4899. /*
  4900. * This is how migration works:
  4901. *
  4902. * 1) we queue a struct migration_req structure in the source CPU's
  4903. * runqueue and wake up that CPU's migration thread.
  4904. * 2) we down() the locked semaphore => thread blocks.
  4905. * 3) migration thread wakes up (implicitly it forces the migrated
  4906. * thread off the CPU)
  4907. * 4) it gets the migration request and checks whether the migrated
  4908. * task is still in the wrong runqueue.
  4909. * 5) if it's in the wrong runqueue then the migration thread removes
  4910. * it and puts it into the right queue.
  4911. * 6) migration thread up()s the semaphore.
  4912. * 7) we wake up and the migration is done.
  4913. */
  4914. /*
  4915. * Change a given task's CPU affinity. Migrate the thread to a
  4916. * proper CPU and schedule it away if the CPU it's executing on
  4917. * is removed from the allowed bitmask.
  4918. *
  4919. * NOTE: the caller must have a valid reference to the task, the
  4920. * task must not exit() & deallocate itself prematurely. The
  4921. * call is not atomic; no spinlocks may be held.
  4922. */
  4923. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4924. {
  4925. struct migration_req req;
  4926. unsigned long flags;
  4927. struct rq *rq;
  4928. int ret = 0;
  4929. rq = task_rq_lock(p, &flags);
  4930. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4931. ret = -EINVAL;
  4932. goto out;
  4933. }
  4934. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4935. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4936. ret = -EINVAL;
  4937. goto out;
  4938. }
  4939. if (p->sched_class->set_cpus_allowed)
  4940. p->sched_class->set_cpus_allowed(p, new_mask);
  4941. else {
  4942. p->cpus_allowed = *new_mask;
  4943. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4944. }
  4945. /* Can the task run on the task's current CPU? If so, we're done */
  4946. if (cpu_isset(task_cpu(p), *new_mask))
  4947. goto out;
  4948. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4949. /* Need help from migration thread: drop lock and wait. */
  4950. task_rq_unlock(rq, &flags);
  4951. wake_up_process(rq->migration_thread);
  4952. wait_for_completion(&req.done);
  4953. tlb_migrate_finish(p->mm);
  4954. return 0;
  4955. }
  4956. out:
  4957. task_rq_unlock(rq, &flags);
  4958. return ret;
  4959. }
  4960. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4961. /*
  4962. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4963. * this because either it can't run here any more (set_cpus_allowed()
  4964. * away from this CPU, or CPU going down), or because we're
  4965. * attempting to rebalance this task on exec (sched_exec).
  4966. *
  4967. * So we race with normal scheduler movements, but that's OK, as long
  4968. * as the task is no longer on this CPU.
  4969. *
  4970. * Returns non-zero if task was successfully migrated.
  4971. */
  4972. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4973. {
  4974. struct rq *rq_dest, *rq_src;
  4975. int ret = 0, on_rq;
  4976. if (unlikely(!cpu_active(dest_cpu)))
  4977. return ret;
  4978. rq_src = cpu_rq(src_cpu);
  4979. rq_dest = cpu_rq(dest_cpu);
  4980. double_rq_lock(rq_src, rq_dest);
  4981. /* Already moved. */
  4982. if (task_cpu(p) != src_cpu)
  4983. goto done;
  4984. /* Affinity changed (again). */
  4985. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4986. goto fail;
  4987. on_rq = p->se.on_rq;
  4988. if (on_rq)
  4989. deactivate_task(rq_src, p, 0);
  4990. set_task_cpu(p, dest_cpu);
  4991. if (on_rq) {
  4992. activate_task(rq_dest, p, 0);
  4993. check_preempt_curr(rq_dest, p);
  4994. }
  4995. done:
  4996. ret = 1;
  4997. fail:
  4998. double_rq_unlock(rq_src, rq_dest);
  4999. return ret;
  5000. }
  5001. /*
  5002. * migration_thread - this is a highprio system thread that performs
  5003. * thread migration by bumping thread off CPU then 'pushing' onto
  5004. * another runqueue.
  5005. */
  5006. static int migration_thread(void *data)
  5007. {
  5008. int cpu = (long)data;
  5009. struct rq *rq;
  5010. rq = cpu_rq(cpu);
  5011. BUG_ON(rq->migration_thread != current);
  5012. set_current_state(TASK_INTERRUPTIBLE);
  5013. while (!kthread_should_stop()) {
  5014. struct migration_req *req;
  5015. struct list_head *head;
  5016. spin_lock_irq(&rq->lock);
  5017. if (cpu_is_offline(cpu)) {
  5018. spin_unlock_irq(&rq->lock);
  5019. goto wait_to_die;
  5020. }
  5021. if (rq->active_balance) {
  5022. active_load_balance(rq, cpu);
  5023. rq->active_balance = 0;
  5024. }
  5025. head = &rq->migration_queue;
  5026. if (list_empty(head)) {
  5027. spin_unlock_irq(&rq->lock);
  5028. schedule();
  5029. set_current_state(TASK_INTERRUPTIBLE);
  5030. continue;
  5031. }
  5032. req = list_entry(head->next, struct migration_req, list);
  5033. list_del_init(head->next);
  5034. spin_unlock(&rq->lock);
  5035. __migrate_task(req->task, cpu, req->dest_cpu);
  5036. local_irq_enable();
  5037. complete(&req->done);
  5038. }
  5039. __set_current_state(TASK_RUNNING);
  5040. return 0;
  5041. wait_to_die:
  5042. /* Wait for kthread_stop */
  5043. set_current_state(TASK_INTERRUPTIBLE);
  5044. while (!kthread_should_stop()) {
  5045. schedule();
  5046. set_current_state(TASK_INTERRUPTIBLE);
  5047. }
  5048. __set_current_state(TASK_RUNNING);
  5049. return 0;
  5050. }
  5051. #ifdef CONFIG_HOTPLUG_CPU
  5052. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5053. {
  5054. int ret;
  5055. local_irq_disable();
  5056. ret = __migrate_task(p, src_cpu, dest_cpu);
  5057. local_irq_enable();
  5058. return ret;
  5059. }
  5060. /*
  5061. * Figure out where task on dead CPU should go, use force if necessary.
  5062. * NOTE: interrupts should be disabled by the caller
  5063. */
  5064. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5065. {
  5066. unsigned long flags;
  5067. cpumask_t mask;
  5068. struct rq *rq;
  5069. int dest_cpu;
  5070. do {
  5071. /* On same node? */
  5072. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5073. cpus_and(mask, mask, p->cpus_allowed);
  5074. dest_cpu = any_online_cpu(mask);
  5075. /* On any allowed CPU? */
  5076. if (dest_cpu >= nr_cpu_ids)
  5077. dest_cpu = any_online_cpu(p->cpus_allowed);
  5078. /* No more Mr. Nice Guy. */
  5079. if (dest_cpu >= nr_cpu_ids) {
  5080. cpumask_t cpus_allowed;
  5081. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5082. /*
  5083. * Try to stay on the same cpuset, where the
  5084. * current cpuset may be a subset of all cpus.
  5085. * The cpuset_cpus_allowed_locked() variant of
  5086. * cpuset_cpus_allowed() will not block. It must be
  5087. * called within calls to cpuset_lock/cpuset_unlock.
  5088. */
  5089. rq = task_rq_lock(p, &flags);
  5090. p->cpus_allowed = cpus_allowed;
  5091. dest_cpu = any_online_cpu(p->cpus_allowed);
  5092. task_rq_unlock(rq, &flags);
  5093. /*
  5094. * Don't tell them about moving exiting tasks or
  5095. * kernel threads (both mm NULL), since they never
  5096. * leave kernel.
  5097. */
  5098. if (p->mm && printk_ratelimit()) {
  5099. printk(KERN_INFO "process %d (%s) no "
  5100. "longer affine to cpu%d\n",
  5101. task_pid_nr(p), p->comm, dead_cpu);
  5102. }
  5103. }
  5104. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5105. }
  5106. /*
  5107. * While a dead CPU has no uninterruptible tasks queued at this point,
  5108. * it might still have a nonzero ->nr_uninterruptible counter, because
  5109. * for performance reasons the counter is not stricly tracking tasks to
  5110. * their home CPUs. So we just add the counter to another CPU's counter,
  5111. * to keep the global sum constant after CPU-down:
  5112. */
  5113. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5114. {
  5115. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5116. unsigned long flags;
  5117. local_irq_save(flags);
  5118. double_rq_lock(rq_src, rq_dest);
  5119. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5120. rq_src->nr_uninterruptible = 0;
  5121. double_rq_unlock(rq_src, rq_dest);
  5122. local_irq_restore(flags);
  5123. }
  5124. /* Run through task list and migrate tasks from the dead cpu. */
  5125. static void migrate_live_tasks(int src_cpu)
  5126. {
  5127. struct task_struct *p, *t;
  5128. read_lock(&tasklist_lock);
  5129. do_each_thread(t, p) {
  5130. if (p == current)
  5131. continue;
  5132. if (task_cpu(p) == src_cpu)
  5133. move_task_off_dead_cpu(src_cpu, p);
  5134. } while_each_thread(t, p);
  5135. read_unlock(&tasklist_lock);
  5136. }
  5137. /*
  5138. * Schedules idle task to be the next runnable task on current CPU.
  5139. * It does so by boosting its priority to highest possible.
  5140. * Used by CPU offline code.
  5141. */
  5142. void sched_idle_next(void)
  5143. {
  5144. int this_cpu = smp_processor_id();
  5145. struct rq *rq = cpu_rq(this_cpu);
  5146. struct task_struct *p = rq->idle;
  5147. unsigned long flags;
  5148. /* cpu has to be offline */
  5149. BUG_ON(cpu_online(this_cpu));
  5150. /*
  5151. * Strictly not necessary since rest of the CPUs are stopped by now
  5152. * and interrupts disabled on the current cpu.
  5153. */
  5154. spin_lock_irqsave(&rq->lock, flags);
  5155. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5156. update_rq_clock(rq);
  5157. activate_task(rq, p, 0);
  5158. spin_unlock_irqrestore(&rq->lock, flags);
  5159. }
  5160. /*
  5161. * Ensures that the idle task is using init_mm right before its cpu goes
  5162. * offline.
  5163. */
  5164. void idle_task_exit(void)
  5165. {
  5166. struct mm_struct *mm = current->active_mm;
  5167. BUG_ON(cpu_online(smp_processor_id()));
  5168. if (mm != &init_mm)
  5169. switch_mm(mm, &init_mm, current);
  5170. mmdrop(mm);
  5171. }
  5172. /* called under rq->lock with disabled interrupts */
  5173. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5174. {
  5175. struct rq *rq = cpu_rq(dead_cpu);
  5176. /* Must be exiting, otherwise would be on tasklist. */
  5177. BUG_ON(!p->exit_state);
  5178. /* Cannot have done final schedule yet: would have vanished. */
  5179. BUG_ON(p->state == TASK_DEAD);
  5180. get_task_struct(p);
  5181. /*
  5182. * Drop lock around migration; if someone else moves it,
  5183. * that's OK. No task can be added to this CPU, so iteration is
  5184. * fine.
  5185. */
  5186. spin_unlock_irq(&rq->lock);
  5187. move_task_off_dead_cpu(dead_cpu, p);
  5188. spin_lock_irq(&rq->lock);
  5189. put_task_struct(p);
  5190. }
  5191. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5192. static void migrate_dead_tasks(unsigned int dead_cpu)
  5193. {
  5194. struct rq *rq = cpu_rq(dead_cpu);
  5195. struct task_struct *next;
  5196. for ( ; ; ) {
  5197. if (!rq->nr_running)
  5198. break;
  5199. update_rq_clock(rq);
  5200. next = pick_next_task(rq, rq->curr);
  5201. if (!next)
  5202. break;
  5203. next->sched_class->put_prev_task(rq, next);
  5204. migrate_dead(dead_cpu, next);
  5205. }
  5206. }
  5207. #endif /* CONFIG_HOTPLUG_CPU */
  5208. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5209. static struct ctl_table sd_ctl_dir[] = {
  5210. {
  5211. .procname = "sched_domain",
  5212. .mode = 0555,
  5213. },
  5214. {0, },
  5215. };
  5216. static struct ctl_table sd_ctl_root[] = {
  5217. {
  5218. .ctl_name = CTL_KERN,
  5219. .procname = "kernel",
  5220. .mode = 0555,
  5221. .child = sd_ctl_dir,
  5222. },
  5223. {0, },
  5224. };
  5225. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5226. {
  5227. struct ctl_table *entry =
  5228. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5229. return entry;
  5230. }
  5231. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5232. {
  5233. struct ctl_table *entry;
  5234. /*
  5235. * In the intermediate directories, both the child directory and
  5236. * procname are dynamically allocated and could fail but the mode
  5237. * will always be set. In the lowest directory the names are
  5238. * static strings and all have proc handlers.
  5239. */
  5240. for (entry = *tablep; entry->mode; entry++) {
  5241. if (entry->child)
  5242. sd_free_ctl_entry(&entry->child);
  5243. if (entry->proc_handler == NULL)
  5244. kfree(entry->procname);
  5245. }
  5246. kfree(*tablep);
  5247. *tablep = NULL;
  5248. }
  5249. static void
  5250. set_table_entry(struct ctl_table *entry,
  5251. const char *procname, void *data, int maxlen,
  5252. mode_t mode, proc_handler *proc_handler)
  5253. {
  5254. entry->procname = procname;
  5255. entry->data = data;
  5256. entry->maxlen = maxlen;
  5257. entry->mode = mode;
  5258. entry->proc_handler = proc_handler;
  5259. }
  5260. static struct ctl_table *
  5261. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5262. {
  5263. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5264. if (table == NULL)
  5265. return NULL;
  5266. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5267. sizeof(long), 0644, proc_doulongvec_minmax);
  5268. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5269. sizeof(long), 0644, proc_doulongvec_minmax);
  5270. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5271. sizeof(int), 0644, proc_dointvec_minmax);
  5272. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5273. sizeof(int), 0644, proc_dointvec_minmax);
  5274. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5275. sizeof(int), 0644, proc_dointvec_minmax);
  5276. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5277. sizeof(int), 0644, proc_dointvec_minmax);
  5278. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5279. sizeof(int), 0644, proc_dointvec_minmax);
  5280. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5281. sizeof(int), 0644, proc_dointvec_minmax);
  5282. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5283. sizeof(int), 0644, proc_dointvec_minmax);
  5284. set_table_entry(&table[9], "cache_nice_tries",
  5285. &sd->cache_nice_tries,
  5286. sizeof(int), 0644, proc_dointvec_minmax);
  5287. set_table_entry(&table[10], "flags", &sd->flags,
  5288. sizeof(int), 0644, proc_dointvec_minmax);
  5289. /* &table[11] is terminator */
  5290. return table;
  5291. }
  5292. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5293. {
  5294. struct ctl_table *entry, *table;
  5295. struct sched_domain *sd;
  5296. int domain_num = 0, i;
  5297. char buf[32];
  5298. for_each_domain(cpu, sd)
  5299. domain_num++;
  5300. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5301. if (table == NULL)
  5302. return NULL;
  5303. i = 0;
  5304. for_each_domain(cpu, sd) {
  5305. snprintf(buf, 32, "domain%d", i);
  5306. entry->procname = kstrdup(buf, GFP_KERNEL);
  5307. entry->mode = 0555;
  5308. entry->child = sd_alloc_ctl_domain_table(sd);
  5309. entry++;
  5310. i++;
  5311. }
  5312. return table;
  5313. }
  5314. static struct ctl_table_header *sd_sysctl_header;
  5315. static void register_sched_domain_sysctl(void)
  5316. {
  5317. int i, cpu_num = num_online_cpus();
  5318. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5319. char buf[32];
  5320. WARN_ON(sd_ctl_dir[0].child);
  5321. sd_ctl_dir[0].child = entry;
  5322. if (entry == NULL)
  5323. return;
  5324. for_each_online_cpu(i) {
  5325. snprintf(buf, 32, "cpu%d", i);
  5326. entry->procname = kstrdup(buf, GFP_KERNEL);
  5327. entry->mode = 0555;
  5328. entry->child = sd_alloc_ctl_cpu_table(i);
  5329. entry++;
  5330. }
  5331. WARN_ON(sd_sysctl_header);
  5332. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5333. }
  5334. /* may be called multiple times per register */
  5335. static void unregister_sched_domain_sysctl(void)
  5336. {
  5337. if (sd_sysctl_header)
  5338. unregister_sysctl_table(sd_sysctl_header);
  5339. sd_sysctl_header = NULL;
  5340. if (sd_ctl_dir[0].child)
  5341. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5342. }
  5343. #else
  5344. static void register_sched_domain_sysctl(void)
  5345. {
  5346. }
  5347. static void unregister_sched_domain_sysctl(void)
  5348. {
  5349. }
  5350. #endif
  5351. static void set_rq_online(struct rq *rq)
  5352. {
  5353. if (!rq->online) {
  5354. const struct sched_class *class;
  5355. cpu_set(rq->cpu, rq->rd->online);
  5356. rq->online = 1;
  5357. for_each_class(class) {
  5358. if (class->rq_online)
  5359. class->rq_online(rq);
  5360. }
  5361. }
  5362. }
  5363. static void set_rq_offline(struct rq *rq)
  5364. {
  5365. if (rq->online) {
  5366. const struct sched_class *class;
  5367. for_each_class(class) {
  5368. if (class->rq_offline)
  5369. class->rq_offline(rq);
  5370. }
  5371. cpu_clear(rq->cpu, rq->rd->online);
  5372. rq->online = 0;
  5373. }
  5374. }
  5375. /*
  5376. * migration_call - callback that gets triggered when a CPU is added.
  5377. * Here we can start up the necessary migration thread for the new CPU.
  5378. */
  5379. static int __cpuinit
  5380. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5381. {
  5382. struct task_struct *p;
  5383. int cpu = (long)hcpu;
  5384. unsigned long flags;
  5385. struct rq *rq;
  5386. switch (action) {
  5387. case CPU_UP_PREPARE:
  5388. case CPU_UP_PREPARE_FROZEN:
  5389. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5390. if (IS_ERR(p))
  5391. return NOTIFY_BAD;
  5392. kthread_bind(p, cpu);
  5393. /* Must be high prio: stop_machine expects to yield to it. */
  5394. rq = task_rq_lock(p, &flags);
  5395. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5396. task_rq_unlock(rq, &flags);
  5397. cpu_rq(cpu)->migration_thread = p;
  5398. break;
  5399. case CPU_ONLINE:
  5400. case CPU_ONLINE_FROZEN:
  5401. /* Strictly unnecessary, as first user will wake it. */
  5402. wake_up_process(cpu_rq(cpu)->migration_thread);
  5403. /* Update our root-domain */
  5404. rq = cpu_rq(cpu);
  5405. spin_lock_irqsave(&rq->lock, flags);
  5406. if (rq->rd) {
  5407. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5408. set_rq_online(rq);
  5409. }
  5410. spin_unlock_irqrestore(&rq->lock, flags);
  5411. break;
  5412. #ifdef CONFIG_HOTPLUG_CPU
  5413. case CPU_UP_CANCELED:
  5414. case CPU_UP_CANCELED_FROZEN:
  5415. if (!cpu_rq(cpu)->migration_thread)
  5416. break;
  5417. /* Unbind it from offline cpu so it can run. Fall thru. */
  5418. kthread_bind(cpu_rq(cpu)->migration_thread,
  5419. any_online_cpu(cpu_online_map));
  5420. kthread_stop(cpu_rq(cpu)->migration_thread);
  5421. cpu_rq(cpu)->migration_thread = NULL;
  5422. break;
  5423. case CPU_DEAD:
  5424. case CPU_DEAD_FROZEN:
  5425. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5426. migrate_live_tasks(cpu);
  5427. rq = cpu_rq(cpu);
  5428. kthread_stop(rq->migration_thread);
  5429. rq->migration_thread = NULL;
  5430. /* Idle task back to normal (off runqueue, low prio) */
  5431. spin_lock_irq(&rq->lock);
  5432. update_rq_clock(rq);
  5433. deactivate_task(rq, rq->idle, 0);
  5434. rq->idle->static_prio = MAX_PRIO;
  5435. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5436. rq->idle->sched_class = &idle_sched_class;
  5437. migrate_dead_tasks(cpu);
  5438. spin_unlock_irq(&rq->lock);
  5439. cpuset_unlock();
  5440. migrate_nr_uninterruptible(rq);
  5441. BUG_ON(rq->nr_running != 0);
  5442. /*
  5443. * No need to migrate the tasks: it was best-effort if
  5444. * they didn't take sched_hotcpu_mutex. Just wake up
  5445. * the requestors.
  5446. */
  5447. spin_lock_irq(&rq->lock);
  5448. while (!list_empty(&rq->migration_queue)) {
  5449. struct migration_req *req;
  5450. req = list_entry(rq->migration_queue.next,
  5451. struct migration_req, list);
  5452. list_del_init(&req->list);
  5453. complete(&req->done);
  5454. }
  5455. spin_unlock_irq(&rq->lock);
  5456. break;
  5457. case CPU_DYING:
  5458. case CPU_DYING_FROZEN:
  5459. /* Update our root-domain */
  5460. rq = cpu_rq(cpu);
  5461. spin_lock_irqsave(&rq->lock, flags);
  5462. if (rq->rd) {
  5463. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5464. set_rq_offline(rq);
  5465. }
  5466. spin_unlock_irqrestore(&rq->lock, flags);
  5467. break;
  5468. #endif
  5469. }
  5470. return NOTIFY_OK;
  5471. }
  5472. /* Register at highest priority so that task migration (migrate_all_tasks)
  5473. * happens before everything else.
  5474. */
  5475. static struct notifier_block __cpuinitdata migration_notifier = {
  5476. .notifier_call = migration_call,
  5477. .priority = 10
  5478. };
  5479. static int __init migration_init(void)
  5480. {
  5481. void *cpu = (void *)(long)smp_processor_id();
  5482. int err;
  5483. /* Start one for the boot CPU: */
  5484. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5485. BUG_ON(err == NOTIFY_BAD);
  5486. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5487. register_cpu_notifier(&migration_notifier);
  5488. return err;
  5489. }
  5490. early_initcall(migration_init);
  5491. #endif
  5492. #ifdef CONFIG_SMP
  5493. #ifdef CONFIG_SCHED_DEBUG
  5494. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5495. {
  5496. switch (lvl) {
  5497. case SD_LV_NONE:
  5498. return "NONE";
  5499. case SD_LV_SIBLING:
  5500. return "SIBLING";
  5501. case SD_LV_MC:
  5502. return "MC";
  5503. case SD_LV_CPU:
  5504. return "CPU";
  5505. case SD_LV_NODE:
  5506. return "NODE";
  5507. case SD_LV_ALLNODES:
  5508. return "ALLNODES";
  5509. case SD_LV_MAX:
  5510. return "MAX";
  5511. }
  5512. return "MAX";
  5513. }
  5514. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5515. cpumask_t *groupmask)
  5516. {
  5517. struct sched_group *group = sd->groups;
  5518. char str[256];
  5519. cpulist_scnprintf(str, sizeof(str), sd->span);
  5520. cpus_clear(*groupmask);
  5521. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5522. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5523. printk("does not load-balance\n");
  5524. if (sd->parent)
  5525. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5526. " has parent");
  5527. return -1;
  5528. }
  5529. printk(KERN_CONT "span %s level %s\n",
  5530. str, sd_level_to_string(sd->level));
  5531. if (!cpu_isset(cpu, sd->span)) {
  5532. printk(KERN_ERR "ERROR: domain->span does not contain "
  5533. "CPU%d\n", cpu);
  5534. }
  5535. if (!cpu_isset(cpu, group->cpumask)) {
  5536. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5537. " CPU%d\n", cpu);
  5538. }
  5539. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5540. do {
  5541. if (!group) {
  5542. printk("\n");
  5543. printk(KERN_ERR "ERROR: group is NULL\n");
  5544. break;
  5545. }
  5546. if (!group->__cpu_power) {
  5547. printk(KERN_CONT "\n");
  5548. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5549. "set\n");
  5550. break;
  5551. }
  5552. if (!cpus_weight(group->cpumask)) {
  5553. printk(KERN_CONT "\n");
  5554. printk(KERN_ERR "ERROR: empty group\n");
  5555. break;
  5556. }
  5557. if (cpus_intersects(*groupmask, group->cpumask)) {
  5558. printk(KERN_CONT "\n");
  5559. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5560. break;
  5561. }
  5562. cpus_or(*groupmask, *groupmask, group->cpumask);
  5563. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5564. printk(KERN_CONT " %s", str);
  5565. group = group->next;
  5566. } while (group != sd->groups);
  5567. printk(KERN_CONT "\n");
  5568. if (!cpus_equal(sd->span, *groupmask))
  5569. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5570. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5571. printk(KERN_ERR "ERROR: parent span is not a superset "
  5572. "of domain->span\n");
  5573. return 0;
  5574. }
  5575. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5576. {
  5577. cpumask_t *groupmask;
  5578. int level = 0;
  5579. if (!sd) {
  5580. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5581. return;
  5582. }
  5583. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5584. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5585. if (!groupmask) {
  5586. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5587. return;
  5588. }
  5589. for (;;) {
  5590. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5591. break;
  5592. level++;
  5593. sd = sd->parent;
  5594. if (!sd)
  5595. break;
  5596. }
  5597. kfree(groupmask);
  5598. }
  5599. #else /* !CONFIG_SCHED_DEBUG */
  5600. # define sched_domain_debug(sd, cpu) do { } while (0)
  5601. #endif /* CONFIG_SCHED_DEBUG */
  5602. static int sd_degenerate(struct sched_domain *sd)
  5603. {
  5604. if (cpus_weight(sd->span) == 1)
  5605. return 1;
  5606. /* Following flags need at least 2 groups */
  5607. if (sd->flags & (SD_LOAD_BALANCE |
  5608. SD_BALANCE_NEWIDLE |
  5609. SD_BALANCE_FORK |
  5610. SD_BALANCE_EXEC |
  5611. SD_SHARE_CPUPOWER |
  5612. SD_SHARE_PKG_RESOURCES)) {
  5613. if (sd->groups != sd->groups->next)
  5614. return 0;
  5615. }
  5616. /* Following flags don't use groups */
  5617. if (sd->flags & (SD_WAKE_IDLE |
  5618. SD_WAKE_AFFINE |
  5619. SD_WAKE_BALANCE))
  5620. return 0;
  5621. return 1;
  5622. }
  5623. static int
  5624. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5625. {
  5626. unsigned long cflags = sd->flags, pflags = parent->flags;
  5627. if (sd_degenerate(parent))
  5628. return 1;
  5629. if (!cpus_equal(sd->span, parent->span))
  5630. return 0;
  5631. /* Does parent contain flags not in child? */
  5632. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5633. if (cflags & SD_WAKE_AFFINE)
  5634. pflags &= ~SD_WAKE_BALANCE;
  5635. /* Flags needing groups don't count if only 1 group in parent */
  5636. if (parent->groups == parent->groups->next) {
  5637. pflags &= ~(SD_LOAD_BALANCE |
  5638. SD_BALANCE_NEWIDLE |
  5639. SD_BALANCE_FORK |
  5640. SD_BALANCE_EXEC |
  5641. SD_SHARE_CPUPOWER |
  5642. SD_SHARE_PKG_RESOURCES);
  5643. }
  5644. if (~cflags & pflags)
  5645. return 0;
  5646. return 1;
  5647. }
  5648. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5649. {
  5650. unsigned long flags;
  5651. spin_lock_irqsave(&rq->lock, flags);
  5652. if (rq->rd) {
  5653. struct root_domain *old_rd = rq->rd;
  5654. if (cpu_isset(rq->cpu, old_rd->online))
  5655. set_rq_offline(rq);
  5656. cpu_clear(rq->cpu, old_rd->span);
  5657. if (atomic_dec_and_test(&old_rd->refcount))
  5658. kfree(old_rd);
  5659. }
  5660. atomic_inc(&rd->refcount);
  5661. rq->rd = rd;
  5662. cpu_set(rq->cpu, rd->span);
  5663. if (cpu_isset(rq->cpu, cpu_online_map))
  5664. set_rq_online(rq);
  5665. spin_unlock_irqrestore(&rq->lock, flags);
  5666. }
  5667. static void init_rootdomain(struct root_domain *rd)
  5668. {
  5669. memset(rd, 0, sizeof(*rd));
  5670. cpus_clear(rd->span);
  5671. cpus_clear(rd->online);
  5672. cpupri_init(&rd->cpupri);
  5673. }
  5674. static void init_defrootdomain(void)
  5675. {
  5676. init_rootdomain(&def_root_domain);
  5677. atomic_set(&def_root_domain.refcount, 1);
  5678. }
  5679. static struct root_domain *alloc_rootdomain(void)
  5680. {
  5681. struct root_domain *rd;
  5682. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5683. if (!rd)
  5684. return NULL;
  5685. init_rootdomain(rd);
  5686. return rd;
  5687. }
  5688. /*
  5689. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5690. * hold the hotplug lock.
  5691. */
  5692. static void
  5693. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5694. {
  5695. struct rq *rq = cpu_rq(cpu);
  5696. struct sched_domain *tmp;
  5697. /* Remove the sched domains which do not contribute to scheduling. */
  5698. for (tmp = sd; tmp; tmp = tmp->parent) {
  5699. struct sched_domain *parent = tmp->parent;
  5700. if (!parent)
  5701. break;
  5702. if (sd_parent_degenerate(tmp, parent)) {
  5703. tmp->parent = parent->parent;
  5704. if (parent->parent)
  5705. parent->parent->child = tmp;
  5706. }
  5707. }
  5708. if (sd && sd_degenerate(sd)) {
  5709. sd = sd->parent;
  5710. if (sd)
  5711. sd->child = NULL;
  5712. }
  5713. sched_domain_debug(sd, cpu);
  5714. rq_attach_root(rq, rd);
  5715. rcu_assign_pointer(rq->sd, sd);
  5716. }
  5717. /* cpus with isolated domains */
  5718. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5719. /* Setup the mask of cpus configured for isolated domains */
  5720. static int __init isolated_cpu_setup(char *str)
  5721. {
  5722. static int __initdata ints[NR_CPUS];
  5723. int i;
  5724. str = get_options(str, ARRAY_SIZE(ints), ints);
  5725. cpus_clear(cpu_isolated_map);
  5726. for (i = 1; i <= ints[0]; i++)
  5727. if (ints[i] < NR_CPUS)
  5728. cpu_set(ints[i], cpu_isolated_map);
  5729. return 1;
  5730. }
  5731. __setup("isolcpus=", isolated_cpu_setup);
  5732. /*
  5733. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5734. * to a function which identifies what group(along with sched group) a CPU
  5735. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5736. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5737. *
  5738. * init_sched_build_groups will build a circular linked list of the groups
  5739. * covered by the given span, and will set each group's ->cpumask correctly,
  5740. * and ->cpu_power to 0.
  5741. */
  5742. static void
  5743. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5744. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5745. struct sched_group **sg,
  5746. cpumask_t *tmpmask),
  5747. cpumask_t *covered, cpumask_t *tmpmask)
  5748. {
  5749. struct sched_group *first = NULL, *last = NULL;
  5750. int i;
  5751. cpus_clear(*covered);
  5752. for_each_cpu_mask_nr(i, *span) {
  5753. struct sched_group *sg;
  5754. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5755. int j;
  5756. if (cpu_isset(i, *covered))
  5757. continue;
  5758. cpus_clear(sg->cpumask);
  5759. sg->__cpu_power = 0;
  5760. for_each_cpu_mask_nr(j, *span) {
  5761. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5762. continue;
  5763. cpu_set(j, *covered);
  5764. cpu_set(j, sg->cpumask);
  5765. }
  5766. if (!first)
  5767. first = sg;
  5768. if (last)
  5769. last->next = sg;
  5770. last = sg;
  5771. }
  5772. last->next = first;
  5773. }
  5774. #define SD_NODES_PER_DOMAIN 16
  5775. #ifdef CONFIG_NUMA
  5776. /**
  5777. * find_next_best_node - find the next node to include in a sched_domain
  5778. * @node: node whose sched_domain we're building
  5779. * @used_nodes: nodes already in the sched_domain
  5780. *
  5781. * Find the next node to include in a given scheduling domain. Simply
  5782. * finds the closest node not already in the @used_nodes map.
  5783. *
  5784. * Should use nodemask_t.
  5785. */
  5786. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5787. {
  5788. int i, n, val, min_val, best_node = 0;
  5789. min_val = INT_MAX;
  5790. for (i = 0; i < nr_node_ids; i++) {
  5791. /* Start at @node */
  5792. n = (node + i) % nr_node_ids;
  5793. if (!nr_cpus_node(n))
  5794. continue;
  5795. /* Skip already used nodes */
  5796. if (node_isset(n, *used_nodes))
  5797. continue;
  5798. /* Simple min distance search */
  5799. val = node_distance(node, n);
  5800. if (val < min_val) {
  5801. min_val = val;
  5802. best_node = n;
  5803. }
  5804. }
  5805. node_set(best_node, *used_nodes);
  5806. return best_node;
  5807. }
  5808. /**
  5809. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5810. * @node: node whose cpumask we're constructing
  5811. * @span: resulting cpumask
  5812. *
  5813. * Given a node, construct a good cpumask for its sched_domain to span. It
  5814. * should be one that prevents unnecessary balancing, but also spreads tasks
  5815. * out optimally.
  5816. */
  5817. static void sched_domain_node_span(int node, cpumask_t *span)
  5818. {
  5819. nodemask_t used_nodes;
  5820. node_to_cpumask_ptr(nodemask, node);
  5821. int i;
  5822. cpus_clear(*span);
  5823. nodes_clear(used_nodes);
  5824. cpus_or(*span, *span, *nodemask);
  5825. node_set(node, used_nodes);
  5826. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5827. int next_node = find_next_best_node(node, &used_nodes);
  5828. node_to_cpumask_ptr_next(nodemask, next_node);
  5829. cpus_or(*span, *span, *nodemask);
  5830. }
  5831. }
  5832. #endif /* CONFIG_NUMA */
  5833. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5834. /*
  5835. * SMT sched-domains:
  5836. */
  5837. #ifdef CONFIG_SCHED_SMT
  5838. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5839. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5840. static int
  5841. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5842. cpumask_t *unused)
  5843. {
  5844. if (sg)
  5845. *sg = &per_cpu(sched_group_cpus, cpu);
  5846. return cpu;
  5847. }
  5848. #endif /* CONFIG_SCHED_SMT */
  5849. /*
  5850. * multi-core sched-domains:
  5851. */
  5852. #ifdef CONFIG_SCHED_MC
  5853. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5854. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5855. #endif /* CONFIG_SCHED_MC */
  5856. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5857. static int
  5858. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5859. cpumask_t *mask)
  5860. {
  5861. int group;
  5862. *mask = per_cpu(cpu_sibling_map, cpu);
  5863. cpus_and(*mask, *mask, *cpu_map);
  5864. group = first_cpu(*mask);
  5865. if (sg)
  5866. *sg = &per_cpu(sched_group_core, group);
  5867. return group;
  5868. }
  5869. #elif defined(CONFIG_SCHED_MC)
  5870. static int
  5871. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5872. cpumask_t *unused)
  5873. {
  5874. if (sg)
  5875. *sg = &per_cpu(sched_group_core, cpu);
  5876. return cpu;
  5877. }
  5878. #endif
  5879. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5880. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5881. static int
  5882. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5883. cpumask_t *mask)
  5884. {
  5885. int group;
  5886. #ifdef CONFIG_SCHED_MC
  5887. *mask = cpu_coregroup_map(cpu);
  5888. cpus_and(*mask, *mask, *cpu_map);
  5889. group = first_cpu(*mask);
  5890. #elif defined(CONFIG_SCHED_SMT)
  5891. *mask = per_cpu(cpu_sibling_map, cpu);
  5892. cpus_and(*mask, *mask, *cpu_map);
  5893. group = first_cpu(*mask);
  5894. #else
  5895. group = cpu;
  5896. #endif
  5897. if (sg)
  5898. *sg = &per_cpu(sched_group_phys, group);
  5899. return group;
  5900. }
  5901. #ifdef CONFIG_NUMA
  5902. /*
  5903. * The init_sched_build_groups can't handle what we want to do with node
  5904. * groups, so roll our own. Now each node has its own list of groups which
  5905. * gets dynamically allocated.
  5906. */
  5907. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5908. static struct sched_group ***sched_group_nodes_bycpu;
  5909. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5910. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5911. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5912. struct sched_group **sg, cpumask_t *nodemask)
  5913. {
  5914. int group;
  5915. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5916. cpus_and(*nodemask, *nodemask, *cpu_map);
  5917. group = first_cpu(*nodemask);
  5918. if (sg)
  5919. *sg = &per_cpu(sched_group_allnodes, group);
  5920. return group;
  5921. }
  5922. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5923. {
  5924. struct sched_group *sg = group_head;
  5925. int j;
  5926. if (!sg)
  5927. return;
  5928. do {
  5929. for_each_cpu_mask_nr(j, sg->cpumask) {
  5930. struct sched_domain *sd;
  5931. sd = &per_cpu(phys_domains, j);
  5932. if (j != first_cpu(sd->groups->cpumask)) {
  5933. /*
  5934. * Only add "power" once for each
  5935. * physical package.
  5936. */
  5937. continue;
  5938. }
  5939. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5940. }
  5941. sg = sg->next;
  5942. } while (sg != group_head);
  5943. }
  5944. #endif /* CONFIG_NUMA */
  5945. #ifdef CONFIG_NUMA
  5946. /* Free memory allocated for various sched_group structures */
  5947. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5948. {
  5949. int cpu, i;
  5950. for_each_cpu_mask_nr(cpu, *cpu_map) {
  5951. struct sched_group **sched_group_nodes
  5952. = sched_group_nodes_bycpu[cpu];
  5953. if (!sched_group_nodes)
  5954. continue;
  5955. for (i = 0; i < nr_node_ids; i++) {
  5956. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5957. *nodemask = node_to_cpumask(i);
  5958. cpus_and(*nodemask, *nodemask, *cpu_map);
  5959. if (cpus_empty(*nodemask))
  5960. continue;
  5961. if (sg == NULL)
  5962. continue;
  5963. sg = sg->next;
  5964. next_sg:
  5965. oldsg = sg;
  5966. sg = sg->next;
  5967. kfree(oldsg);
  5968. if (oldsg != sched_group_nodes[i])
  5969. goto next_sg;
  5970. }
  5971. kfree(sched_group_nodes);
  5972. sched_group_nodes_bycpu[cpu] = NULL;
  5973. }
  5974. }
  5975. #else /* !CONFIG_NUMA */
  5976. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5977. {
  5978. }
  5979. #endif /* CONFIG_NUMA */
  5980. /*
  5981. * Initialize sched groups cpu_power.
  5982. *
  5983. * cpu_power indicates the capacity of sched group, which is used while
  5984. * distributing the load between different sched groups in a sched domain.
  5985. * Typically cpu_power for all the groups in a sched domain will be same unless
  5986. * there are asymmetries in the topology. If there are asymmetries, group
  5987. * having more cpu_power will pickup more load compared to the group having
  5988. * less cpu_power.
  5989. *
  5990. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5991. * the maximum number of tasks a group can handle in the presence of other idle
  5992. * or lightly loaded groups in the same sched domain.
  5993. */
  5994. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5995. {
  5996. struct sched_domain *child;
  5997. struct sched_group *group;
  5998. WARN_ON(!sd || !sd->groups);
  5999. if (cpu != first_cpu(sd->groups->cpumask))
  6000. return;
  6001. child = sd->child;
  6002. sd->groups->__cpu_power = 0;
  6003. /*
  6004. * For perf policy, if the groups in child domain share resources
  6005. * (for example cores sharing some portions of the cache hierarchy
  6006. * or SMT), then set this domain groups cpu_power such that each group
  6007. * can handle only one task, when there are other idle groups in the
  6008. * same sched domain.
  6009. */
  6010. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6011. (child->flags &
  6012. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6013. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6014. return;
  6015. }
  6016. /*
  6017. * add cpu_power of each child group to this groups cpu_power
  6018. */
  6019. group = child->groups;
  6020. do {
  6021. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6022. group = group->next;
  6023. } while (group != child->groups);
  6024. }
  6025. /*
  6026. * Initializers for schedule domains
  6027. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6028. */
  6029. #define SD_INIT(sd, type) sd_init_##type(sd)
  6030. #define SD_INIT_FUNC(type) \
  6031. static noinline void sd_init_##type(struct sched_domain *sd) \
  6032. { \
  6033. memset(sd, 0, sizeof(*sd)); \
  6034. *sd = SD_##type##_INIT; \
  6035. sd->level = SD_LV_##type; \
  6036. }
  6037. SD_INIT_FUNC(CPU)
  6038. #ifdef CONFIG_NUMA
  6039. SD_INIT_FUNC(ALLNODES)
  6040. SD_INIT_FUNC(NODE)
  6041. #endif
  6042. #ifdef CONFIG_SCHED_SMT
  6043. SD_INIT_FUNC(SIBLING)
  6044. #endif
  6045. #ifdef CONFIG_SCHED_MC
  6046. SD_INIT_FUNC(MC)
  6047. #endif
  6048. /*
  6049. * To minimize stack usage kmalloc room for cpumasks and share the
  6050. * space as the usage in build_sched_domains() dictates. Used only
  6051. * if the amount of space is significant.
  6052. */
  6053. struct allmasks {
  6054. cpumask_t tmpmask; /* make this one first */
  6055. union {
  6056. cpumask_t nodemask;
  6057. cpumask_t this_sibling_map;
  6058. cpumask_t this_core_map;
  6059. };
  6060. cpumask_t send_covered;
  6061. #ifdef CONFIG_NUMA
  6062. cpumask_t domainspan;
  6063. cpumask_t covered;
  6064. cpumask_t notcovered;
  6065. #endif
  6066. };
  6067. #if NR_CPUS > 128
  6068. #define SCHED_CPUMASK_ALLOC 1
  6069. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6070. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6071. #else
  6072. #define SCHED_CPUMASK_ALLOC 0
  6073. #define SCHED_CPUMASK_FREE(v)
  6074. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6075. #endif
  6076. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6077. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6078. static int default_relax_domain_level = -1;
  6079. static int __init setup_relax_domain_level(char *str)
  6080. {
  6081. unsigned long val;
  6082. val = simple_strtoul(str, NULL, 0);
  6083. if (val < SD_LV_MAX)
  6084. default_relax_domain_level = val;
  6085. return 1;
  6086. }
  6087. __setup("relax_domain_level=", setup_relax_domain_level);
  6088. static void set_domain_attribute(struct sched_domain *sd,
  6089. struct sched_domain_attr *attr)
  6090. {
  6091. int request;
  6092. if (!attr || attr->relax_domain_level < 0) {
  6093. if (default_relax_domain_level < 0)
  6094. return;
  6095. else
  6096. request = default_relax_domain_level;
  6097. } else
  6098. request = attr->relax_domain_level;
  6099. if (request < sd->level) {
  6100. /* turn off idle balance on this domain */
  6101. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6102. } else {
  6103. /* turn on idle balance on this domain */
  6104. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6105. }
  6106. }
  6107. /*
  6108. * Build sched domains for a given set of cpus and attach the sched domains
  6109. * to the individual cpus
  6110. */
  6111. static int __build_sched_domains(const cpumask_t *cpu_map,
  6112. struct sched_domain_attr *attr)
  6113. {
  6114. int i;
  6115. struct root_domain *rd;
  6116. SCHED_CPUMASK_DECLARE(allmasks);
  6117. cpumask_t *tmpmask;
  6118. #ifdef CONFIG_NUMA
  6119. struct sched_group **sched_group_nodes = NULL;
  6120. int sd_allnodes = 0;
  6121. /*
  6122. * Allocate the per-node list of sched groups
  6123. */
  6124. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6125. GFP_KERNEL);
  6126. if (!sched_group_nodes) {
  6127. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6128. return -ENOMEM;
  6129. }
  6130. #endif
  6131. rd = alloc_rootdomain();
  6132. if (!rd) {
  6133. printk(KERN_WARNING "Cannot alloc root domain\n");
  6134. #ifdef CONFIG_NUMA
  6135. kfree(sched_group_nodes);
  6136. #endif
  6137. return -ENOMEM;
  6138. }
  6139. #if SCHED_CPUMASK_ALLOC
  6140. /* get space for all scratch cpumask variables */
  6141. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6142. if (!allmasks) {
  6143. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6144. kfree(rd);
  6145. #ifdef CONFIG_NUMA
  6146. kfree(sched_group_nodes);
  6147. #endif
  6148. return -ENOMEM;
  6149. }
  6150. #endif
  6151. tmpmask = (cpumask_t *)allmasks;
  6152. #ifdef CONFIG_NUMA
  6153. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6154. #endif
  6155. /*
  6156. * Set up domains for cpus specified by the cpu_map.
  6157. */
  6158. for_each_cpu_mask_nr(i, *cpu_map) {
  6159. struct sched_domain *sd = NULL, *p;
  6160. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6161. *nodemask = node_to_cpumask(cpu_to_node(i));
  6162. cpus_and(*nodemask, *nodemask, *cpu_map);
  6163. #ifdef CONFIG_NUMA
  6164. if (cpus_weight(*cpu_map) >
  6165. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6166. sd = &per_cpu(allnodes_domains, i);
  6167. SD_INIT(sd, ALLNODES);
  6168. set_domain_attribute(sd, attr);
  6169. sd->span = *cpu_map;
  6170. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6171. p = sd;
  6172. sd_allnodes = 1;
  6173. } else
  6174. p = NULL;
  6175. sd = &per_cpu(node_domains, i);
  6176. SD_INIT(sd, NODE);
  6177. set_domain_attribute(sd, attr);
  6178. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6179. sd->parent = p;
  6180. if (p)
  6181. p->child = sd;
  6182. cpus_and(sd->span, sd->span, *cpu_map);
  6183. #endif
  6184. p = sd;
  6185. sd = &per_cpu(phys_domains, i);
  6186. SD_INIT(sd, CPU);
  6187. set_domain_attribute(sd, attr);
  6188. sd->span = *nodemask;
  6189. sd->parent = p;
  6190. if (p)
  6191. p->child = sd;
  6192. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6193. #ifdef CONFIG_SCHED_MC
  6194. p = sd;
  6195. sd = &per_cpu(core_domains, i);
  6196. SD_INIT(sd, MC);
  6197. set_domain_attribute(sd, attr);
  6198. sd->span = cpu_coregroup_map(i);
  6199. cpus_and(sd->span, sd->span, *cpu_map);
  6200. sd->parent = p;
  6201. p->child = sd;
  6202. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6203. #endif
  6204. #ifdef CONFIG_SCHED_SMT
  6205. p = sd;
  6206. sd = &per_cpu(cpu_domains, i);
  6207. SD_INIT(sd, SIBLING);
  6208. set_domain_attribute(sd, attr);
  6209. sd->span = per_cpu(cpu_sibling_map, i);
  6210. cpus_and(sd->span, sd->span, *cpu_map);
  6211. sd->parent = p;
  6212. p->child = sd;
  6213. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6214. #endif
  6215. }
  6216. #ifdef CONFIG_SCHED_SMT
  6217. /* Set up CPU (sibling) groups */
  6218. for_each_cpu_mask_nr(i, *cpu_map) {
  6219. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6220. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6221. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6222. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6223. if (i != first_cpu(*this_sibling_map))
  6224. continue;
  6225. init_sched_build_groups(this_sibling_map, cpu_map,
  6226. &cpu_to_cpu_group,
  6227. send_covered, tmpmask);
  6228. }
  6229. #endif
  6230. #ifdef CONFIG_SCHED_MC
  6231. /* Set up multi-core groups */
  6232. for_each_cpu_mask_nr(i, *cpu_map) {
  6233. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6234. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6235. *this_core_map = cpu_coregroup_map(i);
  6236. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6237. if (i != first_cpu(*this_core_map))
  6238. continue;
  6239. init_sched_build_groups(this_core_map, cpu_map,
  6240. &cpu_to_core_group,
  6241. send_covered, tmpmask);
  6242. }
  6243. #endif
  6244. /* Set up physical groups */
  6245. for (i = 0; i < nr_node_ids; i++) {
  6246. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6247. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6248. *nodemask = node_to_cpumask(i);
  6249. cpus_and(*nodemask, *nodemask, *cpu_map);
  6250. if (cpus_empty(*nodemask))
  6251. continue;
  6252. init_sched_build_groups(nodemask, cpu_map,
  6253. &cpu_to_phys_group,
  6254. send_covered, tmpmask);
  6255. }
  6256. #ifdef CONFIG_NUMA
  6257. /* Set up node groups */
  6258. if (sd_allnodes) {
  6259. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6260. init_sched_build_groups(cpu_map, cpu_map,
  6261. &cpu_to_allnodes_group,
  6262. send_covered, tmpmask);
  6263. }
  6264. for (i = 0; i < nr_node_ids; i++) {
  6265. /* Set up node groups */
  6266. struct sched_group *sg, *prev;
  6267. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6268. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6269. SCHED_CPUMASK_VAR(covered, allmasks);
  6270. int j;
  6271. *nodemask = node_to_cpumask(i);
  6272. cpus_clear(*covered);
  6273. cpus_and(*nodemask, *nodemask, *cpu_map);
  6274. if (cpus_empty(*nodemask)) {
  6275. sched_group_nodes[i] = NULL;
  6276. continue;
  6277. }
  6278. sched_domain_node_span(i, domainspan);
  6279. cpus_and(*domainspan, *domainspan, *cpu_map);
  6280. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6281. if (!sg) {
  6282. printk(KERN_WARNING "Can not alloc domain group for "
  6283. "node %d\n", i);
  6284. goto error;
  6285. }
  6286. sched_group_nodes[i] = sg;
  6287. for_each_cpu_mask_nr(j, *nodemask) {
  6288. struct sched_domain *sd;
  6289. sd = &per_cpu(node_domains, j);
  6290. sd->groups = sg;
  6291. }
  6292. sg->__cpu_power = 0;
  6293. sg->cpumask = *nodemask;
  6294. sg->next = sg;
  6295. cpus_or(*covered, *covered, *nodemask);
  6296. prev = sg;
  6297. for (j = 0; j < nr_node_ids; j++) {
  6298. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6299. int n = (i + j) % nr_node_ids;
  6300. node_to_cpumask_ptr(pnodemask, n);
  6301. cpus_complement(*notcovered, *covered);
  6302. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6303. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6304. if (cpus_empty(*tmpmask))
  6305. break;
  6306. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6307. if (cpus_empty(*tmpmask))
  6308. continue;
  6309. sg = kmalloc_node(sizeof(struct sched_group),
  6310. GFP_KERNEL, i);
  6311. if (!sg) {
  6312. printk(KERN_WARNING
  6313. "Can not alloc domain group for node %d\n", j);
  6314. goto error;
  6315. }
  6316. sg->__cpu_power = 0;
  6317. sg->cpumask = *tmpmask;
  6318. sg->next = prev->next;
  6319. cpus_or(*covered, *covered, *tmpmask);
  6320. prev->next = sg;
  6321. prev = sg;
  6322. }
  6323. }
  6324. #endif
  6325. /* Calculate CPU power for physical packages and nodes */
  6326. #ifdef CONFIG_SCHED_SMT
  6327. for_each_cpu_mask_nr(i, *cpu_map) {
  6328. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6329. init_sched_groups_power(i, sd);
  6330. }
  6331. #endif
  6332. #ifdef CONFIG_SCHED_MC
  6333. for_each_cpu_mask_nr(i, *cpu_map) {
  6334. struct sched_domain *sd = &per_cpu(core_domains, i);
  6335. init_sched_groups_power(i, sd);
  6336. }
  6337. #endif
  6338. for_each_cpu_mask_nr(i, *cpu_map) {
  6339. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6340. init_sched_groups_power(i, sd);
  6341. }
  6342. #ifdef CONFIG_NUMA
  6343. for (i = 0; i < nr_node_ids; i++)
  6344. init_numa_sched_groups_power(sched_group_nodes[i]);
  6345. if (sd_allnodes) {
  6346. struct sched_group *sg;
  6347. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6348. tmpmask);
  6349. init_numa_sched_groups_power(sg);
  6350. }
  6351. #endif
  6352. /* Attach the domains */
  6353. for_each_cpu_mask_nr(i, *cpu_map) {
  6354. struct sched_domain *sd;
  6355. #ifdef CONFIG_SCHED_SMT
  6356. sd = &per_cpu(cpu_domains, i);
  6357. #elif defined(CONFIG_SCHED_MC)
  6358. sd = &per_cpu(core_domains, i);
  6359. #else
  6360. sd = &per_cpu(phys_domains, i);
  6361. #endif
  6362. cpu_attach_domain(sd, rd, i);
  6363. }
  6364. SCHED_CPUMASK_FREE((void *)allmasks);
  6365. return 0;
  6366. #ifdef CONFIG_NUMA
  6367. error:
  6368. free_sched_groups(cpu_map, tmpmask);
  6369. SCHED_CPUMASK_FREE((void *)allmasks);
  6370. return -ENOMEM;
  6371. #endif
  6372. }
  6373. static int build_sched_domains(const cpumask_t *cpu_map)
  6374. {
  6375. return __build_sched_domains(cpu_map, NULL);
  6376. }
  6377. static cpumask_t *doms_cur; /* current sched domains */
  6378. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6379. static struct sched_domain_attr *dattr_cur;
  6380. /* attribues of custom domains in 'doms_cur' */
  6381. /*
  6382. * Special case: If a kmalloc of a doms_cur partition (array of
  6383. * cpumask_t) fails, then fallback to a single sched domain,
  6384. * as determined by the single cpumask_t fallback_doms.
  6385. */
  6386. static cpumask_t fallback_doms;
  6387. void __attribute__((weak)) arch_update_cpu_topology(void)
  6388. {
  6389. }
  6390. /*
  6391. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6392. * For now this just excludes isolated cpus, but could be used to
  6393. * exclude other special cases in the future.
  6394. */
  6395. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6396. {
  6397. int err;
  6398. arch_update_cpu_topology();
  6399. ndoms_cur = 1;
  6400. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6401. if (!doms_cur)
  6402. doms_cur = &fallback_doms;
  6403. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6404. dattr_cur = NULL;
  6405. err = build_sched_domains(doms_cur);
  6406. register_sched_domain_sysctl();
  6407. return err;
  6408. }
  6409. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6410. cpumask_t *tmpmask)
  6411. {
  6412. free_sched_groups(cpu_map, tmpmask);
  6413. }
  6414. /*
  6415. * Detach sched domains from a group of cpus specified in cpu_map
  6416. * These cpus will now be attached to the NULL domain
  6417. */
  6418. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6419. {
  6420. cpumask_t tmpmask;
  6421. int i;
  6422. unregister_sched_domain_sysctl();
  6423. for_each_cpu_mask_nr(i, *cpu_map)
  6424. cpu_attach_domain(NULL, &def_root_domain, i);
  6425. synchronize_sched();
  6426. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6427. }
  6428. /* handle null as "default" */
  6429. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6430. struct sched_domain_attr *new, int idx_new)
  6431. {
  6432. struct sched_domain_attr tmp;
  6433. /* fast path */
  6434. if (!new && !cur)
  6435. return 1;
  6436. tmp = SD_ATTR_INIT;
  6437. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6438. new ? (new + idx_new) : &tmp,
  6439. sizeof(struct sched_domain_attr));
  6440. }
  6441. /*
  6442. * Partition sched domains as specified by the 'ndoms_new'
  6443. * cpumasks in the array doms_new[] of cpumasks. This compares
  6444. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6445. * It destroys each deleted domain and builds each new domain.
  6446. *
  6447. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6448. * The masks don't intersect (don't overlap.) We should setup one
  6449. * sched domain for each mask. CPUs not in any of the cpumasks will
  6450. * not be load balanced. If the same cpumask appears both in the
  6451. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6452. * it as it is.
  6453. *
  6454. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6455. * ownership of it and will kfree it when done with it. If the caller
  6456. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6457. * and partition_sched_domains() will fallback to the single partition
  6458. * 'fallback_doms', it also forces the domains to be rebuilt.
  6459. *
  6460. * Call with hotplug lock held
  6461. */
  6462. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6463. struct sched_domain_attr *dattr_new)
  6464. {
  6465. int i, j;
  6466. mutex_lock(&sched_domains_mutex);
  6467. /* always unregister in case we don't destroy any domains */
  6468. unregister_sched_domain_sysctl();
  6469. if (doms_new == NULL)
  6470. ndoms_new = 0;
  6471. /* Destroy deleted domains */
  6472. for (i = 0; i < ndoms_cur; i++) {
  6473. for (j = 0; j < ndoms_new; j++) {
  6474. if (cpus_equal(doms_cur[i], doms_new[j])
  6475. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6476. goto match1;
  6477. }
  6478. /* no match - a current sched domain not in new doms_new[] */
  6479. detach_destroy_domains(doms_cur + i);
  6480. match1:
  6481. ;
  6482. }
  6483. if (doms_new == NULL) {
  6484. ndoms_cur = 0;
  6485. ndoms_new = 1;
  6486. doms_new = &fallback_doms;
  6487. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6488. dattr_new = NULL;
  6489. }
  6490. /* Build new domains */
  6491. for (i = 0; i < ndoms_new; i++) {
  6492. for (j = 0; j < ndoms_cur; j++) {
  6493. if (cpus_equal(doms_new[i], doms_cur[j])
  6494. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6495. goto match2;
  6496. }
  6497. /* no match - add a new doms_new */
  6498. __build_sched_domains(doms_new + i,
  6499. dattr_new ? dattr_new + i : NULL);
  6500. match2:
  6501. ;
  6502. }
  6503. /* Remember the new sched domains */
  6504. if (doms_cur != &fallback_doms)
  6505. kfree(doms_cur);
  6506. kfree(dattr_cur); /* kfree(NULL) is safe */
  6507. doms_cur = doms_new;
  6508. dattr_cur = dattr_new;
  6509. ndoms_cur = ndoms_new;
  6510. register_sched_domain_sysctl();
  6511. mutex_unlock(&sched_domains_mutex);
  6512. }
  6513. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6514. int arch_reinit_sched_domains(void)
  6515. {
  6516. get_online_cpus();
  6517. rebuild_sched_domains();
  6518. put_online_cpus();
  6519. return 0;
  6520. }
  6521. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6522. {
  6523. int ret;
  6524. if (buf[0] != '0' && buf[0] != '1')
  6525. return -EINVAL;
  6526. if (smt)
  6527. sched_smt_power_savings = (buf[0] == '1');
  6528. else
  6529. sched_mc_power_savings = (buf[0] == '1');
  6530. ret = arch_reinit_sched_domains();
  6531. return ret ? ret : count;
  6532. }
  6533. #ifdef CONFIG_SCHED_MC
  6534. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6535. char *page)
  6536. {
  6537. return sprintf(page, "%u\n", sched_mc_power_savings);
  6538. }
  6539. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6540. const char *buf, size_t count)
  6541. {
  6542. return sched_power_savings_store(buf, count, 0);
  6543. }
  6544. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6545. sched_mc_power_savings_show,
  6546. sched_mc_power_savings_store);
  6547. #endif
  6548. #ifdef CONFIG_SCHED_SMT
  6549. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6550. char *page)
  6551. {
  6552. return sprintf(page, "%u\n", sched_smt_power_savings);
  6553. }
  6554. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6555. const char *buf, size_t count)
  6556. {
  6557. return sched_power_savings_store(buf, count, 1);
  6558. }
  6559. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6560. sched_smt_power_savings_show,
  6561. sched_smt_power_savings_store);
  6562. #endif
  6563. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6564. {
  6565. int err = 0;
  6566. #ifdef CONFIG_SCHED_SMT
  6567. if (smt_capable())
  6568. err = sysfs_create_file(&cls->kset.kobj,
  6569. &attr_sched_smt_power_savings.attr);
  6570. #endif
  6571. #ifdef CONFIG_SCHED_MC
  6572. if (!err && mc_capable())
  6573. err = sysfs_create_file(&cls->kset.kobj,
  6574. &attr_sched_mc_power_savings.attr);
  6575. #endif
  6576. return err;
  6577. }
  6578. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6579. #ifndef CONFIG_CPUSETS
  6580. /*
  6581. * Add online and remove offline CPUs from the scheduler domains.
  6582. * When cpusets are enabled they take over this function.
  6583. */
  6584. static int update_sched_domains(struct notifier_block *nfb,
  6585. unsigned long action, void *hcpu)
  6586. {
  6587. switch (action) {
  6588. case CPU_ONLINE:
  6589. case CPU_ONLINE_FROZEN:
  6590. case CPU_DEAD:
  6591. case CPU_DEAD_FROZEN:
  6592. partition_sched_domains(0, NULL, NULL);
  6593. return NOTIFY_OK;
  6594. default:
  6595. return NOTIFY_DONE;
  6596. }
  6597. }
  6598. #endif
  6599. static int update_runtime(struct notifier_block *nfb,
  6600. unsigned long action, void *hcpu)
  6601. {
  6602. int cpu = (int)(long)hcpu;
  6603. switch (action) {
  6604. case CPU_DOWN_PREPARE:
  6605. case CPU_DOWN_PREPARE_FROZEN:
  6606. disable_runtime(cpu_rq(cpu));
  6607. return NOTIFY_OK;
  6608. case CPU_DOWN_FAILED:
  6609. case CPU_DOWN_FAILED_FROZEN:
  6610. case CPU_ONLINE:
  6611. case CPU_ONLINE_FROZEN:
  6612. enable_runtime(cpu_rq(cpu));
  6613. return NOTIFY_OK;
  6614. default:
  6615. return NOTIFY_DONE;
  6616. }
  6617. }
  6618. void __init sched_init_smp(void)
  6619. {
  6620. cpumask_t non_isolated_cpus;
  6621. #if defined(CONFIG_NUMA)
  6622. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6623. GFP_KERNEL);
  6624. BUG_ON(sched_group_nodes_bycpu == NULL);
  6625. #endif
  6626. get_online_cpus();
  6627. mutex_lock(&sched_domains_mutex);
  6628. arch_init_sched_domains(&cpu_online_map);
  6629. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6630. if (cpus_empty(non_isolated_cpus))
  6631. cpu_set(smp_processor_id(), non_isolated_cpus);
  6632. mutex_unlock(&sched_domains_mutex);
  6633. put_online_cpus();
  6634. #ifndef CONFIG_CPUSETS
  6635. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6636. hotcpu_notifier(update_sched_domains, 0);
  6637. #endif
  6638. /* RT runtime code needs to handle some hotplug events */
  6639. hotcpu_notifier(update_runtime, 0);
  6640. init_hrtick();
  6641. /* Move init over to a non-isolated CPU */
  6642. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6643. BUG();
  6644. sched_init_granularity();
  6645. }
  6646. #else
  6647. void __init sched_init_smp(void)
  6648. {
  6649. sched_init_granularity();
  6650. }
  6651. #endif /* CONFIG_SMP */
  6652. int in_sched_functions(unsigned long addr)
  6653. {
  6654. return in_lock_functions(addr) ||
  6655. (addr >= (unsigned long)__sched_text_start
  6656. && addr < (unsigned long)__sched_text_end);
  6657. }
  6658. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6659. {
  6660. cfs_rq->tasks_timeline = RB_ROOT;
  6661. INIT_LIST_HEAD(&cfs_rq->tasks);
  6662. #ifdef CONFIG_FAIR_GROUP_SCHED
  6663. cfs_rq->rq = rq;
  6664. #endif
  6665. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6666. }
  6667. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6668. {
  6669. struct rt_prio_array *array;
  6670. int i;
  6671. array = &rt_rq->active;
  6672. for (i = 0; i < MAX_RT_PRIO; i++) {
  6673. INIT_LIST_HEAD(array->queue + i);
  6674. __clear_bit(i, array->bitmap);
  6675. }
  6676. /* delimiter for bitsearch: */
  6677. __set_bit(MAX_RT_PRIO, array->bitmap);
  6678. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6679. rt_rq->highest_prio = MAX_RT_PRIO;
  6680. #endif
  6681. #ifdef CONFIG_SMP
  6682. rt_rq->rt_nr_migratory = 0;
  6683. rt_rq->overloaded = 0;
  6684. #endif
  6685. rt_rq->rt_time = 0;
  6686. rt_rq->rt_throttled = 0;
  6687. rt_rq->rt_runtime = 0;
  6688. spin_lock_init(&rt_rq->rt_runtime_lock);
  6689. #ifdef CONFIG_RT_GROUP_SCHED
  6690. rt_rq->rt_nr_boosted = 0;
  6691. rt_rq->rq = rq;
  6692. #endif
  6693. }
  6694. #ifdef CONFIG_FAIR_GROUP_SCHED
  6695. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6696. struct sched_entity *se, int cpu, int add,
  6697. struct sched_entity *parent)
  6698. {
  6699. struct rq *rq = cpu_rq(cpu);
  6700. tg->cfs_rq[cpu] = cfs_rq;
  6701. init_cfs_rq(cfs_rq, rq);
  6702. cfs_rq->tg = tg;
  6703. if (add)
  6704. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6705. tg->se[cpu] = se;
  6706. /* se could be NULL for init_task_group */
  6707. if (!se)
  6708. return;
  6709. if (!parent)
  6710. se->cfs_rq = &rq->cfs;
  6711. else
  6712. se->cfs_rq = parent->my_q;
  6713. se->my_q = cfs_rq;
  6714. se->load.weight = tg->shares;
  6715. se->load.inv_weight = 0;
  6716. se->parent = parent;
  6717. }
  6718. #endif
  6719. #ifdef CONFIG_RT_GROUP_SCHED
  6720. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6721. struct sched_rt_entity *rt_se, int cpu, int add,
  6722. struct sched_rt_entity *parent)
  6723. {
  6724. struct rq *rq = cpu_rq(cpu);
  6725. tg->rt_rq[cpu] = rt_rq;
  6726. init_rt_rq(rt_rq, rq);
  6727. rt_rq->tg = tg;
  6728. rt_rq->rt_se = rt_se;
  6729. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6730. if (add)
  6731. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6732. tg->rt_se[cpu] = rt_se;
  6733. if (!rt_se)
  6734. return;
  6735. if (!parent)
  6736. rt_se->rt_rq = &rq->rt;
  6737. else
  6738. rt_se->rt_rq = parent->my_q;
  6739. rt_se->my_q = rt_rq;
  6740. rt_se->parent = parent;
  6741. INIT_LIST_HEAD(&rt_se->run_list);
  6742. }
  6743. #endif
  6744. void __init sched_init(void)
  6745. {
  6746. int i, j;
  6747. unsigned long alloc_size = 0, ptr;
  6748. #ifdef CONFIG_FAIR_GROUP_SCHED
  6749. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6750. #endif
  6751. #ifdef CONFIG_RT_GROUP_SCHED
  6752. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6753. #endif
  6754. #ifdef CONFIG_USER_SCHED
  6755. alloc_size *= 2;
  6756. #endif
  6757. /*
  6758. * As sched_init() is called before page_alloc is setup,
  6759. * we use alloc_bootmem().
  6760. */
  6761. if (alloc_size) {
  6762. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6763. #ifdef CONFIG_FAIR_GROUP_SCHED
  6764. init_task_group.se = (struct sched_entity **)ptr;
  6765. ptr += nr_cpu_ids * sizeof(void **);
  6766. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6767. ptr += nr_cpu_ids * sizeof(void **);
  6768. #ifdef CONFIG_USER_SCHED
  6769. root_task_group.se = (struct sched_entity **)ptr;
  6770. ptr += nr_cpu_ids * sizeof(void **);
  6771. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6772. ptr += nr_cpu_ids * sizeof(void **);
  6773. #endif /* CONFIG_USER_SCHED */
  6774. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6775. #ifdef CONFIG_RT_GROUP_SCHED
  6776. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6777. ptr += nr_cpu_ids * sizeof(void **);
  6778. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6779. ptr += nr_cpu_ids * sizeof(void **);
  6780. #ifdef CONFIG_USER_SCHED
  6781. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6782. ptr += nr_cpu_ids * sizeof(void **);
  6783. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6784. ptr += nr_cpu_ids * sizeof(void **);
  6785. #endif /* CONFIG_USER_SCHED */
  6786. #endif /* CONFIG_RT_GROUP_SCHED */
  6787. }
  6788. #ifdef CONFIG_SMP
  6789. init_defrootdomain();
  6790. #endif
  6791. init_rt_bandwidth(&def_rt_bandwidth,
  6792. global_rt_period(), global_rt_runtime());
  6793. #ifdef CONFIG_RT_GROUP_SCHED
  6794. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6795. global_rt_period(), global_rt_runtime());
  6796. #ifdef CONFIG_USER_SCHED
  6797. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6798. global_rt_period(), RUNTIME_INF);
  6799. #endif /* CONFIG_USER_SCHED */
  6800. #endif /* CONFIG_RT_GROUP_SCHED */
  6801. #ifdef CONFIG_GROUP_SCHED
  6802. list_add(&init_task_group.list, &task_groups);
  6803. INIT_LIST_HEAD(&init_task_group.children);
  6804. #ifdef CONFIG_USER_SCHED
  6805. INIT_LIST_HEAD(&root_task_group.children);
  6806. init_task_group.parent = &root_task_group;
  6807. list_add(&init_task_group.siblings, &root_task_group.children);
  6808. #endif /* CONFIG_USER_SCHED */
  6809. #endif /* CONFIG_GROUP_SCHED */
  6810. for_each_possible_cpu(i) {
  6811. struct rq *rq;
  6812. rq = cpu_rq(i);
  6813. spin_lock_init(&rq->lock);
  6814. rq->nr_running = 0;
  6815. init_cfs_rq(&rq->cfs, rq);
  6816. init_rt_rq(&rq->rt, rq);
  6817. #ifdef CONFIG_FAIR_GROUP_SCHED
  6818. init_task_group.shares = init_task_group_load;
  6819. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6820. #ifdef CONFIG_CGROUP_SCHED
  6821. /*
  6822. * How much cpu bandwidth does init_task_group get?
  6823. *
  6824. * In case of task-groups formed thr' the cgroup filesystem, it
  6825. * gets 100% of the cpu resources in the system. This overall
  6826. * system cpu resource is divided among the tasks of
  6827. * init_task_group and its child task-groups in a fair manner,
  6828. * based on each entity's (task or task-group's) weight
  6829. * (se->load.weight).
  6830. *
  6831. * In other words, if init_task_group has 10 tasks of weight
  6832. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6833. * then A0's share of the cpu resource is:
  6834. *
  6835. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6836. *
  6837. * We achieve this by letting init_task_group's tasks sit
  6838. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6839. */
  6840. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6841. #elif defined CONFIG_USER_SCHED
  6842. root_task_group.shares = NICE_0_LOAD;
  6843. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6844. /*
  6845. * In case of task-groups formed thr' the user id of tasks,
  6846. * init_task_group represents tasks belonging to root user.
  6847. * Hence it forms a sibling of all subsequent groups formed.
  6848. * In this case, init_task_group gets only a fraction of overall
  6849. * system cpu resource, based on the weight assigned to root
  6850. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6851. * by letting tasks of init_task_group sit in a separate cfs_rq
  6852. * (init_cfs_rq) and having one entity represent this group of
  6853. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6854. */
  6855. init_tg_cfs_entry(&init_task_group,
  6856. &per_cpu(init_cfs_rq, i),
  6857. &per_cpu(init_sched_entity, i), i, 1,
  6858. root_task_group.se[i]);
  6859. #endif
  6860. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6861. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6862. #ifdef CONFIG_RT_GROUP_SCHED
  6863. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6864. #ifdef CONFIG_CGROUP_SCHED
  6865. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6866. #elif defined CONFIG_USER_SCHED
  6867. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6868. init_tg_rt_entry(&init_task_group,
  6869. &per_cpu(init_rt_rq, i),
  6870. &per_cpu(init_sched_rt_entity, i), i, 1,
  6871. root_task_group.rt_se[i]);
  6872. #endif
  6873. #endif
  6874. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6875. rq->cpu_load[j] = 0;
  6876. #ifdef CONFIG_SMP
  6877. rq->sd = NULL;
  6878. rq->rd = NULL;
  6879. rq->active_balance = 0;
  6880. rq->next_balance = jiffies;
  6881. rq->push_cpu = 0;
  6882. rq->cpu = i;
  6883. rq->online = 0;
  6884. rq->migration_thread = NULL;
  6885. INIT_LIST_HEAD(&rq->migration_queue);
  6886. rq_attach_root(rq, &def_root_domain);
  6887. #endif
  6888. init_rq_hrtick(rq);
  6889. atomic_set(&rq->nr_iowait, 0);
  6890. }
  6891. set_load_weight(&init_task);
  6892. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6893. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6894. #endif
  6895. #ifdef CONFIG_SMP
  6896. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6897. #endif
  6898. #ifdef CONFIG_RT_MUTEXES
  6899. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6900. #endif
  6901. /*
  6902. * The boot idle thread does lazy MMU switching as well:
  6903. */
  6904. atomic_inc(&init_mm.mm_count);
  6905. enter_lazy_tlb(&init_mm, current);
  6906. /*
  6907. * Make us the idle thread. Technically, schedule() should not be
  6908. * called from this thread, however somewhere below it might be,
  6909. * but because we are the idle thread, we just pick up running again
  6910. * when this runqueue becomes "idle".
  6911. */
  6912. init_idle(current, smp_processor_id());
  6913. /*
  6914. * During early bootup we pretend to be a normal task:
  6915. */
  6916. current->sched_class = &fair_sched_class;
  6917. scheduler_running = 1;
  6918. }
  6919. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6920. void __might_sleep(char *file, int line)
  6921. {
  6922. #ifdef in_atomic
  6923. static unsigned long prev_jiffy; /* ratelimiting */
  6924. if ((in_atomic() || irqs_disabled()) &&
  6925. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6926. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6927. return;
  6928. prev_jiffy = jiffies;
  6929. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6930. " context at %s:%d\n", file, line);
  6931. printk("in_atomic():%d, irqs_disabled():%d\n",
  6932. in_atomic(), irqs_disabled());
  6933. debug_show_held_locks(current);
  6934. if (irqs_disabled())
  6935. print_irqtrace_events(current);
  6936. dump_stack();
  6937. }
  6938. #endif
  6939. }
  6940. EXPORT_SYMBOL(__might_sleep);
  6941. #endif
  6942. #ifdef CONFIG_MAGIC_SYSRQ
  6943. static void normalize_task(struct rq *rq, struct task_struct *p)
  6944. {
  6945. int on_rq;
  6946. update_rq_clock(rq);
  6947. on_rq = p->se.on_rq;
  6948. if (on_rq)
  6949. deactivate_task(rq, p, 0);
  6950. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6951. if (on_rq) {
  6952. activate_task(rq, p, 0);
  6953. resched_task(rq->curr);
  6954. }
  6955. }
  6956. void normalize_rt_tasks(void)
  6957. {
  6958. struct task_struct *g, *p;
  6959. unsigned long flags;
  6960. struct rq *rq;
  6961. read_lock_irqsave(&tasklist_lock, flags);
  6962. do_each_thread(g, p) {
  6963. /*
  6964. * Only normalize user tasks:
  6965. */
  6966. if (!p->mm)
  6967. continue;
  6968. p->se.exec_start = 0;
  6969. #ifdef CONFIG_SCHEDSTATS
  6970. p->se.wait_start = 0;
  6971. p->se.sleep_start = 0;
  6972. p->se.block_start = 0;
  6973. #endif
  6974. if (!rt_task(p)) {
  6975. /*
  6976. * Renice negative nice level userspace
  6977. * tasks back to 0:
  6978. */
  6979. if (TASK_NICE(p) < 0 && p->mm)
  6980. set_user_nice(p, 0);
  6981. continue;
  6982. }
  6983. spin_lock(&p->pi_lock);
  6984. rq = __task_rq_lock(p);
  6985. normalize_task(rq, p);
  6986. __task_rq_unlock(rq);
  6987. spin_unlock(&p->pi_lock);
  6988. } while_each_thread(g, p);
  6989. read_unlock_irqrestore(&tasklist_lock, flags);
  6990. }
  6991. #endif /* CONFIG_MAGIC_SYSRQ */
  6992. #ifdef CONFIG_IA64
  6993. /*
  6994. * These functions are only useful for the IA64 MCA handling.
  6995. *
  6996. * They can only be called when the whole system has been
  6997. * stopped - every CPU needs to be quiescent, and no scheduling
  6998. * activity can take place. Using them for anything else would
  6999. * be a serious bug, and as a result, they aren't even visible
  7000. * under any other configuration.
  7001. */
  7002. /**
  7003. * curr_task - return the current task for a given cpu.
  7004. * @cpu: the processor in question.
  7005. *
  7006. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7007. */
  7008. struct task_struct *curr_task(int cpu)
  7009. {
  7010. return cpu_curr(cpu);
  7011. }
  7012. /**
  7013. * set_curr_task - set the current task for a given cpu.
  7014. * @cpu: the processor in question.
  7015. * @p: the task pointer to set.
  7016. *
  7017. * Description: This function must only be used when non-maskable interrupts
  7018. * are serviced on a separate stack. It allows the architecture to switch the
  7019. * notion of the current task on a cpu in a non-blocking manner. This function
  7020. * must be called with all CPU's synchronized, and interrupts disabled, the
  7021. * and caller must save the original value of the current task (see
  7022. * curr_task() above) and restore that value before reenabling interrupts and
  7023. * re-starting the system.
  7024. *
  7025. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7026. */
  7027. void set_curr_task(int cpu, struct task_struct *p)
  7028. {
  7029. cpu_curr(cpu) = p;
  7030. }
  7031. #endif
  7032. #ifdef CONFIG_FAIR_GROUP_SCHED
  7033. static void free_fair_sched_group(struct task_group *tg)
  7034. {
  7035. int i;
  7036. for_each_possible_cpu(i) {
  7037. if (tg->cfs_rq)
  7038. kfree(tg->cfs_rq[i]);
  7039. if (tg->se)
  7040. kfree(tg->se[i]);
  7041. }
  7042. kfree(tg->cfs_rq);
  7043. kfree(tg->se);
  7044. }
  7045. static
  7046. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7047. {
  7048. struct cfs_rq *cfs_rq;
  7049. struct sched_entity *se, *parent_se;
  7050. struct rq *rq;
  7051. int i;
  7052. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7053. if (!tg->cfs_rq)
  7054. goto err;
  7055. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7056. if (!tg->se)
  7057. goto err;
  7058. tg->shares = NICE_0_LOAD;
  7059. for_each_possible_cpu(i) {
  7060. rq = cpu_rq(i);
  7061. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7062. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7063. if (!cfs_rq)
  7064. goto err;
  7065. se = kmalloc_node(sizeof(struct sched_entity),
  7066. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7067. if (!se)
  7068. goto err;
  7069. parent_se = parent ? parent->se[i] : NULL;
  7070. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7071. }
  7072. return 1;
  7073. err:
  7074. return 0;
  7075. }
  7076. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7077. {
  7078. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7079. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7080. }
  7081. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7082. {
  7083. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7084. }
  7085. #else /* !CONFG_FAIR_GROUP_SCHED */
  7086. static inline void free_fair_sched_group(struct task_group *tg)
  7087. {
  7088. }
  7089. static inline
  7090. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7091. {
  7092. return 1;
  7093. }
  7094. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7095. {
  7096. }
  7097. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7098. {
  7099. }
  7100. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7101. #ifdef CONFIG_RT_GROUP_SCHED
  7102. static void free_rt_sched_group(struct task_group *tg)
  7103. {
  7104. int i;
  7105. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7106. for_each_possible_cpu(i) {
  7107. if (tg->rt_rq)
  7108. kfree(tg->rt_rq[i]);
  7109. if (tg->rt_se)
  7110. kfree(tg->rt_se[i]);
  7111. }
  7112. kfree(tg->rt_rq);
  7113. kfree(tg->rt_se);
  7114. }
  7115. static
  7116. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7117. {
  7118. struct rt_rq *rt_rq;
  7119. struct sched_rt_entity *rt_se, *parent_se;
  7120. struct rq *rq;
  7121. int i;
  7122. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7123. if (!tg->rt_rq)
  7124. goto err;
  7125. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7126. if (!tg->rt_se)
  7127. goto err;
  7128. init_rt_bandwidth(&tg->rt_bandwidth,
  7129. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7130. for_each_possible_cpu(i) {
  7131. rq = cpu_rq(i);
  7132. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7133. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7134. if (!rt_rq)
  7135. goto err;
  7136. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7137. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7138. if (!rt_se)
  7139. goto err;
  7140. parent_se = parent ? parent->rt_se[i] : NULL;
  7141. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7142. }
  7143. return 1;
  7144. err:
  7145. return 0;
  7146. }
  7147. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7148. {
  7149. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7150. &cpu_rq(cpu)->leaf_rt_rq_list);
  7151. }
  7152. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7153. {
  7154. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7155. }
  7156. #else /* !CONFIG_RT_GROUP_SCHED */
  7157. static inline void free_rt_sched_group(struct task_group *tg)
  7158. {
  7159. }
  7160. static inline
  7161. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7162. {
  7163. return 1;
  7164. }
  7165. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7166. {
  7167. }
  7168. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7169. {
  7170. }
  7171. #endif /* CONFIG_RT_GROUP_SCHED */
  7172. #ifdef CONFIG_GROUP_SCHED
  7173. static void free_sched_group(struct task_group *tg)
  7174. {
  7175. free_fair_sched_group(tg);
  7176. free_rt_sched_group(tg);
  7177. kfree(tg);
  7178. }
  7179. /* allocate runqueue etc for a new task group */
  7180. struct task_group *sched_create_group(struct task_group *parent)
  7181. {
  7182. struct task_group *tg;
  7183. unsigned long flags;
  7184. int i;
  7185. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7186. if (!tg)
  7187. return ERR_PTR(-ENOMEM);
  7188. if (!alloc_fair_sched_group(tg, parent))
  7189. goto err;
  7190. if (!alloc_rt_sched_group(tg, parent))
  7191. goto err;
  7192. spin_lock_irqsave(&task_group_lock, flags);
  7193. for_each_possible_cpu(i) {
  7194. register_fair_sched_group(tg, i);
  7195. register_rt_sched_group(tg, i);
  7196. }
  7197. list_add_rcu(&tg->list, &task_groups);
  7198. WARN_ON(!parent); /* root should already exist */
  7199. tg->parent = parent;
  7200. list_add_rcu(&tg->siblings, &parent->children);
  7201. INIT_LIST_HEAD(&tg->children);
  7202. spin_unlock_irqrestore(&task_group_lock, flags);
  7203. return tg;
  7204. err:
  7205. free_sched_group(tg);
  7206. return ERR_PTR(-ENOMEM);
  7207. }
  7208. /* rcu callback to free various structures associated with a task group */
  7209. static void free_sched_group_rcu(struct rcu_head *rhp)
  7210. {
  7211. /* now it should be safe to free those cfs_rqs */
  7212. free_sched_group(container_of(rhp, struct task_group, rcu));
  7213. }
  7214. /* Destroy runqueue etc associated with a task group */
  7215. void sched_destroy_group(struct task_group *tg)
  7216. {
  7217. unsigned long flags;
  7218. int i;
  7219. spin_lock_irqsave(&task_group_lock, flags);
  7220. for_each_possible_cpu(i) {
  7221. unregister_fair_sched_group(tg, i);
  7222. unregister_rt_sched_group(tg, i);
  7223. }
  7224. list_del_rcu(&tg->list);
  7225. list_del_rcu(&tg->siblings);
  7226. spin_unlock_irqrestore(&task_group_lock, flags);
  7227. /* wait for possible concurrent references to cfs_rqs complete */
  7228. call_rcu(&tg->rcu, free_sched_group_rcu);
  7229. }
  7230. /* change task's runqueue when it moves between groups.
  7231. * The caller of this function should have put the task in its new group
  7232. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7233. * reflect its new group.
  7234. */
  7235. void sched_move_task(struct task_struct *tsk)
  7236. {
  7237. int on_rq, running;
  7238. unsigned long flags;
  7239. struct rq *rq;
  7240. rq = task_rq_lock(tsk, &flags);
  7241. update_rq_clock(rq);
  7242. running = task_current(rq, tsk);
  7243. on_rq = tsk->se.on_rq;
  7244. if (on_rq)
  7245. dequeue_task(rq, tsk, 0);
  7246. if (unlikely(running))
  7247. tsk->sched_class->put_prev_task(rq, tsk);
  7248. set_task_rq(tsk, task_cpu(tsk));
  7249. #ifdef CONFIG_FAIR_GROUP_SCHED
  7250. if (tsk->sched_class->moved_group)
  7251. tsk->sched_class->moved_group(tsk);
  7252. #endif
  7253. if (unlikely(running))
  7254. tsk->sched_class->set_curr_task(rq);
  7255. if (on_rq)
  7256. enqueue_task(rq, tsk, 0);
  7257. task_rq_unlock(rq, &flags);
  7258. }
  7259. #endif /* CONFIG_GROUP_SCHED */
  7260. #ifdef CONFIG_FAIR_GROUP_SCHED
  7261. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7262. {
  7263. struct cfs_rq *cfs_rq = se->cfs_rq;
  7264. int on_rq;
  7265. on_rq = se->on_rq;
  7266. if (on_rq)
  7267. dequeue_entity(cfs_rq, se, 0);
  7268. se->load.weight = shares;
  7269. se->load.inv_weight = 0;
  7270. if (on_rq)
  7271. enqueue_entity(cfs_rq, se, 0);
  7272. }
  7273. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7274. {
  7275. struct cfs_rq *cfs_rq = se->cfs_rq;
  7276. struct rq *rq = cfs_rq->rq;
  7277. unsigned long flags;
  7278. spin_lock_irqsave(&rq->lock, flags);
  7279. __set_se_shares(se, shares);
  7280. spin_unlock_irqrestore(&rq->lock, flags);
  7281. }
  7282. static DEFINE_MUTEX(shares_mutex);
  7283. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7284. {
  7285. int i;
  7286. unsigned long flags;
  7287. /*
  7288. * We can't change the weight of the root cgroup.
  7289. */
  7290. if (!tg->se[0])
  7291. return -EINVAL;
  7292. if (shares < MIN_SHARES)
  7293. shares = MIN_SHARES;
  7294. else if (shares > MAX_SHARES)
  7295. shares = MAX_SHARES;
  7296. mutex_lock(&shares_mutex);
  7297. if (tg->shares == shares)
  7298. goto done;
  7299. spin_lock_irqsave(&task_group_lock, flags);
  7300. for_each_possible_cpu(i)
  7301. unregister_fair_sched_group(tg, i);
  7302. list_del_rcu(&tg->siblings);
  7303. spin_unlock_irqrestore(&task_group_lock, flags);
  7304. /* wait for any ongoing reference to this group to finish */
  7305. synchronize_sched();
  7306. /*
  7307. * Now we are free to modify the group's share on each cpu
  7308. * w/o tripping rebalance_share or load_balance_fair.
  7309. */
  7310. tg->shares = shares;
  7311. for_each_possible_cpu(i) {
  7312. /*
  7313. * force a rebalance
  7314. */
  7315. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7316. set_se_shares(tg->se[i], shares);
  7317. }
  7318. /*
  7319. * Enable load balance activity on this group, by inserting it back on
  7320. * each cpu's rq->leaf_cfs_rq_list.
  7321. */
  7322. spin_lock_irqsave(&task_group_lock, flags);
  7323. for_each_possible_cpu(i)
  7324. register_fair_sched_group(tg, i);
  7325. list_add_rcu(&tg->siblings, &tg->parent->children);
  7326. spin_unlock_irqrestore(&task_group_lock, flags);
  7327. done:
  7328. mutex_unlock(&shares_mutex);
  7329. return 0;
  7330. }
  7331. unsigned long sched_group_shares(struct task_group *tg)
  7332. {
  7333. return tg->shares;
  7334. }
  7335. #endif
  7336. #ifdef CONFIG_RT_GROUP_SCHED
  7337. /*
  7338. * Ensure that the real time constraints are schedulable.
  7339. */
  7340. static DEFINE_MUTEX(rt_constraints_mutex);
  7341. static unsigned long to_ratio(u64 period, u64 runtime)
  7342. {
  7343. if (runtime == RUNTIME_INF)
  7344. return 1ULL << 16;
  7345. return div64_u64(runtime << 16, period);
  7346. }
  7347. #ifdef CONFIG_CGROUP_SCHED
  7348. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7349. {
  7350. struct task_group *tgi, *parent = tg->parent;
  7351. unsigned long total = 0;
  7352. if (!parent) {
  7353. if (global_rt_period() < period)
  7354. return 0;
  7355. return to_ratio(period, runtime) <
  7356. to_ratio(global_rt_period(), global_rt_runtime());
  7357. }
  7358. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7359. return 0;
  7360. rcu_read_lock();
  7361. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7362. if (tgi == tg)
  7363. continue;
  7364. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7365. tgi->rt_bandwidth.rt_runtime);
  7366. }
  7367. rcu_read_unlock();
  7368. return total + to_ratio(period, runtime) <=
  7369. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7370. parent->rt_bandwidth.rt_runtime);
  7371. }
  7372. #elif defined CONFIG_USER_SCHED
  7373. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7374. {
  7375. struct task_group *tgi;
  7376. unsigned long total = 0;
  7377. unsigned long global_ratio =
  7378. to_ratio(global_rt_period(), global_rt_runtime());
  7379. rcu_read_lock();
  7380. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7381. if (tgi == tg)
  7382. continue;
  7383. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7384. tgi->rt_bandwidth.rt_runtime);
  7385. }
  7386. rcu_read_unlock();
  7387. return total + to_ratio(period, runtime) < global_ratio;
  7388. }
  7389. #endif
  7390. /* Must be called with tasklist_lock held */
  7391. static inline int tg_has_rt_tasks(struct task_group *tg)
  7392. {
  7393. struct task_struct *g, *p;
  7394. do_each_thread(g, p) {
  7395. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7396. return 1;
  7397. } while_each_thread(g, p);
  7398. return 0;
  7399. }
  7400. static int tg_set_bandwidth(struct task_group *tg,
  7401. u64 rt_period, u64 rt_runtime)
  7402. {
  7403. int i, err = 0;
  7404. mutex_lock(&rt_constraints_mutex);
  7405. read_lock(&tasklist_lock);
  7406. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7407. err = -EBUSY;
  7408. goto unlock;
  7409. }
  7410. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7411. err = -EINVAL;
  7412. goto unlock;
  7413. }
  7414. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7415. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7416. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7417. for_each_possible_cpu(i) {
  7418. struct rt_rq *rt_rq = tg->rt_rq[i];
  7419. spin_lock(&rt_rq->rt_runtime_lock);
  7420. rt_rq->rt_runtime = rt_runtime;
  7421. spin_unlock(&rt_rq->rt_runtime_lock);
  7422. }
  7423. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7424. unlock:
  7425. read_unlock(&tasklist_lock);
  7426. mutex_unlock(&rt_constraints_mutex);
  7427. return err;
  7428. }
  7429. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7430. {
  7431. u64 rt_runtime, rt_period;
  7432. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7433. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7434. if (rt_runtime_us < 0)
  7435. rt_runtime = RUNTIME_INF;
  7436. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7437. }
  7438. long sched_group_rt_runtime(struct task_group *tg)
  7439. {
  7440. u64 rt_runtime_us;
  7441. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7442. return -1;
  7443. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7444. do_div(rt_runtime_us, NSEC_PER_USEC);
  7445. return rt_runtime_us;
  7446. }
  7447. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7448. {
  7449. u64 rt_runtime, rt_period;
  7450. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7451. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7452. if (rt_period == 0)
  7453. return -EINVAL;
  7454. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7455. }
  7456. long sched_group_rt_period(struct task_group *tg)
  7457. {
  7458. u64 rt_period_us;
  7459. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7460. do_div(rt_period_us, NSEC_PER_USEC);
  7461. return rt_period_us;
  7462. }
  7463. static int sched_rt_global_constraints(void)
  7464. {
  7465. struct task_group *tg = &root_task_group;
  7466. u64 rt_runtime, rt_period;
  7467. int ret = 0;
  7468. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7469. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7470. mutex_lock(&rt_constraints_mutex);
  7471. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7472. ret = -EINVAL;
  7473. mutex_unlock(&rt_constraints_mutex);
  7474. return ret;
  7475. }
  7476. #else /* !CONFIG_RT_GROUP_SCHED */
  7477. static int sched_rt_global_constraints(void)
  7478. {
  7479. unsigned long flags;
  7480. int i;
  7481. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7482. for_each_possible_cpu(i) {
  7483. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7484. spin_lock(&rt_rq->rt_runtime_lock);
  7485. rt_rq->rt_runtime = global_rt_runtime();
  7486. spin_unlock(&rt_rq->rt_runtime_lock);
  7487. }
  7488. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7489. return 0;
  7490. }
  7491. #endif /* CONFIG_RT_GROUP_SCHED */
  7492. int sched_rt_handler(struct ctl_table *table, int write,
  7493. struct file *filp, void __user *buffer, size_t *lenp,
  7494. loff_t *ppos)
  7495. {
  7496. int ret;
  7497. int old_period, old_runtime;
  7498. static DEFINE_MUTEX(mutex);
  7499. mutex_lock(&mutex);
  7500. old_period = sysctl_sched_rt_period;
  7501. old_runtime = sysctl_sched_rt_runtime;
  7502. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7503. if (!ret && write) {
  7504. ret = sched_rt_global_constraints();
  7505. if (ret) {
  7506. sysctl_sched_rt_period = old_period;
  7507. sysctl_sched_rt_runtime = old_runtime;
  7508. } else {
  7509. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7510. def_rt_bandwidth.rt_period =
  7511. ns_to_ktime(global_rt_period());
  7512. }
  7513. }
  7514. mutex_unlock(&mutex);
  7515. return ret;
  7516. }
  7517. #ifdef CONFIG_CGROUP_SCHED
  7518. /* return corresponding task_group object of a cgroup */
  7519. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7520. {
  7521. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7522. struct task_group, css);
  7523. }
  7524. static struct cgroup_subsys_state *
  7525. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7526. {
  7527. struct task_group *tg, *parent;
  7528. if (!cgrp->parent) {
  7529. /* This is early initialization for the top cgroup */
  7530. init_task_group.css.cgroup = cgrp;
  7531. return &init_task_group.css;
  7532. }
  7533. parent = cgroup_tg(cgrp->parent);
  7534. tg = sched_create_group(parent);
  7535. if (IS_ERR(tg))
  7536. return ERR_PTR(-ENOMEM);
  7537. /* Bind the cgroup to task_group object we just created */
  7538. tg->css.cgroup = cgrp;
  7539. return &tg->css;
  7540. }
  7541. static void
  7542. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7543. {
  7544. struct task_group *tg = cgroup_tg(cgrp);
  7545. sched_destroy_group(tg);
  7546. }
  7547. static int
  7548. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7549. struct task_struct *tsk)
  7550. {
  7551. #ifdef CONFIG_RT_GROUP_SCHED
  7552. /* Don't accept realtime tasks when there is no way for them to run */
  7553. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7554. return -EINVAL;
  7555. #else
  7556. /* We don't support RT-tasks being in separate groups */
  7557. if (tsk->sched_class != &fair_sched_class)
  7558. return -EINVAL;
  7559. #endif
  7560. return 0;
  7561. }
  7562. static void
  7563. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7564. struct cgroup *old_cont, struct task_struct *tsk)
  7565. {
  7566. sched_move_task(tsk);
  7567. }
  7568. #ifdef CONFIG_FAIR_GROUP_SCHED
  7569. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7570. u64 shareval)
  7571. {
  7572. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7573. }
  7574. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7575. {
  7576. struct task_group *tg = cgroup_tg(cgrp);
  7577. return (u64) tg->shares;
  7578. }
  7579. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7580. #ifdef CONFIG_RT_GROUP_SCHED
  7581. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7582. s64 val)
  7583. {
  7584. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7585. }
  7586. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7587. {
  7588. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7589. }
  7590. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7591. u64 rt_period_us)
  7592. {
  7593. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7594. }
  7595. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7596. {
  7597. return sched_group_rt_period(cgroup_tg(cgrp));
  7598. }
  7599. #endif /* CONFIG_RT_GROUP_SCHED */
  7600. static struct cftype cpu_files[] = {
  7601. #ifdef CONFIG_FAIR_GROUP_SCHED
  7602. {
  7603. .name = "shares",
  7604. .read_u64 = cpu_shares_read_u64,
  7605. .write_u64 = cpu_shares_write_u64,
  7606. },
  7607. #endif
  7608. #ifdef CONFIG_RT_GROUP_SCHED
  7609. {
  7610. .name = "rt_runtime_us",
  7611. .read_s64 = cpu_rt_runtime_read,
  7612. .write_s64 = cpu_rt_runtime_write,
  7613. },
  7614. {
  7615. .name = "rt_period_us",
  7616. .read_u64 = cpu_rt_period_read_uint,
  7617. .write_u64 = cpu_rt_period_write_uint,
  7618. },
  7619. #endif
  7620. };
  7621. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7622. {
  7623. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7624. }
  7625. struct cgroup_subsys cpu_cgroup_subsys = {
  7626. .name = "cpu",
  7627. .create = cpu_cgroup_create,
  7628. .destroy = cpu_cgroup_destroy,
  7629. .can_attach = cpu_cgroup_can_attach,
  7630. .attach = cpu_cgroup_attach,
  7631. .populate = cpu_cgroup_populate,
  7632. .subsys_id = cpu_cgroup_subsys_id,
  7633. .early_init = 1,
  7634. };
  7635. #endif /* CONFIG_CGROUP_SCHED */
  7636. #ifdef CONFIG_CGROUP_CPUACCT
  7637. /*
  7638. * CPU accounting code for task groups.
  7639. *
  7640. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7641. * (balbir@in.ibm.com).
  7642. */
  7643. /* track cpu usage of a group of tasks */
  7644. struct cpuacct {
  7645. struct cgroup_subsys_state css;
  7646. /* cpuusage holds pointer to a u64-type object on every cpu */
  7647. u64 *cpuusage;
  7648. };
  7649. struct cgroup_subsys cpuacct_subsys;
  7650. /* return cpu accounting group corresponding to this container */
  7651. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7652. {
  7653. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7654. struct cpuacct, css);
  7655. }
  7656. /* return cpu accounting group to which this task belongs */
  7657. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7658. {
  7659. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7660. struct cpuacct, css);
  7661. }
  7662. /* create a new cpu accounting group */
  7663. static struct cgroup_subsys_state *cpuacct_create(
  7664. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7665. {
  7666. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7667. if (!ca)
  7668. return ERR_PTR(-ENOMEM);
  7669. ca->cpuusage = alloc_percpu(u64);
  7670. if (!ca->cpuusage) {
  7671. kfree(ca);
  7672. return ERR_PTR(-ENOMEM);
  7673. }
  7674. return &ca->css;
  7675. }
  7676. /* destroy an existing cpu accounting group */
  7677. static void
  7678. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7679. {
  7680. struct cpuacct *ca = cgroup_ca(cgrp);
  7681. free_percpu(ca->cpuusage);
  7682. kfree(ca);
  7683. }
  7684. /* return total cpu usage (in nanoseconds) of a group */
  7685. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7686. {
  7687. struct cpuacct *ca = cgroup_ca(cgrp);
  7688. u64 totalcpuusage = 0;
  7689. int i;
  7690. for_each_possible_cpu(i) {
  7691. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7692. /*
  7693. * Take rq->lock to make 64-bit addition safe on 32-bit
  7694. * platforms.
  7695. */
  7696. spin_lock_irq(&cpu_rq(i)->lock);
  7697. totalcpuusage += *cpuusage;
  7698. spin_unlock_irq(&cpu_rq(i)->lock);
  7699. }
  7700. return totalcpuusage;
  7701. }
  7702. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7703. u64 reset)
  7704. {
  7705. struct cpuacct *ca = cgroup_ca(cgrp);
  7706. int err = 0;
  7707. int i;
  7708. if (reset) {
  7709. err = -EINVAL;
  7710. goto out;
  7711. }
  7712. for_each_possible_cpu(i) {
  7713. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7714. spin_lock_irq(&cpu_rq(i)->lock);
  7715. *cpuusage = 0;
  7716. spin_unlock_irq(&cpu_rq(i)->lock);
  7717. }
  7718. out:
  7719. return err;
  7720. }
  7721. static struct cftype files[] = {
  7722. {
  7723. .name = "usage",
  7724. .read_u64 = cpuusage_read,
  7725. .write_u64 = cpuusage_write,
  7726. },
  7727. };
  7728. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7729. {
  7730. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7731. }
  7732. /*
  7733. * charge this task's execution time to its accounting group.
  7734. *
  7735. * called with rq->lock held.
  7736. */
  7737. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7738. {
  7739. struct cpuacct *ca;
  7740. if (!cpuacct_subsys.active)
  7741. return;
  7742. ca = task_ca(tsk);
  7743. if (ca) {
  7744. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7745. *cpuusage += cputime;
  7746. }
  7747. }
  7748. struct cgroup_subsys cpuacct_subsys = {
  7749. .name = "cpuacct",
  7750. .create = cpuacct_create,
  7751. .destroy = cpuacct_destroy,
  7752. .populate = cpuacct_populate,
  7753. .subsys_id = cpuacct_subsys_id,
  7754. };
  7755. #endif /* CONFIG_CGROUP_CPUACCT */