aio.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/percpu.h>
  28. #include <linux/slab.h>
  29. #include <linux/timer.h>
  30. #include <linux/aio.h>
  31. #include <linux/highmem.h>
  32. #include <linux/workqueue.h>
  33. #include <linux/security.h>
  34. #include <linux/eventfd.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/compat.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/migrate.h>
  39. #include <linux/ramfs.h>
  40. #include <linux/percpu-refcount.h>
  41. #include <asm/kmap_types.h>
  42. #include <asm/uaccess.h>
  43. #include "internal.h"
  44. #define AIO_RING_MAGIC 0xa10a10a1
  45. #define AIO_RING_COMPAT_FEATURES 1
  46. #define AIO_RING_INCOMPAT_FEATURES 0
  47. struct aio_ring {
  48. unsigned id; /* kernel internal index number */
  49. unsigned nr; /* number of io_events */
  50. unsigned head;
  51. unsigned tail;
  52. unsigned magic;
  53. unsigned compat_features;
  54. unsigned incompat_features;
  55. unsigned header_length; /* size of aio_ring */
  56. struct io_event io_events[0];
  57. }; /* 128 bytes + ring size */
  58. #define AIO_RING_PAGES 8
  59. struct kioctx_table {
  60. struct rcu_head rcu;
  61. unsigned nr;
  62. struct kioctx *table[];
  63. };
  64. struct kioctx_cpu {
  65. unsigned reqs_available;
  66. };
  67. struct kioctx {
  68. struct percpu_ref users;
  69. atomic_t dead;
  70. unsigned long user_id;
  71. struct __percpu kioctx_cpu *cpu;
  72. /*
  73. * For percpu reqs_available, number of slots we move to/from global
  74. * counter at a time:
  75. */
  76. unsigned req_batch;
  77. /*
  78. * This is what userspace passed to io_setup(), it's not used for
  79. * anything but counting against the global max_reqs quota.
  80. *
  81. * The real limit is nr_events - 1, which will be larger (see
  82. * aio_setup_ring())
  83. */
  84. unsigned max_reqs;
  85. /* Size of ringbuffer, in units of struct io_event */
  86. unsigned nr_events;
  87. unsigned long mmap_base;
  88. unsigned long mmap_size;
  89. struct page **ring_pages;
  90. long nr_pages;
  91. struct rcu_head rcu_head;
  92. struct work_struct free_work;
  93. struct {
  94. /*
  95. * This counts the number of available slots in the ringbuffer,
  96. * so we avoid overflowing it: it's decremented (if positive)
  97. * when allocating a kiocb and incremented when the resulting
  98. * io_event is pulled off the ringbuffer.
  99. *
  100. * We batch accesses to it with a percpu version.
  101. */
  102. atomic_t reqs_available;
  103. } ____cacheline_aligned_in_smp;
  104. struct {
  105. spinlock_t ctx_lock;
  106. struct list_head active_reqs; /* used for cancellation */
  107. } ____cacheline_aligned_in_smp;
  108. struct {
  109. struct mutex ring_lock;
  110. wait_queue_head_t wait;
  111. } ____cacheline_aligned_in_smp;
  112. struct {
  113. unsigned tail;
  114. spinlock_t completion_lock;
  115. } ____cacheline_aligned_in_smp;
  116. struct page *internal_pages[AIO_RING_PAGES];
  117. struct file *aio_ring_file;
  118. unsigned id;
  119. };
  120. /*------ sysctl variables----*/
  121. static DEFINE_SPINLOCK(aio_nr_lock);
  122. unsigned long aio_nr; /* current system wide number of aio requests */
  123. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  124. /*----end sysctl variables---*/
  125. static struct kmem_cache *kiocb_cachep;
  126. static struct kmem_cache *kioctx_cachep;
  127. /* aio_setup
  128. * Creates the slab caches used by the aio routines, panic on
  129. * failure as this is done early during the boot sequence.
  130. */
  131. static int __init aio_setup(void)
  132. {
  133. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  134. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  135. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  136. return 0;
  137. }
  138. __initcall(aio_setup);
  139. static void aio_free_ring(struct kioctx *ctx)
  140. {
  141. int i;
  142. struct file *aio_ring_file = ctx->aio_ring_file;
  143. for (i = 0; i < ctx->nr_pages; i++) {
  144. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  145. page_count(ctx->ring_pages[i]));
  146. put_page(ctx->ring_pages[i]);
  147. }
  148. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
  149. kfree(ctx->ring_pages);
  150. if (aio_ring_file) {
  151. truncate_setsize(aio_ring_file->f_inode, 0);
  152. pr_debug("pid(%d) i_nlink=%u d_count=%d d_unhashed=%d i_count=%d\n",
  153. current->pid, aio_ring_file->f_inode->i_nlink,
  154. aio_ring_file->f_path.dentry->d_count,
  155. d_unhashed(aio_ring_file->f_path.dentry),
  156. atomic_read(&aio_ring_file->f_inode->i_count));
  157. fput(aio_ring_file);
  158. ctx->aio_ring_file = NULL;
  159. }
  160. }
  161. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  162. {
  163. vma->vm_ops = &generic_file_vm_ops;
  164. return 0;
  165. }
  166. static const struct file_operations aio_ring_fops = {
  167. .mmap = aio_ring_mmap,
  168. };
  169. static int aio_set_page_dirty(struct page *page)
  170. {
  171. return 0;
  172. }
  173. #if IS_ENABLED(CONFIG_MIGRATION)
  174. static int aio_migratepage(struct address_space *mapping, struct page *new,
  175. struct page *old, enum migrate_mode mode)
  176. {
  177. struct kioctx *ctx = mapping->private_data;
  178. unsigned long flags;
  179. unsigned idx = old->index;
  180. int rc;
  181. /* Writeback must be complete */
  182. BUG_ON(PageWriteback(old));
  183. put_page(old);
  184. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
  185. if (rc != MIGRATEPAGE_SUCCESS) {
  186. get_page(old);
  187. return rc;
  188. }
  189. get_page(new);
  190. spin_lock_irqsave(&ctx->completion_lock, flags);
  191. migrate_page_copy(new, old);
  192. ctx->ring_pages[idx] = new;
  193. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  194. return rc;
  195. }
  196. #endif
  197. static const struct address_space_operations aio_ctx_aops = {
  198. .set_page_dirty = aio_set_page_dirty,
  199. #if IS_ENABLED(CONFIG_MIGRATION)
  200. .migratepage = aio_migratepage,
  201. #endif
  202. };
  203. static int aio_setup_ring(struct kioctx *ctx)
  204. {
  205. struct aio_ring *ring;
  206. unsigned nr_events = ctx->max_reqs;
  207. struct mm_struct *mm = current->mm;
  208. unsigned long size, populate;
  209. int nr_pages;
  210. int i;
  211. struct file *file;
  212. /* Compensate for the ring buffer's head/tail overlap entry */
  213. nr_events += 2; /* 1 is required, 2 for good luck */
  214. size = sizeof(struct aio_ring);
  215. size += sizeof(struct io_event) * nr_events;
  216. nr_pages = PFN_UP(size);
  217. if (nr_pages < 0)
  218. return -EINVAL;
  219. file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
  220. if (IS_ERR(file)) {
  221. ctx->aio_ring_file = NULL;
  222. return -EAGAIN;
  223. }
  224. file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
  225. file->f_inode->i_mapping->private_data = ctx;
  226. file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
  227. for (i = 0; i < nr_pages; i++) {
  228. struct page *page;
  229. page = find_or_create_page(file->f_inode->i_mapping,
  230. i, GFP_HIGHUSER | __GFP_ZERO);
  231. if (!page)
  232. break;
  233. pr_debug("pid(%d) page[%d]->count=%d\n",
  234. current->pid, i, page_count(page));
  235. SetPageUptodate(page);
  236. SetPageDirty(page);
  237. unlock_page(page);
  238. }
  239. ctx->aio_ring_file = file;
  240. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  241. / sizeof(struct io_event);
  242. ctx->ring_pages = ctx->internal_pages;
  243. if (nr_pages > AIO_RING_PAGES) {
  244. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  245. GFP_KERNEL);
  246. if (!ctx->ring_pages)
  247. return -ENOMEM;
  248. }
  249. ctx->mmap_size = nr_pages * PAGE_SIZE;
  250. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  251. down_write(&mm->mmap_sem);
  252. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  253. PROT_READ | PROT_WRITE,
  254. MAP_SHARED | MAP_POPULATE, 0, &populate);
  255. if (IS_ERR((void *)ctx->mmap_base)) {
  256. up_write(&mm->mmap_sem);
  257. ctx->mmap_size = 0;
  258. aio_free_ring(ctx);
  259. return -EAGAIN;
  260. }
  261. up_write(&mm->mmap_sem);
  262. mm_populate(ctx->mmap_base, populate);
  263. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  264. ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
  265. 1, 0, ctx->ring_pages, NULL);
  266. for (i = 0; i < ctx->nr_pages; i++)
  267. put_page(ctx->ring_pages[i]);
  268. if (unlikely(ctx->nr_pages != nr_pages)) {
  269. aio_free_ring(ctx);
  270. return -EAGAIN;
  271. }
  272. ctx->user_id = ctx->mmap_base;
  273. ctx->nr_events = nr_events; /* trusted copy */
  274. ring = kmap_atomic(ctx->ring_pages[0]);
  275. ring->nr = nr_events; /* user copy */
  276. ring->id = ~0U;
  277. ring->head = ring->tail = 0;
  278. ring->magic = AIO_RING_MAGIC;
  279. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  280. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  281. ring->header_length = sizeof(struct aio_ring);
  282. kunmap_atomic(ring);
  283. flush_dcache_page(ctx->ring_pages[0]);
  284. return 0;
  285. }
  286. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  287. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  288. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  289. void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
  290. {
  291. struct kioctx *ctx = req->ki_ctx;
  292. unsigned long flags;
  293. spin_lock_irqsave(&ctx->ctx_lock, flags);
  294. if (!req->ki_list.next)
  295. list_add(&req->ki_list, &ctx->active_reqs);
  296. req->ki_cancel = cancel;
  297. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  298. }
  299. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  300. static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
  301. {
  302. kiocb_cancel_fn *old, *cancel;
  303. /*
  304. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  305. * actually has a cancel function, hence the cmpxchg()
  306. */
  307. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  308. do {
  309. if (!cancel || cancel == KIOCB_CANCELLED)
  310. return -EINVAL;
  311. old = cancel;
  312. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  313. } while (cancel != old);
  314. return cancel(kiocb);
  315. }
  316. static void free_ioctx_rcu(struct rcu_head *head)
  317. {
  318. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  319. free_percpu(ctx->cpu);
  320. kmem_cache_free(kioctx_cachep, ctx);
  321. }
  322. /*
  323. * When this function runs, the kioctx has been removed from the "hash table"
  324. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  325. * now it's safe to cancel any that need to be.
  326. */
  327. static void free_ioctx(struct work_struct *work)
  328. {
  329. struct kioctx *ctx = container_of(work, struct kioctx, free_work);
  330. struct aio_ring *ring;
  331. struct kiocb *req;
  332. unsigned cpu, avail;
  333. DEFINE_WAIT(wait);
  334. spin_lock_irq(&ctx->ctx_lock);
  335. while (!list_empty(&ctx->active_reqs)) {
  336. req = list_first_entry(&ctx->active_reqs,
  337. struct kiocb, ki_list);
  338. list_del_init(&req->ki_list);
  339. kiocb_cancel(ctx, req);
  340. }
  341. spin_unlock_irq(&ctx->ctx_lock);
  342. for_each_possible_cpu(cpu) {
  343. struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
  344. atomic_add(kcpu->reqs_available, &ctx->reqs_available);
  345. kcpu->reqs_available = 0;
  346. }
  347. while (1) {
  348. prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE);
  349. ring = kmap_atomic(ctx->ring_pages[0]);
  350. avail = (ring->head <= ring->tail)
  351. ? ring->tail - ring->head
  352. : ctx->nr_events - ring->head + ring->tail;
  353. atomic_add(avail, &ctx->reqs_available);
  354. ring->head = ring->tail;
  355. kunmap_atomic(ring);
  356. if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1)
  357. break;
  358. schedule();
  359. }
  360. finish_wait(&ctx->wait, &wait);
  361. WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
  362. aio_free_ring(ctx);
  363. pr_debug("freeing %p\n", ctx);
  364. /*
  365. * Here the call_rcu() is between the wait_event() for reqs_active to
  366. * hit 0, and freeing the ioctx.
  367. *
  368. * aio_complete() decrements reqs_active, but it has to touch the ioctx
  369. * after to issue a wakeup so we use rcu.
  370. */
  371. call_rcu(&ctx->rcu_head, free_ioctx_rcu);
  372. }
  373. static void free_ioctx_ref(struct percpu_ref *ref)
  374. {
  375. struct kioctx *ctx = container_of(ref, struct kioctx, users);
  376. INIT_WORK(&ctx->free_work, free_ioctx);
  377. schedule_work(&ctx->free_work);
  378. }
  379. static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
  380. {
  381. unsigned i, new_nr;
  382. struct kioctx_table *table, *old;
  383. struct aio_ring *ring;
  384. spin_lock(&mm->ioctx_lock);
  385. table = mm->ioctx_table;
  386. while (1) {
  387. if (table)
  388. for (i = 0; i < table->nr; i++)
  389. if (!table->table[i]) {
  390. ctx->id = i;
  391. table->table[i] = ctx;
  392. spin_unlock(&mm->ioctx_lock);
  393. ring = kmap_atomic(ctx->ring_pages[0]);
  394. ring->id = ctx->id;
  395. kunmap_atomic(ring);
  396. return 0;
  397. }
  398. new_nr = (table ? table->nr : 1) * 4;
  399. spin_unlock(&mm->ioctx_lock);
  400. table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
  401. new_nr, GFP_KERNEL);
  402. if (!table)
  403. return -ENOMEM;
  404. table->nr = new_nr;
  405. spin_lock(&mm->ioctx_lock);
  406. old = mm->ioctx_table;
  407. if (!old) {
  408. rcu_assign_pointer(mm->ioctx_table, table);
  409. } else if (table->nr > old->nr) {
  410. memcpy(table->table, old->table,
  411. old->nr * sizeof(struct kioctx *));
  412. rcu_assign_pointer(mm->ioctx_table, table);
  413. kfree_rcu(old, rcu);
  414. } else {
  415. kfree(table);
  416. table = old;
  417. }
  418. }
  419. }
  420. /* ioctx_alloc
  421. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  422. */
  423. static struct kioctx *ioctx_alloc(unsigned nr_events)
  424. {
  425. struct mm_struct *mm = current->mm;
  426. struct kioctx *ctx;
  427. int err = -ENOMEM;
  428. /*
  429. * We keep track of the number of available ringbuffer slots, to prevent
  430. * overflow (reqs_available), and we also use percpu counters for this.
  431. *
  432. * So since up to half the slots might be on other cpu's percpu counters
  433. * and unavailable, double nr_events so userspace sees what they
  434. * expected: additionally, we move req_batch slots to/from percpu
  435. * counters at a time, so make sure that isn't 0:
  436. */
  437. nr_events = max(nr_events, num_possible_cpus() * 4);
  438. nr_events *= 2;
  439. /* Prevent overflows */
  440. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  441. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  442. pr_debug("ENOMEM: nr_events too high\n");
  443. return ERR_PTR(-EINVAL);
  444. }
  445. if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
  446. return ERR_PTR(-EAGAIN);
  447. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  448. if (!ctx)
  449. return ERR_PTR(-ENOMEM);
  450. ctx->max_reqs = nr_events;
  451. if (percpu_ref_init(&ctx->users, free_ioctx_ref))
  452. goto out_freectx;
  453. spin_lock_init(&ctx->ctx_lock);
  454. spin_lock_init(&ctx->completion_lock);
  455. mutex_init(&ctx->ring_lock);
  456. init_waitqueue_head(&ctx->wait);
  457. INIT_LIST_HEAD(&ctx->active_reqs);
  458. ctx->cpu = alloc_percpu(struct kioctx_cpu);
  459. if (!ctx->cpu)
  460. goto out_freeref;
  461. if (aio_setup_ring(ctx) < 0)
  462. goto out_freepcpu;
  463. atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
  464. ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
  465. if (ctx->req_batch < 1)
  466. ctx->req_batch = 1;
  467. /* limit the number of system wide aios */
  468. spin_lock(&aio_nr_lock);
  469. if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
  470. aio_nr + nr_events < aio_nr) {
  471. spin_unlock(&aio_nr_lock);
  472. goto out_cleanup;
  473. }
  474. aio_nr += ctx->max_reqs;
  475. spin_unlock(&aio_nr_lock);
  476. percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
  477. err = ioctx_add_table(ctx, mm);
  478. if (err)
  479. goto out_cleanup_put;
  480. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  481. ctx, ctx->user_id, mm, ctx->nr_events);
  482. return ctx;
  483. out_cleanup_put:
  484. percpu_ref_put(&ctx->users);
  485. out_cleanup:
  486. err = -EAGAIN;
  487. aio_free_ring(ctx);
  488. out_freepcpu:
  489. free_percpu(ctx->cpu);
  490. out_freeref:
  491. free_percpu(ctx->users.pcpu_count);
  492. out_freectx:
  493. if (ctx->aio_ring_file)
  494. fput(ctx->aio_ring_file);
  495. kmem_cache_free(kioctx_cachep, ctx);
  496. pr_debug("error allocating ioctx %d\n", err);
  497. return ERR_PTR(err);
  498. }
  499. /* kill_ioctx
  500. * Cancels all outstanding aio requests on an aio context. Used
  501. * when the processes owning a context have all exited to encourage
  502. * the rapid destruction of the kioctx.
  503. */
  504. static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
  505. {
  506. if (!atomic_xchg(&ctx->dead, 1)) {
  507. struct kioctx_table *table;
  508. spin_lock(&mm->ioctx_lock);
  509. table = mm->ioctx_table;
  510. WARN_ON(ctx != table->table[ctx->id]);
  511. table->table[ctx->id] = NULL;
  512. spin_unlock(&mm->ioctx_lock);
  513. /* percpu_ref_kill() will do the necessary call_rcu() */
  514. wake_up_all(&ctx->wait);
  515. /*
  516. * It'd be more correct to do this in free_ioctx(), after all
  517. * the outstanding kiocbs have finished - but by then io_destroy
  518. * has already returned, so io_setup() could potentially return
  519. * -EAGAIN with no ioctxs actually in use (as far as userspace
  520. * could tell).
  521. */
  522. spin_lock(&aio_nr_lock);
  523. BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
  524. aio_nr -= ctx->max_reqs;
  525. spin_unlock(&aio_nr_lock);
  526. if (ctx->mmap_size)
  527. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  528. percpu_ref_kill(&ctx->users);
  529. }
  530. }
  531. /* wait_on_sync_kiocb:
  532. * Waits on the given sync kiocb to complete.
  533. */
  534. ssize_t wait_on_sync_kiocb(struct kiocb *req)
  535. {
  536. while (!req->ki_ctx) {
  537. set_current_state(TASK_UNINTERRUPTIBLE);
  538. if (req->ki_ctx)
  539. break;
  540. io_schedule();
  541. }
  542. __set_current_state(TASK_RUNNING);
  543. return req->ki_user_data;
  544. }
  545. EXPORT_SYMBOL(wait_on_sync_kiocb);
  546. /*
  547. * exit_aio: called when the last user of mm goes away. At this point, there is
  548. * no way for any new requests to be submited or any of the io_* syscalls to be
  549. * called on the context.
  550. *
  551. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  552. * them.
  553. */
  554. void exit_aio(struct mm_struct *mm)
  555. {
  556. struct kioctx_table *table;
  557. struct kioctx *ctx;
  558. unsigned i = 0;
  559. while (1) {
  560. rcu_read_lock();
  561. table = rcu_dereference(mm->ioctx_table);
  562. do {
  563. if (!table || i >= table->nr) {
  564. rcu_read_unlock();
  565. rcu_assign_pointer(mm->ioctx_table, NULL);
  566. if (table)
  567. kfree(table);
  568. return;
  569. }
  570. ctx = table->table[i++];
  571. } while (!ctx);
  572. rcu_read_unlock();
  573. /*
  574. * We don't need to bother with munmap() here -
  575. * exit_mmap(mm) is coming and it'll unmap everything.
  576. * Since aio_free_ring() uses non-zero ->mmap_size
  577. * as indicator that it needs to unmap the area,
  578. * just set it to 0; aio_free_ring() is the only
  579. * place that uses ->mmap_size, so it's safe.
  580. */
  581. ctx->mmap_size = 0;
  582. kill_ioctx(mm, ctx);
  583. }
  584. }
  585. static void put_reqs_available(struct kioctx *ctx, unsigned nr)
  586. {
  587. struct kioctx_cpu *kcpu;
  588. preempt_disable();
  589. kcpu = this_cpu_ptr(ctx->cpu);
  590. kcpu->reqs_available += nr;
  591. while (kcpu->reqs_available >= ctx->req_batch * 2) {
  592. kcpu->reqs_available -= ctx->req_batch;
  593. atomic_add(ctx->req_batch, &ctx->reqs_available);
  594. }
  595. preempt_enable();
  596. }
  597. static bool get_reqs_available(struct kioctx *ctx)
  598. {
  599. struct kioctx_cpu *kcpu;
  600. bool ret = false;
  601. preempt_disable();
  602. kcpu = this_cpu_ptr(ctx->cpu);
  603. if (!kcpu->reqs_available) {
  604. int old, avail = atomic_read(&ctx->reqs_available);
  605. do {
  606. if (avail < ctx->req_batch)
  607. goto out;
  608. old = avail;
  609. avail = atomic_cmpxchg(&ctx->reqs_available,
  610. avail, avail - ctx->req_batch);
  611. } while (avail != old);
  612. kcpu->reqs_available += ctx->req_batch;
  613. }
  614. ret = true;
  615. kcpu->reqs_available--;
  616. out:
  617. preempt_enable();
  618. return ret;
  619. }
  620. /* aio_get_req
  621. * Allocate a slot for an aio request.
  622. * Returns NULL if no requests are free.
  623. */
  624. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  625. {
  626. struct kiocb *req;
  627. if (!get_reqs_available(ctx))
  628. return NULL;
  629. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  630. if (unlikely(!req))
  631. goto out_put;
  632. req->ki_ctx = ctx;
  633. return req;
  634. out_put:
  635. put_reqs_available(ctx, 1);
  636. return NULL;
  637. }
  638. static void kiocb_free(struct kiocb *req)
  639. {
  640. if (req->ki_filp)
  641. fput(req->ki_filp);
  642. if (req->ki_eventfd != NULL)
  643. eventfd_ctx_put(req->ki_eventfd);
  644. kmem_cache_free(kiocb_cachep, req);
  645. }
  646. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  647. {
  648. struct aio_ring __user *ring = (void __user *)ctx_id;
  649. struct mm_struct *mm = current->mm;
  650. struct kioctx *ctx, *ret = NULL;
  651. struct kioctx_table *table;
  652. unsigned id;
  653. if (get_user(id, &ring->id))
  654. return NULL;
  655. rcu_read_lock();
  656. table = rcu_dereference(mm->ioctx_table);
  657. if (!table || id >= table->nr)
  658. goto out;
  659. ctx = table->table[id];
  660. if (ctx && ctx->user_id == ctx_id) {
  661. percpu_ref_get(&ctx->users);
  662. ret = ctx;
  663. }
  664. out:
  665. rcu_read_unlock();
  666. return ret;
  667. }
  668. /* aio_complete
  669. * Called when the io request on the given iocb is complete.
  670. */
  671. void aio_complete(struct kiocb *iocb, long res, long res2)
  672. {
  673. struct kioctx *ctx = iocb->ki_ctx;
  674. struct aio_ring *ring;
  675. struct io_event *ev_page, *event;
  676. unsigned long flags;
  677. unsigned tail, pos;
  678. /*
  679. * Special case handling for sync iocbs:
  680. * - events go directly into the iocb for fast handling
  681. * - the sync task with the iocb in its stack holds the single iocb
  682. * ref, no other paths have a way to get another ref
  683. * - the sync task helpfully left a reference to itself in the iocb
  684. */
  685. if (is_sync_kiocb(iocb)) {
  686. iocb->ki_user_data = res;
  687. smp_wmb();
  688. iocb->ki_ctx = ERR_PTR(-EXDEV);
  689. wake_up_process(iocb->ki_obj.tsk);
  690. return;
  691. }
  692. /*
  693. * Take rcu_read_lock() in case the kioctx is being destroyed, as we
  694. * need to issue a wakeup after incrementing reqs_available.
  695. */
  696. rcu_read_lock();
  697. if (iocb->ki_list.next) {
  698. unsigned long flags;
  699. spin_lock_irqsave(&ctx->ctx_lock, flags);
  700. list_del(&iocb->ki_list);
  701. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  702. }
  703. /*
  704. * Add a completion event to the ring buffer. Must be done holding
  705. * ctx->completion_lock to prevent other code from messing with the tail
  706. * pointer since we might be called from irq context.
  707. */
  708. spin_lock_irqsave(&ctx->completion_lock, flags);
  709. tail = ctx->tail;
  710. pos = tail + AIO_EVENTS_OFFSET;
  711. if (++tail >= ctx->nr_events)
  712. tail = 0;
  713. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  714. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  715. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  716. event->data = iocb->ki_user_data;
  717. event->res = res;
  718. event->res2 = res2;
  719. kunmap_atomic(ev_page);
  720. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  721. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  722. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  723. res, res2);
  724. /* after flagging the request as done, we
  725. * must never even look at it again
  726. */
  727. smp_wmb(); /* make event visible before updating tail */
  728. ctx->tail = tail;
  729. ring = kmap_atomic(ctx->ring_pages[0]);
  730. ring->tail = tail;
  731. kunmap_atomic(ring);
  732. flush_dcache_page(ctx->ring_pages[0]);
  733. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  734. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  735. /*
  736. * Check if the user asked us to deliver the result through an
  737. * eventfd. The eventfd_signal() function is safe to be called
  738. * from IRQ context.
  739. */
  740. if (iocb->ki_eventfd != NULL)
  741. eventfd_signal(iocb->ki_eventfd, 1);
  742. /* everything turned out well, dispose of the aiocb. */
  743. kiocb_free(iocb);
  744. /*
  745. * We have to order our ring_info tail store above and test
  746. * of the wait list below outside the wait lock. This is
  747. * like in wake_up_bit() where clearing a bit has to be
  748. * ordered with the unlocked test.
  749. */
  750. smp_mb();
  751. if (waitqueue_active(&ctx->wait))
  752. wake_up(&ctx->wait);
  753. rcu_read_unlock();
  754. }
  755. EXPORT_SYMBOL(aio_complete);
  756. /* aio_read_events
  757. * Pull an event off of the ioctx's event ring. Returns the number of
  758. * events fetched
  759. */
  760. static long aio_read_events_ring(struct kioctx *ctx,
  761. struct io_event __user *event, long nr)
  762. {
  763. struct aio_ring *ring;
  764. unsigned head, tail, pos;
  765. long ret = 0;
  766. int copy_ret;
  767. mutex_lock(&ctx->ring_lock);
  768. ring = kmap_atomic(ctx->ring_pages[0]);
  769. head = ring->head;
  770. tail = ring->tail;
  771. kunmap_atomic(ring);
  772. pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
  773. if (head == tail)
  774. goto out;
  775. while (ret < nr) {
  776. long avail;
  777. struct io_event *ev;
  778. struct page *page;
  779. avail = (head <= tail ? tail : ctx->nr_events) - head;
  780. if (head == tail)
  781. break;
  782. avail = min(avail, nr - ret);
  783. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  784. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  785. pos = head + AIO_EVENTS_OFFSET;
  786. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  787. pos %= AIO_EVENTS_PER_PAGE;
  788. ev = kmap(page);
  789. copy_ret = copy_to_user(event + ret, ev + pos,
  790. sizeof(*ev) * avail);
  791. kunmap(page);
  792. if (unlikely(copy_ret)) {
  793. ret = -EFAULT;
  794. goto out;
  795. }
  796. ret += avail;
  797. head += avail;
  798. head %= ctx->nr_events;
  799. }
  800. ring = kmap_atomic(ctx->ring_pages[0]);
  801. ring->head = head;
  802. kunmap_atomic(ring);
  803. flush_dcache_page(ctx->ring_pages[0]);
  804. pr_debug("%li h%u t%u\n", ret, head, tail);
  805. put_reqs_available(ctx, ret);
  806. out:
  807. mutex_unlock(&ctx->ring_lock);
  808. return ret;
  809. }
  810. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  811. struct io_event __user *event, long *i)
  812. {
  813. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  814. if (ret > 0)
  815. *i += ret;
  816. if (unlikely(atomic_read(&ctx->dead)))
  817. ret = -EINVAL;
  818. if (!*i)
  819. *i = ret;
  820. return ret < 0 || *i >= min_nr;
  821. }
  822. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  823. struct io_event __user *event,
  824. struct timespec __user *timeout)
  825. {
  826. ktime_t until = { .tv64 = KTIME_MAX };
  827. long ret = 0;
  828. if (timeout) {
  829. struct timespec ts;
  830. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  831. return -EFAULT;
  832. until = timespec_to_ktime(ts);
  833. }
  834. /*
  835. * Note that aio_read_events() is being called as the conditional - i.e.
  836. * we're calling it after prepare_to_wait() has set task state to
  837. * TASK_INTERRUPTIBLE.
  838. *
  839. * But aio_read_events() can block, and if it blocks it's going to flip
  840. * the task state back to TASK_RUNNING.
  841. *
  842. * This should be ok, provided it doesn't flip the state back to
  843. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  844. * will only happen if the mutex_lock() call blocks, and we then find
  845. * the ringbuffer empty. So in practice we should be ok, but it's
  846. * something to be aware of when touching this code.
  847. */
  848. wait_event_interruptible_hrtimeout(ctx->wait,
  849. aio_read_events(ctx, min_nr, nr, event, &ret), until);
  850. if (!ret && signal_pending(current))
  851. ret = -EINTR;
  852. return ret;
  853. }
  854. /* sys_io_setup:
  855. * Create an aio_context capable of receiving at least nr_events.
  856. * ctxp must not point to an aio_context that already exists, and
  857. * must be initialized to 0 prior to the call. On successful
  858. * creation of the aio_context, *ctxp is filled in with the resulting
  859. * handle. May fail with -EINVAL if *ctxp is not initialized,
  860. * if the specified nr_events exceeds internal limits. May fail
  861. * with -EAGAIN if the specified nr_events exceeds the user's limit
  862. * of available events. May fail with -ENOMEM if insufficient kernel
  863. * resources are available. May fail with -EFAULT if an invalid
  864. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  865. * implemented.
  866. */
  867. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  868. {
  869. struct kioctx *ioctx = NULL;
  870. unsigned long ctx;
  871. long ret;
  872. ret = get_user(ctx, ctxp);
  873. if (unlikely(ret))
  874. goto out;
  875. ret = -EINVAL;
  876. if (unlikely(ctx || nr_events == 0)) {
  877. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  878. ctx, nr_events);
  879. goto out;
  880. }
  881. ioctx = ioctx_alloc(nr_events);
  882. ret = PTR_ERR(ioctx);
  883. if (!IS_ERR(ioctx)) {
  884. ret = put_user(ioctx->user_id, ctxp);
  885. if (ret)
  886. kill_ioctx(current->mm, ioctx);
  887. percpu_ref_put(&ioctx->users);
  888. }
  889. out:
  890. return ret;
  891. }
  892. /* sys_io_destroy:
  893. * Destroy the aio_context specified. May cancel any outstanding
  894. * AIOs and block on completion. Will fail with -ENOSYS if not
  895. * implemented. May fail with -EINVAL if the context pointed to
  896. * is invalid.
  897. */
  898. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  899. {
  900. struct kioctx *ioctx = lookup_ioctx(ctx);
  901. if (likely(NULL != ioctx)) {
  902. kill_ioctx(current->mm, ioctx);
  903. percpu_ref_put(&ioctx->users);
  904. return 0;
  905. }
  906. pr_debug("EINVAL: io_destroy: invalid context id\n");
  907. return -EINVAL;
  908. }
  909. typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
  910. unsigned long, loff_t);
  911. static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
  912. int rw, char __user *buf,
  913. unsigned long *nr_segs,
  914. struct iovec **iovec,
  915. bool compat)
  916. {
  917. ssize_t ret;
  918. *nr_segs = kiocb->ki_nbytes;
  919. #ifdef CONFIG_COMPAT
  920. if (compat)
  921. ret = compat_rw_copy_check_uvector(rw,
  922. (struct compat_iovec __user *)buf,
  923. *nr_segs, 1, *iovec, iovec);
  924. else
  925. #endif
  926. ret = rw_copy_check_uvector(rw,
  927. (struct iovec __user *)buf,
  928. *nr_segs, 1, *iovec, iovec);
  929. if (ret < 0)
  930. return ret;
  931. /* ki_nbytes now reflect bytes instead of segs */
  932. kiocb->ki_nbytes = ret;
  933. return 0;
  934. }
  935. static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
  936. int rw, char __user *buf,
  937. unsigned long *nr_segs,
  938. struct iovec *iovec)
  939. {
  940. if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
  941. return -EFAULT;
  942. iovec->iov_base = buf;
  943. iovec->iov_len = kiocb->ki_nbytes;
  944. *nr_segs = 1;
  945. return 0;
  946. }
  947. /*
  948. * aio_setup_iocb:
  949. * Performs the initial checks and aio retry method
  950. * setup for the kiocb at the time of io submission.
  951. */
  952. static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
  953. char __user *buf, bool compat)
  954. {
  955. struct file *file = req->ki_filp;
  956. ssize_t ret;
  957. unsigned long nr_segs;
  958. int rw;
  959. fmode_t mode;
  960. aio_rw_op *rw_op;
  961. struct iovec inline_vec, *iovec = &inline_vec;
  962. switch (opcode) {
  963. case IOCB_CMD_PREAD:
  964. case IOCB_CMD_PREADV:
  965. mode = FMODE_READ;
  966. rw = READ;
  967. rw_op = file->f_op->aio_read;
  968. goto rw_common;
  969. case IOCB_CMD_PWRITE:
  970. case IOCB_CMD_PWRITEV:
  971. mode = FMODE_WRITE;
  972. rw = WRITE;
  973. rw_op = file->f_op->aio_write;
  974. goto rw_common;
  975. rw_common:
  976. if (unlikely(!(file->f_mode & mode)))
  977. return -EBADF;
  978. if (!rw_op)
  979. return -EINVAL;
  980. ret = (opcode == IOCB_CMD_PREADV ||
  981. opcode == IOCB_CMD_PWRITEV)
  982. ? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
  983. &iovec, compat)
  984. : aio_setup_single_vector(req, rw, buf, &nr_segs,
  985. iovec);
  986. if (ret)
  987. return ret;
  988. ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
  989. if (ret < 0) {
  990. if (iovec != &inline_vec)
  991. kfree(iovec);
  992. return ret;
  993. }
  994. req->ki_nbytes = ret;
  995. /* XXX: move/kill - rw_verify_area()? */
  996. /* This matches the pread()/pwrite() logic */
  997. if (req->ki_pos < 0) {
  998. ret = -EINVAL;
  999. break;
  1000. }
  1001. if (rw == WRITE)
  1002. file_start_write(file);
  1003. ret = rw_op(req, iovec, nr_segs, req->ki_pos);
  1004. if (rw == WRITE)
  1005. file_end_write(file);
  1006. break;
  1007. case IOCB_CMD_FDSYNC:
  1008. if (!file->f_op->aio_fsync)
  1009. return -EINVAL;
  1010. ret = file->f_op->aio_fsync(req, 1);
  1011. break;
  1012. case IOCB_CMD_FSYNC:
  1013. if (!file->f_op->aio_fsync)
  1014. return -EINVAL;
  1015. ret = file->f_op->aio_fsync(req, 0);
  1016. break;
  1017. default:
  1018. pr_debug("EINVAL: no operation provided\n");
  1019. return -EINVAL;
  1020. }
  1021. if (iovec != &inline_vec)
  1022. kfree(iovec);
  1023. if (ret != -EIOCBQUEUED) {
  1024. /*
  1025. * There's no easy way to restart the syscall since other AIO's
  1026. * may be already running. Just fail this IO with EINTR.
  1027. */
  1028. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  1029. ret == -ERESTARTNOHAND ||
  1030. ret == -ERESTART_RESTARTBLOCK))
  1031. ret = -EINTR;
  1032. aio_complete(req, ret, 0);
  1033. }
  1034. return 0;
  1035. }
  1036. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1037. struct iocb *iocb, bool compat)
  1038. {
  1039. struct kiocb *req;
  1040. ssize_t ret;
  1041. /* enforce forwards compatibility on users */
  1042. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1043. pr_debug("EINVAL: reserve field set\n");
  1044. return -EINVAL;
  1045. }
  1046. /* prevent overflows */
  1047. if (unlikely(
  1048. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1049. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1050. ((ssize_t)iocb->aio_nbytes < 0)
  1051. )) {
  1052. pr_debug("EINVAL: io_submit: overflow check\n");
  1053. return -EINVAL;
  1054. }
  1055. req = aio_get_req(ctx);
  1056. if (unlikely(!req))
  1057. return -EAGAIN;
  1058. req->ki_filp = fget(iocb->aio_fildes);
  1059. if (unlikely(!req->ki_filp)) {
  1060. ret = -EBADF;
  1061. goto out_put_req;
  1062. }
  1063. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1064. /*
  1065. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1066. * instance of the file* now. The file descriptor must be
  1067. * an eventfd() fd, and will be signaled for each completed
  1068. * event using the eventfd_signal() function.
  1069. */
  1070. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  1071. if (IS_ERR(req->ki_eventfd)) {
  1072. ret = PTR_ERR(req->ki_eventfd);
  1073. req->ki_eventfd = NULL;
  1074. goto out_put_req;
  1075. }
  1076. }
  1077. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1078. if (unlikely(ret)) {
  1079. pr_debug("EFAULT: aio_key\n");
  1080. goto out_put_req;
  1081. }
  1082. req->ki_obj.user = user_iocb;
  1083. req->ki_user_data = iocb->aio_data;
  1084. req->ki_pos = iocb->aio_offset;
  1085. req->ki_nbytes = iocb->aio_nbytes;
  1086. ret = aio_run_iocb(req, iocb->aio_lio_opcode,
  1087. (char __user *)(unsigned long)iocb->aio_buf,
  1088. compat);
  1089. if (ret)
  1090. goto out_put_req;
  1091. return 0;
  1092. out_put_req:
  1093. put_reqs_available(ctx, 1);
  1094. kiocb_free(req);
  1095. return ret;
  1096. }
  1097. long do_io_submit(aio_context_t ctx_id, long nr,
  1098. struct iocb __user *__user *iocbpp, bool compat)
  1099. {
  1100. struct kioctx *ctx;
  1101. long ret = 0;
  1102. int i = 0;
  1103. struct blk_plug plug;
  1104. if (unlikely(nr < 0))
  1105. return -EINVAL;
  1106. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1107. nr = LONG_MAX/sizeof(*iocbpp);
  1108. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1109. return -EFAULT;
  1110. ctx = lookup_ioctx(ctx_id);
  1111. if (unlikely(!ctx)) {
  1112. pr_debug("EINVAL: invalid context id\n");
  1113. return -EINVAL;
  1114. }
  1115. blk_start_plug(&plug);
  1116. /*
  1117. * AKPM: should this return a partial result if some of the IOs were
  1118. * successfully submitted?
  1119. */
  1120. for (i=0; i<nr; i++) {
  1121. struct iocb __user *user_iocb;
  1122. struct iocb tmp;
  1123. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1124. ret = -EFAULT;
  1125. break;
  1126. }
  1127. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1128. ret = -EFAULT;
  1129. break;
  1130. }
  1131. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1132. if (ret)
  1133. break;
  1134. }
  1135. blk_finish_plug(&plug);
  1136. percpu_ref_put(&ctx->users);
  1137. return i ? i : ret;
  1138. }
  1139. /* sys_io_submit:
  1140. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1141. * the number of iocbs queued. May return -EINVAL if the aio_context
  1142. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1143. * *iocbpp[0] is not properly initialized, if the operation specified
  1144. * is invalid for the file descriptor in the iocb. May fail with
  1145. * -EFAULT if any of the data structures point to invalid data. May
  1146. * fail with -EBADF if the file descriptor specified in the first
  1147. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1148. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1149. * fail with -ENOSYS if not implemented.
  1150. */
  1151. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1152. struct iocb __user * __user *, iocbpp)
  1153. {
  1154. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1155. }
  1156. /* lookup_kiocb
  1157. * Finds a given iocb for cancellation.
  1158. */
  1159. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1160. u32 key)
  1161. {
  1162. struct list_head *pos;
  1163. assert_spin_locked(&ctx->ctx_lock);
  1164. if (key != KIOCB_KEY)
  1165. return NULL;
  1166. /* TODO: use a hash or array, this sucks. */
  1167. list_for_each(pos, &ctx->active_reqs) {
  1168. struct kiocb *kiocb = list_kiocb(pos);
  1169. if (kiocb->ki_obj.user == iocb)
  1170. return kiocb;
  1171. }
  1172. return NULL;
  1173. }
  1174. /* sys_io_cancel:
  1175. * Attempts to cancel an iocb previously passed to io_submit. If
  1176. * the operation is successfully cancelled, the resulting event is
  1177. * copied into the memory pointed to by result without being placed
  1178. * into the completion queue and 0 is returned. May fail with
  1179. * -EFAULT if any of the data structures pointed to are invalid.
  1180. * May fail with -EINVAL if aio_context specified by ctx_id is
  1181. * invalid. May fail with -EAGAIN if the iocb specified was not
  1182. * cancelled. Will fail with -ENOSYS if not implemented.
  1183. */
  1184. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1185. struct io_event __user *, result)
  1186. {
  1187. struct kioctx *ctx;
  1188. struct kiocb *kiocb;
  1189. u32 key;
  1190. int ret;
  1191. ret = get_user(key, &iocb->aio_key);
  1192. if (unlikely(ret))
  1193. return -EFAULT;
  1194. ctx = lookup_ioctx(ctx_id);
  1195. if (unlikely(!ctx))
  1196. return -EINVAL;
  1197. spin_lock_irq(&ctx->ctx_lock);
  1198. kiocb = lookup_kiocb(ctx, iocb, key);
  1199. if (kiocb)
  1200. ret = kiocb_cancel(ctx, kiocb);
  1201. else
  1202. ret = -EINVAL;
  1203. spin_unlock_irq(&ctx->ctx_lock);
  1204. if (!ret) {
  1205. /*
  1206. * The result argument is no longer used - the io_event is
  1207. * always delivered via the ring buffer. -EINPROGRESS indicates
  1208. * cancellation is progress:
  1209. */
  1210. ret = -EINPROGRESS;
  1211. }
  1212. percpu_ref_put(&ctx->users);
  1213. return ret;
  1214. }
  1215. /* io_getevents:
  1216. * Attempts to read at least min_nr events and up to nr events from
  1217. * the completion queue for the aio_context specified by ctx_id. If
  1218. * it succeeds, the number of read events is returned. May fail with
  1219. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1220. * out of range, if timeout is out of range. May fail with -EFAULT
  1221. * if any of the memory specified is invalid. May return 0 or
  1222. * < min_nr if the timeout specified by timeout has elapsed
  1223. * before sufficient events are available, where timeout == NULL
  1224. * specifies an infinite timeout. Note that the timeout pointed to by
  1225. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1226. */
  1227. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1228. long, min_nr,
  1229. long, nr,
  1230. struct io_event __user *, events,
  1231. struct timespec __user *, timeout)
  1232. {
  1233. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1234. long ret = -EINVAL;
  1235. if (likely(ioctx)) {
  1236. if (likely(min_nr <= nr && min_nr >= 0))
  1237. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1238. percpu_ref_put(&ioctx->users);
  1239. }
  1240. return ret;
  1241. }