segment.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include "nilfs.h"
  35. #include "btnode.h"
  36. #include "page.h"
  37. #include "segment.h"
  38. #include "sufile.h"
  39. #include "cpfile.h"
  40. #include "ifile.h"
  41. #include "seglist.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_SKETCH,
  65. NILFS_ST_IFILE,
  66. NILFS_ST_CPFILE,
  67. NILFS_ST_SUFILE,
  68. NILFS_ST_DAT,
  69. NILFS_ST_SR, /* Super root */
  70. NILFS_ST_DSYNC, /* Data sync blocks */
  71. NILFS_ST_DONE,
  72. };
  73. /* State flags of collection */
  74. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  75. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  99. int);
  100. #define nilfs_cnt32_gt(a, b) \
  101. (typecheck(__u32, a) && typecheck(__u32, b) && \
  102. ((__s32)(b) - (__s32)(a) < 0))
  103. #define nilfs_cnt32_ge(a, b) \
  104. (typecheck(__u32, a) && typecheck(__u32, b) && \
  105. ((__s32)(a) - (__s32)(b) >= 0))
  106. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  107. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  108. /*
  109. * Transaction
  110. */
  111. static struct kmem_cache *nilfs_transaction_cachep;
  112. /**
  113. * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
  114. *
  115. * nilfs_init_transaction_cache() creates a slab cache for the struct
  116. * nilfs_transaction_info.
  117. *
  118. * Return Value: On success, it returns 0. On error, one of the following
  119. * negative error code is returned.
  120. *
  121. * %-ENOMEM - Insufficient memory available.
  122. */
  123. int nilfs_init_transaction_cache(void)
  124. {
  125. nilfs_transaction_cachep =
  126. kmem_cache_create("nilfs2_transaction_cache",
  127. sizeof(struct nilfs_transaction_info),
  128. 0, SLAB_RECLAIM_ACCOUNT, NULL);
  129. return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
  130. }
  131. /**
  132. * nilfs_detroy_transaction_cache - destroy the cache for transaction info
  133. *
  134. * nilfs_destroy_transaction_cache() frees the slab cache for the struct
  135. * nilfs_transaction_info.
  136. */
  137. void nilfs_destroy_transaction_cache(void)
  138. {
  139. kmem_cache_destroy(nilfs_transaction_cachep);
  140. }
  141. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  142. {
  143. struct nilfs_transaction_info *cur_ti = current->journal_info;
  144. void *save = NULL;
  145. if (cur_ti) {
  146. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  147. return ++cur_ti->ti_count;
  148. else {
  149. /*
  150. * If journal_info field is occupied by other FS,
  151. * we save it and restore on nilfs_transaction_end().
  152. * But this should never happen.
  153. */
  154. printk(KERN_WARNING
  155. "NILFS warning: journal info from a different "
  156. "FS\n");
  157. save = current->journal_info;
  158. }
  159. }
  160. if (!ti) {
  161. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  162. if (!ti)
  163. return -ENOMEM;
  164. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  165. } else {
  166. ti->ti_flags = 0;
  167. }
  168. ti->ti_count = 0;
  169. ti->ti_save = save;
  170. ti->ti_magic = NILFS_TI_MAGIC;
  171. current->journal_info = ti;
  172. return 0;
  173. }
  174. /**
  175. * nilfs_transaction_begin - start indivisible file operations.
  176. * @sb: super block
  177. * @ti: nilfs_transaction_info
  178. * @vacancy_check: flags for vacancy rate checks
  179. *
  180. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  181. * the segment semaphore, to make a segment construction and write tasks
  182. * exclusive. The function is used with nilfs_transaction_end() in pairs.
  183. * The region enclosed by these two functions can be nested. To avoid a
  184. * deadlock, the semaphore is only acquired or released in the outermost call.
  185. *
  186. * This function allocates a nilfs_transaction_info struct to keep context
  187. * information on it. It is initialized and hooked onto the current task in
  188. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  189. * instead; othewise a new struct is assigned from a slab.
  190. *
  191. * When @vacancy_check flag is set, this function will check the amount of
  192. * free space, and will wait for the GC to reclaim disk space if low capacity.
  193. *
  194. * Return Value: On success, 0 is returned. On error, one of the following
  195. * negative error code is returned.
  196. *
  197. * %-ENOMEM - Insufficient memory available.
  198. *
  199. * %-ERESTARTSYS - Interrupted
  200. *
  201. * %-ENOSPC - No space left on device
  202. */
  203. int nilfs_transaction_begin(struct super_block *sb,
  204. struct nilfs_transaction_info *ti,
  205. int vacancy_check)
  206. {
  207. struct nilfs_sb_info *sbi;
  208. struct the_nilfs *nilfs;
  209. int ret = nilfs_prepare_segment_lock(ti);
  210. if (unlikely(ret < 0))
  211. return ret;
  212. if (ret > 0)
  213. return 0;
  214. sbi = NILFS_SB(sb);
  215. nilfs = sbi->s_nilfs;
  216. down_read(&nilfs->ns_segctor_sem);
  217. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  218. up_read(&nilfs->ns_segctor_sem);
  219. ret = -ENOSPC;
  220. goto failed;
  221. }
  222. return 0;
  223. failed:
  224. ti = current->journal_info;
  225. current->journal_info = ti->ti_save;
  226. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  227. kmem_cache_free(nilfs_transaction_cachep, ti);
  228. return ret;
  229. }
  230. /**
  231. * nilfs_transaction_end - end indivisible file operations.
  232. * @sb: super block
  233. * @commit: commit flag (0 for no change)
  234. *
  235. * nilfs_transaction_end() releases the read semaphore which is
  236. * acquired by nilfs_transaction_begin(). Its releasing is only done
  237. * in outermost call of this function. If the nilfs_transaction_info
  238. * was allocated dynamically, it is given back to a slab cache.
  239. */
  240. int nilfs_transaction_end(struct super_block *sb, int commit)
  241. {
  242. struct nilfs_transaction_info *ti = current->journal_info;
  243. struct nilfs_sb_info *sbi;
  244. struct nilfs_sc_info *sci;
  245. int err = 0;
  246. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  247. if (commit)
  248. ti->ti_flags |= NILFS_TI_COMMIT;
  249. if (ti->ti_count > 0) {
  250. ti->ti_count--;
  251. return 0;
  252. }
  253. sbi = NILFS_SB(sb);
  254. sci = NILFS_SC(sbi);
  255. if (sci != NULL) {
  256. if (ti->ti_flags & NILFS_TI_COMMIT)
  257. nilfs_segctor_start_timer(sci);
  258. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  259. sci->sc_watermark)
  260. nilfs_segctor_do_flush(sci, 0);
  261. }
  262. up_read(&sbi->s_nilfs->ns_segctor_sem);
  263. current->journal_info = ti->ti_save;
  264. if (ti->ti_flags & NILFS_TI_SYNC)
  265. err = nilfs_construct_segment(sb);
  266. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  267. kmem_cache_free(nilfs_transaction_cachep, ti);
  268. return err;
  269. }
  270. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  271. {
  272. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  273. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  274. struct the_nilfs *nilfs = sbi->s_nilfs;
  275. if (!sci || !sci->sc_flush_request)
  276. return;
  277. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  278. up_read(&nilfs->ns_segctor_sem);
  279. down_write(&nilfs->ns_segctor_sem);
  280. if (sci->sc_flush_request &&
  281. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  282. struct nilfs_transaction_info *ti = current->journal_info;
  283. ti->ti_flags |= NILFS_TI_WRITER;
  284. nilfs_segctor_do_immediate_flush(sci);
  285. ti->ti_flags &= ~NILFS_TI_WRITER;
  286. }
  287. downgrade_write(&nilfs->ns_segctor_sem);
  288. }
  289. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  290. struct nilfs_transaction_info *ti,
  291. int gcflag)
  292. {
  293. struct nilfs_transaction_info *cur_ti = current->journal_info;
  294. BUG_ON(cur_ti);
  295. BUG_ON(!ti);
  296. ti->ti_flags = NILFS_TI_WRITER;
  297. ti->ti_count = 0;
  298. ti->ti_save = cur_ti;
  299. ti->ti_magic = NILFS_TI_MAGIC;
  300. INIT_LIST_HEAD(&ti->ti_garbage);
  301. current->journal_info = ti;
  302. for (;;) {
  303. down_write(&sbi->s_nilfs->ns_segctor_sem);
  304. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  305. break;
  306. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  307. up_write(&sbi->s_nilfs->ns_segctor_sem);
  308. yield();
  309. }
  310. if (gcflag)
  311. ti->ti_flags |= NILFS_TI_GC;
  312. }
  313. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  314. {
  315. struct nilfs_transaction_info *ti = current->journal_info;
  316. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  317. BUG_ON(ti->ti_count > 0);
  318. up_write(&sbi->s_nilfs->ns_segctor_sem);
  319. current->journal_info = ti->ti_save;
  320. if (!list_empty(&ti->ti_garbage))
  321. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  322. }
  323. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  324. struct nilfs_segsum_pointer *ssp,
  325. unsigned bytes)
  326. {
  327. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  328. unsigned blocksize = sci->sc_super->s_blocksize;
  329. void *p;
  330. if (unlikely(ssp->offset + bytes > blocksize)) {
  331. ssp->offset = 0;
  332. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  333. &segbuf->sb_segsum_buffers));
  334. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  335. }
  336. p = ssp->bh->b_data + ssp->offset;
  337. ssp->offset += bytes;
  338. return p;
  339. }
  340. /**
  341. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  342. * @sci: nilfs_sc_info
  343. */
  344. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  345. {
  346. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  347. struct buffer_head *sumbh;
  348. unsigned sumbytes;
  349. unsigned flags = 0;
  350. int err;
  351. if (nilfs_doing_gc())
  352. flags = NILFS_SS_GC;
  353. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
  354. if (unlikely(err))
  355. return err;
  356. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  357. sumbytes = segbuf->sb_sum.sumbytes;
  358. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  359. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  360. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  361. return 0;
  362. }
  363. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  364. {
  365. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  366. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  367. return -E2BIG; /* The current segment is filled up
  368. (internal code) */
  369. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  370. return nilfs_segctor_reset_segment_buffer(sci);
  371. }
  372. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  373. {
  374. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  375. int err;
  376. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  377. err = nilfs_segctor_feed_segment(sci);
  378. if (err)
  379. return err;
  380. segbuf = sci->sc_curseg;
  381. }
  382. err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
  383. if (likely(!err))
  384. segbuf->sb_sum.flags |= NILFS_SS_SR;
  385. return err;
  386. }
  387. /*
  388. * Functions for making segment summary and payloads
  389. */
  390. static int nilfs_segctor_segsum_block_required(
  391. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  392. unsigned binfo_size)
  393. {
  394. unsigned blocksize = sci->sc_super->s_blocksize;
  395. /* Size of finfo and binfo is enough small against blocksize */
  396. return ssp->offset + binfo_size +
  397. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  398. blocksize;
  399. }
  400. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  401. struct inode *inode)
  402. {
  403. sci->sc_curseg->sb_sum.nfinfo++;
  404. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  405. nilfs_segctor_map_segsum_entry(
  406. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  407. /* skip finfo */
  408. }
  409. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  410. struct inode *inode)
  411. {
  412. struct nilfs_finfo *finfo;
  413. struct nilfs_inode_info *ii;
  414. struct nilfs_segment_buffer *segbuf;
  415. if (sci->sc_blk_cnt == 0)
  416. return;
  417. ii = NILFS_I(inode);
  418. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  419. sizeof(*finfo));
  420. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  421. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  422. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  423. finfo->fi_cno = cpu_to_le64(ii->i_cno);
  424. segbuf = sci->sc_curseg;
  425. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  426. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  427. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  428. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  429. }
  430. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  431. struct buffer_head *bh,
  432. struct inode *inode,
  433. unsigned binfo_size)
  434. {
  435. struct nilfs_segment_buffer *segbuf;
  436. int required, err = 0;
  437. retry:
  438. segbuf = sci->sc_curseg;
  439. required = nilfs_segctor_segsum_block_required(
  440. sci, &sci->sc_binfo_ptr, binfo_size);
  441. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  442. nilfs_segctor_end_finfo(sci, inode);
  443. err = nilfs_segctor_feed_segment(sci);
  444. if (err)
  445. return err;
  446. goto retry;
  447. }
  448. if (unlikely(required)) {
  449. err = nilfs_segbuf_extend_segsum(segbuf);
  450. if (unlikely(err))
  451. goto failed;
  452. }
  453. if (sci->sc_blk_cnt == 0)
  454. nilfs_segctor_begin_finfo(sci, inode);
  455. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  456. /* Substitution to vblocknr is delayed until update_blocknr() */
  457. nilfs_segbuf_add_file_buffer(segbuf, bh);
  458. sci->sc_blk_cnt++;
  459. failed:
  460. return err;
  461. }
  462. static int nilfs_handle_bmap_error(int err, const char *fname,
  463. struct inode *inode, struct super_block *sb)
  464. {
  465. if (err == -EINVAL) {
  466. nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
  467. inode->i_ino);
  468. err = -EIO;
  469. }
  470. return err;
  471. }
  472. /*
  473. * Callback functions that enumerate, mark, and collect dirty blocks
  474. */
  475. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  476. struct buffer_head *bh, struct inode *inode)
  477. {
  478. int err;
  479. /* BUG_ON(!buffer_dirty(bh)); */
  480. /* excluded by scan_dirty_data_buffers() */
  481. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  482. if (unlikely(err < 0))
  483. return nilfs_handle_bmap_error(err, __func__, inode,
  484. sci->sc_super);
  485. err = nilfs_segctor_add_file_block(sci, bh, inode,
  486. sizeof(struct nilfs_binfo_v));
  487. if (!err)
  488. sci->sc_datablk_cnt++;
  489. return err;
  490. }
  491. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  492. struct buffer_head *bh,
  493. struct inode *inode)
  494. {
  495. int err;
  496. /* BUG_ON(!buffer_dirty(bh)); */
  497. /* excluded by scan_dirty_node_buffers() */
  498. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  499. if (unlikely(err < 0))
  500. return nilfs_handle_bmap_error(err, __func__, inode,
  501. sci->sc_super);
  502. return 0;
  503. }
  504. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  505. struct buffer_head *bh,
  506. struct inode *inode)
  507. {
  508. BUG_ON(!buffer_dirty(bh));
  509. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  510. }
  511. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  512. struct nilfs_segsum_pointer *ssp,
  513. union nilfs_binfo *binfo)
  514. {
  515. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  516. sci, ssp, sizeof(*binfo_v));
  517. *binfo_v = binfo->bi_v;
  518. }
  519. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  520. struct nilfs_segsum_pointer *ssp,
  521. union nilfs_binfo *binfo)
  522. {
  523. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  524. sci, ssp, sizeof(*vblocknr));
  525. *vblocknr = binfo->bi_v.bi_vblocknr;
  526. }
  527. struct nilfs_sc_operations nilfs_sc_file_ops = {
  528. .collect_data = nilfs_collect_file_data,
  529. .collect_node = nilfs_collect_file_node,
  530. .collect_bmap = nilfs_collect_file_bmap,
  531. .write_data_binfo = nilfs_write_file_data_binfo,
  532. .write_node_binfo = nilfs_write_file_node_binfo,
  533. };
  534. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  535. struct buffer_head *bh, struct inode *inode)
  536. {
  537. int err;
  538. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  539. if (unlikely(err < 0))
  540. return nilfs_handle_bmap_error(err, __func__, inode,
  541. sci->sc_super);
  542. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  543. if (!err)
  544. sci->sc_datablk_cnt++;
  545. return err;
  546. }
  547. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  548. struct buffer_head *bh, struct inode *inode)
  549. {
  550. BUG_ON(!buffer_dirty(bh));
  551. return nilfs_segctor_add_file_block(sci, bh, inode,
  552. sizeof(struct nilfs_binfo_dat));
  553. }
  554. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  555. struct nilfs_segsum_pointer *ssp,
  556. union nilfs_binfo *binfo)
  557. {
  558. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  559. sizeof(*blkoff));
  560. *blkoff = binfo->bi_dat.bi_blkoff;
  561. }
  562. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  563. struct nilfs_segsum_pointer *ssp,
  564. union nilfs_binfo *binfo)
  565. {
  566. struct nilfs_binfo_dat *binfo_dat =
  567. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  568. *binfo_dat = binfo->bi_dat;
  569. }
  570. struct nilfs_sc_operations nilfs_sc_dat_ops = {
  571. .collect_data = nilfs_collect_dat_data,
  572. .collect_node = nilfs_collect_file_node,
  573. .collect_bmap = nilfs_collect_dat_bmap,
  574. .write_data_binfo = nilfs_write_dat_data_binfo,
  575. .write_node_binfo = nilfs_write_dat_node_binfo,
  576. };
  577. struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  578. .collect_data = nilfs_collect_file_data,
  579. .collect_node = NULL,
  580. .collect_bmap = NULL,
  581. .write_data_binfo = nilfs_write_file_data_binfo,
  582. .write_node_binfo = NULL,
  583. };
  584. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  585. struct list_head *listp,
  586. size_t nlimit,
  587. loff_t start, loff_t end)
  588. {
  589. struct address_space *mapping = inode->i_mapping;
  590. struct pagevec pvec;
  591. pgoff_t index = 0, last = ULONG_MAX;
  592. size_t ndirties = 0;
  593. int i;
  594. if (unlikely(start != 0 || end != LLONG_MAX)) {
  595. /*
  596. * A valid range is given for sync-ing data pages. The
  597. * range is rounded to per-page; extra dirty buffers
  598. * may be included if blocksize < pagesize.
  599. */
  600. index = start >> PAGE_SHIFT;
  601. last = end >> PAGE_SHIFT;
  602. }
  603. pagevec_init(&pvec, 0);
  604. repeat:
  605. if (unlikely(index > last) ||
  606. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  607. min_t(pgoff_t, last - index,
  608. PAGEVEC_SIZE - 1) + 1))
  609. return ndirties;
  610. for (i = 0; i < pagevec_count(&pvec); i++) {
  611. struct buffer_head *bh, *head;
  612. struct page *page = pvec.pages[i];
  613. if (unlikely(page->index > last))
  614. break;
  615. if (mapping->host) {
  616. lock_page(page);
  617. if (!page_has_buffers(page))
  618. create_empty_buffers(page,
  619. 1 << inode->i_blkbits, 0);
  620. unlock_page(page);
  621. }
  622. bh = head = page_buffers(page);
  623. do {
  624. if (!buffer_dirty(bh))
  625. continue;
  626. get_bh(bh);
  627. list_add_tail(&bh->b_assoc_buffers, listp);
  628. ndirties++;
  629. if (unlikely(ndirties >= nlimit)) {
  630. pagevec_release(&pvec);
  631. cond_resched();
  632. return ndirties;
  633. }
  634. } while (bh = bh->b_this_page, bh != head);
  635. }
  636. pagevec_release(&pvec);
  637. cond_resched();
  638. goto repeat;
  639. }
  640. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  641. struct list_head *listp)
  642. {
  643. struct nilfs_inode_info *ii = NILFS_I(inode);
  644. struct address_space *mapping = &ii->i_btnode_cache;
  645. struct pagevec pvec;
  646. struct buffer_head *bh, *head;
  647. unsigned int i;
  648. pgoff_t index = 0;
  649. pagevec_init(&pvec, 0);
  650. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  651. PAGEVEC_SIZE)) {
  652. for (i = 0; i < pagevec_count(&pvec); i++) {
  653. bh = head = page_buffers(pvec.pages[i]);
  654. do {
  655. if (buffer_dirty(bh)) {
  656. get_bh(bh);
  657. list_add_tail(&bh->b_assoc_buffers,
  658. listp);
  659. }
  660. bh = bh->b_this_page;
  661. } while (bh != head);
  662. }
  663. pagevec_release(&pvec);
  664. cond_resched();
  665. }
  666. }
  667. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  668. struct list_head *head, int force)
  669. {
  670. struct nilfs_inode_info *ii, *n;
  671. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  672. unsigned nv = 0;
  673. while (!list_empty(head)) {
  674. spin_lock(&sbi->s_inode_lock);
  675. list_for_each_entry_safe(ii, n, head, i_dirty) {
  676. list_del_init(&ii->i_dirty);
  677. if (force) {
  678. if (unlikely(ii->i_bh)) {
  679. brelse(ii->i_bh);
  680. ii->i_bh = NULL;
  681. }
  682. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  683. set_bit(NILFS_I_QUEUED, &ii->i_state);
  684. list_add_tail(&ii->i_dirty,
  685. &sbi->s_dirty_files);
  686. continue;
  687. }
  688. ivec[nv++] = ii;
  689. if (nv == SC_N_INODEVEC)
  690. break;
  691. }
  692. spin_unlock(&sbi->s_inode_lock);
  693. for (pii = ivec; nv > 0; pii++, nv--)
  694. iput(&(*pii)->vfs_inode);
  695. }
  696. }
  697. static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
  698. {
  699. struct the_nilfs *nilfs = sbi->s_nilfs;
  700. int ret = 0;
  701. if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
  702. ret++;
  703. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  704. ret++;
  705. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  706. ret++;
  707. if (ret || nilfs_doing_gc())
  708. if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
  709. ret++;
  710. return ret;
  711. }
  712. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  713. {
  714. return list_empty(&sci->sc_dirty_files) &&
  715. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  716. list_empty(&sci->sc_cleaning_segments) &&
  717. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  718. }
  719. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  720. {
  721. struct nilfs_sb_info *sbi = sci->sc_sbi;
  722. int ret = 0;
  723. if (nilfs_test_metadata_dirty(sbi))
  724. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  725. spin_lock(&sbi->s_inode_lock);
  726. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  727. ret++;
  728. spin_unlock(&sbi->s_inode_lock);
  729. return ret;
  730. }
  731. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  732. {
  733. struct nilfs_sb_info *sbi = sci->sc_sbi;
  734. struct the_nilfs *nilfs = sbi->s_nilfs;
  735. nilfs_mdt_clear_dirty(sbi->s_ifile);
  736. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  737. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  738. nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
  739. }
  740. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  741. {
  742. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  743. struct buffer_head *bh_cp;
  744. struct nilfs_checkpoint *raw_cp;
  745. int err;
  746. /* XXX: this interface will be changed */
  747. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  748. &raw_cp, &bh_cp);
  749. if (likely(!err)) {
  750. /* The following code is duplicated with cpfile. But, it is
  751. needed to collect the checkpoint even if it was not newly
  752. created */
  753. nilfs_mdt_mark_buffer_dirty(bh_cp);
  754. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  755. nilfs_cpfile_put_checkpoint(
  756. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  757. } else {
  758. BUG_ON(err == -EINVAL || err == -ENOENT);
  759. }
  760. return err;
  761. }
  762. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  763. {
  764. struct nilfs_sb_info *sbi = sci->sc_sbi;
  765. struct the_nilfs *nilfs = sbi->s_nilfs;
  766. struct buffer_head *bh_cp;
  767. struct nilfs_checkpoint *raw_cp;
  768. int err;
  769. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  770. &raw_cp, &bh_cp);
  771. if (unlikely(err)) {
  772. BUG_ON(err == -EINVAL || err == -ENOENT);
  773. goto failed_ibh;
  774. }
  775. raw_cp->cp_snapshot_list.ssl_next = 0;
  776. raw_cp->cp_snapshot_list.ssl_prev = 0;
  777. raw_cp->cp_inodes_count =
  778. cpu_to_le64(atomic_read(&sbi->s_inodes_count));
  779. raw_cp->cp_blocks_count =
  780. cpu_to_le64(atomic_read(&sbi->s_blocks_count));
  781. raw_cp->cp_nblk_inc =
  782. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  783. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  784. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  785. if (sci->sc_sketch_inode && i_size_read(sci->sc_sketch_inode) > 0)
  786. nilfs_checkpoint_set_sketch(raw_cp);
  787. nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
  788. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  789. return 0;
  790. failed_ibh:
  791. return err;
  792. }
  793. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  794. struct nilfs_inode_info *ii)
  795. {
  796. struct buffer_head *ibh;
  797. struct nilfs_inode *raw_inode;
  798. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  799. ibh = ii->i_bh;
  800. BUG_ON(!ibh);
  801. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  802. ibh);
  803. nilfs_bmap_write(ii->i_bmap, raw_inode);
  804. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  805. }
  806. }
  807. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
  808. struct inode *ifile)
  809. {
  810. struct nilfs_inode_info *ii;
  811. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  812. nilfs_fill_in_file_bmap(ifile, ii);
  813. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  814. }
  815. if (sci->sc_sketch_inode) {
  816. ii = NILFS_I(sci->sc_sketch_inode);
  817. if (test_bit(NILFS_I_DIRTY, &ii->i_state))
  818. nilfs_fill_in_file_bmap(ifile, ii);
  819. }
  820. }
  821. /*
  822. * CRC calculation routines
  823. */
  824. static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
  825. {
  826. struct nilfs_super_root *raw_sr =
  827. (struct nilfs_super_root *)bh_sr->b_data;
  828. u32 crc;
  829. BUG_ON(NILFS_SR_BYTES > bh_sr->b_size);
  830. crc = crc32_le(seed,
  831. (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
  832. NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
  833. raw_sr->sr_sum = cpu_to_le32(crc);
  834. }
  835. static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
  836. u32 seed)
  837. {
  838. struct nilfs_segment_buffer *segbuf;
  839. if (sci->sc_super_root)
  840. nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
  841. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  842. nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
  843. nilfs_segbuf_fill_in_data_crc(segbuf, seed);
  844. }
  845. }
  846. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  847. struct the_nilfs *nilfs)
  848. {
  849. struct buffer_head *bh_sr = sci->sc_super_root;
  850. struct nilfs_super_root *raw_sr =
  851. (struct nilfs_super_root *)bh_sr->b_data;
  852. unsigned isz = nilfs->ns_inode_size;
  853. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  854. raw_sr->sr_nongc_ctime
  855. = cpu_to_le64(nilfs_doing_gc() ?
  856. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  857. raw_sr->sr_flags = 0;
  858. nilfs_mdt_write_inode_direct(
  859. nilfs_dat_inode(nilfs), bh_sr, NILFS_SR_DAT_OFFSET(isz));
  860. nilfs_mdt_write_inode_direct(
  861. nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(isz));
  862. nilfs_mdt_write_inode_direct(
  863. nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(isz));
  864. }
  865. static void nilfs_redirty_inodes(struct list_head *head)
  866. {
  867. struct nilfs_inode_info *ii;
  868. list_for_each_entry(ii, head, i_dirty) {
  869. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  870. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  871. }
  872. }
  873. static void nilfs_drop_collected_inodes(struct list_head *head)
  874. {
  875. struct nilfs_inode_info *ii;
  876. list_for_each_entry(ii, head, i_dirty) {
  877. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  878. continue;
  879. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  880. set_bit(NILFS_I_UPDATED, &ii->i_state);
  881. }
  882. }
  883. static void nilfs_segctor_cancel_free_segments(struct nilfs_sc_info *sci,
  884. struct inode *sufile)
  885. {
  886. struct list_head *head = &sci->sc_cleaning_segments;
  887. struct nilfs_segment_entry *ent;
  888. int err;
  889. list_for_each_entry(ent, head, list) {
  890. if (!(ent->flags & NILFS_SLH_FREED))
  891. break;
  892. err = nilfs_sufile_cancel_free(sufile, ent->segnum);
  893. BUG_ON(err);
  894. ent->flags &= ~NILFS_SLH_FREED;
  895. }
  896. }
  897. static int nilfs_segctor_prepare_free_segments(struct nilfs_sc_info *sci,
  898. struct inode *sufile)
  899. {
  900. struct list_head *head = &sci->sc_cleaning_segments;
  901. struct nilfs_segment_entry *ent;
  902. int err;
  903. list_for_each_entry(ent, head, list) {
  904. err = nilfs_sufile_free(sufile, ent->segnum);
  905. if (unlikely(err))
  906. return err;
  907. ent->flags |= NILFS_SLH_FREED;
  908. }
  909. return 0;
  910. }
  911. static void nilfs_segctor_commit_free_segments(struct nilfs_sc_info *sci)
  912. {
  913. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  914. }
  915. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  916. struct inode *inode,
  917. struct list_head *listp,
  918. int (*collect)(struct nilfs_sc_info *,
  919. struct buffer_head *,
  920. struct inode *))
  921. {
  922. struct buffer_head *bh, *n;
  923. int err = 0;
  924. if (collect) {
  925. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  926. list_del_init(&bh->b_assoc_buffers);
  927. err = collect(sci, bh, inode);
  928. brelse(bh);
  929. if (unlikely(err))
  930. goto dispose_buffers;
  931. }
  932. return 0;
  933. }
  934. dispose_buffers:
  935. while (!list_empty(listp)) {
  936. bh = list_entry(listp->next, struct buffer_head,
  937. b_assoc_buffers);
  938. list_del_init(&bh->b_assoc_buffers);
  939. brelse(bh);
  940. }
  941. return err;
  942. }
  943. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  944. {
  945. /* Remaining number of blocks within segment buffer */
  946. return sci->sc_segbuf_nblocks -
  947. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  948. }
  949. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  950. struct inode *inode,
  951. struct nilfs_sc_operations *sc_ops)
  952. {
  953. LIST_HEAD(data_buffers);
  954. LIST_HEAD(node_buffers);
  955. int err;
  956. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  957. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  958. n = nilfs_lookup_dirty_data_buffers(
  959. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  960. if (n > rest) {
  961. err = nilfs_segctor_apply_buffers(
  962. sci, inode, &data_buffers,
  963. sc_ops->collect_data);
  964. BUG_ON(!err); /* always receive -E2BIG or true error */
  965. goto break_or_fail;
  966. }
  967. }
  968. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  969. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  970. err = nilfs_segctor_apply_buffers(
  971. sci, inode, &data_buffers, sc_ops->collect_data);
  972. if (unlikely(err)) {
  973. /* dispose node list */
  974. nilfs_segctor_apply_buffers(
  975. sci, inode, &node_buffers, NULL);
  976. goto break_or_fail;
  977. }
  978. sci->sc_stage.flags |= NILFS_CF_NODE;
  979. }
  980. /* Collect node */
  981. err = nilfs_segctor_apply_buffers(
  982. sci, inode, &node_buffers, sc_ops->collect_node);
  983. if (unlikely(err))
  984. goto break_or_fail;
  985. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  986. err = nilfs_segctor_apply_buffers(
  987. sci, inode, &node_buffers, sc_ops->collect_bmap);
  988. if (unlikely(err))
  989. goto break_or_fail;
  990. nilfs_segctor_end_finfo(sci, inode);
  991. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  992. break_or_fail:
  993. return err;
  994. }
  995. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  996. struct inode *inode)
  997. {
  998. LIST_HEAD(data_buffers);
  999. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  1000. int err;
  1001. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  1002. sci->sc_dsync_start,
  1003. sci->sc_dsync_end);
  1004. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  1005. nilfs_collect_file_data);
  1006. if (!err) {
  1007. nilfs_segctor_end_finfo(sci, inode);
  1008. BUG_ON(n > rest);
  1009. /* always receive -E2BIG or true error if n > rest */
  1010. }
  1011. return err;
  1012. }
  1013. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  1014. {
  1015. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1016. struct the_nilfs *nilfs = sbi->s_nilfs;
  1017. struct list_head *head;
  1018. struct nilfs_inode_info *ii;
  1019. int err = 0;
  1020. switch (sci->sc_stage.scnt) {
  1021. case NILFS_ST_INIT:
  1022. /* Pre-processes */
  1023. sci->sc_stage.flags = 0;
  1024. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  1025. sci->sc_nblk_inc = 0;
  1026. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  1027. if (mode == SC_LSEG_DSYNC) {
  1028. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  1029. goto dsync_mode;
  1030. }
  1031. }
  1032. sci->sc_stage.dirty_file_ptr = NULL;
  1033. sci->sc_stage.gc_inode_ptr = NULL;
  1034. if (mode == SC_FLUSH_DAT) {
  1035. sci->sc_stage.scnt = NILFS_ST_DAT;
  1036. goto dat_stage;
  1037. }
  1038. sci->sc_stage.scnt++; /* Fall through */
  1039. case NILFS_ST_GC:
  1040. if (nilfs_doing_gc()) {
  1041. head = &sci->sc_gc_inodes;
  1042. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  1043. head, i_dirty);
  1044. list_for_each_entry_continue(ii, head, i_dirty) {
  1045. err = nilfs_segctor_scan_file(
  1046. sci, &ii->vfs_inode,
  1047. &nilfs_sc_file_ops);
  1048. if (unlikely(err)) {
  1049. sci->sc_stage.gc_inode_ptr = list_entry(
  1050. ii->i_dirty.prev,
  1051. struct nilfs_inode_info,
  1052. i_dirty);
  1053. goto break_or_fail;
  1054. }
  1055. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  1056. }
  1057. sci->sc_stage.gc_inode_ptr = NULL;
  1058. }
  1059. sci->sc_stage.scnt++; /* Fall through */
  1060. case NILFS_ST_FILE:
  1061. head = &sci->sc_dirty_files;
  1062. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  1063. i_dirty);
  1064. list_for_each_entry_continue(ii, head, i_dirty) {
  1065. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  1066. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  1067. &nilfs_sc_file_ops);
  1068. if (unlikely(err)) {
  1069. sci->sc_stage.dirty_file_ptr =
  1070. list_entry(ii->i_dirty.prev,
  1071. struct nilfs_inode_info,
  1072. i_dirty);
  1073. goto break_or_fail;
  1074. }
  1075. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  1076. /* XXX: required ? */
  1077. }
  1078. sci->sc_stage.dirty_file_ptr = NULL;
  1079. if (mode == SC_FLUSH_FILE) {
  1080. sci->sc_stage.scnt = NILFS_ST_DONE;
  1081. return 0;
  1082. }
  1083. sci->sc_stage.scnt++; /* Fall through */
  1084. case NILFS_ST_SKETCH:
  1085. if (mode == SC_LSEG_SR && sci->sc_sketch_inode) {
  1086. ii = NILFS_I(sci->sc_sketch_inode);
  1087. if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1088. sci->sc_sketch_inode->i_ctime.tv_sec
  1089. = sci->sc_seg_ctime;
  1090. sci->sc_sketch_inode->i_mtime.tv_sec
  1091. = sci->sc_seg_ctime;
  1092. err = nilfs_mark_inode_dirty(
  1093. sci->sc_sketch_inode);
  1094. if (unlikely(err))
  1095. goto break_or_fail;
  1096. }
  1097. err = nilfs_segctor_scan_file(sci,
  1098. sci->sc_sketch_inode,
  1099. &nilfs_sc_file_ops);
  1100. if (unlikely(err))
  1101. goto break_or_fail;
  1102. }
  1103. sci->sc_stage.scnt++;
  1104. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1105. /* Fall through */
  1106. case NILFS_ST_IFILE:
  1107. err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
  1108. &nilfs_sc_file_ops);
  1109. if (unlikely(err))
  1110. break;
  1111. sci->sc_stage.scnt++;
  1112. /* Creating a checkpoint */
  1113. err = nilfs_segctor_create_checkpoint(sci);
  1114. if (unlikely(err))
  1115. break;
  1116. /* Fall through */
  1117. case NILFS_ST_CPFILE:
  1118. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1119. &nilfs_sc_file_ops);
  1120. if (unlikely(err))
  1121. break;
  1122. sci->sc_stage.scnt++; /* Fall through */
  1123. case NILFS_ST_SUFILE:
  1124. err = nilfs_segctor_prepare_free_segments(sci,
  1125. nilfs->ns_sufile);
  1126. if (unlikely(err))
  1127. break;
  1128. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1129. &nilfs_sc_file_ops);
  1130. if (unlikely(err))
  1131. break;
  1132. sci->sc_stage.scnt++; /* Fall through */
  1133. case NILFS_ST_DAT:
  1134. dat_stage:
  1135. err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
  1136. &nilfs_sc_dat_ops);
  1137. if (unlikely(err))
  1138. break;
  1139. if (mode == SC_FLUSH_DAT) {
  1140. sci->sc_stage.scnt = NILFS_ST_DONE;
  1141. return 0;
  1142. }
  1143. sci->sc_stage.scnt++; /* Fall through */
  1144. case NILFS_ST_SR:
  1145. if (mode == SC_LSEG_SR) {
  1146. /* Appending a super root */
  1147. err = nilfs_segctor_add_super_root(sci);
  1148. if (unlikely(err))
  1149. break;
  1150. }
  1151. /* End of a logical segment */
  1152. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1153. sci->sc_stage.scnt = NILFS_ST_DONE;
  1154. return 0;
  1155. case NILFS_ST_DSYNC:
  1156. dsync_mode:
  1157. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1158. ii = sci->sc_dsync_inode;
  1159. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1160. break;
  1161. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1162. if (unlikely(err))
  1163. break;
  1164. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1165. sci->sc_stage.scnt = NILFS_ST_DONE;
  1166. return 0;
  1167. case NILFS_ST_DONE:
  1168. return 0;
  1169. default:
  1170. BUG();
  1171. }
  1172. break_or_fail:
  1173. return err;
  1174. }
  1175. static int nilfs_segctor_terminate_segment(struct nilfs_sc_info *sci,
  1176. struct nilfs_segment_buffer *segbuf,
  1177. struct inode *sufile)
  1178. {
  1179. struct nilfs_segment_entry *ent = segbuf->sb_segent;
  1180. int err;
  1181. err = nilfs_open_segment_entry(ent, sufile);
  1182. if (unlikely(err))
  1183. return err;
  1184. nilfs_mdt_mark_buffer_dirty(ent->bh_su);
  1185. nilfs_mdt_mark_dirty(sufile);
  1186. nilfs_close_segment_entry(ent, sufile);
  1187. list_add_tail(&ent->list, &sci->sc_active_segments);
  1188. segbuf->sb_segent = NULL;
  1189. return 0;
  1190. }
  1191. static int nilfs_touch_segusage(struct inode *sufile, __u64 segnum)
  1192. {
  1193. struct buffer_head *bh_su;
  1194. struct nilfs_segment_usage *raw_su;
  1195. int err;
  1196. err = nilfs_sufile_get_segment_usage(sufile, segnum, &raw_su, &bh_su);
  1197. if (unlikely(err))
  1198. return err;
  1199. nilfs_mdt_mark_buffer_dirty(bh_su);
  1200. nilfs_mdt_mark_dirty(sufile);
  1201. nilfs_sufile_put_segment_usage(sufile, segnum, bh_su);
  1202. return 0;
  1203. }
  1204. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1205. struct the_nilfs *nilfs)
  1206. {
  1207. struct nilfs_segment_buffer *segbuf, *n;
  1208. struct inode *sufile = nilfs->ns_sufile;
  1209. __u64 nextnum;
  1210. int err;
  1211. if (list_empty(&sci->sc_segbufs)) {
  1212. segbuf = nilfs_segbuf_new(sci->sc_super);
  1213. if (unlikely(!segbuf))
  1214. return -ENOMEM;
  1215. list_add(&segbuf->sb_list, &sci->sc_segbufs);
  1216. } else
  1217. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1218. err = nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1219. nilfs->ns_pseg_offset, nilfs);
  1220. if (unlikely(err))
  1221. return err;
  1222. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1223. err = nilfs_segctor_terminate_segment(sci, segbuf, sufile);
  1224. if (unlikely(err))
  1225. return err;
  1226. nilfs_shift_to_next_segment(nilfs);
  1227. err = nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1228. }
  1229. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1230. err = nilfs_touch_segusage(sufile, segbuf->sb_segnum);
  1231. if (unlikely(err))
  1232. return err;
  1233. if (nilfs->ns_segnum == nilfs->ns_nextnum) {
  1234. /* Start from the head of a new full segment */
  1235. err = nilfs_sufile_alloc(sufile, &nextnum);
  1236. if (unlikely(err))
  1237. return err;
  1238. } else
  1239. nextnum = nilfs->ns_nextnum;
  1240. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1241. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1242. /* truncating segment buffers */
  1243. list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
  1244. sb_list) {
  1245. list_del_init(&segbuf->sb_list);
  1246. nilfs_segbuf_free(segbuf);
  1247. }
  1248. return err;
  1249. }
  1250. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1251. struct the_nilfs *nilfs, int nadd)
  1252. {
  1253. struct nilfs_segment_buffer *segbuf, *prev, *n;
  1254. struct inode *sufile = nilfs->ns_sufile;
  1255. __u64 nextnextnum;
  1256. LIST_HEAD(list);
  1257. int err, ret, i;
  1258. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1259. /*
  1260. * Since the segment specified with nextnum might be allocated during
  1261. * the previous construction, the buffer including its segusage may
  1262. * not be dirty. The following call ensures that the buffer is dirty
  1263. * and will pin the buffer on memory until the sufile is written.
  1264. */
  1265. err = nilfs_touch_segusage(sufile, prev->sb_nextnum);
  1266. if (unlikely(err))
  1267. return err;
  1268. for (i = 0; i < nadd; i++) {
  1269. /* extend segment info */
  1270. err = -ENOMEM;
  1271. segbuf = nilfs_segbuf_new(sci->sc_super);
  1272. if (unlikely(!segbuf))
  1273. goto failed;
  1274. /* map this buffer to region of segment on-disk */
  1275. err = nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1276. if (unlikely(err))
  1277. goto failed_segbuf;
  1278. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1279. /* allocate the next next full segment */
  1280. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1281. if (unlikely(err))
  1282. goto failed_segbuf;
  1283. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1284. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1285. list_add_tail(&segbuf->sb_list, &list);
  1286. prev = segbuf;
  1287. }
  1288. list_splice(&list, sci->sc_segbufs.prev);
  1289. return 0;
  1290. failed_segbuf:
  1291. nilfs_segbuf_free(segbuf);
  1292. failed:
  1293. list_for_each_entry_safe(segbuf, n, &list, sb_list) {
  1294. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1295. BUG_ON(ret);
  1296. list_del_init(&segbuf->sb_list);
  1297. nilfs_segbuf_free(segbuf);
  1298. }
  1299. return err;
  1300. }
  1301. static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info *sci,
  1302. struct the_nilfs *nilfs)
  1303. {
  1304. struct nilfs_segment_buffer *segbuf;
  1305. int ret, done = 0;
  1306. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1307. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1308. ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
  1309. BUG_ON(ret);
  1310. }
  1311. if (segbuf->sb_io_error) {
  1312. /* Case 1: The first segment failed */
  1313. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1314. /* Case 1a: Partial segment appended into an existing
  1315. segment */
  1316. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1317. segbuf->sb_fseg_end);
  1318. else /* Case 1b: New full segment */
  1319. set_nilfs_discontinued(nilfs);
  1320. done++;
  1321. }
  1322. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1323. ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
  1324. BUG_ON(ret);
  1325. if (!done && segbuf->sb_io_error) {
  1326. if (segbuf->sb_segnum != nilfs->ns_nextnum)
  1327. /* Case 2: extended segment (!= next) failed */
  1328. nilfs_sufile_set_error(nilfs->ns_sufile,
  1329. segbuf->sb_segnum);
  1330. done++;
  1331. }
  1332. }
  1333. }
  1334. static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info *sci)
  1335. {
  1336. struct nilfs_segment_buffer *segbuf;
  1337. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list)
  1338. nilfs_segbuf_clear(segbuf);
  1339. sci->sc_super_root = NULL;
  1340. }
  1341. static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info *sci)
  1342. {
  1343. struct nilfs_segment_buffer *segbuf;
  1344. while (!list_empty(&sci->sc_segbufs)) {
  1345. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1346. list_del_init(&segbuf->sb_list);
  1347. nilfs_segbuf_free(segbuf);
  1348. }
  1349. /* sci->sc_curseg = NULL; */
  1350. }
  1351. static void nilfs_segctor_end_construction(struct nilfs_sc_info *sci,
  1352. struct the_nilfs *nilfs, int err)
  1353. {
  1354. if (unlikely(err)) {
  1355. nilfs_segctor_free_incomplete_segments(sci, nilfs);
  1356. nilfs_segctor_cancel_free_segments(sci, nilfs->ns_sufile);
  1357. }
  1358. nilfs_segctor_clear_segment_buffers(sci);
  1359. }
  1360. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1361. struct inode *sufile)
  1362. {
  1363. struct nilfs_segment_buffer *segbuf;
  1364. struct buffer_head *bh_su;
  1365. struct nilfs_segment_usage *raw_su;
  1366. unsigned long live_blocks;
  1367. int ret;
  1368. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1369. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1370. &raw_su, &bh_su);
  1371. BUG_ON(ret); /* always succeed because bh_su is dirty */
  1372. live_blocks = segbuf->sb_sum.nblocks +
  1373. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1374. raw_su->su_lastmod = cpu_to_le64(sci->sc_seg_ctime);
  1375. raw_su->su_nblocks = cpu_to_le32(live_blocks);
  1376. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
  1377. bh_su);
  1378. }
  1379. }
  1380. static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info *sci,
  1381. struct inode *sufile)
  1382. {
  1383. struct nilfs_segment_buffer *segbuf;
  1384. struct buffer_head *bh_su;
  1385. struct nilfs_segment_usage *raw_su;
  1386. int ret;
  1387. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1388. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1389. &raw_su, &bh_su);
  1390. BUG_ON(ret); /* always succeed because bh_su is dirty */
  1391. raw_su->su_nblocks = cpu_to_le32(segbuf->sb_pseg_start -
  1392. segbuf->sb_fseg_start);
  1393. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum, bh_su);
  1394. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1395. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1396. &raw_su, &bh_su);
  1397. BUG_ON(ret); /* always succeed */
  1398. raw_su->su_nblocks = 0;
  1399. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
  1400. bh_su);
  1401. }
  1402. }
  1403. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1404. struct nilfs_segment_buffer *last,
  1405. struct inode *sufile)
  1406. {
  1407. struct nilfs_segment_buffer *segbuf = last, *n;
  1408. int ret;
  1409. list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
  1410. sb_list) {
  1411. list_del_init(&segbuf->sb_list);
  1412. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1413. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1414. BUG_ON(ret);
  1415. nilfs_segbuf_free(segbuf);
  1416. }
  1417. }
  1418. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1419. struct the_nilfs *nilfs, int mode)
  1420. {
  1421. struct nilfs_cstage prev_stage = sci->sc_stage;
  1422. int err, nadd = 1;
  1423. /* Collection retry loop */
  1424. for (;;) {
  1425. sci->sc_super_root = NULL;
  1426. sci->sc_nblk_this_inc = 0;
  1427. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1428. err = nilfs_segctor_reset_segment_buffer(sci);
  1429. if (unlikely(err))
  1430. goto failed;
  1431. err = nilfs_segctor_collect_blocks(sci, mode);
  1432. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1433. if (!err)
  1434. break;
  1435. if (unlikely(err != -E2BIG))
  1436. goto failed;
  1437. /* The current segment is filled up */
  1438. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1439. break;
  1440. nilfs_segctor_cancel_free_segments(sci, nilfs->ns_sufile);
  1441. nilfs_segctor_clear_segment_buffers(sci);
  1442. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1443. if (unlikely(err))
  1444. return err;
  1445. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1446. sci->sc_stage = prev_stage;
  1447. }
  1448. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1449. return 0;
  1450. failed:
  1451. return err;
  1452. }
  1453. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1454. struct buffer_head *new_bh)
  1455. {
  1456. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1457. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1458. /* The caller must release old_bh */
  1459. }
  1460. static int
  1461. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1462. struct nilfs_segment_buffer *segbuf,
  1463. int mode)
  1464. {
  1465. struct inode *inode = NULL;
  1466. sector_t blocknr;
  1467. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1468. unsigned long nblocks = 0, ndatablk = 0;
  1469. struct nilfs_sc_operations *sc_op = NULL;
  1470. struct nilfs_segsum_pointer ssp;
  1471. struct nilfs_finfo *finfo = NULL;
  1472. union nilfs_binfo binfo;
  1473. struct buffer_head *bh, *bh_org;
  1474. ino_t ino = 0;
  1475. int err = 0;
  1476. if (!nfinfo)
  1477. goto out;
  1478. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1479. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1480. ssp.offset = sizeof(struct nilfs_segment_summary);
  1481. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1482. if (bh == sci->sc_super_root)
  1483. break;
  1484. if (!finfo) {
  1485. finfo = nilfs_segctor_map_segsum_entry(
  1486. sci, &ssp, sizeof(*finfo));
  1487. ino = le64_to_cpu(finfo->fi_ino);
  1488. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1489. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1490. if (buffer_nilfs_node(bh))
  1491. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1492. else
  1493. inode = NILFS_AS_I(bh->b_page->mapping);
  1494. if (mode == SC_LSEG_DSYNC)
  1495. sc_op = &nilfs_sc_dsync_ops;
  1496. else if (ino == NILFS_DAT_INO)
  1497. sc_op = &nilfs_sc_dat_ops;
  1498. else /* file blocks */
  1499. sc_op = &nilfs_sc_file_ops;
  1500. }
  1501. bh_org = bh;
  1502. get_bh(bh_org);
  1503. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1504. &binfo);
  1505. if (bh != bh_org)
  1506. nilfs_list_replace_buffer(bh_org, bh);
  1507. brelse(bh_org);
  1508. if (unlikely(err))
  1509. goto failed_bmap;
  1510. if (ndatablk > 0)
  1511. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1512. else
  1513. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1514. blocknr++;
  1515. if (--nblocks == 0) {
  1516. finfo = NULL;
  1517. if (--nfinfo == 0)
  1518. break;
  1519. } else if (ndatablk > 0)
  1520. ndatablk--;
  1521. }
  1522. out:
  1523. return 0;
  1524. failed_bmap:
  1525. err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
  1526. return err;
  1527. }
  1528. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1529. {
  1530. struct nilfs_segment_buffer *segbuf;
  1531. int err;
  1532. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1533. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1534. if (unlikely(err))
  1535. return err;
  1536. nilfs_segbuf_fill_in_segsum(segbuf);
  1537. }
  1538. return 0;
  1539. }
  1540. static int
  1541. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1542. {
  1543. struct page *clone_page;
  1544. struct buffer_head *bh, *head, *bh2;
  1545. void *kaddr;
  1546. bh = head = page_buffers(page);
  1547. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1548. if (unlikely(!clone_page))
  1549. return -ENOMEM;
  1550. bh2 = page_buffers(clone_page);
  1551. kaddr = kmap_atomic(page, KM_USER0);
  1552. do {
  1553. if (list_empty(&bh->b_assoc_buffers))
  1554. continue;
  1555. get_bh(bh2);
  1556. page_cache_get(clone_page); /* for each bh */
  1557. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1558. bh2->b_blocknr = bh->b_blocknr;
  1559. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1560. list_add_tail(&bh->b_assoc_buffers, out);
  1561. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1562. kunmap_atomic(kaddr, KM_USER0);
  1563. if (!TestSetPageWriteback(clone_page))
  1564. inc_zone_page_state(clone_page, NR_WRITEBACK);
  1565. unlock_page(clone_page);
  1566. return 0;
  1567. }
  1568. static int nilfs_test_page_to_be_frozen(struct page *page)
  1569. {
  1570. struct address_space *mapping = page->mapping;
  1571. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1572. return 0;
  1573. if (page_mapped(page)) {
  1574. ClearPageChecked(page);
  1575. return 1;
  1576. }
  1577. return PageChecked(page);
  1578. }
  1579. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1580. {
  1581. if (!page || PageWriteback(page))
  1582. /* For split b-tree node pages, this function may be called
  1583. twice. We ignore the 2nd or later calls by this check. */
  1584. return 0;
  1585. lock_page(page);
  1586. clear_page_dirty_for_io(page);
  1587. set_page_writeback(page);
  1588. unlock_page(page);
  1589. if (nilfs_test_page_to_be_frozen(page)) {
  1590. int err = nilfs_copy_replace_page_buffers(page, out);
  1591. if (unlikely(err))
  1592. return err;
  1593. }
  1594. return 0;
  1595. }
  1596. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1597. struct page **failed_page)
  1598. {
  1599. struct nilfs_segment_buffer *segbuf;
  1600. struct page *bd_page = NULL, *fs_page = NULL;
  1601. struct list_head *list = &sci->sc_copied_buffers;
  1602. int err;
  1603. *failed_page = NULL;
  1604. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1605. struct buffer_head *bh;
  1606. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1607. b_assoc_buffers) {
  1608. if (bh->b_page != bd_page) {
  1609. if (bd_page) {
  1610. lock_page(bd_page);
  1611. clear_page_dirty_for_io(bd_page);
  1612. set_page_writeback(bd_page);
  1613. unlock_page(bd_page);
  1614. }
  1615. bd_page = bh->b_page;
  1616. }
  1617. }
  1618. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1619. b_assoc_buffers) {
  1620. if (bh == sci->sc_super_root) {
  1621. if (bh->b_page != bd_page) {
  1622. lock_page(bd_page);
  1623. clear_page_dirty_for_io(bd_page);
  1624. set_page_writeback(bd_page);
  1625. unlock_page(bd_page);
  1626. bd_page = bh->b_page;
  1627. }
  1628. break;
  1629. }
  1630. if (bh->b_page != fs_page) {
  1631. err = nilfs_begin_page_io(fs_page, list);
  1632. if (unlikely(err)) {
  1633. *failed_page = fs_page;
  1634. goto out;
  1635. }
  1636. fs_page = bh->b_page;
  1637. }
  1638. }
  1639. }
  1640. if (bd_page) {
  1641. lock_page(bd_page);
  1642. clear_page_dirty_for_io(bd_page);
  1643. set_page_writeback(bd_page);
  1644. unlock_page(bd_page);
  1645. }
  1646. err = nilfs_begin_page_io(fs_page, list);
  1647. if (unlikely(err))
  1648. *failed_page = fs_page;
  1649. out:
  1650. return err;
  1651. }
  1652. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1653. struct backing_dev_info *bdi)
  1654. {
  1655. struct nilfs_segment_buffer *segbuf;
  1656. struct nilfs_write_info wi;
  1657. int err, res;
  1658. wi.sb = sci->sc_super;
  1659. wi.bh_sr = sci->sc_super_root;
  1660. wi.bdi = bdi;
  1661. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1662. nilfs_segbuf_prepare_write(segbuf, &wi);
  1663. err = nilfs_segbuf_write(segbuf, &wi);
  1664. res = nilfs_segbuf_wait(segbuf, &wi);
  1665. err = unlikely(err) ? : res;
  1666. if (unlikely(err))
  1667. return err;
  1668. }
  1669. return 0;
  1670. }
  1671. static int nilfs_page_has_uncleared_buffer(struct page *page)
  1672. {
  1673. struct buffer_head *head, *bh;
  1674. head = bh = page_buffers(page);
  1675. do {
  1676. if (buffer_dirty(bh) && !list_empty(&bh->b_assoc_buffers))
  1677. return 1;
  1678. bh = bh->b_this_page;
  1679. } while (bh != head);
  1680. return 0;
  1681. }
  1682. static void __nilfs_end_page_io(struct page *page, int err)
  1683. {
  1684. /* BUG_ON(err > 0); */
  1685. if (!err) {
  1686. if (!nilfs_page_buffers_clean(page))
  1687. __set_page_dirty_nobuffers(page);
  1688. ClearPageError(page);
  1689. } else {
  1690. __set_page_dirty_nobuffers(page);
  1691. SetPageError(page);
  1692. }
  1693. if (buffer_nilfs_allocated(page_buffers(page))) {
  1694. if (TestClearPageWriteback(page))
  1695. dec_zone_page_state(page, NR_WRITEBACK);
  1696. } else
  1697. end_page_writeback(page);
  1698. }
  1699. static void nilfs_end_page_io(struct page *page, int err)
  1700. {
  1701. if (!page)
  1702. return;
  1703. if (buffer_nilfs_node(page_buffers(page)) &&
  1704. nilfs_page_has_uncleared_buffer(page))
  1705. /* For b-tree node pages, this function may be called twice
  1706. or more because they might be split in a segment.
  1707. This check assures that cleanup has been done for all
  1708. buffers in a split btnode page. */
  1709. return;
  1710. __nilfs_end_page_io(page, err);
  1711. }
  1712. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1713. {
  1714. struct buffer_head *bh, *head;
  1715. struct page *page;
  1716. while (!list_empty(list)) {
  1717. bh = list_entry(list->next, struct buffer_head,
  1718. b_assoc_buffers);
  1719. page = bh->b_page;
  1720. page_cache_get(page);
  1721. head = bh = page_buffers(page);
  1722. do {
  1723. if (!list_empty(&bh->b_assoc_buffers)) {
  1724. list_del_init(&bh->b_assoc_buffers);
  1725. if (!err) {
  1726. set_buffer_uptodate(bh);
  1727. clear_buffer_dirty(bh);
  1728. clear_buffer_nilfs_volatile(bh);
  1729. }
  1730. brelse(bh); /* for b_assoc_buffers */
  1731. }
  1732. } while ((bh = bh->b_this_page) != head);
  1733. __nilfs_end_page_io(page, err);
  1734. page_cache_release(page);
  1735. }
  1736. }
  1737. static void nilfs_segctor_abort_write(struct nilfs_sc_info *sci,
  1738. struct page *failed_page, int err)
  1739. {
  1740. struct nilfs_segment_buffer *segbuf;
  1741. struct page *bd_page = NULL, *fs_page = NULL;
  1742. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1743. struct buffer_head *bh;
  1744. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1745. b_assoc_buffers) {
  1746. if (bh->b_page != bd_page) {
  1747. if (bd_page)
  1748. end_page_writeback(bd_page);
  1749. bd_page = bh->b_page;
  1750. }
  1751. }
  1752. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1753. b_assoc_buffers) {
  1754. if (bh == sci->sc_super_root) {
  1755. if (bh->b_page != bd_page) {
  1756. end_page_writeback(bd_page);
  1757. bd_page = bh->b_page;
  1758. }
  1759. break;
  1760. }
  1761. if (bh->b_page != fs_page) {
  1762. nilfs_end_page_io(fs_page, err);
  1763. if (unlikely(fs_page == failed_page))
  1764. goto done;
  1765. fs_page = bh->b_page;
  1766. }
  1767. }
  1768. }
  1769. if (bd_page)
  1770. end_page_writeback(bd_page);
  1771. nilfs_end_page_io(fs_page, err);
  1772. done:
  1773. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1774. }
  1775. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1776. struct nilfs_segment_buffer *segbuf)
  1777. {
  1778. nilfs->ns_segnum = segbuf->sb_segnum;
  1779. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1780. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1781. + segbuf->sb_sum.nblocks;
  1782. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1783. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1784. }
  1785. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1786. {
  1787. struct nilfs_segment_buffer *segbuf;
  1788. struct page *bd_page = NULL, *fs_page = NULL;
  1789. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1790. struct the_nilfs *nilfs = sbi->s_nilfs;
  1791. int update_sr = (sci->sc_super_root != NULL);
  1792. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1793. struct buffer_head *bh;
  1794. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1795. b_assoc_buffers) {
  1796. set_buffer_uptodate(bh);
  1797. clear_buffer_dirty(bh);
  1798. if (bh->b_page != bd_page) {
  1799. if (bd_page)
  1800. end_page_writeback(bd_page);
  1801. bd_page = bh->b_page;
  1802. }
  1803. }
  1804. /*
  1805. * We assume that the buffers which belong to the same page
  1806. * continue over the buffer list.
  1807. * Under this assumption, the last BHs of pages is
  1808. * identifiable by the discontinuity of bh->b_page
  1809. * (page != fs_page).
  1810. *
  1811. * For B-tree node blocks, however, this assumption is not
  1812. * guaranteed. The cleanup code of B-tree node pages needs
  1813. * special care.
  1814. */
  1815. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1816. b_assoc_buffers) {
  1817. set_buffer_uptodate(bh);
  1818. clear_buffer_dirty(bh);
  1819. clear_buffer_nilfs_volatile(bh);
  1820. if (bh == sci->sc_super_root) {
  1821. if (bh->b_page != bd_page) {
  1822. end_page_writeback(bd_page);
  1823. bd_page = bh->b_page;
  1824. }
  1825. break;
  1826. }
  1827. if (bh->b_page != fs_page) {
  1828. nilfs_end_page_io(fs_page, 0);
  1829. fs_page = bh->b_page;
  1830. }
  1831. }
  1832. if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
  1833. if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
  1834. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1835. sci->sc_lseg_stime = jiffies;
  1836. }
  1837. if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
  1838. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1839. }
  1840. }
  1841. /*
  1842. * Since pages may continue over multiple segment buffers,
  1843. * end of the last page must be checked outside of the loop.
  1844. */
  1845. if (bd_page)
  1846. end_page_writeback(bd_page);
  1847. nilfs_end_page_io(fs_page, 0);
  1848. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1849. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1850. if (nilfs_doing_gc()) {
  1851. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1852. if (update_sr)
  1853. nilfs_commit_gcdat_inode(nilfs);
  1854. } else {
  1855. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1856. set_nilfs_cond_nongc_write(nilfs);
  1857. wake_up(&nilfs->ns_cleanerd_wq);
  1858. }
  1859. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1860. segbuf = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1861. nilfs_set_next_segment(nilfs, segbuf);
  1862. if (update_sr) {
  1863. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1864. segbuf->sb_sum.seg_seq, nilfs->ns_cno);
  1865. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1866. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1867. } else
  1868. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1869. }
  1870. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1871. struct nilfs_sb_info *sbi)
  1872. {
  1873. struct nilfs_inode_info *ii, *n;
  1874. __u64 cno = sbi->s_nilfs->ns_cno;
  1875. spin_lock(&sbi->s_inode_lock);
  1876. retry:
  1877. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1878. if (!ii->i_bh) {
  1879. struct buffer_head *ibh;
  1880. int err;
  1881. spin_unlock(&sbi->s_inode_lock);
  1882. err = nilfs_ifile_get_inode_block(
  1883. sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
  1884. if (unlikely(err)) {
  1885. nilfs_warning(sbi->s_super, __func__,
  1886. "failed to get inode block.\n");
  1887. return err;
  1888. }
  1889. nilfs_mdt_mark_buffer_dirty(ibh);
  1890. nilfs_mdt_mark_dirty(sbi->s_ifile);
  1891. spin_lock(&sbi->s_inode_lock);
  1892. if (likely(!ii->i_bh))
  1893. ii->i_bh = ibh;
  1894. else
  1895. brelse(ibh);
  1896. goto retry;
  1897. }
  1898. ii->i_cno = cno;
  1899. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1900. set_bit(NILFS_I_BUSY, &ii->i_state);
  1901. list_del(&ii->i_dirty);
  1902. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1903. }
  1904. spin_unlock(&sbi->s_inode_lock);
  1905. NILFS_I(sbi->s_ifile)->i_cno = cno;
  1906. return 0;
  1907. }
  1908. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1909. struct nilfs_sb_info *sbi)
  1910. {
  1911. struct nilfs_transaction_info *ti = current->journal_info;
  1912. struct nilfs_inode_info *ii, *n;
  1913. __u64 cno = sbi->s_nilfs->ns_cno;
  1914. spin_lock(&sbi->s_inode_lock);
  1915. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1916. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1917. test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1918. /* The current checkpoint number (=nilfs->ns_cno) is
  1919. changed between check-in and check-out only if the
  1920. super root is written out. So, we can update i_cno
  1921. for the inodes that remain in the dirty list. */
  1922. ii->i_cno = cno;
  1923. continue;
  1924. }
  1925. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1926. brelse(ii->i_bh);
  1927. ii->i_bh = NULL;
  1928. list_del(&ii->i_dirty);
  1929. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1930. }
  1931. spin_unlock(&sbi->s_inode_lock);
  1932. }
  1933. /*
  1934. * Nasty routines to manipulate active flags on sufile.
  1935. * These would be removed in a future release.
  1936. */
  1937. static void nilfs_segctor_reactivate_segments(struct nilfs_sc_info *sci,
  1938. struct the_nilfs *nilfs)
  1939. {
  1940. struct nilfs_segment_buffer *segbuf, *last;
  1941. struct nilfs_segment_entry *ent, *n;
  1942. struct inode *sufile = nilfs->ns_sufile;
  1943. struct list_head *head;
  1944. last = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1945. nilfs_for_each_segbuf_before(segbuf, last, &sci->sc_segbufs) {
  1946. ent = segbuf->sb_segent;
  1947. if (!ent)
  1948. break; /* ignore unmapped segments (should check it?)*/
  1949. nilfs_segment_usage_set_active(ent->raw_su);
  1950. nilfs_close_segment_entry(ent, sufile);
  1951. }
  1952. head = &sci->sc_active_segments;
  1953. list_for_each_entry_safe(ent, n, head, list) {
  1954. nilfs_segment_usage_set_active(ent->raw_su);
  1955. nilfs_close_segment_entry(ent, sufile);
  1956. }
  1957. down_write(&nilfs->ns_sem);
  1958. head = &nilfs->ns_used_segments;
  1959. list_for_each_entry(ent, head, list) {
  1960. nilfs_segment_usage_set_volatile_active(ent->raw_su);
  1961. }
  1962. up_write(&nilfs->ns_sem);
  1963. }
  1964. static int nilfs_segctor_deactivate_segments(struct nilfs_sc_info *sci,
  1965. struct the_nilfs *nilfs)
  1966. {
  1967. struct nilfs_segment_buffer *segbuf, *last;
  1968. struct nilfs_segment_entry *ent;
  1969. struct inode *sufile = nilfs->ns_sufile;
  1970. struct list_head *head;
  1971. int err;
  1972. last = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1973. nilfs_for_each_segbuf_before(segbuf, last, &sci->sc_segbufs) {
  1974. /*
  1975. * Deactivate ongoing full segments. The last segment is kept
  1976. * active because it is a start point of recovery, and is not
  1977. * relocatable until the super block points to a newer
  1978. * checkpoint.
  1979. */
  1980. ent = segbuf->sb_segent;
  1981. if (!ent)
  1982. break; /* ignore unmapped segments (should check it?)*/
  1983. err = nilfs_open_segment_entry(ent, sufile);
  1984. if (unlikely(err))
  1985. goto failed;
  1986. nilfs_segment_usage_clear_active(ent->raw_su);
  1987. BUG_ON(!buffer_dirty(ent->bh_su));
  1988. }
  1989. head = &sci->sc_active_segments;
  1990. list_for_each_entry(ent, head, list) {
  1991. err = nilfs_open_segment_entry(ent, sufile);
  1992. if (unlikely(err))
  1993. goto failed;
  1994. nilfs_segment_usage_clear_active(ent->raw_su);
  1995. BUG_ON(!buffer_dirty(ent->bh_su));
  1996. }
  1997. down_write(&nilfs->ns_sem);
  1998. head = &nilfs->ns_used_segments;
  1999. list_for_each_entry(ent, head, list) {
  2000. /* clear volatile active for segments of older generations */
  2001. nilfs_segment_usage_clear_volatile_active(ent->raw_su);
  2002. }
  2003. up_write(&nilfs->ns_sem);
  2004. return 0;
  2005. failed:
  2006. nilfs_segctor_reactivate_segments(sci, nilfs);
  2007. return err;
  2008. }
  2009. static void nilfs_segctor_bead_completed_segments(struct nilfs_sc_info *sci)
  2010. {
  2011. struct nilfs_segment_buffer *segbuf, *last;
  2012. struct nilfs_segment_entry *ent;
  2013. /* move each segbuf->sb_segent to the list of used active segments */
  2014. last = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  2015. nilfs_for_each_segbuf_before(segbuf, last, &sci->sc_segbufs) {
  2016. ent = segbuf->sb_segent;
  2017. if (!ent)
  2018. break; /* ignore unmapped segments (should check it?)*/
  2019. list_add_tail(&ent->list, &sci->sc_active_segments);
  2020. segbuf->sb_segent = NULL;
  2021. }
  2022. }
  2023. static void
  2024. __nilfs_segctor_commit_deactivate_segments(struct nilfs_sc_info *sci,
  2025. struct the_nilfs *nilfs)
  2026. {
  2027. struct nilfs_segment_entry *ent;
  2028. list_splice_init(&sci->sc_active_segments,
  2029. nilfs->ns_used_segments.prev);
  2030. list_for_each_entry(ent, &nilfs->ns_used_segments, list) {
  2031. nilfs_segment_usage_set_volatile_active(ent->raw_su);
  2032. /* These segments are kept open */
  2033. }
  2034. }
  2035. /*
  2036. * Main procedure of segment constructor
  2037. */
  2038. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  2039. {
  2040. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2041. struct the_nilfs *nilfs = sbi->s_nilfs;
  2042. struct page *failed_page;
  2043. int err, has_sr = 0;
  2044. sci->sc_stage.scnt = NILFS_ST_INIT;
  2045. err = nilfs_segctor_check_in_files(sci, sbi);
  2046. if (unlikely(err))
  2047. goto out;
  2048. if (nilfs_test_metadata_dirty(sbi))
  2049. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  2050. if (nilfs_segctor_clean(sci))
  2051. goto out;
  2052. do {
  2053. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  2054. err = nilfs_segctor_begin_construction(sci, nilfs);
  2055. if (unlikely(err))
  2056. goto out;
  2057. /* Update time stamp */
  2058. sci->sc_seg_ctime = get_seconds();
  2059. err = nilfs_segctor_collect(sci, nilfs, mode);
  2060. if (unlikely(err))
  2061. goto failed;
  2062. has_sr = (sci->sc_super_root != NULL);
  2063. /* Avoid empty segment */
  2064. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  2065. NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
  2066. BUG_ON(mode == SC_LSEG_SR);
  2067. nilfs_segctor_end_construction(sci, nilfs, 1);
  2068. goto out;
  2069. }
  2070. err = nilfs_segctor_assign(sci, mode);
  2071. if (unlikely(err))
  2072. goto failed;
  2073. if (has_sr) {
  2074. err = nilfs_segctor_deactivate_segments(sci, nilfs);
  2075. if (unlikely(err))
  2076. goto failed;
  2077. }
  2078. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  2079. nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
  2080. if (has_sr) {
  2081. err = nilfs_segctor_fill_in_checkpoint(sci);
  2082. if (unlikely(err))
  2083. goto failed_to_make_up;
  2084. nilfs_segctor_fill_in_super_root(sci, nilfs);
  2085. }
  2086. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  2087. /* Write partial segments */
  2088. err = nilfs_segctor_prepare_write(sci, &failed_page);
  2089. if (unlikely(err))
  2090. goto failed_to_write;
  2091. nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
  2092. err = nilfs_segctor_write(sci, nilfs->ns_bdi);
  2093. if (unlikely(err))
  2094. goto failed_to_write;
  2095. nilfs_segctor_complete_write(sci);
  2096. /* Commit segments */
  2097. nilfs_segctor_bead_completed_segments(sci);
  2098. if (has_sr) {
  2099. down_write(&nilfs->ns_sem);
  2100. nilfs_update_last_segment(sbi, 1);
  2101. __nilfs_segctor_commit_deactivate_segments(sci, nilfs);
  2102. up_write(&nilfs->ns_sem);
  2103. nilfs_segctor_commit_free_segments(sci);
  2104. nilfs_segctor_clear_metadata_dirty(sci);
  2105. }
  2106. nilfs_segctor_end_construction(sci, nilfs, 0);
  2107. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  2108. /* Clearing sketch data */
  2109. if (has_sr && sci->sc_sketch_inode) {
  2110. if (i_size_read(sci->sc_sketch_inode) == 0)
  2111. clear_bit(NILFS_I_DIRTY,
  2112. &NILFS_I(sci->sc_sketch_inode)->i_state);
  2113. i_size_write(sci->sc_sketch_inode, 0);
  2114. }
  2115. out:
  2116. nilfs_segctor_destroy_segment_buffers(sci);
  2117. nilfs_segctor_check_out_files(sci, sbi);
  2118. return err;
  2119. failed_to_write:
  2120. nilfs_segctor_abort_write(sci, failed_page, err);
  2121. nilfs_segctor_cancel_segusage(sci, nilfs->ns_sufile);
  2122. failed_to_make_up:
  2123. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  2124. nilfs_redirty_inodes(&sci->sc_dirty_files);
  2125. if (has_sr)
  2126. nilfs_segctor_reactivate_segments(sci, nilfs);
  2127. failed:
  2128. if (nilfs_doing_gc())
  2129. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  2130. nilfs_segctor_end_construction(sci, nilfs, err);
  2131. goto out;
  2132. }
  2133. /**
  2134. * nilfs_secgtor_start_timer - set timer of background write
  2135. * @sci: nilfs_sc_info
  2136. *
  2137. * If the timer has already been set, it ignores the new request.
  2138. * This function MUST be called within a section locking the segment
  2139. * semaphore.
  2140. */
  2141. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  2142. {
  2143. spin_lock(&sci->sc_state_lock);
  2144. if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  2145. sci->sc_timer->expires = jiffies + sci->sc_interval;
  2146. add_timer(sci->sc_timer);
  2147. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  2148. }
  2149. spin_unlock(&sci->sc_state_lock);
  2150. }
  2151. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  2152. {
  2153. spin_lock(&sci->sc_state_lock);
  2154. if (!(sci->sc_flush_request & (1 << bn))) {
  2155. unsigned long prev_req = sci->sc_flush_request;
  2156. sci->sc_flush_request |= (1 << bn);
  2157. if (!prev_req)
  2158. wake_up(&sci->sc_wait_daemon);
  2159. }
  2160. spin_unlock(&sci->sc_state_lock);
  2161. }
  2162. /**
  2163. * nilfs_flush_segment - trigger a segment construction for resource control
  2164. * @sb: super block
  2165. * @ino: inode number of the file to be flushed out.
  2166. */
  2167. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  2168. {
  2169. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2170. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2171. if (!sci || nilfs_doing_construction())
  2172. return;
  2173. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  2174. /* assign bit 0 to data files */
  2175. }
  2176. int nilfs_segctor_add_segments_to_be_freed(struct nilfs_sc_info *sci,
  2177. __u64 *segnum, size_t nsegs)
  2178. {
  2179. struct nilfs_segment_entry *ent;
  2180. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2181. struct inode *sufile = nilfs->ns_sufile;
  2182. LIST_HEAD(list);
  2183. __u64 *pnum;
  2184. const char *flag_name;
  2185. size_t i;
  2186. int err, err2 = 0;
  2187. for (pnum = segnum, i = 0; i < nsegs; pnum++, i++) {
  2188. ent = nilfs_alloc_segment_entry(*pnum);
  2189. if (unlikely(!ent)) {
  2190. err = -ENOMEM;
  2191. goto failed;
  2192. }
  2193. list_add_tail(&ent->list, &list);
  2194. err = nilfs_open_segment_entry(ent, sufile);
  2195. if (unlikely(err))
  2196. goto failed;
  2197. if (unlikely(le32_to_cpu(ent->raw_su->su_flags) !=
  2198. (1UL << NILFS_SEGMENT_USAGE_DIRTY))) {
  2199. if (nilfs_segment_usage_clean(ent->raw_su))
  2200. flag_name = "clean";
  2201. else if (nilfs_segment_usage_active(ent->raw_su))
  2202. flag_name = "active";
  2203. else if (nilfs_segment_usage_volatile_active(
  2204. ent->raw_su))
  2205. flag_name = "volatile active";
  2206. else if (!nilfs_segment_usage_dirty(ent->raw_su))
  2207. flag_name = "non-dirty";
  2208. else
  2209. flag_name = "erroneous";
  2210. printk(KERN_ERR
  2211. "NILFS: %s segment is requested to be cleaned "
  2212. "(segnum=%llu)\n",
  2213. flag_name, (unsigned long long)ent->segnum);
  2214. err2 = -EINVAL;
  2215. }
  2216. nilfs_close_segment_entry(ent, sufile);
  2217. }
  2218. if (unlikely(err2)) {
  2219. err = err2;
  2220. goto failed;
  2221. }
  2222. list_splice(&list, sci->sc_cleaning_segments.prev);
  2223. return 0;
  2224. failed:
  2225. nilfs_dispose_segment_list(&list);
  2226. return err;
  2227. }
  2228. void nilfs_segctor_clear_segments_to_be_freed(struct nilfs_sc_info *sci)
  2229. {
  2230. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  2231. }
  2232. struct nilfs_segctor_wait_request {
  2233. wait_queue_t wq;
  2234. __u32 seq;
  2235. int err;
  2236. atomic_t done;
  2237. };
  2238. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  2239. {
  2240. struct nilfs_segctor_wait_request wait_req;
  2241. int err = 0;
  2242. spin_lock(&sci->sc_state_lock);
  2243. init_wait(&wait_req.wq);
  2244. wait_req.err = 0;
  2245. atomic_set(&wait_req.done, 0);
  2246. wait_req.seq = ++sci->sc_seq_request;
  2247. spin_unlock(&sci->sc_state_lock);
  2248. init_waitqueue_entry(&wait_req.wq, current);
  2249. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  2250. set_current_state(TASK_INTERRUPTIBLE);
  2251. wake_up(&sci->sc_wait_daemon);
  2252. for (;;) {
  2253. if (atomic_read(&wait_req.done)) {
  2254. err = wait_req.err;
  2255. break;
  2256. }
  2257. if (!signal_pending(current)) {
  2258. schedule();
  2259. continue;
  2260. }
  2261. err = -ERESTARTSYS;
  2262. break;
  2263. }
  2264. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  2265. return err;
  2266. }
  2267. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  2268. {
  2269. struct nilfs_segctor_wait_request *wrq, *n;
  2270. unsigned long flags;
  2271. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  2272. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  2273. wq.task_list) {
  2274. if (!atomic_read(&wrq->done) &&
  2275. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  2276. wrq->err = err;
  2277. atomic_set(&wrq->done, 1);
  2278. }
  2279. if (atomic_read(&wrq->done)) {
  2280. wrq->wq.func(&wrq->wq,
  2281. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2282. 0, NULL);
  2283. }
  2284. }
  2285. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  2286. }
  2287. /**
  2288. * nilfs_construct_segment - construct a logical segment
  2289. * @sb: super block
  2290. *
  2291. * Return Value: On success, 0 is retured. On errors, one of the following
  2292. * negative error code is returned.
  2293. *
  2294. * %-EROFS - Read only filesystem.
  2295. *
  2296. * %-EIO - I/O error
  2297. *
  2298. * %-ENOSPC - No space left on device (only in a panic state).
  2299. *
  2300. * %-ERESTARTSYS - Interrupted.
  2301. *
  2302. * %-ENOMEM - Insufficient memory available.
  2303. */
  2304. int nilfs_construct_segment(struct super_block *sb)
  2305. {
  2306. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2307. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2308. struct nilfs_transaction_info *ti;
  2309. int err;
  2310. if (!sci)
  2311. return -EROFS;
  2312. /* A call inside transactions causes a deadlock. */
  2313. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  2314. err = nilfs_segctor_sync(sci);
  2315. return err;
  2316. }
  2317. /**
  2318. * nilfs_construct_dsync_segment - construct a data-only logical segment
  2319. * @sb: super block
  2320. * @inode: inode whose data blocks should be written out
  2321. * @start: start byte offset
  2322. * @end: end byte offset (inclusive)
  2323. *
  2324. * Return Value: On success, 0 is retured. On errors, one of the following
  2325. * negative error code is returned.
  2326. *
  2327. * %-EROFS - Read only filesystem.
  2328. *
  2329. * %-EIO - I/O error
  2330. *
  2331. * %-ENOSPC - No space left on device (only in a panic state).
  2332. *
  2333. * %-ERESTARTSYS - Interrupted.
  2334. *
  2335. * %-ENOMEM - Insufficient memory available.
  2336. */
  2337. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2338. loff_t start, loff_t end)
  2339. {
  2340. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2341. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2342. struct nilfs_inode_info *ii;
  2343. struct nilfs_transaction_info ti;
  2344. int err = 0;
  2345. if (!sci)
  2346. return -EROFS;
  2347. nilfs_transaction_lock(sbi, &ti, 0);
  2348. ii = NILFS_I(inode);
  2349. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2350. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2351. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2352. nilfs_discontinued(sbi->s_nilfs)) {
  2353. nilfs_transaction_unlock(sbi);
  2354. err = nilfs_segctor_sync(sci);
  2355. return err;
  2356. }
  2357. spin_lock(&sbi->s_inode_lock);
  2358. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2359. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2360. spin_unlock(&sbi->s_inode_lock);
  2361. nilfs_transaction_unlock(sbi);
  2362. return 0;
  2363. }
  2364. spin_unlock(&sbi->s_inode_lock);
  2365. sci->sc_dsync_inode = ii;
  2366. sci->sc_dsync_start = start;
  2367. sci->sc_dsync_end = end;
  2368. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2369. nilfs_transaction_unlock(sbi);
  2370. return err;
  2371. }
  2372. struct nilfs_segctor_req {
  2373. int mode;
  2374. __u32 seq_accepted;
  2375. int sc_err; /* construction failure */
  2376. int sb_err; /* super block writeback failure */
  2377. };
  2378. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2379. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2380. static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
  2381. struct nilfs_segctor_req *req)
  2382. {
  2383. BUG_ON(!sci);
  2384. req->sc_err = req->sb_err = 0;
  2385. spin_lock(&sci->sc_state_lock);
  2386. req->seq_accepted = sci->sc_seq_request;
  2387. spin_unlock(&sci->sc_state_lock);
  2388. if (sci->sc_timer)
  2389. del_timer_sync(sci->sc_timer);
  2390. }
  2391. static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
  2392. struct nilfs_segctor_req *req)
  2393. {
  2394. /* Clear requests (even when the construction failed) */
  2395. spin_lock(&sci->sc_state_lock);
  2396. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2397. if (req->mode == SC_LSEG_SR) {
  2398. sci->sc_seq_done = req->seq_accepted;
  2399. nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
  2400. sci->sc_flush_request = 0;
  2401. } else if (req->mode == SC_FLUSH_FILE)
  2402. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2403. else if (req->mode == SC_FLUSH_DAT)
  2404. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2405. spin_unlock(&sci->sc_state_lock);
  2406. }
  2407. static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
  2408. struct nilfs_segctor_req *req)
  2409. {
  2410. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2411. struct the_nilfs *nilfs = sbi->s_nilfs;
  2412. int err = 0;
  2413. if (nilfs_discontinued(nilfs))
  2414. req->mode = SC_LSEG_SR;
  2415. if (!nilfs_segctor_confirm(sci)) {
  2416. err = nilfs_segctor_do_construct(sci, req->mode);
  2417. req->sc_err = err;
  2418. }
  2419. if (likely(!err)) {
  2420. if (req->mode != SC_FLUSH_DAT)
  2421. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2422. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2423. nilfs_discontinued(nilfs)) {
  2424. down_write(&nilfs->ns_sem);
  2425. req->sb_err = nilfs_commit_super(sbi);
  2426. up_write(&nilfs->ns_sem);
  2427. }
  2428. }
  2429. return err;
  2430. }
  2431. static void nilfs_construction_timeout(unsigned long data)
  2432. {
  2433. struct task_struct *p = (struct task_struct *)data;
  2434. wake_up_process(p);
  2435. }
  2436. static void
  2437. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2438. {
  2439. struct nilfs_inode_info *ii, *n;
  2440. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2441. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2442. continue;
  2443. hlist_del_init(&ii->vfs_inode.i_hash);
  2444. list_del_init(&ii->i_dirty);
  2445. nilfs_clear_gcinode(&ii->vfs_inode);
  2446. }
  2447. }
  2448. int nilfs_clean_segments(struct super_block *sb, void __user *argp)
  2449. {
  2450. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2451. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2452. struct the_nilfs *nilfs = sbi->s_nilfs;
  2453. struct nilfs_transaction_info ti;
  2454. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2455. int err;
  2456. if (unlikely(!sci))
  2457. return -EROFS;
  2458. nilfs_transaction_lock(sbi, &ti, 1);
  2459. err = nilfs_init_gcdat_inode(nilfs);
  2460. if (unlikely(err))
  2461. goto out_unlock;
  2462. err = nilfs_ioctl_prepare_clean_segments(nilfs, argp);
  2463. if (unlikely(err))
  2464. goto out_unlock;
  2465. list_splice_init(&nilfs->ns_gc_inodes, sci->sc_gc_inodes.prev);
  2466. for (;;) {
  2467. nilfs_segctor_accept(sci, &req);
  2468. err = nilfs_segctor_construct(sci, &req);
  2469. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2470. nilfs_segctor_notify(sci, &req);
  2471. if (likely(!err))
  2472. break;
  2473. nilfs_warning(sb, __func__,
  2474. "segment construction failed. (err=%d)", err);
  2475. set_current_state(TASK_INTERRUPTIBLE);
  2476. schedule_timeout(sci->sc_interval);
  2477. }
  2478. out_unlock:
  2479. nilfs_clear_gcdat_inode(nilfs);
  2480. nilfs_transaction_unlock(sbi);
  2481. return err;
  2482. }
  2483. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2484. {
  2485. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2486. struct nilfs_transaction_info ti;
  2487. struct nilfs_segctor_req req = { .mode = mode };
  2488. nilfs_transaction_lock(sbi, &ti, 0);
  2489. nilfs_segctor_accept(sci, &req);
  2490. nilfs_segctor_construct(sci, &req);
  2491. nilfs_segctor_notify(sci, &req);
  2492. /*
  2493. * Unclosed segment should be retried. We do this using sc_timer.
  2494. * Timeout of sc_timer will invoke complete construction which leads
  2495. * to close the current logical segment.
  2496. */
  2497. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2498. nilfs_segctor_start_timer(sci);
  2499. nilfs_transaction_unlock(sbi);
  2500. }
  2501. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2502. {
  2503. int mode = 0;
  2504. int err;
  2505. spin_lock(&sci->sc_state_lock);
  2506. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2507. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2508. spin_unlock(&sci->sc_state_lock);
  2509. if (mode) {
  2510. err = nilfs_segctor_do_construct(sci, mode);
  2511. spin_lock(&sci->sc_state_lock);
  2512. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2513. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2514. spin_unlock(&sci->sc_state_lock);
  2515. }
  2516. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2517. }
  2518. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2519. {
  2520. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2521. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2522. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2523. return SC_FLUSH_FILE;
  2524. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2525. return SC_FLUSH_DAT;
  2526. }
  2527. return SC_LSEG_SR;
  2528. }
  2529. /**
  2530. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2531. * @arg: pointer to a struct nilfs_sc_info.
  2532. *
  2533. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2534. * to execute segment constructions.
  2535. */
  2536. static int nilfs_segctor_thread(void *arg)
  2537. {
  2538. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2539. struct timer_list timer;
  2540. int timeout = 0;
  2541. init_timer(&timer);
  2542. timer.data = (unsigned long)current;
  2543. timer.function = nilfs_construction_timeout;
  2544. sci->sc_timer = &timer;
  2545. /* start sync. */
  2546. sci->sc_task = current;
  2547. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2548. printk(KERN_INFO
  2549. "segctord starting. Construction interval = %lu seconds, "
  2550. "CP frequency < %lu seconds\n",
  2551. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2552. spin_lock(&sci->sc_state_lock);
  2553. loop:
  2554. for (;;) {
  2555. int mode;
  2556. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2557. goto end_thread;
  2558. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2559. mode = SC_LSEG_SR;
  2560. else if (!sci->sc_flush_request)
  2561. break;
  2562. else
  2563. mode = nilfs_segctor_flush_mode(sci);
  2564. spin_unlock(&sci->sc_state_lock);
  2565. nilfs_segctor_thread_construct(sci, mode);
  2566. spin_lock(&sci->sc_state_lock);
  2567. timeout = 0;
  2568. }
  2569. if (freezing(current)) {
  2570. spin_unlock(&sci->sc_state_lock);
  2571. refrigerator();
  2572. spin_lock(&sci->sc_state_lock);
  2573. } else {
  2574. DEFINE_WAIT(wait);
  2575. int should_sleep = 1;
  2576. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2577. TASK_INTERRUPTIBLE);
  2578. if (sci->sc_seq_request != sci->sc_seq_done)
  2579. should_sleep = 0;
  2580. else if (sci->sc_flush_request)
  2581. should_sleep = 0;
  2582. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2583. should_sleep = time_before(jiffies,
  2584. sci->sc_timer->expires);
  2585. if (should_sleep) {
  2586. spin_unlock(&sci->sc_state_lock);
  2587. schedule();
  2588. spin_lock(&sci->sc_state_lock);
  2589. }
  2590. finish_wait(&sci->sc_wait_daemon, &wait);
  2591. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2592. time_after_eq(jiffies, sci->sc_timer->expires));
  2593. }
  2594. goto loop;
  2595. end_thread:
  2596. spin_unlock(&sci->sc_state_lock);
  2597. del_timer_sync(sci->sc_timer);
  2598. sci->sc_timer = NULL;
  2599. /* end sync. */
  2600. sci->sc_task = NULL;
  2601. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2602. return 0;
  2603. }
  2604. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2605. {
  2606. struct task_struct *t;
  2607. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2608. if (IS_ERR(t)) {
  2609. int err = PTR_ERR(t);
  2610. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2611. err);
  2612. return err;
  2613. }
  2614. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2615. return 0;
  2616. }
  2617. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2618. {
  2619. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2620. while (sci->sc_task) {
  2621. wake_up(&sci->sc_wait_daemon);
  2622. spin_unlock(&sci->sc_state_lock);
  2623. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2624. spin_lock(&sci->sc_state_lock);
  2625. }
  2626. }
  2627. static int nilfs_segctor_init(struct nilfs_sc_info *sci,
  2628. struct nilfs_recovery_info *ri)
  2629. {
  2630. int err;
  2631. struct inode *inode = nilfs_iget(sci->sc_super, NILFS_SKETCH_INO);
  2632. sci->sc_sketch_inode = IS_ERR(inode) ? NULL : inode;
  2633. if (sci->sc_sketch_inode)
  2634. i_size_write(sci->sc_sketch_inode, 0);
  2635. sci->sc_seq_done = sci->sc_seq_request;
  2636. if (ri)
  2637. list_splice_init(&ri->ri_used_segments,
  2638. sci->sc_active_segments.prev);
  2639. err = nilfs_segctor_start_thread(sci);
  2640. if (err) {
  2641. if (ri)
  2642. list_splice_init(&sci->sc_active_segments,
  2643. ri->ri_used_segments.prev);
  2644. if (sci->sc_sketch_inode) {
  2645. iput(sci->sc_sketch_inode);
  2646. sci->sc_sketch_inode = NULL;
  2647. }
  2648. }
  2649. return err;
  2650. }
  2651. /*
  2652. * Setup & clean-up functions
  2653. */
  2654. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
  2655. {
  2656. struct nilfs_sc_info *sci;
  2657. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2658. if (!sci)
  2659. return NULL;
  2660. sci->sc_sbi = sbi;
  2661. sci->sc_super = sbi->s_super;
  2662. init_waitqueue_head(&sci->sc_wait_request);
  2663. init_waitqueue_head(&sci->sc_wait_daemon);
  2664. init_waitqueue_head(&sci->sc_wait_task);
  2665. spin_lock_init(&sci->sc_state_lock);
  2666. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2667. INIT_LIST_HEAD(&sci->sc_segbufs);
  2668. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2669. INIT_LIST_HEAD(&sci->sc_active_segments);
  2670. INIT_LIST_HEAD(&sci->sc_cleaning_segments);
  2671. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2672. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2673. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2674. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2675. if (sbi->s_interval)
  2676. sci->sc_interval = sbi->s_interval;
  2677. if (sbi->s_watermark)
  2678. sci->sc_watermark = sbi->s_watermark;
  2679. return sci;
  2680. }
  2681. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2682. {
  2683. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2684. /* The segctord thread was stopped and its timer was removed.
  2685. But some tasks remain. */
  2686. do {
  2687. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2688. struct nilfs_transaction_info ti;
  2689. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2690. nilfs_transaction_lock(sbi, &ti, 0);
  2691. nilfs_segctor_accept(sci, &req);
  2692. ret = nilfs_segctor_construct(sci, &req);
  2693. nilfs_segctor_notify(sci, &req);
  2694. nilfs_transaction_unlock(sbi);
  2695. } while (ret && retrycount-- > 0);
  2696. }
  2697. /**
  2698. * nilfs_segctor_destroy - destroy the segment constructor.
  2699. * @sci: nilfs_sc_info
  2700. *
  2701. * nilfs_segctor_destroy() kills the segctord thread and frees
  2702. * the nilfs_sc_info struct.
  2703. * Caller must hold the segment semaphore.
  2704. */
  2705. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2706. {
  2707. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2708. int flag;
  2709. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2710. spin_lock(&sci->sc_state_lock);
  2711. nilfs_segctor_kill_thread(sci);
  2712. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2713. || sci->sc_seq_request != sci->sc_seq_done);
  2714. spin_unlock(&sci->sc_state_lock);
  2715. if (flag || nilfs_segctor_confirm(sci))
  2716. nilfs_segctor_write_out(sci);
  2717. BUG_ON(!list_empty(&sci->sc_copied_buffers));
  2718. if (!list_empty(&sci->sc_dirty_files)) {
  2719. nilfs_warning(sbi->s_super, __func__,
  2720. "dirty file(s) after the final construction\n");
  2721. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2722. }
  2723. if (!list_empty(&sci->sc_active_segments))
  2724. nilfs_dispose_segment_list(&sci->sc_active_segments);
  2725. if (!list_empty(&sci->sc_cleaning_segments))
  2726. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  2727. BUG_ON(!list_empty(&sci->sc_segbufs));
  2728. if (sci->sc_sketch_inode) {
  2729. iput(sci->sc_sketch_inode);
  2730. sci->sc_sketch_inode = NULL;
  2731. }
  2732. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2733. kfree(sci);
  2734. }
  2735. /**
  2736. * nilfs_attach_segment_constructor - attach a segment constructor
  2737. * @sbi: nilfs_sb_info
  2738. * @ri: nilfs_recovery_info
  2739. *
  2740. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2741. * initilizes it, and starts the segment constructor.
  2742. *
  2743. * Return Value: On success, 0 is returned. On error, one of the following
  2744. * negative error code is returned.
  2745. *
  2746. * %-ENOMEM - Insufficient memory available.
  2747. */
  2748. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi,
  2749. struct nilfs_recovery_info *ri)
  2750. {
  2751. struct the_nilfs *nilfs = sbi->s_nilfs;
  2752. int err;
  2753. /* Each field of nilfs_segctor is cleared through the initialization
  2754. of super-block info */
  2755. sbi->s_sc_info = nilfs_segctor_new(sbi);
  2756. if (!sbi->s_sc_info)
  2757. return -ENOMEM;
  2758. nilfs_attach_writer(nilfs, sbi);
  2759. err = nilfs_segctor_init(NILFS_SC(sbi), ri);
  2760. if (err) {
  2761. nilfs_detach_writer(nilfs, sbi);
  2762. kfree(sbi->s_sc_info);
  2763. sbi->s_sc_info = NULL;
  2764. }
  2765. return err;
  2766. }
  2767. /**
  2768. * nilfs_detach_segment_constructor - destroy the segment constructor
  2769. * @sbi: nilfs_sb_info
  2770. *
  2771. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2772. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2773. */
  2774. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2775. {
  2776. struct the_nilfs *nilfs = sbi->s_nilfs;
  2777. LIST_HEAD(garbage_list);
  2778. down_write(&nilfs->ns_segctor_sem);
  2779. if (NILFS_SC(sbi)) {
  2780. nilfs_segctor_destroy(NILFS_SC(sbi));
  2781. sbi->s_sc_info = NULL;
  2782. }
  2783. /* Force to free the list of dirty files */
  2784. spin_lock(&sbi->s_inode_lock);
  2785. if (!list_empty(&sbi->s_dirty_files)) {
  2786. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2787. nilfs_warning(sbi->s_super, __func__,
  2788. "Non empty dirty list after the last "
  2789. "segment construction\n");
  2790. }
  2791. spin_unlock(&sbi->s_inode_lock);
  2792. up_write(&nilfs->ns_segctor_sem);
  2793. nilfs_dispose_list(sbi, &garbage_list, 1);
  2794. nilfs_detach_writer(nilfs, sbi);
  2795. }