netxen_nic_init.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557
  1. /*
  2. * Copyright (C) 2003 - 2006 NetXen, Inc.
  3. * All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
  18. * MA 02111-1307, USA.
  19. *
  20. * The full GNU General Public License is included in this distribution
  21. * in the file called LICENSE.
  22. *
  23. * Contact Information:
  24. * info@netxen.com
  25. * NetXen,
  26. * 3965 Freedom Circle, Fourth floor,
  27. * Santa Clara, CA 95054
  28. *
  29. *
  30. * Source file for NIC routines to initialize the Phantom Hardware
  31. *
  32. */
  33. #include <linux/netdevice.h>
  34. #include <linux/delay.h>
  35. #include "netxen_nic.h"
  36. #include "netxen_nic_hw.h"
  37. #include "netxen_nic_phan_reg.h"
  38. struct crb_addr_pair {
  39. u32 addr;
  40. u32 data;
  41. };
  42. unsigned long last_schedule_time;
  43. #define NETXEN_MAX_CRB_XFORM 60
  44. static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM];
  45. #define NETXEN_ADDR_ERROR (0xffffffff)
  46. #define crb_addr_transform(name) \
  47. crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \
  48. NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20
  49. #define NETXEN_NIC_XDMA_RESET 0x8000ff
  50. static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
  51. uint32_t ctx, uint32_t ringid);
  52. #if 0
  53. static void netxen_nic_locked_write_reg(struct netxen_adapter *adapter,
  54. unsigned long off, int *data)
  55. {
  56. void __iomem *addr = pci_base_offset(adapter, off);
  57. writel(*data, addr);
  58. }
  59. #endif /* 0 */
  60. static void crb_addr_transform_setup(void)
  61. {
  62. crb_addr_transform(XDMA);
  63. crb_addr_transform(TIMR);
  64. crb_addr_transform(SRE);
  65. crb_addr_transform(SQN3);
  66. crb_addr_transform(SQN2);
  67. crb_addr_transform(SQN1);
  68. crb_addr_transform(SQN0);
  69. crb_addr_transform(SQS3);
  70. crb_addr_transform(SQS2);
  71. crb_addr_transform(SQS1);
  72. crb_addr_transform(SQS0);
  73. crb_addr_transform(RPMX7);
  74. crb_addr_transform(RPMX6);
  75. crb_addr_transform(RPMX5);
  76. crb_addr_transform(RPMX4);
  77. crb_addr_transform(RPMX3);
  78. crb_addr_transform(RPMX2);
  79. crb_addr_transform(RPMX1);
  80. crb_addr_transform(RPMX0);
  81. crb_addr_transform(ROMUSB);
  82. crb_addr_transform(SN);
  83. crb_addr_transform(QMN);
  84. crb_addr_transform(QMS);
  85. crb_addr_transform(PGNI);
  86. crb_addr_transform(PGND);
  87. crb_addr_transform(PGN3);
  88. crb_addr_transform(PGN2);
  89. crb_addr_transform(PGN1);
  90. crb_addr_transform(PGN0);
  91. crb_addr_transform(PGSI);
  92. crb_addr_transform(PGSD);
  93. crb_addr_transform(PGS3);
  94. crb_addr_transform(PGS2);
  95. crb_addr_transform(PGS1);
  96. crb_addr_transform(PGS0);
  97. crb_addr_transform(PS);
  98. crb_addr_transform(PH);
  99. crb_addr_transform(NIU);
  100. crb_addr_transform(I2Q);
  101. crb_addr_transform(EG);
  102. crb_addr_transform(MN);
  103. crb_addr_transform(MS);
  104. crb_addr_transform(CAS2);
  105. crb_addr_transform(CAS1);
  106. crb_addr_transform(CAS0);
  107. crb_addr_transform(CAM);
  108. crb_addr_transform(C2C1);
  109. crb_addr_transform(C2C0);
  110. crb_addr_transform(SMB);
  111. }
  112. int netxen_init_firmware(struct netxen_adapter *adapter)
  113. {
  114. u32 state = 0, loops = 0, err = 0;
  115. /* Window 1 call */
  116. state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  117. if (state == PHAN_INITIALIZE_ACK)
  118. return 0;
  119. while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) {
  120. udelay(100);
  121. /* Window 1 call */
  122. state = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  123. loops++;
  124. }
  125. if (loops >= 2000) {
  126. printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n",
  127. state);
  128. err = -EIO;
  129. return err;
  130. }
  131. /* Window 1 call */
  132. writel(INTR_SCHEME_PERPORT,
  133. NETXEN_CRB_NORMALIZE(adapter, CRB_NIC_CAPABILITIES_HOST));
  134. writel(MPORT_MULTI_FUNCTION_MODE,
  135. NETXEN_CRB_NORMALIZE(adapter, CRB_MPORT_MODE));
  136. writel(PHAN_INITIALIZE_ACK,
  137. NETXEN_CRB_NORMALIZE(adapter, CRB_CMDPEG_STATE));
  138. return err;
  139. }
  140. #define NETXEN_ADDR_LIMIT 0xffffffffULL
  141. void *netxen_alloc(struct pci_dev *pdev, size_t sz, dma_addr_t * ptr,
  142. struct pci_dev **used_dev)
  143. {
  144. void *addr;
  145. addr = pci_alloc_consistent(pdev, sz, ptr);
  146. if ((unsigned long long)(*ptr) < NETXEN_ADDR_LIMIT) {
  147. *used_dev = pdev;
  148. return addr;
  149. }
  150. pci_free_consistent(pdev, sz, addr, *ptr);
  151. addr = pci_alloc_consistent(NULL, sz, ptr);
  152. *used_dev = NULL;
  153. return addr;
  154. }
  155. void netxen_initialize_adapter_sw(struct netxen_adapter *adapter)
  156. {
  157. int ctxid, ring;
  158. u32 i;
  159. u32 num_rx_bufs = 0;
  160. struct netxen_rcv_desc_ctx *rcv_desc;
  161. DPRINTK(INFO, "initializing some queues: %p\n", adapter);
  162. for (ctxid = 0; ctxid < MAX_RCV_CTX; ++ctxid) {
  163. for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) {
  164. struct netxen_rx_buffer *rx_buf;
  165. rcv_desc = &adapter->recv_ctx[ctxid].rcv_desc[ring];
  166. rcv_desc->rcv_free = rcv_desc->max_rx_desc_count;
  167. rcv_desc->begin_alloc = 0;
  168. rx_buf = rcv_desc->rx_buf_arr;
  169. num_rx_bufs = rcv_desc->max_rx_desc_count;
  170. /*
  171. * Now go through all of them, set reference handles
  172. * and put them in the queues.
  173. */
  174. for (i = 0; i < num_rx_bufs; i++) {
  175. rx_buf->ref_handle = i;
  176. rx_buf->state = NETXEN_BUFFER_FREE;
  177. DPRINTK(INFO, "Rx buf:ctx%d i(%d) rx_buf:"
  178. "%p\n", ctxid, i, rx_buf);
  179. rx_buf++;
  180. }
  181. }
  182. }
  183. }
  184. void netxen_initialize_adapter_hw(struct netxen_adapter *adapter)
  185. {
  186. int ports = 0;
  187. struct netxen_board_info *board_info = &(adapter->ahw.boardcfg);
  188. if (netxen_nic_get_board_info(adapter) != 0)
  189. printk("%s: Error getting board config info.\n",
  190. netxen_nic_driver_name);
  191. get_brd_port_by_type(board_info->board_type, &ports);
  192. if (ports == 0)
  193. printk(KERN_ERR "%s: Unknown board type\n",
  194. netxen_nic_driver_name);
  195. adapter->ahw.max_ports = ports;
  196. }
  197. void netxen_initialize_adapter_ops(struct netxen_adapter *adapter)
  198. {
  199. switch (adapter->ahw.board_type) {
  200. case NETXEN_NIC_GBE:
  201. adapter->enable_phy_interrupts =
  202. netxen_niu_gbe_enable_phy_interrupts;
  203. adapter->disable_phy_interrupts =
  204. netxen_niu_gbe_disable_phy_interrupts;
  205. adapter->handle_phy_intr = netxen_nic_gbe_handle_phy_intr;
  206. adapter->macaddr_set = netxen_niu_macaddr_set;
  207. adapter->set_mtu = netxen_nic_set_mtu_gb;
  208. adapter->set_promisc = netxen_niu_set_promiscuous_mode;
  209. adapter->unset_promisc = netxen_niu_set_promiscuous_mode;
  210. adapter->phy_read = netxen_niu_gbe_phy_read;
  211. adapter->phy_write = netxen_niu_gbe_phy_write;
  212. adapter->init_niu = netxen_nic_init_niu_gb;
  213. adapter->stop_port = netxen_niu_disable_gbe_port;
  214. break;
  215. case NETXEN_NIC_XGBE:
  216. adapter->enable_phy_interrupts =
  217. netxen_niu_xgbe_enable_phy_interrupts;
  218. adapter->disable_phy_interrupts =
  219. netxen_niu_xgbe_disable_phy_interrupts;
  220. adapter->handle_phy_intr = netxen_nic_xgbe_handle_phy_intr;
  221. adapter->macaddr_set = netxen_niu_xg_macaddr_set;
  222. adapter->set_mtu = netxen_nic_set_mtu_xgb;
  223. adapter->init_port = netxen_niu_xg_init_port;
  224. adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode;
  225. adapter->unset_promisc = netxen_niu_xg_set_promiscuous_mode;
  226. adapter->stop_port = netxen_niu_disable_xg_port;
  227. break;
  228. default:
  229. break;
  230. }
  231. }
  232. /*
  233. * netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB
  234. * address to external PCI CRB address.
  235. */
  236. static u32 netxen_decode_crb_addr(u32 addr)
  237. {
  238. int i;
  239. u32 base_addr, offset, pci_base;
  240. crb_addr_transform_setup();
  241. pci_base = NETXEN_ADDR_ERROR;
  242. base_addr = addr & 0xfff00000;
  243. offset = addr & 0x000fffff;
  244. for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) {
  245. if (crb_addr_xform[i] == base_addr) {
  246. pci_base = i << 20;
  247. break;
  248. }
  249. }
  250. if (pci_base == NETXEN_ADDR_ERROR)
  251. return pci_base;
  252. else
  253. return (pci_base + offset);
  254. }
  255. static long rom_max_timeout = 100;
  256. static long rom_lock_timeout = 10000;
  257. static long rom_write_timeout = 700;
  258. static int rom_lock(struct netxen_adapter *adapter)
  259. {
  260. int iter;
  261. u32 done = 0;
  262. int timeout = 0;
  263. while (!done) {
  264. /* acquire semaphore2 from PCI HW block */
  265. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK),
  266. &done);
  267. if (done == 1)
  268. break;
  269. if (timeout >= rom_lock_timeout)
  270. return -EIO;
  271. timeout++;
  272. /*
  273. * Yield CPU
  274. */
  275. if (!in_atomic())
  276. schedule();
  277. else {
  278. for (iter = 0; iter < 20; iter++)
  279. cpu_relax(); /*This a nop instr on i386 */
  280. }
  281. }
  282. netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER);
  283. return 0;
  284. }
  285. static int netxen_wait_rom_done(struct netxen_adapter *adapter)
  286. {
  287. long timeout = 0;
  288. long done = 0;
  289. while (done == 0) {
  290. done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS);
  291. done &= 2;
  292. timeout++;
  293. if (timeout >= rom_max_timeout) {
  294. printk("Timeout reached waiting for rom done");
  295. return -EIO;
  296. }
  297. }
  298. return 0;
  299. }
  300. static int netxen_rom_wren(struct netxen_adapter *adapter)
  301. {
  302. /* Set write enable latch in ROM status register */
  303. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  304. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  305. M25P_INSTR_WREN);
  306. if (netxen_wait_rom_done(adapter)) {
  307. return -1;
  308. }
  309. return 0;
  310. }
  311. static unsigned int netxen_rdcrbreg(struct netxen_adapter *adapter,
  312. unsigned int addr)
  313. {
  314. unsigned int data = 0xdeaddead;
  315. data = netxen_nic_reg_read(adapter, addr);
  316. return data;
  317. }
  318. static int netxen_do_rom_rdsr(struct netxen_adapter *adapter)
  319. {
  320. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  321. M25P_INSTR_RDSR);
  322. if (netxen_wait_rom_done(adapter)) {
  323. return -1;
  324. }
  325. return netxen_rdcrbreg(adapter, NETXEN_ROMUSB_ROM_RDATA);
  326. }
  327. static void netxen_rom_unlock(struct netxen_adapter *adapter)
  328. {
  329. u32 val;
  330. /* release semaphore2 */
  331. netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val);
  332. }
  333. static int netxen_rom_wip_poll(struct netxen_adapter *adapter)
  334. {
  335. long timeout = 0;
  336. long wip = 1;
  337. int val;
  338. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  339. while (wip != 0) {
  340. val = netxen_do_rom_rdsr(adapter);
  341. wip = val & 1;
  342. timeout++;
  343. if (timeout > rom_max_timeout) {
  344. return -1;
  345. }
  346. }
  347. return 0;
  348. }
  349. static int do_rom_fast_write(struct netxen_adapter *adapter, int addr,
  350. int data)
  351. {
  352. if (netxen_rom_wren(adapter)) {
  353. return -1;
  354. }
  355. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
  356. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  357. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  358. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  359. M25P_INSTR_PP);
  360. if (netxen_wait_rom_done(adapter)) {
  361. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  362. return -1;
  363. }
  364. return netxen_rom_wip_poll(adapter);
  365. }
  366. static int do_rom_fast_read(struct netxen_adapter *adapter,
  367. int addr, int *valp)
  368. {
  369. cond_resched();
  370. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  371. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  372. udelay(100); /* prevent bursting on CRB */
  373. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  374. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb);
  375. if (netxen_wait_rom_done(adapter)) {
  376. printk("Error waiting for rom done\n");
  377. return -EIO;
  378. }
  379. /* reset abyte_cnt and dummy_byte_cnt */
  380. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  381. udelay(100); /* prevent bursting on CRB */
  382. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
  383. *valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA);
  384. return 0;
  385. }
  386. static int do_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
  387. u8 *bytes, size_t size)
  388. {
  389. int addridx;
  390. int ret = 0;
  391. for (addridx = addr; addridx < (addr + size); addridx += 4) {
  392. int v;
  393. ret = do_rom_fast_read(adapter, addridx, &v);
  394. if (ret != 0)
  395. break;
  396. *(__le32 *)bytes = cpu_to_le32(v);
  397. bytes += 4;
  398. }
  399. return ret;
  400. }
  401. int
  402. netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
  403. u8 *bytes, size_t size)
  404. {
  405. int ret;
  406. ret = rom_lock(adapter);
  407. if (ret < 0)
  408. return ret;
  409. ret = do_rom_fast_read_words(adapter, addr, bytes, size);
  410. netxen_rom_unlock(adapter);
  411. return ret;
  412. }
  413. int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
  414. {
  415. int ret;
  416. if (rom_lock(adapter) != 0)
  417. return -EIO;
  418. ret = do_rom_fast_read(adapter, addr, valp);
  419. netxen_rom_unlock(adapter);
  420. return ret;
  421. }
  422. #if 0
  423. int netxen_rom_fast_write(struct netxen_adapter *adapter, int addr, int data)
  424. {
  425. int ret = 0;
  426. if (rom_lock(adapter) != 0) {
  427. return -1;
  428. }
  429. ret = do_rom_fast_write(adapter, addr, data);
  430. netxen_rom_unlock(adapter);
  431. return ret;
  432. }
  433. #endif /* 0 */
  434. static int do_rom_fast_write_words(struct netxen_adapter *adapter,
  435. int addr, u8 *bytes, size_t size)
  436. {
  437. int addridx = addr;
  438. int ret = 0;
  439. while (addridx < (addr + size)) {
  440. int last_attempt = 0;
  441. int timeout = 0;
  442. int data;
  443. data = le32_to_cpu((*(__le32*)bytes));
  444. ret = do_rom_fast_write(adapter, addridx, data);
  445. if (ret < 0)
  446. return ret;
  447. while(1) {
  448. int data1;
  449. ret = do_rom_fast_read(adapter, addridx, &data1);
  450. if (ret < 0)
  451. return ret;
  452. if (data1 == data)
  453. break;
  454. if (timeout++ >= rom_write_timeout) {
  455. if (last_attempt++ < 4) {
  456. ret = do_rom_fast_write(adapter,
  457. addridx, data);
  458. if (ret < 0)
  459. return ret;
  460. }
  461. else {
  462. printk(KERN_INFO "Data write did not "
  463. "succeed at address 0x%x\n", addridx);
  464. break;
  465. }
  466. }
  467. }
  468. bytes += 4;
  469. addridx += 4;
  470. }
  471. return ret;
  472. }
  473. int netxen_rom_fast_write_words(struct netxen_adapter *adapter, int addr,
  474. u8 *bytes, size_t size)
  475. {
  476. int ret = 0;
  477. ret = rom_lock(adapter);
  478. if (ret < 0)
  479. return ret;
  480. ret = do_rom_fast_write_words(adapter, addr, bytes, size);
  481. netxen_rom_unlock(adapter);
  482. return ret;
  483. }
  484. static int netxen_rom_wrsr(struct netxen_adapter *adapter, int data)
  485. {
  486. int ret;
  487. ret = netxen_rom_wren(adapter);
  488. if (ret < 0)
  489. return ret;
  490. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_ROM_WDATA, data);
  491. netxen_crb_writelit_adapter(adapter,
  492. NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0x1);
  493. ret = netxen_wait_rom_done(adapter);
  494. if (ret < 0)
  495. return ret;
  496. return netxen_rom_wip_poll(adapter);
  497. }
  498. static int netxen_rom_rdsr(struct netxen_adapter *adapter)
  499. {
  500. int ret;
  501. ret = rom_lock(adapter);
  502. if (ret < 0)
  503. return ret;
  504. ret = netxen_do_rom_rdsr(adapter);
  505. netxen_rom_unlock(adapter);
  506. return ret;
  507. }
  508. int netxen_backup_crbinit(struct netxen_adapter *adapter)
  509. {
  510. int ret = FLASH_SUCCESS;
  511. int val;
  512. char *buffer = kmalloc(NETXEN_FLASH_SECTOR_SIZE, GFP_KERNEL);
  513. if (!buffer)
  514. return -ENOMEM;
  515. /* unlock sector 63 */
  516. val = netxen_rom_rdsr(adapter);
  517. val = val & 0xe3;
  518. ret = netxen_rom_wrsr(adapter, val);
  519. if (ret != FLASH_SUCCESS)
  520. goto out_kfree;
  521. ret = netxen_rom_wip_poll(adapter);
  522. if (ret != FLASH_SUCCESS)
  523. goto out_kfree;
  524. /* copy sector 0 to sector 63 */
  525. ret = netxen_rom_fast_read_words(adapter, NETXEN_CRBINIT_START,
  526. buffer, NETXEN_FLASH_SECTOR_SIZE);
  527. if (ret != FLASH_SUCCESS)
  528. goto out_kfree;
  529. ret = netxen_rom_fast_write_words(adapter, NETXEN_FIXED_START,
  530. buffer, NETXEN_FLASH_SECTOR_SIZE);
  531. if (ret != FLASH_SUCCESS)
  532. goto out_kfree;
  533. /* lock sector 63 */
  534. val = netxen_rom_rdsr(adapter);
  535. if (!(val & 0x8)) {
  536. val |= (0x1 << 2);
  537. /* lock sector 63 */
  538. if (netxen_rom_wrsr(adapter, val) == 0) {
  539. ret = netxen_rom_wip_poll(adapter);
  540. if (ret != FLASH_SUCCESS)
  541. goto out_kfree;
  542. /* lock SR writes */
  543. ret = netxen_rom_wip_poll(adapter);
  544. if (ret != FLASH_SUCCESS)
  545. goto out_kfree;
  546. }
  547. }
  548. out_kfree:
  549. kfree(buffer);
  550. return ret;
  551. }
  552. static int netxen_do_rom_se(struct netxen_adapter *adapter, int addr)
  553. {
  554. netxen_rom_wren(adapter);
  555. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
  556. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
  557. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE,
  558. M25P_INSTR_SE);
  559. if (netxen_wait_rom_done(adapter)) {
  560. netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
  561. return -1;
  562. }
  563. return netxen_rom_wip_poll(adapter);
  564. }
  565. static void check_erased_flash(struct netxen_adapter *adapter, int addr)
  566. {
  567. int i;
  568. int val;
  569. int count = 0, erased_errors = 0;
  570. int range;
  571. range = (addr == NETXEN_USER_START) ?
  572. NETXEN_FIXED_START : addr + NETXEN_FLASH_SECTOR_SIZE;
  573. for (i = addr; i < range; i += 4) {
  574. netxen_rom_fast_read(adapter, i, &val);
  575. if (val != 0xffffffff)
  576. erased_errors++;
  577. count++;
  578. }
  579. if (erased_errors)
  580. printk(KERN_INFO "0x%x out of 0x%x words fail to be erased "
  581. "for sector address: %x\n", erased_errors, count, addr);
  582. }
  583. int netxen_rom_se(struct netxen_adapter *adapter, int addr)
  584. {
  585. int ret = 0;
  586. if (rom_lock(adapter) != 0) {
  587. return -1;
  588. }
  589. ret = netxen_do_rom_se(adapter, addr);
  590. netxen_rom_unlock(adapter);
  591. msleep(30);
  592. check_erased_flash(adapter, addr);
  593. return ret;
  594. }
  595. static int netxen_flash_erase_sections(struct netxen_adapter *adapter,
  596. int start, int end)
  597. {
  598. int ret = FLASH_SUCCESS;
  599. int i;
  600. for (i = start; i < end; i++) {
  601. ret = netxen_rom_se(adapter, i * NETXEN_FLASH_SECTOR_SIZE);
  602. if (ret)
  603. break;
  604. ret = netxen_rom_wip_poll(adapter);
  605. if (ret < 0)
  606. return ret;
  607. }
  608. return ret;
  609. }
  610. int
  611. netxen_flash_erase_secondary(struct netxen_adapter *adapter)
  612. {
  613. int ret = FLASH_SUCCESS;
  614. int start, end;
  615. start = NETXEN_SECONDARY_START / NETXEN_FLASH_SECTOR_SIZE;
  616. end = NETXEN_USER_START / NETXEN_FLASH_SECTOR_SIZE;
  617. ret = netxen_flash_erase_sections(adapter, start, end);
  618. return ret;
  619. }
  620. int
  621. netxen_flash_erase_primary(struct netxen_adapter *adapter)
  622. {
  623. int ret = FLASH_SUCCESS;
  624. int start, end;
  625. start = NETXEN_PRIMARY_START / NETXEN_FLASH_SECTOR_SIZE;
  626. end = NETXEN_SECONDARY_START / NETXEN_FLASH_SECTOR_SIZE;
  627. ret = netxen_flash_erase_sections(adapter, start, end);
  628. return ret;
  629. }
  630. void netxen_halt_pegs(struct netxen_adapter *adapter)
  631. {
  632. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x3c, 1);
  633. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x3c, 1);
  634. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x3c, 1);
  635. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x3c, 1);
  636. }
  637. int netxen_flash_unlock(struct netxen_adapter *adapter)
  638. {
  639. int ret = 0;
  640. ret = netxen_rom_wrsr(adapter, 0);
  641. if (ret < 0)
  642. return ret;
  643. ret = netxen_rom_wren(adapter);
  644. if (ret < 0)
  645. return ret;
  646. return ret;
  647. }
  648. #define NETXEN_BOARDTYPE 0x4008
  649. #define NETXEN_BOARDNUM 0x400c
  650. #define NETXEN_CHIPNUM 0x4010
  651. #define NETXEN_ROMBUS_RESET 0xFFFFFFFF
  652. #define NETXEN_ROM_FIRST_BARRIER 0x800000000ULL
  653. #define NETXEN_ROM_FOUND_INIT 0x400
  654. int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
  655. {
  656. int addr, val, status;
  657. int n, i;
  658. int init_delay = 0;
  659. struct crb_addr_pair *buf;
  660. u32 off;
  661. /* resetall */
  662. status = netxen_nic_get_board_info(adapter);
  663. if (status)
  664. printk("%s: netxen_pinit_from_rom: Error getting board info\n",
  665. netxen_nic_driver_name);
  666. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  667. NETXEN_ROMBUS_RESET);
  668. if (verbose) {
  669. int val;
  670. if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0)
  671. printk("P2 ROM board type: 0x%08x\n", val);
  672. else
  673. printk("Could not read board type\n");
  674. if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0)
  675. printk("P2 ROM board num: 0x%08x\n", val);
  676. else
  677. printk("Could not read board number\n");
  678. if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0)
  679. printk("P2 ROM chip num: 0x%08x\n", val);
  680. else
  681. printk("Could not read chip number\n");
  682. }
  683. if (netxen_rom_fast_read(adapter, 0, &n) == 0
  684. && (n & NETXEN_ROM_FIRST_BARRIER)) {
  685. n &= ~NETXEN_ROM_ROUNDUP;
  686. if (n < NETXEN_ROM_FOUND_INIT) {
  687. if (verbose)
  688. printk("%s: %d CRB init values found"
  689. " in ROM.\n", netxen_nic_driver_name, n);
  690. } else {
  691. printk("%s:n=0x%x Error! NetXen card flash not"
  692. " initialized.\n", __FUNCTION__, n);
  693. return -EIO;
  694. }
  695. buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
  696. if (buf == NULL) {
  697. printk("%s: netxen_pinit_from_rom: Unable to calloc "
  698. "memory.\n", netxen_nic_driver_name);
  699. return -ENOMEM;
  700. }
  701. for (i = 0; i < n; i++) {
  702. if (netxen_rom_fast_read(adapter, 8 * i + 4, &val) != 0
  703. || netxen_rom_fast_read(adapter, 8 * i + 8,
  704. &addr) != 0)
  705. return -EIO;
  706. buf[i].addr = addr;
  707. buf[i].data = val;
  708. if (verbose)
  709. printk("%s: PCI: 0x%08x == 0x%08x\n",
  710. netxen_nic_driver_name, (unsigned int)
  711. netxen_decode_crb_addr(addr), val);
  712. }
  713. for (i = 0; i < n; i++) {
  714. off = netxen_decode_crb_addr(buf[i].addr);
  715. if (off == NETXEN_ADDR_ERROR) {
  716. printk(KERN_ERR"CRB init value out of range %x\n",
  717. buf[i].addr);
  718. continue;
  719. }
  720. off += NETXEN_PCI_CRBSPACE;
  721. /* skipping cold reboot MAGIC */
  722. if (off == NETXEN_CAM_RAM(0x1fc))
  723. continue;
  724. /* After writing this register, HW needs time for CRB */
  725. /* to quiet down (else crb_window returns 0xffffffff) */
  726. if (off == NETXEN_ROMUSB_GLB_SW_RESET) {
  727. init_delay = 1;
  728. /* hold xdma in reset also */
  729. buf[i].data = NETXEN_NIC_XDMA_RESET;
  730. }
  731. if (ADDR_IN_WINDOW1(off)) {
  732. writel(buf[i].data,
  733. NETXEN_CRB_NORMALIZE(adapter, off));
  734. } else {
  735. netxen_nic_pci_change_crbwindow(adapter, 0);
  736. writel(buf[i].data,
  737. pci_base_offset(adapter, off));
  738. netxen_nic_pci_change_crbwindow(adapter, 1);
  739. }
  740. if (init_delay == 1) {
  741. msleep(2000);
  742. init_delay = 0;
  743. }
  744. msleep(20);
  745. }
  746. kfree(buf);
  747. /* disable_peg_cache_all */
  748. /* unreset_net_cache */
  749. netxen_nic_hw_read_wx(adapter, NETXEN_ROMUSB_GLB_SW_RESET, &val,
  750. 4);
  751. netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
  752. (val & 0xffffff0f));
  753. /* p2dn replyCount */
  754. netxen_crb_writelit_adapter(adapter,
  755. NETXEN_CRB_PEG_NET_D + 0xec, 0x1e);
  756. /* disable_peg_cache 0 */
  757. netxen_crb_writelit_adapter(adapter,
  758. NETXEN_CRB_PEG_NET_D + 0x4c, 8);
  759. /* disable_peg_cache 1 */
  760. netxen_crb_writelit_adapter(adapter,
  761. NETXEN_CRB_PEG_NET_I + 0x4c, 8);
  762. /* peg_clr_all */
  763. /* peg_clr 0 */
  764. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8,
  765. 0);
  766. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc,
  767. 0);
  768. /* peg_clr 1 */
  769. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8,
  770. 0);
  771. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc,
  772. 0);
  773. /* peg_clr 2 */
  774. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8,
  775. 0);
  776. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc,
  777. 0);
  778. /* peg_clr 3 */
  779. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8,
  780. 0);
  781. netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc,
  782. 0);
  783. }
  784. return 0;
  785. }
  786. int netxen_initialize_adapter_offload(struct netxen_adapter *adapter)
  787. {
  788. uint64_t addr;
  789. uint32_t hi;
  790. uint32_t lo;
  791. adapter->dummy_dma.addr =
  792. pci_alloc_consistent(adapter->ahw.pdev,
  793. NETXEN_HOST_DUMMY_DMA_SIZE,
  794. &adapter->dummy_dma.phys_addr);
  795. if (adapter->dummy_dma.addr == NULL) {
  796. printk("%s: ERROR: Could not allocate dummy DMA memory\n",
  797. __FUNCTION__);
  798. return -ENOMEM;
  799. }
  800. addr = (uint64_t) adapter->dummy_dma.phys_addr;
  801. hi = (addr >> 32) & 0xffffffff;
  802. lo = addr & 0xffffffff;
  803. writel(hi, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI));
  804. writel(lo, NETXEN_CRB_NORMALIZE(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO));
  805. return 0;
  806. }
  807. void netxen_free_adapter_offload(struct netxen_adapter *adapter)
  808. {
  809. if (adapter->dummy_dma.addr) {
  810. pci_free_consistent(adapter->ahw.pdev,
  811. NETXEN_HOST_DUMMY_DMA_SIZE,
  812. adapter->dummy_dma.addr,
  813. adapter->dummy_dma.phys_addr);
  814. adapter->dummy_dma.addr = NULL;
  815. }
  816. }
  817. int netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val)
  818. {
  819. u32 val = 0;
  820. int retries = 30;
  821. if (!pegtune_val) {
  822. do {
  823. val = readl(NETXEN_CRB_NORMALIZE
  824. (adapter, CRB_CMDPEG_STATE));
  825. pegtune_val = readl(NETXEN_CRB_NORMALIZE
  826. (adapter, NETXEN_ROMUSB_GLB_PEGTUNE_DONE));
  827. if (val == PHAN_INITIALIZE_COMPLETE ||
  828. val == PHAN_INITIALIZE_ACK)
  829. return 0;
  830. msleep(1000);
  831. } while (--retries);
  832. if (!retries) {
  833. printk(KERN_WARNING "netxen_phantom_init: init failed, "
  834. "pegtune_val=%x\n", pegtune_val);
  835. return -1;
  836. }
  837. }
  838. return 0;
  839. }
  840. int netxen_nic_rx_has_work(struct netxen_adapter *adapter)
  841. {
  842. int ctx;
  843. for (ctx = 0; ctx < MAX_RCV_CTX; ++ctx) {
  844. struct netxen_recv_context *recv_ctx =
  845. &(adapter->recv_ctx[ctx]);
  846. u32 consumer;
  847. struct status_desc *desc_head;
  848. struct status_desc *desc;
  849. consumer = recv_ctx->status_rx_consumer;
  850. desc_head = recv_ctx->rcv_status_desc_head;
  851. desc = &desc_head[consumer];
  852. if (netxen_get_sts_owner(desc) & STATUS_OWNER_HOST)
  853. return 1;
  854. }
  855. return 0;
  856. }
  857. static int netxen_nic_check_temp(struct netxen_adapter *adapter)
  858. {
  859. struct net_device *netdev = adapter->netdev;
  860. uint32_t temp, temp_state, temp_val;
  861. int rv = 0;
  862. temp = readl(NETXEN_CRB_NORMALIZE(adapter, CRB_TEMP_STATE));
  863. temp_state = nx_get_temp_state(temp);
  864. temp_val = nx_get_temp_val(temp);
  865. if (temp_state == NX_TEMP_PANIC) {
  866. printk(KERN_ALERT
  867. "%s: Device temperature %d degrees C exceeds"
  868. " maximum allowed. Hardware has been shut down.\n",
  869. netxen_nic_driver_name, temp_val);
  870. netif_carrier_off(netdev);
  871. netif_stop_queue(netdev);
  872. rv = 1;
  873. } else if (temp_state == NX_TEMP_WARN) {
  874. if (adapter->temp == NX_TEMP_NORMAL) {
  875. printk(KERN_ALERT
  876. "%s: Device temperature %d degrees C "
  877. "exceeds operating range."
  878. " Immediate action needed.\n",
  879. netxen_nic_driver_name, temp_val);
  880. }
  881. } else {
  882. if (adapter->temp == NX_TEMP_WARN) {
  883. printk(KERN_INFO
  884. "%s: Device temperature is now %d degrees C"
  885. " in normal range.\n", netxen_nic_driver_name,
  886. temp_val);
  887. }
  888. }
  889. adapter->temp = temp_state;
  890. return rv;
  891. }
  892. void netxen_watchdog_task(struct work_struct *work)
  893. {
  894. struct net_device *netdev;
  895. struct netxen_adapter *adapter =
  896. container_of(work, struct netxen_adapter, watchdog_task);
  897. if ((adapter->portnum == 0) && netxen_nic_check_temp(adapter))
  898. return;
  899. if (adapter->handle_phy_intr)
  900. adapter->handle_phy_intr(adapter);
  901. netdev = adapter->netdev;
  902. if ((netif_running(netdev)) && !netif_carrier_ok(netdev) &&
  903. netxen_nic_link_ok(adapter) ) {
  904. printk(KERN_INFO "%s %s (port %d), Link is up\n",
  905. netxen_nic_driver_name, netdev->name, adapter->portnum);
  906. netif_carrier_on(netdev);
  907. netif_wake_queue(netdev);
  908. } else if(!(netif_running(netdev)) && netif_carrier_ok(netdev)) {
  909. printk(KERN_ERR "%s %s Link is Down\n",
  910. netxen_nic_driver_name, netdev->name);
  911. netif_carrier_off(netdev);
  912. netif_stop_queue(netdev);
  913. }
  914. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  915. }
  916. /*
  917. * netxen_process_rcv() send the received packet to the protocol stack.
  918. * and if the number of receives exceeds RX_BUFFERS_REFILL, then we
  919. * invoke the routine to send more rx buffers to the Phantom...
  920. */
  921. static void netxen_process_rcv(struct netxen_adapter *adapter, int ctxid,
  922. struct status_desc *desc)
  923. {
  924. struct pci_dev *pdev = adapter->pdev;
  925. struct net_device *netdev = adapter->netdev;
  926. u64 sts_data = le64_to_cpu(desc->status_desc_data);
  927. int index = netxen_get_sts_refhandle(sts_data);
  928. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  929. struct netxen_rx_buffer *buffer;
  930. struct sk_buff *skb;
  931. u32 length = netxen_get_sts_totallength(sts_data);
  932. u32 desc_ctx;
  933. struct netxen_rcv_desc_ctx *rcv_desc;
  934. int ret;
  935. desc_ctx = netxen_get_sts_type(sts_data);
  936. if (unlikely(desc_ctx >= NUM_RCV_DESC_RINGS)) {
  937. printk("%s: %s Bad Rcv descriptor ring\n",
  938. netxen_nic_driver_name, netdev->name);
  939. return;
  940. }
  941. rcv_desc = &recv_ctx->rcv_desc[desc_ctx];
  942. if (unlikely(index > rcv_desc->max_rx_desc_count)) {
  943. DPRINTK(ERR, "Got a buffer index:%x Max is %x\n",
  944. index, rcv_desc->max_rx_desc_count);
  945. return;
  946. }
  947. buffer = &rcv_desc->rx_buf_arr[index];
  948. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  949. buffer->lro_current_frags++;
  950. if (netxen_get_sts_desc_lro_last_frag(desc)) {
  951. buffer->lro_expected_frags =
  952. netxen_get_sts_desc_lro_cnt(desc);
  953. buffer->lro_length = length;
  954. }
  955. if (buffer->lro_current_frags != buffer->lro_expected_frags) {
  956. if (buffer->lro_expected_frags != 0) {
  957. printk("LRO: (refhandle:%x) recv frag. "
  958. "wait for last. flags: %x expected:%d "
  959. "have:%d\n", index,
  960. netxen_get_sts_desc_lro_last_frag(desc),
  961. buffer->lro_expected_frags,
  962. buffer->lro_current_frags);
  963. }
  964. return;
  965. }
  966. }
  967. pci_unmap_single(pdev, buffer->dma, rcv_desc->dma_size,
  968. PCI_DMA_FROMDEVICE);
  969. skb = (struct sk_buff *)buffer->skb;
  970. if (likely(adapter->rx_csum &&
  971. netxen_get_sts_status(sts_data) == STATUS_CKSUM_OK)) {
  972. adapter->stats.csummed++;
  973. skb->ip_summed = CHECKSUM_UNNECESSARY;
  974. } else
  975. skb->ip_summed = CHECKSUM_NONE;
  976. skb->dev = netdev;
  977. if (desc_ctx == RCV_DESC_LRO_CTXID) {
  978. /* True length was only available on the last pkt */
  979. skb_put(skb, buffer->lro_length);
  980. } else {
  981. skb_put(skb, length);
  982. }
  983. skb->protocol = eth_type_trans(skb, netdev);
  984. ret = netif_receive_skb(skb);
  985. /*
  986. * RH: Do we need these stats on a regular basis. Can we get it from
  987. * Linux stats.
  988. */
  989. switch (ret) {
  990. case NET_RX_SUCCESS:
  991. adapter->stats.uphappy++;
  992. break;
  993. case NET_RX_CN_LOW:
  994. adapter->stats.uplcong++;
  995. break;
  996. case NET_RX_CN_MOD:
  997. adapter->stats.upmcong++;
  998. break;
  999. case NET_RX_CN_HIGH:
  1000. adapter->stats.uphcong++;
  1001. break;
  1002. case NET_RX_DROP:
  1003. adapter->stats.updropped++;
  1004. break;
  1005. default:
  1006. adapter->stats.updunno++;
  1007. break;
  1008. }
  1009. netdev->last_rx = jiffies;
  1010. rcv_desc->rcv_free++;
  1011. rcv_desc->rcv_pending--;
  1012. /*
  1013. * We just consumed one buffer so post a buffer.
  1014. */
  1015. buffer->skb = NULL;
  1016. buffer->state = NETXEN_BUFFER_FREE;
  1017. buffer->lro_current_frags = 0;
  1018. buffer->lro_expected_frags = 0;
  1019. adapter->stats.no_rcv++;
  1020. adapter->stats.rxbytes += length;
  1021. }
  1022. /* Process Receive status ring */
  1023. u32 netxen_process_rcv_ring(struct netxen_adapter *adapter, int ctxid, int max)
  1024. {
  1025. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctxid]);
  1026. struct status_desc *desc_head = recv_ctx->rcv_status_desc_head;
  1027. struct status_desc *desc; /* used to read status desc here */
  1028. u32 consumer = recv_ctx->status_rx_consumer;
  1029. u32 producer = 0;
  1030. int count = 0, ring;
  1031. DPRINTK(INFO, "procesing receive\n");
  1032. /*
  1033. * we assume in this case that there is only one port and that is
  1034. * port #1...changes need to be done in firmware to indicate port
  1035. * number as part of the descriptor. This way we will be able to get
  1036. * the netdev which is associated with that device.
  1037. */
  1038. while (count < max) {
  1039. desc = &desc_head[consumer];
  1040. if (!(netxen_get_sts_owner(desc) & STATUS_OWNER_HOST)) {
  1041. DPRINTK(ERR, "desc %p ownedby %x\n", desc,
  1042. netxen_get_sts_owner(desc));
  1043. break;
  1044. }
  1045. netxen_process_rcv(adapter, ctxid, desc);
  1046. netxen_set_sts_owner(desc, STATUS_OWNER_PHANTOM);
  1047. consumer = (consumer + 1) & (adapter->max_rx_desc_count - 1);
  1048. count++;
  1049. }
  1050. if (count) {
  1051. for (ring = 0; ring < NUM_RCV_DESC_RINGS; ring++) {
  1052. netxen_post_rx_buffers_nodb(adapter, ctxid, ring);
  1053. }
  1054. }
  1055. /* update the consumer index in phantom */
  1056. if (count) {
  1057. recv_ctx->status_rx_consumer = consumer;
  1058. recv_ctx->status_rx_producer = producer;
  1059. /* Window = 1 */
  1060. writel(consumer,
  1061. NETXEN_CRB_NORMALIZE(adapter,
  1062. recv_crb_registers[adapter->portnum].
  1063. crb_rcv_status_consumer));
  1064. wmb();
  1065. }
  1066. return count;
  1067. }
  1068. /* Process Command status ring */
  1069. int netxen_process_cmd_ring(unsigned long data)
  1070. {
  1071. u32 last_consumer;
  1072. u32 consumer;
  1073. struct netxen_adapter *adapter = (struct netxen_adapter *)data;
  1074. int count1 = 0;
  1075. int count2 = 0;
  1076. struct netxen_cmd_buffer *buffer;
  1077. struct pci_dev *pdev;
  1078. struct netxen_skb_frag *frag;
  1079. u32 i;
  1080. int done;
  1081. spin_lock(&adapter->tx_lock);
  1082. last_consumer = adapter->last_cmd_consumer;
  1083. DPRINTK(INFO, "procesing xmit complete\n");
  1084. /* we assume in this case that there is only one port and that is
  1085. * port #1...changes need to be done in firmware to indicate port
  1086. * number as part of the descriptor. This way we will be able to get
  1087. * the netdev which is associated with that device.
  1088. */
  1089. consumer = le32_to_cpu(*(adapter->cmd_consumer));
  1090. if (last_consumer == consumer) { /* Ring is empty */
  1091. DPRINTK(INFO, "last_consumer %d == consumer %d\n",
  1092. last_consumer, consumer);
  1093. spin_unlock(&adapter->tx_lock);
  1094. return 1;
  1095. }
  1096. adapter->proc_cmd_buf_counter++;
  1097. /*
  1098. * Not needed - does not seem to be used anywhere.
  1099. * adapter->cmd_consumer = consumer;
  1100. */
  1101. spin_unlock(&adapter->tx_lock);
  1102. while ((last_consumer != consumer) && (count1 < MAX_STATUS_HANDLE)) {
  1103. buffer = &adapter->cmd_buf_arr[last_consumer];
  1104. pdev = adapter->pdev;
  1105. if (buffer->skb) {
  1106. frag = &buffer->frag_array[0];
  1107. pci_unmap_single(pdev, frag->dma, frag->length,
  1108. PCI_DMA_TODEVICE);
  1109. frag->dma = 0ULL;
  1110. for (i = 1; i < buffer->frag_count; i++) {
  1111. DPRINTK(INFO, "getting fragment no %d\n", i);
  1112. frag++; /* Get the next frag */
  1113. pci_unmap_page(pdev, frag->dma, frag->length,
  1114. PCI_DMA_TODEVICE);
  1115. frag->dma = 0ULL;
  1116. }
  1117. adapter->stats.skbfreed++;
  1118. dev_kfree_skb_any(buffer->skb);
  1119. buffer->skb = NULL;
  1120. } else if (adapter->proc_cmd_buf_counter == 1) {
  1121. adapter->stats.txnullskb++;
  1122. }
  1123. if (unlikely(netif_queue_stopped(adapter->netdev)
  1124. && netif_carrier_ok(adapter->netdev))
  1125. && ((jiffies - adapter->netdev->trans_start) >
  1126. adapter->netdev->watchdog_timeo)) {
  1127. SCHEDULE_WORK(&adapter->tx_timeout_task);
  1128. }
  1129. last_consumer = get_next_index(last_consumer,
  1130. adapter->max_tx_desc_count);
  1131. count1++;
  1132. }
  1133. count2 = 0;
  1134. spin_lock(&adapter->tx_lock);
  1135. if ((--adapter->proc_cmd_buf_counter) == 0) {
  1136. adapter->last_cmd_consumer = last_consumer;
  1137. while ((adapter->last_cmd_consumer != consumer)
  1138. && (count2 < MAX_STATUS_HANDLE)) {
  1139. buffer =
  1140. &adapter->cmd_buf_arr[adapter->last_cmd_consumer];
  1141. count2++;
  1142. if (buffer->skb)
  1143. break;
  1144. else
  1145. adapter->last_cmd_consumer =
  1146. get_next_index(adapter->last_cmd_consumer,
  1147. adapter->max_tx_desc_count);
  1148. }
  1149. }
  1150. if (count1 || count2) {
  1151. if (netif_queue_stopped(adapter->netdev)
  1152. && (adapter->flags & NETXEN_NETDEV_STATUS)) {
  1153. netif_wake_queue(adapter->netdev);
  1154. adapter->flags &= ~NETXEN_NETDEV_STATUS;
  1155. }
  1156. }
  1157. /*
  1158. * If everything is freed up to consumer then check if the ring is full
  1159. * If the ring is full then check if more needs to be freed and
  1160. * schedule the call back again.
  1161. *
  1162. * This happens when there are 2 CPUs. One could be freeing and the
  1163. * other filling it. If the ring is full when we get out of here and
  1164. * the card has already interrupted the host then the host can miss the
  1165. * interrupt.
  1166. *
  1167. * There is still a possible race condition and the host could miss an
  1168. * interrupt. The card has to take care of this.
  1169. */
  1170. if (adapter->last_cmd_consumer == consumer &&
  1171. (((adapter->cmd_producer + 1) %
  1172. adapter->max_tx_desc_count) == adapter->last_cmd_consumer)) {
  1173. consumer = le32_to_cpu(*(adapter->cmd_consumer));
  1174. }
  1175. done = (adapter->last_cmd_consumer == consumer);
  1176. spin_unlock(&adapter->tx_lock);
  1177. DPRINTK(INFO, "last consumer is %d in %s\n", last_consumer,
  1178. __FUNCTION__);
  1179. return (done);
  1180. }
  1181. /*
  1182. * netxen_post_rx_buffers puts buffer in the Phantom memory
  1183. */
  1184. void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ctx, u32 ringid)
  1185. {
  1186. struct pci_dev *pdev = adapter->ahw.pdev;
  1187. struct sk_buff *skb;
  1188. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  1189. struct netxen_rcv_desc_ctx *rcv_desc = NULL;
  1190. uint producer;
  1191. struct rcv_desc *pdesc;
  1192. struct netxen_rx_buffer *buffer;
  1193. int count = 0;
  1194. int index = 0;
  1195. netxen_ctx_msg msg = 0;
  1196. dma_addr_t dma;
  1197. rcv_desc = &recv_ctx->rcv_desc[ringid];
  1198. producer = rcv_desc->producer;
  1199. index = rcv_desc->begin_alloc;
  1200. buffer = &rcv_desc->rx_buf_arr[index];
  1201. /* We can start writing rx descriptors into the phantom memory. */
  1202. while (buffer->state == NETXEN_BUFFER_FREE) {
  1203. skb = dev_alloc_skb(rcv_desc->skb_size);
  1204. if (unlikely(!skb)) {
  1205. /*
  1206. * TODO
  1207. * We need to schedule the posting of buffers to the pegs.
  1208. */
  1209. rcv_desc->begin_alloc = index;
  1210. DPRINTK(ERR, "netxen_post_rx_buffers: "
  1211. " allocated only %d buffers\n", count);
  1212. break;
  1213. }
  1214. count++; /* now there should be no failure */
  1215. pdesc = &rcv_desc->desc_head[producer];
  1216. #if defined(XGB_DEBUG)
  1217. *(unsigned long *)(skb->head) = 0xc0debabe;
  1218. if (skb_is_nonlinear(skb)) {
  1219. printk("Allocated SKB @%p is nonlinear\n");
  1220. }
  1221. #endif
  1222. skb_reserve(skb, 2);
  1223. /* This will be setup when we receive the
  1224. * buffer after it has been filled FSL TBD TBD
  1225. * skb->dev = netdev;
  1226. */
  1227. dma = pci_map_single(pdev, skb->data, rcv_desc->dma_size,
  1228. PCI_DMA_FROMDEVICE);
  1229. pdesc->addr_buffer = cpu_to_le64(dma);
  1230. buffer->skb = skb;
  1231. buffer->state = NETXEN_BUFFER_BUSY;
  1232. buffer->dma = dma;
  1233. /* make a rcv descriptor */
  1234. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  1235. pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size);
  1236. DPRINTK(INFO, "done writing descripter\n");
  1237. producer =
  1238. get_next_index(producer, rcv_desc->max_rx_desc_count);
  1239. index = get_next_index(index, rcv_desc->max_rx_desc_count);
  1240. buffer = &rcv_desc->rx_buf_arr[index];
  1241. }
  1242. /* if we did allocate buffers, then write the count to Phantom */
  1243. if (count) {
  1244. rcv_desc->begin_alloc = index;
  1245. rcv_desc->rcv_pending += count;
  1246. rcv_desc->producer = producer;
  1247. if (rcv_desc->rcv_free >= 32) {
  1248. rcv_desc->rcv_free = 0;
  1249. /* Window = 1 */
  1250. writel((producer - 1) &
  1251. (rcv_desc->max_rx_desc_count - 1),
  1252. NETXEN_CRB_NORMALIZE(adapter,
  1253. recv_crb_registers[
  1254. adapter->portnum].
  1255. rcv_desc_crb[ringid].
  1256. crb_rcv_producer_offset));
  1257. /*
  1258. * Write a doorbell msg to tell phanmon of change in
  1259. * receive ring producer
  1260. */
  1261. netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID);
  1262. netxen_set_msg_privid(msg);
  1263. netxen_set_msg_count(msg,
  1264. ((producer -
  1265. 1) & (rcv_desc->
  1266. max_rx_desc_count - 1)));
  1267. netxen_set_msg_ctxid(msg, adapter->portnum);
  1268. netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid));
  1269. writel(msg,
  1270. DB_NORMALIZE(adapter,
  1271. NETXEN_RCV_PRODUCER_OFFSET));
  1272. wmb();
  1273. }
  1274. }
  1275. }
  1276. static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
  1277. uint32_t ctx, uint32_t ringid)
  1278. {
  1279. struct pci_dev *pdev = adapter->ahw.pdev;
  1280. struct sk_buff *skb;
  1281. struct netxen_recv_context *recv_ctx = &(adapter->recv_ctx[ctx]);
  1282. struct netxen_rcv_desc_ctx *rcv_desc = NULL;
  1283. u32 producer;
  1284. struct rcv_desc *pdesc;
  1285. struct netxen_rx_buffer *buffer;
  1286. int count = 0;
  1287. int index = 0;
  1288. rcv_desc = &recv_ctx->rcv_desc[ringid];
  1289. producer = rcv_desc->producer;
  1290. index = rcv_desc->begin_alloc;
  1291. buffer = &rcv_desc->rx_buf_arr[index];
  1292. /* We can start writing rx descriptors into the phantom memory. */
  1293. while (buffer->state == NETXEN_BUFFER_FREE) {
  1294. skb = dev_alloc_skb(rcv_desc->skb_size);
  1295. if (unlikely(!skb)) {
  1296. /*
  1297. * We need to schedule the posting of buffers to the pegs.
  1298. */
  1299. rcv_desc->begin_alloc = index;
  1300. DPRINTK(ERR, "netxen_post_rx_buffers_nodb: "
  1301. " allocated only %d buffers\n", count);
  1302. break;
  1303. }
  1304. count++; /* now there should be no failure */
  1305. pdesc = &rcv_desc->desc_head[producer];
  1306. skb_reserve(skb, 2);
  1307. /*
  1308. * This will be setup when we receive the
  1309. * buffer after it has been filled
  1310. * skb->dev = netdev;
  1311. */
  1312. buffer->skb = skb;
  1313. buffer->state = NETXEN_BUFFER_BUSY;
  1314. buffer->dma = pci_map_single(pdev, skb->data,
  1315. rcv_desc->dma_size,
  1316. PCI_DMA_FROMDEVICE);
  1317. /* make a rcv descriptor */
  1318. pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
  1319. pdesc->buffer_length = cpu_to_le32(rcv_desc->dma_size);
  1320. pdesc->addr_buffer = cpu_to_le64(buffer->dma);
  1321. DPRINTK(INFO, "done writing descripter\n");
  1322. producer =
  1323. get_next_index(producer, rcv_desc->max_rx_desc_count);
  1324. index = get_next_index(index, rcv_desc->max_rx_desc_count);
  1325. buffer = &rcv_desc->rx_buf_arr[index];
  1326. }
  1327. /* if we did allocate buffers, then write the count to Phantom */
  1328. if (count) {
  1329. rcv_desc->begin_alloc = index;
  1330. rcv_desc->rcv_pending += count;
  1331. rcv_desc->producer = producer;
  1332. if (rcv_desc->rcv_free >= 32) {
  1333. rcv_desc->rcv_free = 0;
  1334. /* Window = 1 */
  1335. writel((producer - 1) &
  1336. (rcv_desc->max_rx_desc_count - 1),
  1337. NETXEN_CRB_NORMALIZE(adapter,
  1338. recv_crb_registers[
  1339. adapter->portnum].
  1340. rcv_desc_crb[ringid].
  1341. crb_rcv_producer_offset));
  1342. wmb();
  1343. }
  1344. }
  1345. }
  1346. int netxen_nic_tx_has_work(struct netxen_adapter *adapter)
  1347. {
  1348. if (find_diff_among(adapter->last_cmd_consumer,
  1349. adapter->cmd_producer,
  1350. adapter->max_tx_desc_count) > 0)
  1351. return 1;
  1352. return 0;
  1353. }
  1354. void netxen_nic_clear_stats(struct netxen_adapter *adapter)
  1355. {
  1356. memset(&adapter->stats, 0, sizeof(adapter->stats));
  1357. return;
  1358. }