spi-pxa2xx.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/spi/pxa2xx_spi.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/spi/spi.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/delay.h>
  30. #include <linux/gpio.h>
  31. #include <linux/slab.h>
  32. #include <linux/clk.h>
  33. #include <asm/io.h>
  34. #include <asm/irq.h>
  35. #include <asm/delay.h>
  36. MODULE_AUTHOR("Stephen Street");
  37. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  38. MODULE_LICENSE("GPL");
  39. MODULE_ALIAS("platform:pxa2xx-spi");
  40. #define MAX_BUSES 3
  41. #define TIMOUT_DFLT 1000
  42. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  43. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  44. #define IS_DMA_ALIGNED(x) IS_ALIGNED((unsigned long)(x), DMA_ALIGNMENT)
  45. #define MAX_DMA_LEN 8191
  46. #define DMA_ALIGNMENT 8
  47. /*
  48. * for testing SSCR1 changes that require SSP restart, basically
  49. * everything except the service and interrupt enables, the pxa270 developer
  50. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  51. * list, but the PXA255 dev man says all bits without really meaning the
  52. * service and interrupt enables
  53. */
  54. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  55. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  56. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  57. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  58. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  59. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  60. #define DEFINE_SSP_REG(reg, off) \
  61. static inline u32 read_##reg(void const __iomem *p) \
  62. { return __raw_readl(p + (off)); } \
  63. \
  64. static inline void write_##reg(u32 v, void __iomem *p) \
  65. { __raw_writel(v, p + (off)); }
  66. DEFINE_SSP_REG(SSCR0, 0x00)
  67. DEFINE_SSP_REG(SSCR1, 0x04)
  68. DEFINE_SSP_REG(SSSR, 0x08)
  69. DEFINE_SSP_REG(SSITR, 0x0c)
  70. DEFINE_SSP_REG(SSDR, 0x10)
  71. DEFINE_SSP_REG(SSTO, 0x28)
  72. DEFINE_SSP_REG(SSPSP, 0x2c)
  73. #define START_STATE ((void*)0)
  74. #define RUNNING_STATE ((void*)1)
  75. #define DONE_STATE ((void*)2)
  76. #define ERROR_STATE ((void*)-1)
  77. struct driver_data {
  78. /* Driver model hookup */
  79. struct platform_device *pdev;
  80. /* SSP Info */
  81. struct ssp_device *ssp;
  82. /* SPI framework hookup */
  83. enum pxa_ssp_type ssp_type;
  84. struct spi_master *master;
  85. /* PXA hookup */
  86. struct pxa2xx_spi_master *master_info;
  87. /* DMA setup stuff */
  88. int rx_channel;
  89. int tx_channel;
  90. u32 *null_dma_buf;
  91. /* SSP register addresses */
  92. void __iomem *ioaddr;
  93. u32 ssdr_physical;
  94. /* SSP masks*/
  95. u32 dma_cr1;
  96. u32 int_cr1;
  97. u32 clear_sr;
  98. u32 mask_sr;
  99. /* Maximun clock rate */
  100. unsigned long max_clk_rate;
  101. /* Message Transfer pump */
  102. struct tasklet_struct pump_transfers;
  103. /* Current message transfer state info */
  104. struct spi_message* cur_msg;
  105. struct spi_transfer* cur_transfer;
  106. struct chip_data *cur_chip;
  107. size_t len;
  108. void *tx;
  109. void *tx_end;
  110. void *rx;
  111. void *rx_end;
  112. int dma_mapped;
  113. dma_addr_t rx_dma;
  114. dma_addr_t tx_dma;
  115. size_t rx_map_len;
  116. size_t tx_map_len;
  117. u8 n_bytes;
  118. u32 dma_width;
  119. int (*write)(struct driver_data *drv_data);
  120. int (*read)(struct driver_data *drv_data);
  121. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  122. void (*cs_control)(u32 command);
  123. };
  124. struct chip_data {
  125. u32 cr0;
  126. u32 cr1;
  127. u32 psp;
  128. u32 timeout;
  129. u8 n_bytes;
  130. u32 dma_width;
  131. u32 dma_burst_size;
  132. u32 threshold;
  133. u32 dma_threshold;
  134. u8 enable_dma;
  135. u8 bits_per_word;
  136. u32 speed_hz;
  137. union {
  138. int gpio_cs;
  139. unsigned int frm;
  140. };
  141. int gpio_cs_inverted;
  142. int (*write)(struct driver_data *drv_data);
  143. int (*read)(struct driver_data *drv_data);
  144. void (*cs_control)(u32 command);
  145. };
  146. static void cs_assert(struct driver_data *drv_data)
  147. {
  148. struct chip_data *chip = drv_data->cur_chip;
  149. if (drv_data->ssp_type == CE4100_SSP) {
  150. write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
  151. return;
  152. }
  153. if (chip->cs_control) {
  154. chip->cs_control(PXA2XX_CS_ASSERT);
  155. return;
  156. }
  157. if (gpio_is_valid(chip->gpio_cs))
  158. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  159. }
  160. static void cs_deassert(struct driver_data *drv_data)
  161. {
  162. struct chip_data *chip = drv_data->cur_chip;
  163. if (drv_data->ssp_type == CE4100_SSP)
  164. return;
  165. if (chip->cs_control) {
  166. chip->cs_control(PXA2XX_CS_DEASSERT);
  167. return;
  168. }
  169. if (gpio_is_valid(chip->gpio_cs))
  170. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  171. }
  172. static void write_SSSR_CS(struct driver_data *drv_data, u32 val)
  173. {
  174. void __iomem *reg = drv_data->ioaddr;
  175. if (drv_data->ssp_type == CE4100_SSP)
  176. val |= read_SSSR(reg) & SSSR_ALT_FRM_MASK;
  177. write_SSSR(val, reg);
  178. }
  179. static int pxa25x_ssp_comp(struct driver_data *drv_data)
  180. {
  181. if (drv_data->ssp_type == PXA25x_SSP)
  182. return 1;
  183. if (drv_data->ssp_type == CE4100_SSP)
  184. return 1;
  185. return 0;
  186. }
  187. static int flush(struct driver_data *drv_data)
  188. {
  189. unsigned long limit = loops_per_jiffy << 1;
  190. void __iomem *reg = drv_data->ioaddr;
  191. do {
  192. while (read_SSSR(reg) & SSSR_RNE) {
  193. read_SSDR(reg);
  194. }
  195. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  196. write_SSSR_CS(drv_data, SSSR_ROR);
  197. return limit;
  198. }
  199. static int null_writer(struct driver_data *drv_data)
  200. {
  201. void __iomem *reg = drv_data->ioaddr;
  202. u8 n_bytes = drv_data->n_bytes;
  203. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  204. || (drv_data->tx == drv_data->tx_end))
  205. return 0;
  206. write_SSDR(0, reg);
  207. drv_data->tx += n_bytes;
  208. return 1;
  209. }
  210. static int null_reader(struct driver_data *drv_data)
  211. {
  212. void __iomem *reg = drv_data->ioaddr;
  213. u8 n_bytes = drv_data->n_bytes;
  214. while ((read_SSSR(reg) & SSSR_RNE)
  215. && (drv_data->rx < drv_data->rx_end)) {
  216. read_SSDR(reg);
  217. drv_data->rx += n_bytes;
  218. }
  219. return drv_data->rx == drv_data->rx_end;
  220. }
  221. static int u8_writer(struct driver_data *drv_data)
  222. {
  223. void __iomem *reg = drv_data->ioaddr;
  224. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  225. || (drv_data->tx == drv_data->tx_end))
  226. return 0;
  227. write_SSDR(*(u8 *)(drv_data->tx), reg);
  228. ++drv_data->tx;
  229. return 1;
  230. }
  231. static int u8_reader(struct driver_data *drv_data)
  232. {
  233. void __iomem *reg = drv_data->ioaddr;
  234. while ((read_SSSR(reg) & SSSR_RNE)
  235. && (drv_data->rx < drv_data->rx_end)) {
  236. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  237. ++drv_data->rx;
  238. }
  239. return drv_data->rx == drv_data->rx_end;
  240. }
  241. static int u16_writer(struct driver_data *drv_data)
  242. {
  243. void __iomem *reg = drv_data->ioaddr;
  244. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  245. || (drv_data->tx == drv_data->tx_end))
  246. return 0;
  247. write_SSDR(*(u16 *)(drv_data->tx), reg);
  248. drv_data->tx += 2;
  249. return 1;
  250. }
  251. static int u16_reader(struct driver_data *drv_data)
  252. {
  253. void __iomem *reg = drv_data->ioaddr;
  254. while ((read_SSSR(reg) & SSSR_RNE)
  255. && (drv_data->rx < drv_data->rx_end)) {
  256. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  257. drv_data->rx += 2;
  258. }
  259. return drv_data->rx == drv_data->rx_end;
  260. }
  261. static int u32_writer(struct driver_data *drv_data)
  262. {
  263. void __iomem *reg = drv_data->ioaddr;
  264. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  265. || (drv_data->tx == drv_data->tx_end))
  266. return 0;
  267. write_SSDR(*(u32 *)(drv_data->tx), reg);
  268. drv_data->tx += 4;
  269. return 1;
  270. }
  271. static int u32_reader(struct driver_data *drv_data)
  272. {
  273. void __iomem *reg = drv_data->ioaddr;
  274. while ((read_SSSR(reg) & SSSR_RNE)
  275. && (drv_data->rx < drv_data->rx_end)) {
  276. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  277. drv_data->rx += 4;
  278. }
  279. return drv_data->rx == drv_data->rx_end;
  280. }
  281. static void *next_transfer(struct driver_data *drv_data)
  282. {
  283. struct spi_message *msg = drv_data->cur_msg;
  284. struct spi_transfer *trans = drv_data->cur_transfer;
  285. /* Move to next transfer */
  286. if (trans->transfer_list.next != &msg->transfers) {
  287. drv_data->cur_transfer =
  288. list_entry(trans->transfer_list.next,
  289. struct spi_transfer,
  290. transfer_list);
  291. return RUNNING_STATE;
  292. } else
  293. return DONE_STATE;
  294. }
  295. static int map_dma_buffers(struct driver_data *drv_data)
  296. {
  297. struct spi_message *msg = drv_data->cur_msg;
  298. struct device *dev = &msg->spi->dev;
  299. if (!drv_data->cur_chip->enable_dma)
  300. return 0;
  301. if (msg->is_dma_mapped)
  302. return drv_data->rx_dma && drv_data->tx_dma;
  303. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  304. return 0;
  305. /* Modify setup if rx buffer is null */
  306. if (drv_data->rx == NULL) {
  307. *drv_data->null_dma_buf = 0;
  308. drv_data->rx = drv_data->null_dma_buf;
  309. drv_data->rx_map_len = 4;
  310. } else
  311. drv_data->rx_map_len = drv_data->len;
  312. /* Modify setup if tx buffer is null */
  313. if (drv_data->tx == NULL) {
  314. *drv_data->null_dma_buf = 0;
  315. drv_data->tx = drv_data->null_dma_buf;
  316. drv_data->tx_map_len = 4;
  317. } else
  318. drv_data->tx_map_len = drv_data->len;
  319. /* Stream map the tx buffer. Always do DMA_TO_DEVICE first
  320. * so we flush the cache *before* invalidating it, in case
  321. * the tx and rx buffers overlap.
  322. */
  323. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  324. drv_data->tx_map_len, DMA_TO_DEVICE);
  325. if (dma_mapping_error(dev, drv_data->tx_dma))
  326. return 0;
  327. /* Stream map the rx buffer */
  328. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  329. drv_data->rx_map_len, DMA_FROM_DEVICE);
  330. if (dma_mapping_error(dev, drv_data->rx_dma)) {
  331. dma_unmap_single(dev, drv_data->tx_dma,
  332. drv_data->tx_map_len, DMA_TO_DEVICE);
  333. return 0;
  334. }
  335. return 1;
  336. }
  337. static void unmap_dma_buffers(struct driver_data *drv_data)
  338. {
  339. struct device *dev;
  340. if (!drv_data->dma_mapped)
  341. return;
  342. if (!drv_data->cur_msg->is_dma_mapped) {
  343. dev = &drv_data->cur_msg->spi->dev;
  344. dma_unmap_single(dev, drv_data->rx_dma,
  345. drv_data->rx_map_len, DMA_FROM_DEVICE);
  346. dma_unmap_single(dev, drv_data->tx_dma,
  347. drv_data->tx_map_len, DMA_TO_DEVICE);
  348. }
  349. drv_data->dma_mapped = 0;
  350. }
  351. /* caller already set message->status; dma and pio irqs are blocked */
  352. static void giveback(struct driver_data *drv_data)
  353. {
  354. struct spi_transfer* last_transfer;
  355. struct spi_message *msg;
  356. msg = drv_data->cur_msg;
  357. drv_data->cur_msg = NULL;
  358. drv_data->cur_transfer = NULL;
  359. last_transfer = list_entry(msg->transfers.prev,
  360. struct spi_transfer,
  361. transfer_list);
  362. /* Delay if requested before any change in chip select */
  363. if (last_transfer->delay_usecs)
  364. udelay(last_transfer->delay_usecs);
  365. /* Drop chip select UNLESS cs_change is true or we are returning
  366. * a message with an error, or next message is for another chip
  367. */
  368. if (!last_transfer->cs_change)
  369. cs_deassert(drv_data);
  370. else {
  371. struct spi_message *next_msg;
  372. /* Holding of cs was hinted, but we need to make sure
  373. * the next message is for the same chip. Don't waste
  374. * time with the following tests unless this was hinted.
  375. *
  376. * We cannot postpone this until pump_messages, because
  377. * after calling msg->complete (below) the driver that
  378. * sent the current message could be unloaded, which
  379. * could invalidate the cs_control() callback...
  380. */
  381. /* get a pointer to the next message, if any */
  382. next_msg = spi_get_next_queued_message(drv_data->master);
  383. /* see if the next and current messages point
  384. * to the same chip
  385. */
  386. if (next_msg && next_msg->spi != msg->spi)
  387. next_msg = NULL;
  388. if (!next_msg || msg->state == ERROR_STATE)
  389. cs_deassert(drv_data);
  390. }
  391. spi_finalize_current_message(drv_data->master);
  392. drv_data->cur_chip = NULL;
  393. }
  394. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  395. {
  396. unsigned long limit = loops_per_jiffy << 1;
  397. while ((read_SSSR(ioaddr) & SSSR_BSY) && --limit)
  398. cpu_relax();
  399. return limit;
  400. }
  401. static int wait_dma_channel_stop(int channel)
  402. {
  403. unsigned long limit = loops_per_jiffy << 1;
  404. while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
  405. cpu_relax();
  406. return limit;
  407. }
  408. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  409. {
  410. void __iomem *reg = drv_data->ioaddr;
  411. /* Stop and reset */
  412. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  413. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  414. write_SSSR_CS(drv_data, drv_data->clear_sr);
  415. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  416. if (!pxa25x_ssp_comp(drv_data))
  417. write_SSTO(0, reg);
  418. flush(drv_data);
  419. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  420. unmap_dma_buffers(drv_data);
  421. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  422. drv_data->cur_msg->state = ERROR_STATE;
  423. tasklet_schedule(&drv_data->pump_transfers);
  424. }
  425. static void dma_transfer_complete(struct driver_data *drv_data)
  426. {
  427. void __iomem *reg = drv_data->ioaddr;
  428. struct spi_message *msg = drv_data->cur_msg;
  429. /* Clear and disable interrupts on SSP and DMA channels*/
  430. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  431. write_SSSR_CS(drv_data, drv_data->clear_sr);
  432. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  433. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  434. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  435. dev_err(&drv_data->pdev->dev,
  436. "dma_handler: dma rx channel stop failed\n");
  437. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  438. dev_err(&drv_data->pdev->dev,
  439. "dma_transfer: ssp rx stall failed\n");
  440. unmap_dma_buffers(drv_data);
  441. /* update the buffer pointer for the amount completed in dma */
  442. drv_data->rx += drv_data->len -
  443. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  444. /* read trailing data from fifo, it does not matter how many
  445. * bytes are in the fifo just read until buffer is full
  446. * or fifo is empty, which ever occurs first */
  447. drv_data->read(drv_data);
  448. /* return count of what was actually read */
  449. msg->actual_length += drv_data->len -
  450. (drv_data->rx_end - drv_data->rx);
  451. /* Transfer delays and chip select release are
  452. * handled in pump_transfers or giveback
  453. */
  454. /* Move to next transfer */
  455. msg->state = next_transfer(drv_data);
  456. /* Schedule transfer tasklet */
  457. tasklet_schedule(&drv_data->pump_transfers);
  458. }
  459. static void dma_handler(int channel, void *data)
  460. {
  461. struct driver_data *drv_data = data;
  462. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  463. if (irq_status & DCSR_BUSERR) {
  464. if (channel == drv_data->tx_channel)
  465. dma_error_stop(drv_data,
  466. "dma_handler: "
  467. "bad bus address on tx channel");
  468. else
  469. dma_error_stop(drv_data,
  470. "dma_handler: "
  471. "bad bus address on rx channel");
  472. return;
  473. }
  474. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  475. if ((channel == drv_data->tx_channel)
  476. && (irq_status & DCSR_ENDINTR)
  477. && (drv_data->ssp_type == PXA25x_SSP)) {
  478. /* Wait for rx to stall */
  479. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  480. dev_err(&drv_data->pdev->dev,
  481. "dma_handler: ssp rx stall failed\n");
  482. /* finish this transfer, start the next */
  483. dma_transfer_complete(drv_data);
  484. }
  485. }
  486. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  487. {
  488. u32 irq_status;
  489. void __iomem *reg = drv_data->ioaddr;
  490. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  491. if (irq_status & SSSR_ROR) {
  492. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  493. return IRQ_HANDLED;
  494. }
  495. /* Check for false positive timeout */
  496. if ((irq_status & SSSR_TINT)
  497. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  498. write_SSSR(SSSR_TINT, reg);
  499. return IRQ_HANDLED;
  500. }
  501. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  502. /* Clear and disable timeout interrupt, do the rest in
  503. * dma_transfer_complete */
  504. if (!pxa25x_ssp_comp(drv_data))
  505. write_SSTO(0, reg);
  506. /* finish this transfer, start the next */
  507. dma_transfer_complete(drv_data);
  508. return IRQ_HANDLED;
  509. }
  510. /* Opps problem detected */
  511. return IRQ_NONE;
  512. }
  513. static void reset_sccr1(struct driver_data *drv_data)
  514. {
  515. void __iomem *reg = drv_data->ioaddr;
  516. struct chip_data *chip = drv_data->cur_chip;
  517. u32 sccr1_reg;
  518. sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
  519. sccr1_reg &= ~SSCR1_RFT;
  520. sccr1_reg |= chip->threshold;
  521. write_SSCR1(sccr1_reg, reg);
  522. }
  523. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  524. {
  525. void __iomem *reg = drv_data->ioaddr;
  526. /* Stop and reset SSP */
  527. write_SSSR_CS(drv_data, drv_data->clear_sr);
  528. reset_sccr1(drv_data);
  529. if (!pxa25x_ssp_comp(drv_data))
  530. write_SSTO(0, reg);
  531. flush(drv_data);
  532. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  533. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  534. drv_data->cur_msg->state = ERROR_STATE;
  535. tasklet_schedule(&drv_data->pump_transfers);
  536. }
  537. static void int_transfer_complete(struct driver_data *drv_data)
  538. {
  539. void __iomem *reg = drv_data->ioaddr;
  540. /* Stop SSP */
  541. write_SSSR_CS(drv_data, drv_data->clear_sr);
  542. reset_sccr1(drv_data);
  543. if (!pxa25x_ssp_comp(drv_data))
  544. write_SSTO(0, reg);
  545. /* Update total byte transferred return count actual bytes read */
  546. drv_data->cur_msg->actual_length += drv_data->len -
  547. (drv_data->rx_end - drv_data->rx);
  548. /* Transfer delays and chip select release are
  549. * handled in pump_transfers or giveback
  550. */
  551. /* Move to next transfer */
  552. drv_data->cur_msg->state = next_transfer(drv_data);
  553. /* Schedule transfer tasklet */
  554. tasklet_schedule(&drv_data->pump_transfers);
  555. }
  556. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  557. {
  558. void __iomem *reg = drv_data->ioaddr;
  559. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  560. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  561. u32 irq_status = read_SSSR(reg) & irq_mask;
  562. if (irq_status & SSSR_ROR) {
  563. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  564. return IRQ_HANDLED;
  565. }
  566. if (irq_status & SSSR_TINT) {
  567. write_SSSR(SSSR_TINT, reg);
  568. if (drv_data->read(drv_data)) {
  569. int_transfer_complete(drv_data);
  570. return IRQ_HANDLED;
  571. }
  572. }
  573. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  574. do {
  575. if (drv_data->read(drv_data)) {
  576. int_transfer_complete(drv_data);
  577. return IRQ_HANDLED;
  578. }
  579. } while (drv_data->write(drv_data));
  580. if (drv_data->read(drv_data)) {
  581. int_transfer_complete(drv_data);
  582. return IRQ_HANDLED;
  583. }
  584. if (drv_data->tx == drv_data->tx_end) {
  585. u32 bytes_left;
  586. u32 sccr1_reg;
  587. sccr1_reg = read_SSCR1(reg);
  588. sccr1_reg &= ~SSCR1_TIE;
  589. /*
  590. * PXA25x_SSP has no timeout, set up rx threshould for the
  591. * remaining RX bytes.
  592. */
  593. if (pxa25x_ssp_comp(drv_data)) {
  594. sccr1_reg &= ~SSCR1_RFT;
  595. bytes_left = drv_data->rx_end - drv_data->rx;
  596. switch (drv_data->n_bytes) {
  597. case 4:
  598. bytes_left >>= 1;
  599. case 2:
  600. bytes_left >>= 1;
  601. }
  602. if (bytes_left > RX_THRESH_DFLT)
  603. bytes_left = RX_THRESH_DFLT;
  604. sccr1_reg |= SSCR1_RxTresh(bytes_left);
  605. }
  606. write_SSCR1(sccr1_reg, reg);
  607. }
  608. /* We did something */
  609. return IRQ_HANDLED;
  610. }
  611. static irqreturn_t ssp_int(int irq, void *dev_id)
  612. {
  613. struct driver_data *drv_data = dev_id;
  614. void __iomem *reg = drv_data->ioaddr;
  615. u32 sccr1_reg = read_SSCR1(reg);
  616. u32 mask = drv_data->mask_sr;
  617. u32 status;
  618. status = read_SSSR(reg);
  619. /* Ignore possible writes if we don't need to write */
  620. if (!(sccr1_reg & SSCR1_TIE))
  621. mask &= ~SSSR_TFS;
  622. if (!(status & mask))
  623. return IRQ_NONE;
  624. if (!drv_data->cur_msg) {
  625. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  626. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  627. if (!pxa25x_ssp_comp(drv_data))
  628. write_SSTO(0, reg);
  629. write_SSSR_CS(drv_data, drv_data->clear_sr);
  630. dev_err(&drv_data->pdev->dev, "bad message state "
  631. "in interrupt handler\n");
  632. /* Never fail */
  633. return IRQ_HANDLED;
  634. }
  635. return drv_data->transfer_handler(drv_data);
  636. }
  637. static int set_dma_burst_and_threshold(struct chip_data *chip,
  638. struct spi_device *spi,
  639. u8 bits_per_word, u32 *burst_code,
  640. u32 *threshold)
  641. {
  642. struct pxa2xx_spi_chip *chip_info =
  643. (struct pxa2xx_spi_chip *)spi->controller_data;
  644. int bytes_per_word;
  645. int burst_bytes;
  646. int thresh_words;
  647. int req_burst_size;
  648. int retval = 0;
  649. /* Set the threshold (in registers) to equal the same amount of data
  650. * as represented by burst size (in bytes). The computation below
  651. * is (burst_size rounded up to nearest 8 byte, word or long word)
  652. * divided by (bytes/register); the tx threshold is the inverse of
  653. * the rx, so that there will always be enough data in the rx fifo
  654. * to satisfy a burst, and there will always be enough space in the
  655. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  656. * there is not enough space), there must always remain enough empty
  657. * space in the rx fifo for any data loaded to the tx fifo.
  658. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  659. * will be 8, or half the fifo;
  660. * The threshold can only be set to 2, 4 or 8, but not 16, because
  661. * to burst 16 to the tx fifo, the fifo would have to be empty;
  662. * however, the minimum fifo trigger level is 1, and the tx will
  663. * request service when the fifo is at this level, with only 15 spaces.
  664. */
  665. /* find bytes/word */
  666. if (bits_per_word <= 8)
  667. bytes_per_word = 1;
  668. else if (bits_per_word <= 16)
  669. bytes_per_word = 2;
  670. else
  671. bytes_per_word = 4;
  672. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  673. if (chip_info)
  674. req_burst_size = chip_info->dma_burst_size;
  675. else {
  676. switch (chip->dma_burst_size) {
  677. default:
  678. /* if the default burst size is not set,
  679. * do it now */
  680. chip->dma_burst_size = DCMD_BURST8;
  681. case DCMD_BURST8:
  682. req_burst_size = 8;
  683. break;
  684. case DCMD_BURST16:
  685. req_burst_size = 16;
  686. break;
  687. case DCMD_BURST32:
  688. req_burst_size = 32;
  689. break;
  690. }
  691. }
  692. if (req_burst_size <= 8) {
  693. *burst_code = DCMD_BURST8;
  694. burst_bytes = 8;
  695. } else if (req_burst_size <= 16) {
  696. if (bytes_per_word == 1) {
  697. /* don't burst more than 1/2 the fifo */
  698. *burst_code = DCMD_BURST8;
  699. burst_bytes = 8;
  700. retval = 1;
  701. } else {
  702. *burst_code = DCMD_BURST16;
  703. burst_bytes = 16;
  704. }
  705. } else {
  706. if (bytes_per_word == 1) {
  707. /* don't burst more than 1/2 the fifo */
  708. *burst_code = DCMD_BURST8;
  709. burst_bytes = 8;
  710. retval = 1;
  711. } else if (bytes_per_word == 2) {
  712. /* don't burst more than 1/2 the fifo */
  713. *burst_code = DCMD_BURST16;
  714. burst_bytes = 16;
  715. retval = 1;
  716. } else {
  717. *burst_code = DCMD_BURST32;
  718. burst_bytes = 32;
  719. }
  720. }
  721. thresh_words = burst_bytes / bytes_per_word;
  722. /* thresh_words will be between 2 and 8 */
  723. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  724. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  725. return retval;
  726. }
  727. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  728. {
  729. unsigned long ssp_clk = drv_data->max_clk_rate;
  730. const struct ssp_device *ssp = drv_data->ssp;
  731. rate = min_t(int, ssp_clk, rate);
  732. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  733. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  734. else
  735. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  736. }
  737. static void pump_transfers(unsigned long data)
  738. {
  739. struct driver_data *drv_data = (struct driver_data *)data;
  740. struct spi_message *message = NULL;
  741. struct spi_transfer *transfer = NULL;
  742. struct spi_transfer *previous = NULL;
  743. struct chip_data *chip = NULL;
  744. void __iomem *reg = drv_data->ioaddr;
  745. u32 clk_div = 0;
  746. u8 bits = 0;
  747. u32 speed = 0;
  748. u32 cr0;
  749. u32 cr1;
  750. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  751. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  752. /* Get current state information */
  753. message = drv_data->cur_msg;
  754. transfer = drv_data->cur_transfer;
  755. chip = drv_data->cur_chip;
  756. /* Handle for abort */
  757. if (message->state == ERROR_STATE) {
  758. message->status = -EIO;
  759. giveback(drv_data);
  760. return;
  761. }
  762. /* Handle end of message */
  763. if (message->state == DONE_STATE) {
  764. message->status = 0;
  765. giveback(drv_data);
  766. return;
  767. }
  768. /* Delay if requested at end of transfer before CS change */
  769. if (message->state == RUNNING_STATE) {
  770. previous = list_entry(transfer->transfer_list.prev,
  771. struct spi_transfer,
  772. transfer_list);
  773. if (previous->delay_usecs)
  774. udelay(previous->delay_usecs);
  775. /* Drop chip select only if cs_change is requested */
  776. if (previous->cs_change)
  777. cs_deassert(drv_data);
  778. }
  779. /* Check for transfers that need multiple DMA segments */
  780. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  781. /* reject already-mapped transfers; PIO won't always work */
  782. if (message->is_dma_mapped
  783. || transfer->rx_dma || transfer->tx_dma) {
  784. dev_err(&drv_data->pdev->dev,
  785. "pump_transfers: mapped transfer length "
  786. "of %u is greater than %d\n",
  787. transfer->len, MAX_DMA_LEN);
  788. message->status = -EINVAL;
  789. giveback(drv_data);
  790. return;
  791. }
  792. /* warn ... we force this to PIO mode */
  793. if (printk_ratelimit())
  794. dev_warn(&message->spi->dev, "pump_transfers: "
  795. "DMA disabled for transfer length %ld "
  796. "greater than %d\n",
  797. (long)drv_data->len, MAX_DMA_LEN);
  798. }
  799. /* Setup the transfer state based on the type of transfer */
  800. if (flush(drv_data) == 0) {
  801. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  802. message->status = -EIO;
  803. giveback(drv_data);
  804. return;
  805. }
  806. drv_data->n_bytes = chip->n_bytes;
  807. drv_data->dma_width = chip->dma_width;
  808. drv_data->tx = (void *)transfer->tx_buf;
  809. drv_data->tx_end = drv_data->tx + transfer->len;
  810. drv_data->rx = transfer->rx_buf;
  811. drv_data->rx_end = drv_data->rx + transfer->len;
  812. drv_data->rx_dma = transfer->rx_dma;
  813. drv_data->tx_dma = transfer->tx_dma;
  814. drv_data->len = transfer->len & DCMD_LENGTH;
  815. drv_data->write = drv_data->tx ? chip->write : null_writer;
  816. drv_data->read = drv_data->rx ? chip->read : null_reader;
  817. /* Change speed and bit per word on a per transfer */
  818. cr0 = chip->cr0;
  819. if (transfer->speed_hz || transfer->bits_per_word) {
  820. bits = chip->bits_per_word;
  821. speed = chip->speed_hz;
  822. if (transfer->speed_hz)
  823. speed = transfer->speed_hz;
  824. if (transfer->bits_per_word)
  825. bits = transfer->bits_per_word;
  826. clk_div = ssp_get_clk_div(drv_data, speed);
  827. if (bits <= 8) {
  828. drv_data->n_bytes = 1;
  829. drv_data->dma_width = DCMD_WIDTH1;
  830. drv_data->read = drv_data->read != null_reader ?
  831. u8_reader : null_reader;
  832. drv_data->write = drv_data->write != null_writer ?
  833. u8_writer : null_writer;
  834. } else if (bits <= 16) {
  835. drv_data->n_bytes = 2;
  836. drv_data->dma_width = DCMD_WIDTH2;
  837. drv_data->read = drv_data->read != null_reader ?
  838. u16_reader : null_reader;
  839. drv_data->write = drv_data->write != null_writer ?
  840. u16_writer : null_writer;
  841. } else if (bits <= 32) {
  842. drv_data->n_bytes = 4;
  843. drv_data->dma_width = DCMD_WIDTH4;
  844. drv_data->read = drv_data->read != null_reader ?
  845. u32_reader : null_reader;
  846. drv_data->write = drv_data->write != null_writer ?
  847. u32_writer : null_writer;
  848. }
  849. /* if bits/word is changed in dma mode, then must check the
  850. * thresholds and burst also */
  851. if (chip->enable_dma) {
  852. if (set_dma_burst_and_threshold(chip, message->spi,
  853. bits, &dma_burst,
  854. &dma_thresh))
  855. if (printk_ratelimit())
  856. dev_warn(&message->spi->dev,
  857. "pump_transfers: "
  858. "DMA burst size reduced to "
  859. "match bits_per_word\n");
  860. }
  861. cr0 = clk_div
  862. | SSCR0_Motorola
  863. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  864. | SSCR0_SSE
  865. | (bits > 16 ? SSCR0_EDSS : 0);
  866. }
  867. message->state = RUNNING_STATE;
  868. /* Try to map dma buffer and do a dma transfer if successful, but
  869. * only if the length is non-zero and less than MAX_DMA_LEN.
  870. *
  871. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  872. * of PIO instead. Care is needed above because the transfer may
  873. * have have been passed with buffers that are already dma mapped.
  874. * A zero-length transfer in PIO mode will not try to write/read
  875. * to/from the buffers
  876. *
  877. * REVISIT large transfers are exactly where we most want to be
  878. * using DMA. If this happens much, split those transfers into
  879. * multiple DMA segments rather than forcing PIO.
  880. */
  881. drv_data->dma_mapped = 0;
  882. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  883. drv_data->dma_mapped = map_dma_buffers(drv_data);
  884. if (drv_data->dma_mapped) {
  885. /* Ensure we have the correct interrupt handler */
  886. drv_data->transfer_handler = dma_transfer;
  887. /* Setup rx DMA Channel */
  888. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  889. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  890. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  891. if (drv_data->rx == drv_data->null_dma_buf)
  892. /* No target address increment */
  893. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  894. | drv_data->dma_width
  895. | dma_burst
  896. | drv_data->len;
  897. else
  898. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  899. | DCMD_FLOWSRC
  900. | drv_data->dma_width
  901. | dma_burst
  902. | drv_data->len;
  903. /* Setup tx DMA Channel */
  904. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  905. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  906. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  907. if (drv_data->tx == drv_data->null_dma_buf)
  908. /* No source address increment */
  909. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  910. | drv_data->dma_width
  911. | dma_burst
  912. | drv_data->len;
  913. else
  914. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  915. | DCMD_FLOWTRG
  916. | drv_data->dma_width
  917. | dma_burst
  918. | drv_data->len;
  919. /* Enable dma end irqs on SSP to detect end of transfer */
  920. if (drv_data->ssp_type == PXA25x_SSP)
  921. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  922. /* Clear status and start DMA engine */
  923. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  924. write_SSSR(drv_data->clear_sr, reg);
  925. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  926. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  927. } else {
  928. /* Ensure we have the correct interrupt handler */
  929. drv_data->transfer_handler = interrupt_transfer;
  930. /* Clear status */
  931. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  932. write_SSSR_CS(drv_data, drv_data->clear_sr);
  933. }
  934. /* see if we need to reload the config registers */
  935. if ((read_SSCR0(reg) != cr0)
  936. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  937. (cr1 & SSCR1_CHANGE_MASK)) {
  938. /* stop the SSP, and update the other bits */
  939. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  940. if (!pxa25x_ssp_comp(drv_data))
  941. write_SSTO(chip->timeout, reg);
  942. /* first set CR1 without interrupt and service enables */
  943. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  944. /* restart the SSP */
  945. write_SSCR0(cr0, reg);
  946. } else {
  947. if (!pxa25x_ssp_comp(drv_data))
  948. write_SSTO(chip->timeout, reg);
  949. }
  950. cs_assert(drv_data);
  951. /* after chip select, release the data by enabling service
  952. * requests and interrupts, without changing any mode bits */
  953. write_SSCR1(cr1, reg);
  954. }
  955. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  956. struct spi_message *msg)
  957. {
  958. struct driver_data *drv_data = spi_master_get_devdata(master);
  959. drv_data->cur_msg = msg;
  960. /* Initial message state*/
  961. drv_data->cur_msg->state = START_STATE;
  962. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  963. struct spi_transfer,
  964. transfer_list);
  965. /* prepare to setup the SSP, in pump_transfers, using the per
  966. * chip configuration */
  967. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  968. /* Mark as busy and launch transfers */
  969. tasklet_schedule(&drv_data->pump_transfers);
  970. return 0;
  971. }
  972. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  973. struct pxa2xx_spi_chip *chip_info)
  974. {
  975. int err = 0;
  976. if (chip == NULL || chip_info == NULL)
  977. return 0;
  978. /* NOTE: setup() can be called multiple times, possibly with
  979. * different chip_info, release previously requested GPIO
  980. */
  981. if (gpio_is_valid(chip->gpio_cs))
  982. gpio_free(chip->gpio_cs);
  983. /* If (*cs_control) is provided, ignore GPIO chip select */
  984. if (chip_info->cs_control) {
  985. chip->cs_control = chip_info->cs_control;
  986. return 0;
  987. }
  988. if (gpio_is_valid(chip_info->gpio_cs)) {
  989. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  990. if (err) {
  991. dev_err(&spi->dev, "failed to request chip select "
  992. "GPIO%d\n", chip_info->gpio_cs);
  993. return err;
  994. }
  995. chip->gpio_cs = chip_info->gpio_cs;
  996. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  997. err = gpio_direction_output(chip->gpio_cs,
  998. !chip->gpio_cs_inverted);
  999. }
  1000. return err;
  1001. }
  1002. static int setup(struct spi_device *spi)
  1003. {
  1004. struct pxa2xx_spi_chip *chip_info = NULL;
  1005. struct chip_data *chip;
  1006. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1007. unsigned int clk_div;
  1008. uint tx_thres = TX_THRESH_DFLT;
  1009. uint rx_thres = RX_THRESH_DFLT;
  1010. if (!pxa25x_ssp_comp(drv_data)
  1011. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  1012. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1013. "b/w not 4-32 for type non-PXA25x_SSP\n",
  1014. drv_data->ssp_type, spi->bits_per_word);
  1015. return -EINVAL;
  1016. } else if (pxa25x_ssp_comp(drv_data)
  1017. && (spi->bits_per_word < 4
  1018. || spi->bits_per_word > 16)) {
  1019. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  1020. "b/w not 4-16 for type PXA25x_SSP\n",
  1021. drv_data->ssp_type, spi->bits_per_word);
  1022. return -EINVAL;
  1023. }
  1024. /* Only alloc on first setup */
  1025. chip = spi_get_ctldata(spi);
  1026. if (!chip) {
  1027. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1028. if (!chip) {
  1029. dev_err(&spi->dev,
  1030. "failed setup: can't allocate chip data\n");
  1031. return -ENOMEM;
  1032. }
  1033. if (drv_data->ssp_type == CE4100_SSP) {
  1034. if (spi->chip_select > 4) {
  1035. dev_err(&spi->dev, "failed setup: "
  1036. "cs number must not be > 4.\n");
  1037. kfree(chip);
  1038. return -EINVAL;
  1039. }
  1040. chip->frm = spi->chip_select;
  1041. } else
  1042. chip->gpio_cs = -1;
  1043. chip->enable_dma = 0;
  1044. chip->timeout = TIMOUT_DFLT;
  1045. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1046. DCMD_BURST8 : 0;
  1047. }
  1048. /* protocol drivers may change the chip settings, so...
  1049. * if chip_info exists, use it */
  1050. chip_info = spi->controller_data;
  1051. /* chip_info isn't always needed */
  1052. chip->cr1 = 0;
  1053. if (chip_info) {
  1054. if (chip_info->timeout)
  1055. chip->timeout = chip_info->timeout;
  1056. if (chip_info->tx_threshold)
  1057. tx_thres = chip_info->tx_threshold;
  1058. if (chip_info->rx_threshold)
  1059. rx_thres = chip_info->rx_threshold;
  1060. chip->enable_dma = drv_data->master_info->enable_dma;
  1061. chip->dma_threshold = 0;
  1062. if (chip_info->enable_loopback)
  1063. chip->cr1 = SSCR1_LBM;
  1064. }
  1065. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  1066. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  1067. /* set dma burst and threshold outside of chip_info path so that if
  1068. * chip_info goes away after setting chip->enable_dma, the
  1069. * burst and threshold can still respond to changes in bits_per_word */
  1070. if (chip->enable_dma) {
  1071. /* set up legal burst and threshold for dma */
  1072. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1073. &chip->dma_burst_size,
  1074. &chip->dma_threshold)) {
  1075. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1076. "to match bits_per_word\n");
  1077. }
  1078. }
  1079. clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
  1080. chip->speed_hz = spi->max_speed_hz;
  1081. chip->cr0 = clk_div
  1082. | SSCR0_Motorola
  1083. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1084. spi->bits_per_word - 16 : spi->bits_per_word)
  1085. | SSCR0_SSE
  1086. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1087. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1088. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1089. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1090. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1091. if (!pxa25x_ssp_comp(drv_data))
  1092. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  1093. drv_data->max_clk_rate
  1094. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  1095. chip->enable_dma ? "DMA" : "PIO");
  1096. else
  1097. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  1098. drv_data->max_clk_rate / 2
  1099. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  1100. chip->enable_dma ? "DMA" : "PIO");
  1101. if (spi->bits_per_word <= 8) {
  1102. chip->n_bytes = 1;
  1103. chip->dma_width = DCMD_WIDTH1;
  1104. chip->read = u8_reader;
  1105. chip->write = u8_writer;
  1106. } else if (spi->bits_per_word <= 16) {
  1107. chip->n_bytes = 2;
  1108. chip->dma_width = DCMD_WIDTH2;
  1109. chip->read = u16_reader;
  1110. chip->write = u16_writer;
  1111. } else if (spi->bits_per_word <= 32) {
  1112. chip->cr0 |= SSCR0_EDSS;
  1113. chip->n_bytes = 4;
  1114. chip->dma_width = DCMD_WIDTH4;
  1115. chip->read = u32_reader;
  1116. chip->write = u32_writer;
  1117. } else {
  1118. dev_err(&spi->dev, "invalid wordsize\n");
  1119. return -ENODEV;
  1120. }
  1121. chip->bits_per_word = spi->bits_per_word;
  1122. spi_set_ctldata(spi, chip);
  1123. if (drv_data->ssp_type == CE4100_SSP)
  1124. return 0;
  1125. return setup_cs(spi, chip, chip_info);
  1126. }
  1127. static void cleanup(struct spi_device *spi)
  1128. {
  1129. struct chip_data *chip = spi_get_ctldata(spi);
  1130. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  1131. if (!chip)
  1132. return;
  1133. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  1134. gpio_free(chip->gpio_cs);
  1135. kfree(chip);
  1136. }
  1137. static int pxa2xx_spi_probe(struct platform_device *pdev)
  1138. {
  1139. struct device *dev = &pdev->dev;
  1140. struct pxa2xx_spi_master *platform_info;
  1141. struct spi_master *master;
  1142. struct driver_data *drv_data;
  1143. struct ssp_device *ssp;
  1144. int status;
  1145. platform_info = dev_get_platdata(dev);
  1146. if (!platform_info) {
  1147. dev_err(&pdev->dev, "missing platform data\n");
  1148. return -ENODEV;
  1149. }
  1150. ssp = pxa_ssp_request(pdev->id, pdev->name);
  1151. if (!ssp)
  1152. ssp = &platform_info->ssp;
  1153. if (!ssp->mmio_base) {
  1154. dev_err(&pdev->dev, "failed to get ssp\n");
  1155. return -ENODEV;
  1156. }
  1157. /* Allocate master with space for drv_data and null dma buffer */
  1158. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1159. if (!master) {
  1160. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1161. pxa_ssp_free(ssp);
  1162. return -ENOMEM;
  1163. }
  1164. drv_data = spi_master_get_devdata(master);
  1165. drv_data->master = master;
  1166. drv_data->master_info = platform_info;
  1167. drv_data->pdev = pdev;
  1168. drv_data->ssp = ssp;
  1169. master->dev.parent = &pdev->dev;
  1170. master->dev.of_node = pdev->dev.of_node;
  1171. /* the spi->mode bits understood by this driver: */
  1172. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1173. master->bus_num = ssp->port_id;
  1174. master->num_chipselect = platform_info->num_chipselect;
  1175. master->dma_alignment = DMA_ALIGNMENT;
  1176. master->cleanup = cleanup;
  1177. master->setup = setup;
  1178. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  1179. drv_data->ssp_type = ssp->type;
  1180. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  1181. drv_data->ioaddr = ssp->mmio_base;
  1182. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1183. if (pxa25x_ssp_comp(drv_data)) {
  1184. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1185. drv_data->dma_cr1 = 0;
  1186. drv_data->clear_sr = SSSR_ROR;
  1187. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1188. } else {
  1189. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1190. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1191. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1192. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1193. }
  1194. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  1195. drv_data);
  1196. if (status < 0) {
  1197. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1198. goto out_error_master_alloc;
  1199. }
  1200. /* Setup DMA if requested */
  1201. drv_data->tx_channel = -1;
  1202. drv_data->rx_channel = -1;
  1203. if (platform_info->enable_dma) {
  1204. /* Get two DMA channels (rx and tx) */
  1205. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1206. DMA_PRIO_HIGH,
  1207. dma_handler,
  1208. drv_data);
  1209. if (drv_data->rx_channel < 0) {
  1210. dev_err(dev, "problem (%d) requesting rx channel\n",
  1211. drv_data->rx_channel);
  1212. status = -ENODEV;
  1213. goto out_error_irq_alloc;
  1214. }
  1215. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1216. DMA_PRIO_MEDIUM,
  1217. dma_handler,
  1218. drv_data);
  1219. if (drv_data->tx_channel < 0) {
  1220. dev_err(dev, "problem (%d) requesting tx channel\n",
  1221. drv_data->tx_channel);
  1222. status = -ENODEV;
  1223. goto out_error_dma_alloc;
  1224. }
  1225. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1226. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1227. }
  1228. /* Enable SOC clock */
  1229. clk_prepare_enable(ssp->clk);
  1230. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  1231. /* Load default SSP configuration */
  1232. write_SSCR0(0, drv_data->ioaddr);
  1233. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1234. SSCR1_TxTresh(TX_THRESH_DFLT),
  1235. drv_data->ioaddr);
  1236. write_SSCR0(SSCR0_SCR(2)
  1237. | SSCR0_Motorola
  1238. | SSCR0_DataSize(8),
  1239. drv_data->ioaddr);
  1240. if (!pxa25x_ssp_comp(drv_data))
  1241. write_SSTO(0, drv_data->ioaddr);
  1242. write_SSPSP(0, drv_data->ioaddr);
  1243. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  1244. (unsigned long)drv_data);
  1245. /* Register with the SPI framework */
  1246. platform_set_drvdata(pdev, drv_data);
  1247. status = spi_register_master(master);
  1248. if (status != 0) {
  1249. dev_err(&pdev->dev, "problem registering spi master\n");
  1250. goto out_error_clock_enabled;
  1251. }
  1252. return status;
  1253. out_error_clock_enabled:
  1254. clk_disable_unprepare(ssp->clk);
  1255. out_error_dma_alloc:
  1256. if (drv_data->tx_channel != -1)
  1257. pxa_free_dma(drv_data->tx_channel);
  1258. if (drv_data->rx_channel != -1)
  1259. pxa_free_dma(drv_data->rx_channel);
  1260. out_error_irq_alloc:
  1261. free_irq(ssp->irq, drv_data);
  1262. out_error_master_alloc:
  1263. spi_master_put(master);
  1264. pxa_ssp_free(ssp);
  1265. return status;
  1266. }
  1267. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1268. {
  1269. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1270. struct ssp_device *ssp;
  1271. if (!drv_data)
  1272. return 0;
  1273. ssp = drv_data->ssp;
  1274. /* Disable the SSP at the peripheral and SOC level */
  1275. write_SSCR0(0, drv_data->ioaddr);
  1276. clk_disable_unprepare(ssp->clk);
  1277. /* Release DMA */
  1278. if (drv_data->master_info->enable_dma) {
  1279. DRCMR(ssp->drcmr_rx) = 0;
  1280. DRCMR(ssp->drcmr_tx) = 0;
  1281. pxa_free_dma(drv_data->tx_channel);
  1282. pxa_free_dma(drv_data->rx_channel);
  1283. }
  1284. /* Release IRQ */
  1285. free_irq(ssp->irq, drv_data);
  1286. /* Release SSP */
  1287. pxa_ssp_free(ssp);
  1288. /* Disconnect from the SPI framework */
  1289. spi_unregister_master(drv_data->master);
  1290. /* Prevent double remove */
  1291. platform_set_drvdata(pdev, NULL);
  1292. return 0;
  1293. }
  1294. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1295. {
  1296. int status = 0;
  1297. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1298. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1299. }
  1300. #ifdef CONFIG_PM
  1301. static int pxa2xx_spi_suspend(struct device *dev)
  1302. {
  1303. struct driver_data *drv_data = dev_get_drvdata(dev);
  1304. struct ssp_device *ssp = drv_data->ssp;
  1305. int status = 0;
  1306. status = spi_master_suspend(drv_data->master);
  1307. if (status != 0)
  1308. return status;
  1309. write_SSCR0(0, drv_data->ioaddr);
  1310. clk_disable_unprepare(ssp->clk);
  1311. return 0;
  1312. }
  1313. static int pxa2xx_spi_resume(struct device *dev)
  1314. {
  1315. struct driver_data *drv_data = dev_get_drvdata(dev);
  1316. struct ssp_device *ssp = drv_data->ssp;
  1317. int status = 0;
  1318. if (drv_data->rx_channel != -1)
  1319. DRCMR(drv_data->ssp->drcmr_rx) =
  1320. DRCMR_MAPVLD | drv_data->rx_channel;
  1321. if (drv_data->tx_channel != -1)
  1322. DRCMR(drv_data->ssp->drcmr_tx) =
  1323. DRCMR_MAPVLD | drv_data->tx_channel;
  1324. /* Enable the SSP clock */
  1325. clk_prepare_enable(ssp->clk);
  1326. /* Start the queue running */
  1327. status = spi_master_resume(drv_data->master);
  1328. if (status != 0) {
  1329. dev_err(dev, "problem starting queue (%d)\n", status);
  1330. return status;
  1331. }
  1332. return 0;
  1333. }
  1334. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1335. .suspend = pxa2xx_spi_suspend,
  1336. .resume = pxa2xx_spi_resume,
  1337. };
  1338. #endif
  1339. static struct platform_driver driver = {
  1340. .driver = {
  1341. .name = "pxa2xx-spi",
  1342. .owner = THIS_MODULE,
  1343. #ifdef CONFIG_PM
  1344. .pm = &pxa2xx_spi_pm_ops,
  1345. #endif
  1346. },
  1347. .probe = pxa2xx_spi_probe,
  1348. .remove = pxa2xx_spi_remove,
  1349. .shutdown = pxa2xx_spi_shutdown,
  1350. };
  1351. static int __init pxa2xx_spi_init(void)
  1352. {
  1353. return platform_driver_register(&driver);
  1354. }
  1355. subsys_initcall(pxa2xx_spi_init);
  1356. static void __exit pxa2xx_spi_exit(void)
  1357. {
  1358. platform_driver_unregister(&driver);
  1359. }
  1360. module_exit(pxa2xx_spi_exit);