cfq-iosched.c 97 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/elevator.h>
  12. #include <linux/jiffies.h>
  13. #include <linux/rbtree.h>
  14. #include <linux/ioprio.h>
  15. #include <linux/blktrace_api.h>
  16. #include "blk-cgroup.h"
  17. #include "cfq-iosched.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 4;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  33. static const int cfq_hist_divisor = 4;
  34. /*
  35. * offset from end of service tree
  36. */
  37. #define CFQ_IDLE_DELAY (HZ / 5)
  38. /*
  39. * below this threshold, we consider thinktime immediate
  40. */
  41. #define CFQ_MIN_TT (2)
  42. /*
  43. * Allow merged cfqqs to perform this amount of seeky I/O before
  44. * deciding to break the queues up again.
  45. */
  46. #define CFQQ_COOP_TOUT (HZ)
  47. #define CFQ_SLICE_SCALE (5)
  48. #define CFQ_HW_QUEUE_MIN (5)
  49. #define CFQ_SERVICE_SHIFT 12
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private)
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
  53. static struct kmem_cache *cfq_pool;
  54. static struct kmem_cache *cfq_ioc_pool;
  55. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  56. static struct completion *ioc_gone;
  57. static DEFINE_SPINLOCK(ioc_gone_lock);
  58. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  59. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  60. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  61. #define sample_valid(samples) ((samples) > 80)
  62. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  63. /*
  64. * Most of our rbtree usage is for sorting with min extraction, so
  65. * if we cache the leftmost node we don't have to walk down the tree
  66. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  67. * move this into the elevator for the rq sorting as well.
  68. */
  69. struct cfq_rb_root {
  70. struct rb_root rb;
  71. struct rb_node *left;
  72. unsigned count;
  73. u64 min_vdisktime;
  74. struct rb_node *active;
  75. unsigned total_weight;
  76. };
  77. #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
  78. /*
  79. * Per process-grouping structure
  80. */
  81. struct cfq_queue {
  82. /* reference count */
  83. atomic_t ref;
  84. /* various state flags, see below */
  85. unsigned int flags;
  86. /* parent cfq_data */
  87. struct cfq_data *cfqd;
  88. /* service_tree member */
  89. struct rb_node rb_node;
  90. /* service_tree key */
  91. unsigned long rb_key;
  92. /* prio tree member */
  93. struct rb_node p_node;
  94. /* prio tree root we belong to, if any */
  95. struct rb_root *p_root;
  96. /* sorted list of pending requests */
  97. struct rb_root sort_list;
  98. /* if fifo isn't expired, next request to serve */
  99. struct request *next_rq;
  100. /* requests queued in sort_list */
  101. int queued[2];
  102. /* currently allocated requests */
  103. int allocated[2];
  104. /* fifo list of requests in sort_list */
  105. struct list_head fifo;
  106. /* time when queue got scheduled in to dispatch first request. */
  107. unsigned long dispatch_start;
  108. unsigned int allocated_slice;
  109. /* time when first request from queue completed and slice started. */
  110. unsigned long slice_start;
  111. unsigned long slice_end;
  112. long slice_resid;
  113. unsigned int slice_dispatch;
  114. /* pending metadata requests */
  115. int meta_pending;
  116. /* number of requests that are on the dispatch list or inside driver */
  117. int dispatched;
  118. /* io prio of this group */
  119. unsigned short ioprio, org_ioprio;
  120. unsigned short ioprio_class, org_ioprio_class;
  121. unsigned int seek_samples;
  122. u64 seek_total;
  123. sector_t seek_mean;
  124. sector_t last_request_pos;
  125. unsigned long seeky_start;
  126. pid_t pid;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. struct cfq_group *orig_cfqg;
  131. /* Sectors dispatched in current dispatch round */
  132. unsigned long nr_sectors;
  133. };
  134. /*
  135. * First index in the service_trees.
  136. * IDLE is handled separately, so it has negative index
  137. */
  138. enum wl_prio_t {
  139. BE_WORKLOAD = 0,
  140. RT_WORKLOAD = 1,
  141. IDLE_WORKLOAD = 2,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. bool on_st;
  159. /* number of cfqq currently on this group */
  160. int nr_cfqq;
  161. /* Per group busy queus average. Useful for workload slice calc. */
  162. unsigned int busy_queues_avg[2];
  163. /*
  164. * rr lists of queues with requests, onle rr for each priority class.
  165. * Counts are embedded in the cfq_rb_root
  166. */
  167. struct cfq_rb_root service_trees[2][3];
  168. struct cfq_rb_root service_tree_idle;
  169. unsigned long saved_workload_slice;
  170. enum wl_type_t saved_workload;
  171. enum wl_prio_t saved_serving_prio;
  172. struct blkio_group blkg;
  173. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  174. struct hlist_node cfqd_node;
  175. atomic_t ref;
  176. #endif
  177. };
  178. /*
  179. * Per block device queue structure
  180. */
  181. struct cfq_data {
  182. struct request_queue *queue;
  183. /* Root service tree for cfq_groups */
  184. struct cfq_rb_root grp_service_tree;
  185. struct cfq_group root_group;
  186. /* Number of active cfq groups on group service tree */
  187. int nr_groups;
  188. /*
  189. * The priority currently being served
  190. */
  191. enum wl_prio_t serving_prio;
  192. enum wl_type_t serving_type;
  193. unsigned long workload_expires;
  194. struct cfq_group *serving_group;
  195. bool noidle_tree_requires_idle;
  196. /*
  197. * Each priority tree is sorted by next_request position. These
  198. * trees are used when determining if two or more queues are
  199. * interleaving requests (see cfq_close_cooperator).
  200. */
  201. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  202. unsigned int busy_queues;
  203. int rq_in_driver[2];
  204. int sync_flight;
  205. /*
  206. * queue-depth detection
  207. */
  208. int rq_queued;
  209. int hw_tag;
  210. /*
  211. * hw_tag can be
  212. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  213. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  214. * 0 => no NCQ
  215. */
  216. int hw_tag_est_depth;
  217. unsigned int hw_tag_samples;
  218. /*
  219. * idle window management
  220. */
  221. struct timer_list idle_slice_timer;
  222. struct work_struct unplug_work;
  223. struct cfq_queue *active_queue;
  224. struct cfq_io_context *active_cic;
  225. /*
  226. * async queue for each priority case
  227. */
  228. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  229. struct cfq_queue *async_idle_cfqq;
  230. sector_t last_position;
  231. /*
  232. * tunables, see top of file
  233. */
  234. unsigned int cfq_quantum;
  235. unsigned int cfq_fifo_expire[2];
  236. unsigned int cfq_back_penalty;
  237. unsigned int cfq_back_max;
  238. unsigned int cfq_slice[2];
  239. unsigned int cfq_slice_async_rq;
  240. unsigned int cfq_slice_idle;
  241. unsigned int cfq_latency;
  242. unsigned int cfq_group_isolation;
  243. struct list_head cic_list;
  244. /*
  245. * Fallback dummy cfqq for extreme OOM conditions
  246. */
  247. struct cfq_queue oom_cfqq;
  248. unsigned long last_end_sync_rq;
  249. /* List of cfq groups being managed on this device*/
  250. struct hlist_head cfqg_list;
  251. };
  252. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  253. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  254. enum wl_prio_t prio,
  255. enum wl_type_t type,
  256. struct cfq_data *cfqd)
  257. {
  258. if (!cfqg)
  259. return NULL;
  260. if (prio == IDLE_WORKLOAD)
  261. return &cfqg->service_tree_idle;
  262. return &cfqg->service_trees[prio][type];
  263. }
  264. enum cfqq_state_flags {
  265. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  266. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  267. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  268. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  269. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  270. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  271. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  272. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  273. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  274. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  275. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  276. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  277. CFQ_CFQQ_FLAG_wait_busy_done, /* Got new request. Expire the queue */
  278. };
  279. #define CFQ_CFQQ_FNS(name) \
  280. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  281. { \
  282. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  283. } \
  284. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  285. { \
  286. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  287. } \
  288. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  289. { \
  290. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  291. }
  292. CFQ_CFQQ_FNS(on_rr);
  293. CFQ_CFQQ_FNS(wait_request);
  294. CFQ_CFQQ_FNS(must_dispatch);
  295. CFQ_CFQQ_FNS(must_alloc_slice);
  296. CFQ_CFQQ_FNS(fifo_expire);
  297. CFQ_CFQQ_FNS(idle_window);
  298. CFQ_CFQQ_FNS(prio_changed);
  299. CFQ_CFQQ_FNS(slice_new);
  300. CFQ_CFQQ_FNS(sync);
  301. CFQ_CFQQ_FNS(coop);
  302. CFQ_CFQQ_FNS(deep);
  303. CFQ_CFQQ_FNS(wait_busy);
  304. CFQ_CFQQ_FNS(wait_busy_done);
  305. #undef CFQ_CFQQ_FNS
  306. #ifdef CONFIG_DEBUG_CFQ_IOSCHED
  307. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  308. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  309. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  310. blkg_path(&(cfqq)->cfqg->blkg), ##args);
  311. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  312. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  313. blkg_path(&(cfqg)->blkg), ##args); \
  314. #else
  315. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  316. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  317. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
  318. #endif
  319. #define cfq_log(cfqd, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  321. /* Traverses through cfq group service trees */
  322. #define for_each_cfqg_st(cfqg, i, j, st) \
  323. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  324. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  325. : &cfqg->service_tree_idle; \
  326. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  327. (i == IDLE_WORKLOAD && j == 0); \
  328. j++, st = i < IDLE_WORKLOAD ? \
  329. &cfqg->service_trees[i][j]: NULL) \
  330. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  331. {
  332. if (cfq_class_idle(cfqq))
  333. return IDLE_WORKLOAD;
  334. if (cfq_class_rt(cfqq))
  335. return RT_WORKLOAD;
  336. return BE_WORKLOAD;
  337. }
  338. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  339. {
  340. if (!cfq_cfqq_sync(cfqq))
  341. return ASYNC_WORKLOAD;
  342. if (!cfq_cfqq_idle_window(cfqq))
  343. return SYNC_NOIDLE_WORKLOAD;
  344. return SYNC_WORKLOAD;
  345. }
  346. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  347. struct cfq_data *cfqd,
  348. struct cfq_group *cfqg)
  349. {
  350. if (wl == IDLE_WORKLOAD)
  351. return cfqg->service_tree_idle.count;
  352. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  353. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  354. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  355. }
  356. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  357. struct cfq_group *cfqg)
  358. {
  359. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  360. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  361. }
  362. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  363. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  364. struct io_context *, gfp_t);
  365. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  366. struct io_context *);
  367. static inline int rq_in_driver(struct cfq_data *cfqd)
  368. {
  369. return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
  370. }
  371. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  372. bool is_sync)
  373. {
  374. return cic->cfqq[is_sync];
  375. }
  376. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  377. struct cfq_queue *cfqq, bool is_sync)
  378. {
  379. cic->cfqq[is_sync] = cfqq;
  380. }
  381. /*
  382. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  383. * set (in which case it could also be direct WRITE).
  384. */
  385. static inline bool cfq_bio_sync(struct bio *bio)
  386. {
  387. return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
  388. }
  389. /*
  390. * scheduler run of queue, if there are requests pending and no one in the
  391. * driver that will restart queueing
  392. */
  393. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  394. {
  395. if (cfqd->busy_queues) {
  396. cfq_log(cfqd, "schedule dispatch");
  397. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  398. }
  399. }
  400. static int cfq_queue_empty(struct request_queue *q)
  401. {
  402. struct cfq_data *cfqd = q->elevator->elevator_data;
  403. return !cfqd->rq_queued;
  404. }
  405. /*
  406. * Scale schedule slice based on io priority. Use the sync time slice only
  407. * if a queue is marked sync and has sync io queued. A sync queue with async
  408. * io only, should not get full sync slice length.
  409. */
  410. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  411. unsigned short prio)
  412. {
  413. const int base_slice = cfqd->cfq_slice[sync];
  414. WARN_ON(prio >= IOPRIO_BE_NR);
  415. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  416. }
  417. static inline int
  418. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  419. {
  420. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  421. }
  422. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  423. {
  424. u64 d = delta << CFQ_SERVICE_SHIFT;
  425. d = d * BLKIO_WEIGHT_DEFAULT;
  426. do_div(d, cfqg->weight);
  427. return d;
  428. }
  429. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  430. {
  431. s64 delta = (s64)(vdisktime - min_vdisktime);
  432. if (delta > 0)
  433. min_vdisktime = vdisktime;
  434. return min_vdisktime;
  435. }
  436. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  437. {
  438. s64 delta = (s64)(vdisktime - min_vdisktime);
  439. if (delta < 0)
  440. min_vdisktime = vdisktime;
  441. return min_vdisktime;
  442. }
  443. static void update_min_vdisktime(struct cfq_rb_root *st)
  444. {
  445. u64 vdisktime = st->min_vdisktime;
  446. struct cfq_group *cfqg;
  447. if (st->active) {
  448. cfqg = rb_entry_cfqg(st->active);
  449. vdisktime = cfqg->vdisktime;
  450. }
  451. if (st->left) {
  452. cfqg = rb_entry_cfqg(st->left);
  453. vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
  454. }
  455. st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
  456. }
  457. /*
  458. * get averaged number of queues of RT/BE priority.
  459. * average is updated, with a formula that gives more weight to higher numbers,
  460. * to quickly follows sudden increases and decrease slowly
  461. */
  462. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  463. struct cfq_group *cfqg, bool rt)
  464. {
  465. unsigned min_q, max_q;
  466. unsigned mult = cfq_hist_divisor - 1;
  467. unsigned round = cfq_hist_divisor / 2;
  468. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  469. min_q = min(cfqg->busy_queues_avg[rt], busy);
  470. max_q = max(cfqg->busy_queues_avg[rt], busy);
  471. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  472. cfq_hist_divisor;
  473. return cfqg->busy_queues_avg[rt];
  474. }
  475. static inline unsigned
  476. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  477. {
  478. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  479. return cfq_target_latency * cfqg->weight / st->total_weight;
  480. }
  481. static inline void
  482. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  483. {
  484. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  485. if (cfqd->cfq_latency) {
  486. /*
  487. * interested queues (we consider only the ones with the same
  488. * priority class in the cfq group)
  489. */
  490. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  491. cfq_class_rt(cfqq));
  492. unsigned sync_slice = cfqd->cfq_slice[1];
  493. unsigned expect_latency = sync_slice * iq;
  494. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  495. if (expect_latency > group_slice) {
  496. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  497. /* scale low_slice according to IO priority
  498. * and sync vs async */
  499. unsigned low_slice =
  500. min(slice, base_low_slice * slice / sync_slice);
  501. /* the adapted slice value is scaled to fit all iqs
  502. * into the target latency */
  503. slice = max(slice * group_slice / expect_latency,
  504. low_slice);
  505. }
  506. }
  507. cfqq->slice_start = jiffies;
  508. cfqq->slice_end = jiffies + slice;
  509. cfqq->allocated_slice = slice;
  510. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  511. }
  512. /*
  513. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  514. * isn't valid until the first request from the dispatch is activated
  515. * and the slice time set.
  516. */
  517. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  518. {
  519. if (cfq_cfqq_slice_new(cfqq))
  520. return 0;
  521. if (time_before(jiffies, cfqq->slice_end))
  522. return 0;
  523. return 1;
  524. }
  525. /*
  526. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  527. * We choose the request that is closest to the head right now. Distance
  528. * behind the head is penalized and only allowed to a certain extent.
  529. */
  530. static struct request *
  531. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  532. {
  533. sector_t s1, s2, d1 = 0, d2 = 0;
  534. unsigned long back_max;
  535. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  536. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  537. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  538. if (rq1 == NULL || rq1 == rq2)
  539. return rq2;
  540. if (rq2 == NULL)
  541. return rq1;
  542. if (rq_is_sync(rq1) && !rq_is_sync(rq2))
  543. return rq1;
  544. else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
  545. return rq2;
  546. if (rq_is_meta(rq1) && !rq_is_meta(rq2))
  547. return rq1;
  548. else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
  549. return rq2;
  550. s1 = blk_rq_pos(rq1);
  551. s2 = blk_rq_pos(rq2);
  552. /*
  553. * by definition, 1KiB is 2 sectors
  554. */
  555. back_max = cfqd->cfq_back_max * 2;
  556. /*
  557. * Strict one way elevator _except_ in the case where we allow
  558. * short backward seeks which are biased as twice the cost of a
  559. * similar forward seek.
  560. */
  561. if (s1 >= last)
  562. d1 = s1 - last;
  563. else if (s1 + back_max >= last)
  564. d1 = (last - s1) * cfqd->cfq_back_penalty;
  565. else
  566. wrap |= CFQ_RQ1_WRAP;
  567. if (s2 >= last)
  568. d2 = s2 - last;
  569. else if (s2 + back_max >= last)
  570. d2 = (last - s2) * cfqd->cfq_back_penalty;
  571. else
  572. wrap |= CFQ_RQ2_WRAP;
  573. /* Found required data */
  574. /*
  575. * By doing switch() on the bit mask "wrap" we avoid having to
  576. * check two variables for all permutations: --> faster!
  577. */
  578. switch (wrap) {
  579. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  580. if (d1 < d2)
  581. return rq1;
  582. else if (d2 < d1)
  583. return rq2;
  584. else {
  585. if (s1 >= s2)
  586. return rq1;
  587. else
  588. return rq2;
  589. }
  590. case CFQ_RQ2_WRAP:
  591. return rq1;
  592. case CFQ_RQ1_WRAP:
  593. return rq2;
  594. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  595. default:
  596. /*
  597. * Since both rqs are wrapped,
  598. * start with the one that's further behind head
  599. * (--> only *one* back seek required),
  600. * since back seek takes more time than forward.
  601. */
  602. if (s1 <= s2)
  603. return rq1;
  604. else
  605. return rq2;
  606. }
  607. }
  608. /*
  609. * The below is leftmost cache rbtree addon
  610. */
  611. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  612. {
  613. /* Service tree is empty */
  614. if (!root->count)
  615. return NULL;
  616. if (!root->left)
  617. root->left = rb_first(&root->rb);
  618. if (root->left)
  619. return rb_entry(root->left, struct cfq_queue, rb_node);
  620. return NULL;
  621. }
  622. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  623. {
  624. if (!root->left)
  625. root->left = rb_first(&root->rb);
  626. if (root->left)
  627. return rb_entry_cfqg(root->left);
  628. return NULL;
  629. }
  630. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  631. {
  632. rb_erase(n, root);
  633. RB_CLEAR_NODE(n);
  634. }
  635. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  636. {
  637. if (root->left == n)
  638. root->left = NULL;
  639. rb_erase_init(n, &root->rb);
  640. --root->count;
  641. }
  642. /*
  643. * would be nice to take fifo expire time into account as well
  644. */
  645. static struct request *
  646. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  647. struct request *last)
  648. {
  649. struct rb_node *rbnext = rb_next(&last->rb_node);
  650. struct rb_node *rbprev = rb_prev(&last->rb_node);
  651. struct request *next = NULL, *prev = NULL;
  652. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  653. if (rbprev)
  654. prev = rb_entry_rq(rbprev);
  655. if (rbnext)
  656. next = rb_entry_rq(rbnext);
  657. else {
  658. rbnext = rb_first(&cfqq->sort_list);
  659. if (rbnext && rbnext != &last->rb_node)
  660. next = rb_entry_rq(rbnext);
  661. }
  662. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  663. }
  664. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  665. struct cfq_queue *cfqq)
  666. {
  667. /*
  668. * just an approximation, should be ok.
  669. */
  670. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  671. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  672. }
  673. static inline s64
  674. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  675. {
  676. return cfqg->vdisktime - st->min_vdisktime;
  677. }
  678. static void
  679. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  680. {
  681. struct rb_node **node = &st->rb.rb_node;
  682. struct rb_node *parent = NULL;
  683. struct cfq_group *__cfqg;
  684. s64 key = cfqg_key(st, cfqg);
  685. int left = 1;
  686. while (*node != NULL) {
  687. parent = *node;
  688. __cfqg = rb_entry_cfqg(parent);
  689. if (key < cfqg_key(st, __cfqg))
  690. node = &parent->rb_left;
  691. else {
  692. node = &parent->rb_right;
  693. left = 0;
  694. }
  695. }
  696. if (left)
  697. st->left = &cfqg->rb_node;
  698. rb_link_node(&cfqg->rb_node, parent, node);
  699. rb_insert_color(&cfqg->rb_node, &st->rb);
  700. }
  701. static void
  702. cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  703. {
  704. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  705. struct cfq_group *__cfqg;
  706. struct rb_node *n;
  707. cfqg->nr_cfqq++;
  708. if (cfqg->on_st)
  709. return;
  710. /*
  711. * Currently put the group at the end. Later implement something
  712. * so that groups get lesser vtime based on their weights, so that
  713. * if group does not loose all if it was not continously backlogged.
  714. */
  715. n = rb_last(&st->rb);
  716. if (n) {
  717. __cfqg = rb_entry_cfqg(n);
  718. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  719. } else
  720. cfqg->vdisktime = st->min_vdisktime;
  721. __cfq_group_service_tree_add(st, cfqg);
  722. cfqg->on_st = true;
  723. cfqd->nr_groups++;
  724. st->total_weight += cfqg->weight;
  725. }
  726. static void
  727. cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  728. {
  729. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  730. if (st->active == &cfqg->rb_node)
  731. st->active = NULL;
  732. BUG_ON(cfqg->nr_cfqq < 1);
  733. cfqg->nr_cfqq--;
  734. /* If there are other cfq queues under this group, don't delete it */
  735. if (cfqg->nr_cfqq)
  736. return;
  737. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  738. cfqg->on_st = false;
  739. cfqd->nr_groups--;
  740. st->total_weight -= cfqg->weight;
  741. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  742. cfq_rb_erase(&cfqg->rb_node, st);
  743. cfqg->saved_workload_slice = 0;
  744. blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
  745. }
  746. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
  747. {
  748. unsigned int slice_used;
  749. /*
  750. * Queue got expired before even a single request completed or
  751. * got expired immediately after first request completion.
  752. */
  753. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  754. /*
  755. * Also charge the seek time incurred to the group, otherwise
  756. * if there are mutiple queues in the group, each can dispatch
  757. * a single request on seeky media and cause lots of seek time
  758. * and group will never know it.
  759. */
  760. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  761. 1);
  762. } else {
  763. slice_used = jiffies - cfqq->slice_start;
  764. if (slice_used > cfqq->allocated_slice)
  765. slice_used = cfqq->allocated_slice;
  766. }
  767. cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
  768. cfqq->nr_sectors);
  769. return slice_used;
  770. }
  771. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  772. struct cfq_queue *cfqq)
  773. {
  774. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  775. unsigned int used_sl, charge_sl;
  776. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  777. - cfqg->service_tree_idle.count;
  778. BUG_ON(nr_sync < 0);
  779. used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
  780. if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  781. charge_sl = cfqq->allocated_slice;
  782. /* Can't update vdisktime while group is on service tree */
  783. cfq_rb_erase(&cfqg->rb_node, st);
  784. cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
  785. __cfq_group_service_tree_add(st, cfqg);
  786. /* This group is being expired. Save the context */
  787. if (time_after(cfqd->workload_expires, jiffies)) {
  788. cfqg->saved_workload_slice = cfqd->workload_expires
  789. - jiffies;
  790. cfqg->saved_workload = cfqd->serving_type;
  791. cfqg->saved_serving_prio = cfqd->serving_prio;
  792. } else
  793. cfqg->saved_workload_slice = 0;
  794. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  795. st->min_vdisktime);
  796. blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
  797. cfqq->nr_sectors);
  798. }
  799. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  800. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  801. {
  802. if (blkg)
  803. return container_of(blkg, struct cfq_group, blkg);
  804. return NULL;
  805. }
  806. void
  807. cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
  808. {
  809. cfqg_of_blkg(blkg)->weight = weight;
  810. }
  811. static struct cfq_group *
  812. cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
  813. {
  814. struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
  815. struct cfq_group *cfqg = NULL;
  816. void *key = cfqd;
  817. int i, j;
  818. struct cfq_rb_root *st;
  819. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  820. unsigned int major, minor;
  821. /* Do we need to take this reference */
  822. if (!css_tryget(&blkcg->css))
  823. return NULL;;
  824. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  825. if (cfqg || !create)
  826. goto done;
  827. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  828. if (!cfqg)
  829. goto done;
  830. cfqg->weight = blkcg->weight;
  831. for_each_cfqg_st(cfqg, i, j, st)
  832. *st = CFQ_RB_ROOT;
  833. RB_CLEAR_NODE(&cfqg->rb_node);
  834. /*
  835. * Take the initial reference that will be released on destroy
  836. * This can be thought of a joint reference by cgroup and
  837. * elevator which will be dropped by either elevator exit
  838. * or cgroup deletion path depending on who is exiting first.
  839. */
  840. atomic_set(&cfqg->ref, 1);
  841. /* Add group onto cgroup list */
  842. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  843. blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
  844. MKDEV(major, minor));
  845. /* Add group on cfqd list */
  846. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  847. done:
  848. css_put(&blkcg->css);
  849. return cfqg;
  850. }
  851. /*
  852. * Search for the cfq group current task belongs to. If create = 1, then also
  853. * create the cfq group if it does not exist. request_queue lock must be held.
  854. */
  855. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  856. {
  857. struct cgroup *cgroup;
  858. struct cfq_group *cfqg = NULL;
  859. rcu_read_lock();
  860. cgroup = task_cgroup(current, blkio_subsys_id);
  861. cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
  862. if (!cfqg && create)
  863. cfqg = &cfqd->root_group;
  864. rcu_read_unlock();
  865. return cfqg;
  866. }
  867. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  868. {
  869. /* Currently, all async queues are mapped to root group */
  870. if (!cfq_cfqq_sync(cfqq))
  871. cfqg = &cfqq->cfqd->root_group;
  872. cfqq->cfqg = cfqg;
  873. /* cfqq reference on cfqg */
  874. atomic_inc(&cfqq->cfqg->ref);
  875. }
  876. static void cfq_put_cfqg(struct cfq_group *cfqg)
  877. {
  878. struct cfq_rb_root *st;
  879. int i, j;
  880. BUG_ON(atomic_read(&cfqg->ref) <= 0);
  881. if (!atomic_dec_and_test(&cfqg->ref))
  882. return;
  883. for_each_cfqg_st(cfqg, i, j, st)
  884. BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
  885. kfree(cfqg);
  886. }
  887. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  888. {
  889. /* Something wrong if we are trying to remove same group twice */
  890. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  891. hlist_del_init(&cfqg->cfqd_node);
  892. /*
  893. * Put the reference taken at the time of creation so that when all
  894. * queues are gone, group can be destroyed.
  895. */
  896. cfq_put_cfqg(cfqg);
  897. }
  898. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  899. {
  900. struct hlist_node *pos, *n;
  901. struct cfq_group *cfqg;
  902. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  903. /*
  904. * If cgroup removal path got to blk_group first and removed
  905. * it from cgroup list, then it will take care of destroying
  906. * cfqg also.
  907. */
  908. if (!blkiocg_del_blkio_group(&cfqg->blkg))
  909. cfq_destroy_cfqg(cfqd, cfqg);
  910. }
  911. }
  912. /*
  913. * Blk cgroup controller notification saying that blkio_group object is being
  914. * delinked as associated cgroup object is going away. That also means that
  915. * no new IO will come in this group. So get rid of this group as soon as
  916. * any pending IO in the group is finished.
  917. *
  918. * This function is called under rcu_read_lock(). key is the rcu protected
  919. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  920. * read lock.
  921. *
  922. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  923. * it should not be NULL as even if elevator was exiting, cgroup deltion
  924. * path got to it first.
  925. */
  926. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  927. {
  928. unsigned long flags;
  929. struct cfq_data *cfqd = key;
  930. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  931. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  932. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  933. }
  934. #else /* GROUP_IOSCHED */
  935. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
  936. {
  937. return &cfqd->root_group;
  938. }
  939. static inline void
  940. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  941. cfqq->cfqg = cfqg;
  942. }
  943. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  944. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  945. #endif /* GROUP_IOSCHED */
  946. /*
  947. * The cfqd->service_trees holds all pending cfq_queue's that have
  948. * requests waiting to be processed. It is sorted in the order that
  949. * we will service the queues.
  950. */
  951. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  952. bool add_front)
  953. {
  954. struct rb_node **p, *parent;
  955. struct cfq_queue *__cfqq;
  956. unsigned long rb_key;
  957. struct cfq_rb_root *service_tree;
  958. int left;
  959. int new_cfqq = 1;
  960. int group_changed = 0;
  961. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  962. if (!cfqd->cfq_group_isolation
  963. && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
  964. && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
  965. /* Move this cfq to root group */
  966. cfq_log_cfqq(cfqd, cfqq, "moving to root group");
  967. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  968. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  969. cfqq->orig_cfqg = cfqq->cfqg;
  970. cfqq->cfqg = &cfqd->root_group;
  971. atomic_inc(&cfqd->root_group.ref);
  972. group_changed = 1;
  973. } else if (!cfqd->cfq_group_isolation
  974. && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
  975. /* cfqq is sequential now needs to go to its original group */
  976. BUG_ON(cfqq->cfqg != &cfqd->root_group);
  977. if (!RB_EMPTY_NODE(&cfqq->rb_node))
  978. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  979. cfq_put_cfqg(cfqq->cfqg);
  980. cfqq->cfqg = cfqq->orig_cfqg;
  981. cfqq->orig_cfqg = NULL;
  982. group_changed = 1;
  983. cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
  984. }
  985. #endif
  986. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  987. cfqq_type(cfqq), cfqd);
  988. if (cfq_class_idle(cfqq)) {
  989. rb_key = CFQ_IDLE_DELAY;
  990. parent = rb_last(&service_tree->rb);
  991. if (parent && parent != &cfqq->rb_node) {
  992. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  993. rb_key += __cfqq->rb_key;
  994. } else
  995. rb_key += jiffies;
  996. } else if (!add_front) {
  997. /*
  998. * Get our rb key offset. Subtract any residual slice
  999. * value carried from last service. A negative resid
  1000. * count indicates slice overrun, and this should position
  1001. * the next service time further away in the tree.
  1002. */
  1003. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1004. rb_key -= cfqq->slice_resid;
  1005. cfqq->slice_resid = 0;
  1006. } else {
  1007. rb_key = -HZ;
  1008. __cfqq = cfq_rb_first(service_tree);
  1009. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1010. }
  1011. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1012. new_cfqq = 0;
  1013. /*
  1014. * same position, nothing more to do
  1015. */
  1016. if (rb_key == cfqq->rb_key &&
  1017. cfqq->service_tree == service_tree)
  1018. return;
  1019. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1020. cfqq->service_tree = NULL;
  1021. }
  1022. left = 1;
  1023. parent = NULL;
  1024. cfqq->service_tree = service_tree;
  1025. p = &service_tree->rb.rb_node;
  1026. while (*p) {
  1027. struct rb_node **n;
  1028. parent = *p;
  1029. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1030. /*
  1031. * sort by key, that represents service time.
  1032. */
  1033. if (time_before(rb_key, __cfqq->rb_key))
  1034. n = &(*p)->rb_left;
  1035. else {
  1036. n = &(*p)->rb_right;
  1037. left = 0;
  1038. }
  1039. p = n;
  1040. }
  1041. if (left)
  1042. service_tree->left = &cfqq->rb_node;
  1043. cfqq->rb_key = rb_key;
  1044. rb_link_node(&cfqq->rb_node, parent, p);
  1045. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1046. service_tree->count++;
  1047. if ((add_front || !new_cfqq) && !group_changed)
  1048. return;
  1049. cfq_group_service_tree_add(cfqd, cfqq->cfqg);
  1050. }
  1051. static struct cfq_queue *
  1052. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1053. sector_t sector, struct rb_node **ret_parent,
  1054. struct rb_node ***rb_link)
  1055. {
  1056. struct rb_node **p, *parent;
  1057. struct cfq_queue *cfqq = NULL;
  1058. parent = NULL;
  1059. p = &root->rb_node;
  1060. while (*p) {
  1061. struct rb_node **n;
  1062. parent = *p;
  1063. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1064. /*
  1065. * Sort strictly based on sector. Smallest to the left,
  1066. * largest to the right.
  1067. */
  1068. if (sector > blk_rq_pos(cfqq->next_rq))
  1069. n = &(*p)->rb_right;
  1070. else if (sector < blk_rq_pos(cfqq->next_rq))
  1071. n = &(*p)->rb_left;
  1072. else
  1073. break;
  1074. p = n;
  1075. cfqq = NULL;
  1076. }
  1077. *ret_parent = parent;
  1078. if (rb_link)
  1079. *rb_link = p;
  1080. return cfqq;
  1081. }
  1082. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1083. {
  1084. struct rb_node **p, *parent;
  1085. struct cfq_queue *__cfqq;
  1086. if (cfqq->p_root) {
  1087. rb_erase(&cfqq->p_node, cfqq->p_root);
  1088. cfqq->p_root = NULL;
  1089. }
  1090. if (cfq_class_idle(cfqq))
  1091. return;
  1092. if (!cfqq->next_rq)
  1093. return;
  1094. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1095. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1096. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1097. if (!__cfqq) {
  1098. rb_link_node(&cfqq->p_node, parent, p);
  1099. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1100. } else
  1101. cfqq->p_root = NULL;
  1102. }
  1103. /*
  1104. * Update cfqq's position in the service tree.
  1105. */
  1106. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1107. {
  1108. /*
  1109. * Resorting requires the cfqq to be on the RR list already.
  1110. */
  1111. if (cfq_cfqq_on_rr(cfqq)) {
  1112. cfq_service_tree_add(cfqd, cfqq, 0);
  1113. cfq_prio_tree_add(cfqd, cfqq);
  1114. }
  1115. }
  1116. /*
  1117. * add to busy list of queues for service, trying to be fair in ordering
  1118. * the pending list according to last request service
  1119. */
  1120. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1121. {
  1122. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1123. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1124. cfq_mark_cfqq_on_rr(cfqq);
  1125. cfqd->busy_queues++;
  1126. cfq_resort_rr_list(cfqd, cfqq);
  1127. }
  1128. /*
  1129. * Called when the cfqq no longer has requests pending, remove it from
  1130. * the service tree.
  1131. */
  1132. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1133. {
  1134. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1135. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1136. cfq_clear_cfqq_on_rr(cfqq);
  1137. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1138. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1139. cfqq->service_tree = NULL;
  1140. }
  1141. if (cfqq->p_root) {
  1142. rb_erase(&cfqq->p_node, cfqq->p_root);
  1143. cfqq->p_root = NULL;
  1144. }
  1145. cfq_group_service_tree_del(cfqd, cfqq->cfqg);
  1146. BUG_ON(!cfqd->busy_queues);
  1147. cfqd->busy_queues--;
  1148. }
  1149. /*
  1150. * rb tree support functions
  1151. */
  1152. static void cfq_del_rq_rb(struct request *rq)
  1153. {
  1154. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1155. const int sync = rq_is_sync(rq);
  1156. BUG_ON(!cfqq->queued[sync]);
  1157. cfqq->queued[sync]--;
  1158. elv_rb_del(&cfqq->sort_list, rq);
  1159. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1160. /*
  1161. * Queue will be deleted from service tree when we actually
  1162. * expire it later. Right now just remove it from prio tree
  1163. * as it is empty.
  1164. */
  1165. if (cfqq->p_root) {
  1166. rb_erase(&cfqq->p_node, cfqq->p_root);
  1167. cfqq->p_root = NULL;
  1168. }
  1169. }
  1170. }
  1171. static void cfq_add_rq_rb(struct request *rq)
  1172. {
  1173. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1174. struct cfq_data *cfqd = cfqq->cfqd;
  1175. struct request *__alias, *prev;
  1176. cfqq->queued[rq_is_sync(rq)]++;
  1177. /*
  1178. * looks a little odd, but the first insert might return an alias.
  1179. * if that happens, put the alias on the dispatch list
  1180. */
  1181. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1182. cfq_dispatch_insert(cfqd->queue, __alias);
  1183. if (!cfq_cfqq_on_rr(cfqq))
  1184. cfq_add_cfqq_rr(cfqd, cfqq);
  1185. /*
  1186. * check if this request is a better next-serve candidate
  1187. */
  1188. prev = cfqq->next_rq;
  1189. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1190. /*
  1191. * adjust priority tree position, if ->next_rq changes
  1192. */
  1193. if (prev != cfqq->next_rq)
  1194. cfq_prio_tree_add(cfqd, cfqq);
  1195. BUG_ON(!cfqq->next_rq);
  1196. }
  1197. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1198. {
  1199. elv_rb_del(&cfqq->sort_list, rq);
  1200. cfqq->queued[rq_is_sync(rq)]--;
  1201. cfq_add_rq_rb(rq);
  1202. }
  1203. static struct request *
  1204. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1205. {
  1206. struct task_struct *tsk = current;
  1207. struct cfq_io_context *cic;
  1208. struct cfq_queue *cfqq;
  1209. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1210. if (!cic)
  1211. return NULL;
  1212. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1213. if (cfqq) {
  1214. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1215. return elv_rb_find(&cfqq->sort_list, sector);
  1216. }
  1217. return NULL;
  1218. }
  1219. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1220. {
  1221. struct cfq_data *cfqd = q->elevator->elevator_data;
  1222. cfqd->rq_in_driver[rq_is_sync(rq)]++;
  1223. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1224. rq_in_driver(cfqd));
  1225. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1226. }
  1227. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1228. {
  1229. struct cfq_data *cfqd = q->elevator->elevator_data;
  1230. const int sync = rq_is_sync(rq);
  1231. WARN_ON(!cfqd->rq_in_driver[sync]);
  1232. cfqd->rq_in_driver[sync]--;
  1233. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1234. rq_in_driver(cfqd));
  1235. }
  1236. static void cfq_remove_request(struct request *rq)
  1237. {
  1238. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1239. if (cfqq->next_rq == rq)
  1240. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1241. list_del_init(&rq->queuelist);
  1242. cfq_del_rq_rb(rq);
  1243. cfqq->cfqd->rq_queued--;
  1244. if (rq_is_meta(rq)) {
  1245. WARN_ON(!cfqq->meta_pending);
  1246. cfqq->meta_pending--;
  1247. }
  1248. }
  1249. static int cfq_merge(struct request_queue *q, struct request **req,
  1250. struct bio *bio)
  1251. {
  1252. struct cfq_data *cfqd = q->elevator->elevator_data;
  1253. struct request *__rq;
  1254. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1255. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1256. *req = __rq;
  1257. return ELEVATOR_FRONT_MERGE;
  1258. }
  1259. return ELEVATOR_NO_MERGE;
  1260. }
  1261. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1262. int type)
  1263. {
  1264. if (type == ELEVATOR_FRONT_MERGE) {
  1265. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1266. cfq_reposition_rq_rb(cfqq, req);
  1267. }
  1268. }
  1269. static void
  1270. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1271. struct request *next)
  1272. {
  1273. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1274. /*
  1275. * reposition in fifo if next is older than rq
  1276. */
  1277. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1278. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1279. list_move(&rq->queuelist, &next->queuelist);
  1280. rq_set_fifo_time(rq, rq_fifo_time(next));
  1281. }
  1282. if (cfqq->next_rq == next)
  1283. cfqq->next_rq = rq;
  1284. cfq_remove_request(next);
  1285. }
  1286. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1287. struct bio *bio)
  1288. {
  1289. struct cfq_data *cfqd = q->elevator->elevator_data;
  1290. struct cfq_io_context *cic;
  1291. struct cfq_queue *cfqq;
  1292. /* Deny merge if bio and rq don't belong to same cfq group */
  1293. if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
  1294. return false;
  1295. /*
  1296. * Disallow merge of a sync bio into an async request.
  1297. */
  1298. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1299. return false;
  1300. /*
  1301. * Lookup the cfqq that this bio will be queued with. Allow
  1302. * merge only if rq is queued there.
  1303. */
  1304. cic = cfq_cic_lookup(cfqd, current->io_context);
  1305. if (!cic)
  1306. return false;
  1307. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1308. return cfqq == RQ_CFQQ(rq);
  1309. }
  1310. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1311. struct cfq_queue *cfqq)
  1312. {
  1313. if (cfqq) {
  1314. cfq_log_cfqq(cfqd, cfqq, "set_active");
  1315. cfqq->slice_start = 0;
  1316. cfqq->dispatch_start = jiffies;
  1317. cfqq->allocated_slice = 0;
  1318. cfqq->slice_end = 0;
  1319. cfqq->slice_dispatch = 0;
  1320. cfqq->nr_sectors = 0;
  1321. cfq_clear_cfqq_wait_request(cfqq);
  1322. cfq_clear_cfqq_must_dispatch(cfqq);
  1323. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1324. cfq_clear_cfqq_fifo_expire(cfqq);
  1325. cfq_mark_cfqq_slice_new(cfqq);
  1326. del_timer(&cfqd->idle_slice_timer);
  1327. }
  1328. cfqd->active_queue = cfqq;
  1329. }
  1330. /*
  1331. * current cfqq expired its slice (or was too idle), select new one
  1332. */
  1333. static void
  1334. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1335. bool timed_out)
  1336. {
  1337. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1338. if (cfq_cfqq_wait_request(cfqq))
  1339. del_timer(&cfqd->idle_slice_timer);
  1340. cfq_clear_cfqq_wait_request(cfqq);
  1341. cfq_clear_cfqq_wait_busy(cfqq);
  1342. cfq_clear_cfqq_wait_busy_done(cfqq);
  1343. /*
  1344. * store what was left of this slice, if the queue idled/timed out
  1345. */
  1346. if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
  1347. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1348. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1349. }
  1350. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1351. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1352. cfq_del_cfqq_rr(cfqd, cfqq);
  1353. cfq_resort_rr_list(cfqd, cfqq);
  1354. if (cfqq == cfqd->active_queue)
  1355. cfqd->active_queue = NULL;
  1356. if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
  1357. cfqd->grp_service_tree.active = NULL;
  1358. if (cfqd->active_cic) {
  1359. put_io_context(cfqd->active_cic->ioc);
  1360. cfqd->active_cic = NULL;
  1361. }
  1362. }
  1363. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1364. {
  1365. struct cfq_queue *cfqq = cfqd->active_queue;
  1366. if (cfqq)
  1367. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1368. }
  1369. /*
  1370. * Get next queue for service. Unless we have a queue preemption,
  1371. * we'll simply select the first cfqq in the service tree.
  1372. */
  1373. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1374. {
  1375. struct cfq_rb_root *service_tree =
  1376. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1377. cfqd->serving_type, cfqd);
  1378. if (!cfqd->rq_queued)
  1379. return NULL;
  1380. /* There is nothing to dispatch */
  1381. if (!service_tree)
  1382. return NULL;
  1383. if (RB_EMPTY_ROOT(&service_tree->rb))
  1384. return NULL;
  1385. return cfq_rb_first(service_tree);
  1386. }
  1387. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1388. {
  1389. struct cfq_group *cfqg;
  1390. struct cfq_queue *cfqq;
  1391. int i, j;
  1392. struct cfq_rb_root *st;
  1393. if (!cfqd->rq_queued)
  1394. return NULL;
  1395. cfqg = cfq_get_next_cfqg(cfqd);
  1396. if (!cfqg)
  1397. return NULL;
  1398. for_each_cfqg_st(cfqg, i, j, st)
  1399. if ((cfqq = cfq_rb_first(st)) != NULL)
  1400. return cfqq;
  1401. return NULL;
  1402. }
  1403. /*
  1404. * Get and set a new active queue for service.
  1405. */
  1406. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1407. struct cfq_queue *cfqq)
  1408. {
  1409. if (!cfqq)
  1410. cfqq = cfq_get_next_queue(cfqd);
  1411. __cfq_set_active_queue(cfqd, cfqq);
  1412. return cfqq;
  1413. }
  1414. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1415. struct request *rq)
  1416. {
  1417. if (blk_rq_pos(rq) >= cfqd->last_position)
  1418. return blk_rq_pos(rq) - cfqd->last_position;
  1419. else
  1420. return cfqd->last_position - blk_rq_pos(rq);
  1421. }
  1422. #define CFQQ_SEEK_THR 8 * 1024
  1423. #define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
  1424. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1425. struct request *rq)
  1426. {
  1427. sector_t sdist = cfqq->seek_mean;
  1428. if (!sample_valid(cfqq->seek_samples))
  1429. sdist = CFQQ_SEEK_THR;
  1430. return cfq_dist_from_last(cfqd, rq) <= sdist;
  1431. }
  1432. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1433. struct cfq_queue *cur_cfqq)
  1434. {
  1435. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1436. struct rb_node *parent, *node;
  1437. struct cfq_queue *__cfqq;
  1438. sector_t sector = cfqd->last_position;
  1439. if (RB_EMPTY_ROOT(root))
  1440. return NULL;
  1441. /*
  1442. * First, if we find a request starting at the end of the last
  1443. * request, choose it.
  1444. */
  1445. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1446. if (__cfqq)
  1447. return __cfqq;
  1448. /*
  1449. * If the exact sector wasn't found, the parent of the NULL leaf
  1450. * will contain the closest sector.
  1451. */
  1452. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1453. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1454. return __cfqq;
  1455. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1456. node = rb_next(&__cfqq->p_node);
  1457. else
  1458. node = rb_prev(&__cfqq->p_node);
  1459. if (!node)
  1460. return NULL;
  1461. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1462. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1463. return __cfqq;
  1464. return NULL;
  1465. }
  1466. /*
  1467. * cfqd - obvious
  1468. * cur_cfqq - passed in so that we don't decide that the current queue is
  1469. * closely cooperating with itself.
  1470. *
  1471. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1472. * one request, and that cfqd->last_position reflects a position on the disk
  1473. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1474. * assumption.
  1475. */
  1476. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1477. struct cfq_queue *cur_cfqq)
  1478. {
  1479. struct cfq_queue *cfqq;
  1480. if (!cfq_cfqq_sync(cur_cfqq))
  1481. return NULL;
  1482. if (CFQQ_SEEKY(cur_cfqq))
  1483. return NULL;
  1484. /*
  1485. * We should notice if some of the queues are cooperating, eg
  1486. * working closely on the same area of the disk. In that case,
  1487. * we can group them together and don't waste time idling.
  1488. */
  1489. cfqq = cfqq_close(cfqd, cur_cfqq);
  1490. if (!cfqq)
  1491. return NULL;
  1492. /* If new queue belongs to different cfq_group, don't choose it */
  1493. if (cur_cfqq->cfqg != cfqq->cfqg)
  1494. return NULL;
  1495. /*
  1496. * It only makes sense to merge sync queues.
  1497. */
  1498. if (!cfq_cfqq_sync(cfqq))
  1499. return NULL;
  1500. if (CFQQ_SEEKY(cfqq))
  1501. return NULL;
  1502. /*
  1503. * Do not merge queues of different priority classes
  1504. */
  1505. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1506. return NULL;
  1507. return cfqq;
  1508. }
  1509. /*
  1510. * Determine whether we should enforce idle window for this queue.
  1511. */
  1512. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1513. {
  1514. enum wl_prio_t prio = cfqq_prio(cfqq);
  1515. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1516. BUG_ON(!service_tree);
  1517. BUG_ON(!service_tree->count);
  1518. /* We never do for idle class queues. */
  1519. if (prio == IDLE_WORKLOAD)
  1520. return false;
  1521. /* We do for queues that were marked with idle window flag. */
  1522. if (cfq_cfqq_idle_window(cfqq))
  1523. return true;
  1524. /*
  1525. * Otherwise, we do only if they are the last ones
  1526. * in their service tree.
  1527. */
  1528. return service_tree->count == 1;
  1529. }
  1530. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1531. {
  1532. struct cfq_queue *cfqq = cfqd->active_queue;
  1533. struct cfq_io_context *cic;
  1534. unsigned long sl;
  1535. /*
  1536. * SSD device without seek penalty, disable idling. But only do so
  1537. * for devices that support queuing, otherwise we still have a problem
  1538. * with sync vs async workloads.
  1539. */
  1540. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1541. return;
  1542. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1543. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1544. /*
  1545. * idle is disabled, either manually or by past process history
  1546. */
  1547. if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
  1548. return;
  1549. /*
  1550. * still active requests from this queue, don't idle
  1551. */
  1552. if (cfqq->dispatched)
  1553. return;
  1554. /*
  1555. * task has exited, don't wait
  1556. */
  1557. cic = cfqd->active_cic;
  1558. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1559. return;
  1560. /*
  1561. * If our average think time is larger than the remaining time
  1562. * slice, then don't idle. This avoids overrunning the allotted
  1563. * time slice.
  1564. */
  1565. if (sample_valid(cic->ttime_samples) &&
  1566. (cfqq->slice_end - jiffies < cic->ttime_mean))
  1567. return;
  1568. cfq_mark_cfqq_wait_request(cfqq);
  1569. sl = cfqd->cfq_slice_idle;
  1570. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1571. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
  1572. }
  1573. /*
  1574. * Move request from internal lists to the request queue dispatch list.
  1575. */
  1576. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1577. {
  1578. struct cfq_data *cfqd = q->elevator->elevator_data;
  1579. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1580. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1581. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1582. cfq_remove_request(rq);
  1583. cfqq->dispatched++;
  1584. elv_dispatch_sort(q, rq);
  1585. if (cfq_cfqq_sync(cfqq))
  1586. cfqd->sync_flight++;
  1587. cfqq->nr_sectors += blk_rq_sectors(rq);
  1588. }
  1589. /*
  1590. * return expired entry, or NULL to just start from scratch in rbtree
  1591. */
  1592. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1593. {
  1594. struct request *rq = NULL;
  1595. if (cfq_cfqq_fifo_expire(cfqq))
  1596. return NULL;
  1597. cfq_mark_cfqq_fifo_expire(cfqq);
  1598. if (list_empty(&cfqq->fifo))
  1599. return NULL;
  1600. rq = rq_entry_fifo(cfqq->fifo.next);
  1601. if (time_before(jiffies, rq_fifo_time(rq)))
  1602. rq = NULL;
  1603. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1604. return rq;
  1605. }
  1606. static inline int
  1607. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1608. {
  1609. const int base_rq = cfqd->cfq_slice_async_rq;
  1610. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1611. return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
  1612. }
  1613. /*
  1614. * Must be called with the queue_lock held.
  1615. */
  1616. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1617. {
  1618. int process_refs, io_refs;
  1619. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1620. process_refs = atomic_read(&cfqq->ref) - io_refs;
  1621. BUG_ON(process_refs < 0);
  1622. return process_refs;
  1623. }
  1624. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1625. {
  1626. int process_refs, new_process_refs;
  1627. struct cfq_queue *__cfqq;
  1628. /* Avoid a circular list and skip interim queue merges */
  1629. while ((__cfqq = new_cfqq->new_cfqq)) {
  1630. if (__cfqq == cfqq)
  1631. return;
  1632. new_cfqq = __cfqq;
  1633. }
  1634. process_refs = cfqq_process_refs(cfqq);
  1635. /*
  1636. * If the process for the cfqq has gone away, there is no
  1637. * sense in merging the queues.
  1638. */
  1639. if (process_refs == 0)
  1640. return;
  1641. /*
  1642. * Merge in the direction of the lesser amount of work.
  1643. */
  1644. new_process_refs = cfqq_process_refs(new_cfqq);
  1645. if (new_process_refs >= process_refs) {
  1646. cfqq->new_cfqq = new_cfqq;
  1647. atomic_add(process_refs, &new_cfqq->ref);
  1648. } else {
  1649. new_cfqq->new_cfqq = cfqq;
  1650. atomic_add(new_process_refs, &cfqq->ref);
  1651. }
  1652. }
  1653. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1654. struct cfq_group *cfqg, enum wl_prio_t prio,
  1655. bool prio_changed)
  1656. {
  1657. struct cfq_queue *queue;
  1658. int i;
  1659. bool key_valid = false;
  1660. unsigned long lowest_key = 0;
  1661. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1662. if (prio_changed) {
  1663. /*
  1664. * When priorities switched, we prefer starting
  1665. * from SYNC_NOIDLE (first choice), or just SYNC
  1666. * over ASYNC
  1667. */
  1668. if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
  1669. return cur_best;
  1670. cur_best = SYNC_WORKLOAD;
  1671. if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
  1672. return cur_best;
  1673. return ASYNC_WORKLOAD;
  1674. }
  1675. for (i = 0; i < 3; ++i) {
  1676. /* otherwise, select the one with lowest rb_key */
  1677. queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
  1678. if (queue &&
  1679. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1680. lowest_key = queue->rb_key;
  1681. cur_best = i;
  1682. key_valid = true;
  1683. }
  1684. }
  1685. return cur_best;
  1686. }
  1687. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1688. {
  1689. enum wl_prio_t previous_prio = cfqd->serving_prio;
  1690. bool prio_changed;
  1691. unsigned slice;
  1692. unsigned count;
  1693. struct cfq_rb_root *st;
  1694. unsigned group_slice;
  1695. if (!cfqg) {
  1696. cfqd->serving_prio = IDLE_WORKLOAD;
  1697. cfqd->workload_expires = jiffies + 1;
  1698. return;
  1699. }
  1700. /* Choose next priority. RT > BE > IDLE */
  1701. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1702. cfqd->serving_prio = RT_WORKLOAD;
  1703. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1704. cfqd->serving_prio = BE_WORKLOAD;
  1705. else {
  1706. cfqd->serving_prio = IDLE_WORKLOAD;
  1707. cfqd->workload_expires = jiffies + 1;
  1708. return;
  1709. }
  1710. /*
  1711. * For RT and BE, we have to choose also the type
  1712. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1713. * expiration time
  1714. */
  1715. prio_changed = (cfqd->serving_prio != previous_prio);
  1716. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
  1717. cfqd);
  1718. count = st->count;
  1719. /*
  1720. * If priority didn't change, check workload expiration,
  1721. * and that we still have other queues ready
  1722. */
  1723. if (!prio_changed && count &&
  1724. !time_after(jiffies, cfqd->workload_expires))
  1725. return;
  1726. /* otherwise select new workload type */
  1727. cfqd->serving_type =
  1728. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
  1729. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
  1730. cfqd);
  1731. count = st->count;
  1732. /*
  1733. * the workload slice is computed as a fraction of target latency
  1734. * proportional to the number of queues in that workload, over
  1735. * all the queues in the same priority class
  1736. */
  1737. group_slice = cfq_group_slice(cfqd, cfqg);
  1738. slice = group_slice * count /
  1739. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1740. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1741. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1742. unsigned int tmp;
  1743. /*
  1744. * Async queues are currently system wide. Just taking
  1745. * proportion of queues with-in same group will lead to higher
  1746. * async ratio system wide as generally root group is going
  1747. * to have higher weight. A more accurate thing would be to
  1748. * calculate system wide asnc/sync ratio.
  1749. */
  1750. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1751. tmp = tmp/cfqd->busy_queues;
  1752. slice = min_t(unsigned, slice, tmp);
  1753. /* async workload slice is scaled down according to
  1754. * the sync/async slice ratio. */
  1755. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1756. } else
  1757. /* sync workload slice is at least 2 * cfq_slice_idle */
  1758. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1759. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1760. cfqd->workload_expires = jiffies + slice;
  1761. cfqd->noidle_tree_requires_idle = false;
  1762. }
  1763. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1764. {
  1765. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1766. struct cfq_group *cfqg;
  1767. if (RB_EMPTY_ROOT(&st->rb))
  1768. return NULL;
  1769. cfqg = cfq_rb_first_group(st);
  1770. st->active = &cfqg->rb_node;
  1771. update_min_vdisktime(st);
  1772. return cfqg;
  1773. }
  1774. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1775. {
  1776. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1777. cfqd->serving_group = cfqg;
  1778. /* Restore the workload type data */
  1779. if (cfqg->saved_workload_slice) {
  1780. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1781. cfqd->serving_type = cfqg->saved_workload;
  1782. cfqd->serving_prio = cfqg->saved_serving_prio;
  1783. }
  1784. choose_service_tree(cfqd, cfqg);
  1785. }
  1786. /*
  1787. * Select a queue for service. If we have a current active queue,
  1788. * check whether to continue servicing it, or retrieve and set a new one.
  1789. */
  1790. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1791. {
  1792. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1793. cfqq = cfqd->active_queue;
  1794. if (!cfqq)
  1795. goto new_queue;
  1796. if (!cfqd->rq_queued)
  1797. return NULL;
  1798. /*
  1799. * The active queue has run out of time, expire it and select new.
  1800. */
  1801. if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
  1802. && !cfq_cfqq_must_dispatch(cfqq))
  1803. goto expire;
  1804. /*
  1805. * The active queue has requests and isn't expired, allow it to
  1806. * dispatch.
  1807. */
  1808. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1809. goto keep_queue;
  1810. /*
  1811. * If another queue has a request waiting within our mean seek
  1812. * distance, let it run. The expire code will check for close
  1813. * cooperators and put the close queue at the front of the service
  1814. * tree. If possible, merge the expiring queue with the new cfqq.
  1815. */
  1816. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1817. if (new_cfqq) {
  1818. if (!cfqq->new_cfqq)
  1819. cfq_setup_merge(cfqq, new_cfqq);
  1820. goto expire;
  1821. }
  1822. /*
  1823. * No requests pending. If the active queue still has requests in
  1824. * flight or is idling for a new request, allow either of these
  1825. * conditions to happen (or time out) before selecting a new queue.
  1826. */
  1827. if (timer_pending(&cfqd->idle_slice_timer) ||
  1828. (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
  1829. cfqq = NULL;
  1830. goto keep_queue;
  1831. }
  1832. expire:
  1833. cfq_slice_expired(cfqd, 0);
  1834. new_queue:
  1835. /*
  1836. * Current queue expired. Check if we have to switch to a new
  1837. * service tree
  1838. */
  1839. if (!new_cfqq)
  1840. cfq_choose_cfqg(cfqd);
  1841. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  1842. keep_queue:
  1843. return cfqq;
  1844. }
  1845. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  1846. {
  1847. int dispatched = 0;
  1848. while (cfqq->next_rq) {
  1849. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  1850. dispatched++;
  1851. }
  1852. BUG_ON(!list_empty(&cfqq->fifo));
  1853. /* By default cfqq is not expired if it is empty. Do it explicitly */
  1854. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  1855. return dispatched;
  1856. }
  1857. /*
  1858. * Drain our current requests. Used for barriers and when switching
  1859. * io schedulers on-the-fly.
  1860. */
  1861. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  1862. {
  1863. struct cfq_queue *cfqq;
  1864. int dispatched = 0;
  1865. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
  1866. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  1867. cfq_slice_expired(cfqd, 0);
  1868. BUG_ON(cfqd->busy_queues);
  1869. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  1870. return dispatched;
  1871. }
  1872. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1873. {
  1874. unsigned int max_dispatch;
  1875. /*
  1876. * Drain async requests before we start sync IO
  1877. */
  1878. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
  1879. return false;
  1880. /*
  1881. * If this is an async queue and we have sync IO in flight, let it wait
  1882. */
  1883. if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
  1884. return false;
  1885. max_dispatch = cfqd->cfq_quantum;
  1886. if (cfq_class_idle(cfqq))
  1887. max_dispatch = 1;
  1888. /*
  1889. * Does this cfqq already have too much IO in flight?
  1890. */
  1891. if (cfqq->dispatched >= max_dispatch) {
  1892. /*
  1893. * idle queue must always only have a single IO in flight
  1894. */
  1895. if (cfq_class_idle(cfqq))
  1896. return false;
  1897. /*
  1898. * We have other queues, don't allow more IO from this one
  1899. */
  1900. if (cfqd->busy_queues > 1)
  1901. return false;
  1902. /*
  1903. * Sole queue user, no limit
  1904. */
  1905. max_dispatch = -1;
  1906. }
  1907. /*
  1908. * Async queues must wait a bit before being allowed dispatch.
  1909. * We also ramp up the dispatch depth gradually for async IO,
  1910. * based on the last sync IO we serviced
  1911. */
  1912. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  1913. unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
  1914. unsigned int depth;
  1915. depth = last_sync / cfqd->cfq_slice[1];
  1916. if (!depth && !cfqq->dispatched)
  1917. depth = 1;
  1918. if (depth < max_dispatch)
  1919. max_dispatch = depth;
  1920. }
  1921. /*
  1922. * If we're below the current max, allow a dispatch
  1923. */
  1924. return cfqq->dispatched < max_dispatch;
  1925. }
  1926. /*
  1927. * Dispatch a request from cfqq, moving them to the request queue
  1928. * dispatch list.
  1929. */
  1930. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1931. {
  1932. struct request *rq;
  1933. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  1934. if (!cfq_may_dispatch(cfqd, cfqq))
  1935. return false;
  1936. /*
  1937. * follow expired path, else get first next available
  1938. */
  1939. rq = cfq_check_fifo(cfqq);
  1940. if (!rq)
  1941. rq = cfqq->next_rq;
  1942. /*
  1943. * insert request into driver dispatch list
  1944. */
  1945. cfq_dispatch_insert(cfqd->queue, rq);
  1946. if (!cfqd->active_cic) {
  1947. struct cfq_io_context *cic = RQ_CIC(rq);
  1948. atomic_long_inc(&cic->ioc->refcount);
  1949. cfqd->active_cic = cic;
  1950. }
  1951. return true;
  1952. }
  1953. /*
  1954. * Find the cfqq that we need to service and move a request from that to the
  1955. * dispatch list
  1956. */
  1957. static int cfq_dispatch_requests(struct request_queue *q, int force)
  1958. {
  1959. struct cfq_data *cfqd = q->elevator->elevator_data;
  1960. struct cfq_queue *cfqq;
  1961. if (!cfqd->busy_queues)
  1962. return 0;
  1963. if (unlikely(force))
  1964. return cfq_forced_dispatch(cfqd);
  1965. cfqq = cfq_select_queue(cfqd);
  1966. if (!cfqq)
  1967. return 0;
  1968. /*
  1969. * Dispatch a request from this cfqq, if it is allowed
  1970. */
  1971. if (!cfq_dispatch_request(cfqd, cfqq))
  1972. return 0;
  1973. cfqq->slice_dispatch++;
  1974. cfq_clear_cfqq_must_dispatch(cfqq);
  1975. /*
  1976. * expire an async queue immediately if it has used up its slice. idle
  1977. * queue always expire after 1 dispatch round.
  1978. */
  1979. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  1980. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  1981. cfq_class_idle(cfqq))) {
  1982. cfqq->slice_end = jiffies + 1;
  1983. cfq_slice_expired(cfqd, 0);
  1984. }
  1985. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  1986. return 1;
  1987. }
  1988. /*
  1989. * task holds one reference to the queue, dropped when task exits. each rq
  1990. * in-flight on this queue also holds a reference, dropped when rq is freed.
  1991. *
  1992. * Each cfq queue took a reference on the parent group. Drop it now.
  1993. * queue lock must be held here.
  1994. */
  1995. static void cfq_put_queue(struct cfq_queue *cfqq)
  1996. {
  1997. struct cfq_data *cfqd = cfqq->cfqd;
  1998. struct cfq_group *cfqg;
  1999. BUG_ON(atomic_read(&cfqq->ref) <= 0);
  2000. if (!atomic_dec_and_test(&cfqq->ref))
  2001. return;
  2002. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2003. BUG_ON(rb_first(&cfqq->sort_list));
  2004. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2005. cfqg = cfqq->cfqg;
  2006. if (unlikely(cfqd->active_queue == cfqq)) {
  2007. __cfq_slice_expired(cfqd, cfqq, 0);
  2008. cfq_schedule_dispatch(cfqd);
  2009. }
  2010. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2011. kmem_cache_free(cfq_pool, cfqq);
  2012. cfq_put_cfqg(cfqg);
  2013. if (cfqq->orig_cfqg)
  2014. cfq_put_cfqg(cfqq->orig_cfqg);
  2015. }
  2016. /*
  2017. * Must always be called with the rcu_read_lock() held
  2018. */
  2019. static void
  2020. __call_for_each_cic(struct io_context *ioc,
  2021. void (*func)(struct io_context *, struct cfq_io_context *))
  2022. {
  2023. struct cfq_io_context *cic;
  2024. struct hlist_node *n;
  2025. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2026. func(ioc, cic);
  2027. }
  2028. /*
  2029. * Call func for each cic attached to this ioc.
  2030. */
  2031. static void
  2032. call_for_each_cic(struct io_context *ioc,
  2033. void (*func)(struct io_context *, struct cfq_io_context *))
  2034. {
  2035. rcu_read_lock();
  2036. __call_for_each_cic(ioc, func);
  2037. rcu_read_unlock();
  2038. }
  2039. static void cfq_cic_free_rcu(struct rcu_head *head)
  2040. {
  2041. struct cfq_io_context *cic;
  2042. cic = container_of(head, struct cfq_io_context, rcu_head);
  2043. kmem_cache_free(cfq_ioc_pool, cic);
  2044. elv_ioc_count_dec(cfq_ioc_count);
  2045. if (ioc_gone) {
  2046. /*
  2047. * CFQ scheduler is exiting, grab exit lock and check
  2048. * the pending io context count. If it hits zero,
  2049. * complete ioc_gone and set it back to NULL
  2050. */
  2051. spin_lock(&ioc_gone_lock);
  2052. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2053. complete(ioc_gone);
  2054. ioc_gone = NULL;
  2055. }
  2056. spin_unlock(&ioc_gone_lock);
  2057. }
  2058. }
  2059. static void cfq_cic_free(struct cfq_io_context *cic)
  2060. {
  2061. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2062. }
  2063. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2064. {
  2065. unsigned long flags;
  2066. BUG_ON(!cic->dead_key);
  2067. spin_lock_irqsave(&ioc->lock, flags);
  2068. radix_tree_delete(&ioc->radix_root, cic->dead_key);
  2069. hlist_del_rcu(&cic->cic_list);
  2070. spin_unlock_irqrestore(&ioc->lock, flags);
  2071. cfq_cic_free(cic);
  2072. }
  2073. /*
  2074. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2075. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2076. * and ->trim() which is called with the task lock held
  2077. */
  2078. static void cfq_free_io_context(struct io_context *ioc)
  2079. {
  2080. /*
  2081. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2082. * so no more cic's are allowed to be linked into this ioc. So it
  2083. * should be ok to iterate over the known list, we will see all cic's
  2084. * since no new ones are added.
  2085. */
  2086. __call_for_each_cic(ioc, cic_free_func);
  2087. }
  2088. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2089. {
  2090. struct cfq_queue *__cfqq, *next;
  2091. if (unlikely(cfqq == cfqd->active_queue)) {
  2092. __cfq_slice_expired(cfqd, cfqq, 0);
  2093. cfq_schedule_dispatch(cfqd);
  2094. }
  2095. /*
  2096. * If this queue was scheduled to merge with another queue, be
  2097. * sure to drop the reference taken on that queue (and others in
  2098. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2099. */
  2100. __cfqq = cfqq->new_cfqq;
  2101. while (__cfqq) {
  2102. if (__cfqq == cfqq) {
  2103. WARN(1, "cfqq->new_cfqq loop detected\n");
  2104. break;
  2105. }
  2106. next = __cfqq->new_cfqq;
  2107. cfq_put_queue(__cfqq);
  2108. __cfqq = next;
  2109. }
  2110. cfq_put_queue(cfqq);
  2111. }
  2112. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2113. struct cfq_io_context *cic)
  2114. {
  2115. struct io_context *ioc = cic->ioc;
  2116. list_del_init(&cic->queue_list);
  2117. /*
  2118. * Make sure key == NULL is seen for dead queues
  2119. */
  2120. smp_wmb();
  2121. cic->dead_key = (unsigned long) cic->key;
  2122. cic->key = NULL;
  2123. if (ioc->ioc_data == cic)
  2124. rcu_assign_pointer(ioc->ioc_data, NULL);
  2125. if (cic->cfqq[BLK_RW_ASYNC]) {
  2126. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2127. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2128. }
  2129. if (cic->cfqq[BLK_RW_SYNC]) {
  2130. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2131. cic->cfqq[BLK_RW_SYNC] = NULL;
  2132. }
  2133. }
  2134. static void cfq_exit_single_io_context(struct io_context *ioc,
  2135. struct cfq_io_context *cic)
  2136. {
  2137. struct cfq_data *cfqd = cic->key;
  2138. if (cfqd) {
  2139. struct request_queue *q = cfqd->queue;
  2140. unsigned long flags;
  2141. spin_lock_irqsave(q->queue_lock, flags);
  2142. /*
  2143. * Ensure we get a fresh copy of the ->key to prevent
  2144. * race between exiting task and queue
  2145. */
  2146. smp_read_barrier_depends();
  2147. if (cic->key)
  2148. __cfq_exit_single_io_context(cfqd, cic);
  2149. spin_unlock_irqrestore(q->queue_lock, flags);
  2150. }
  2151. }
  2152. /*
  2153. * The process that ioc belongs to has exited, we need to clean up
  2154. * and put the internal structures we have that belongs to that process.
  2155. */
  2156. static void cfq_exit_io_context(struct io_context *ioc)
  2157. {
  2158. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2159. }
  2160. static struct cfq_io_context *
  2161. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2162. {
  2163. struct cfq_io_context *cic;
  2164. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2165. cfqd->queue->node);
  2166. if (cic) {
  2167. cic->last_end_request = jiffies;
  2168. INIT_LIST_HEAD(&cic->queue_list);
  2169. INIT_HLIST_NODE(&cic->cic_list);
  2170. cic->dtor = cfq_free_io_context;
  2171. cic->exit = cfq_exit_io_context;
  2172. elv_ioc_count_inc(cfq_ioc_count);
  2173. }
  2174. return cic;
  2175. }
  2176. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2177. {
  2178. struct task_struct *tsk = current;
  2179. int ioprio_class;
  2180. if (!cfq_cfqq_prio_changed(cfqq))
  2181. return;
  2182. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2183. switch (ioprio_class) {
  2184. default:
  2185. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2186. case IOPRIO_CLASS_NONE:
  2187. /*
  2188. * no prio set, inherit CPU scheduling settings
  2189. */
  2190. cfqq->ioprio = task_nice_ioprio(tsk);
  2191. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2192. break;
  2193. case IOPRIO_CLASS_RT:
  2194. cfqq->ioprio = task_ioprio(ioc);
  2195. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2196. break;
  2197. case IOPRIO_CLASS_BE:
  2198. cfqq->ioprio = task_ioprio(ioc);
  2199. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2200. break;
  2201. case IOPRIO_CLASS_IDLE:
  2202. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2203. cfqq->ioprio = 7;
  2204. cfq_clear_cfqq_idle_window(cfqq);
  2205. break;
  2206. }
  2207. /*
  2208. * keep track of original prio settings in case we have to temporarily
  2209. * elevate the priority of this queue
  2210. */
  2211. cfqq->org_ioprio = cfqq->ioprio;
  2212. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2213. cfq_clear_cfqq_prio_changed(cfqq);
  2214. }
  2215. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2216. {
  2217. struct cfq_data *cfqd = cic->key;
  2218. struct cfq_queue *cfqq;
  2219. unsigned long flags;
  2220. if (unlikely(!cfqd))
  2221. return;
  2222. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2223. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2224. if (cfqq) {
  2225. struct cfq_queue *new_cfqq;
  2226. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2227. GFP_ATOMIC);
  2228. if (new_cfqq) {
  2229. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2230. cfq_put_queue(cfqq);
  2231. }
  2232. }
  2233. cfqq = cic->cfqq[BLK_RW_SYNC];
  2234. if (cfqq)
  2235. cfq_mark_cfqq_prio_changed(cfqq);
  2236. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2237. }
  2238. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2239. {
  2240. call_for_each_cic(ioc, changed_ioprio);
  2241. ioc->ioprio_changed = 0;
  2242. }
  2243. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2244. pid_t pid, bool is_sync)
  2245. {
  2246. RB_CLEAR_NODE(&cfqq->rb_node);
  2247. RB_CLEAR_NODE(&cfqq->p_node);
  2248. INIT_LIST_HEAD(&cfqq->fifo);
  2249. atomic_set(&cfqq->ref, 0);
  2250. cfqq->cfqd = cfqd;
  2251. cfq_mark_cfqq_prio_changed(cfqq);
  2252. if (is_sync) {
  2253. if (!cfq_class_idle(cfqq))
  2254. cfq_mark_cfqq_idle_window(cfqq);
  2255. cfq_mark_cfqq_sync(cfqq);
  2256. }
  2257. cfqq->pid = pid;
  2258. }
  2259. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2260. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2261. {
  2262. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2263. struct cfq_data *cfqd = cic->key;
  2264. unsigned long flags;
  2265. struct request_queue *q;
  2266. if (unlikely(!cfqd))
  2267. return;
  2268. q = cfqd->queue;
  2269. spin_lock_irqsave(q->queue_lock, flags);
  2270. if (sync_cfqq) {
  2271. /*
  2272. * Drop reference to sync queue. A new sync queue will be
  2273. * assigned in new group upon arrival of a fresh request.
  2274. */
  2275. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2276. cic_set_cfqq(cic, NULL, 1);
  2277. cfq_put_queue(sync_cfqq);
  2278. }
  2279. spin_unlock_irqrestore(q->queue_lock, flags);
  2280. }
  2281. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2282. {
  2283. call_for_each_cic(ioc, changed_cgroup);
  2284. ioc->cgroup_changed = 0;
  2285. }
  2286. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2287. static struct cfq_queue *
  2288. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2289. struct io_context *ioc, gfp_t gfp_mask)
  2290. {
  2291. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2292. struct cfq_io_context *cic;
  2293. struct cfq_group *cfqg;
  2294. retry:
  2295. cfqg = cfq_get_cfqg(cfqd, 1);
  2296. cic = cfq_cic_lookup(cfqd, ioc);
  2297. /* cic always exists here */
  2298. cfqq = cic_to_cfqq(cic, is_sync);
  2299. /*
  2300. * Always try a new alloc if we fell back to the OOM cfqq
  2301. * originally, since it should just be a temporary situation.
  2302. */
  2303. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2304. cfqq = NULL;
  2305. if (new_cfqq) {
  2306. cfqq = new_cfqq;
  2307. new_cfqq = NULL;
  2308. } else if (gfp_mask & __GFP_WAIT) {
  2309. spin_unlock_irq(cfqd->queue->queue_lock);
  2310. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2311. gfp_mask | __GFP_ZERO,
  2312. cfqd->queue->node);
  2313. spin_lock_irq(cfqd->queue->queue_lock);
  2314. if (new_cfqq)
  2315. goto retry;
  2316. } else {
  2317. cfqq = kmem_cache_alloc_node(cfq_pool,
  2318. gfp_mask | __GFP_ZERO,
  2319. cfqd->queue->node);
  2320. }
  2321. if (cfqq) {
  2322. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2323. cfq_init_prio_data(cfqq, ioc);
  2324. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2325. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2326. } else
  2327. cfqq = &cfqd->oom_cfqq;
  2328. }
  2329. if (new_cfqq)
  2330. kmem_cache_free(cfq_pool, new_cfqq);
  2331. return cfqq;
  2332. }
  2333. static struct cfq_queue **
  2334. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2335. {
  2336. switch (ioprio_class) {
  2337. case IOPRIO_CLASS_RT:
  2338. return &cfqd->async_cfqq[0][ioprio];
  2339. case IOPRIO_CLASS_BE:
  2340. return &cfqd->async_cfqq[1][ioprio];
  2341. case IOPRIO_CLASS_IDLE:
  2342. return &cfqd->async_idle_cfqq;
  2343. default:
  2344. BUG();
  2345. }
  2346. }
  2347. static struct cfq_queue *
  2348. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2349. gfp_t gfp_mask)
  2350. {
  2351. const int ioprio = task_ioprio(ioc);
  2352. const int ioprio_class = task_ioprio_class(ioc);
  2353. struct cfq_queue **async_cfqq = NULL;
  2354. struct cfq_queue *cfqq = NULL;
  2355. if (!is_sync) {
  2356. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2357. cfqq = *async_cfqq;
  2358. }
  2359. if (!cfqq)
  2360. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2361. /*
  2362. * pin the queue now that it's allocated, scheduler exit will prune it
  2363. */
  2364. if (!is_sync && !(*async_cfqq)) {
  2365. atomic_inc(&cfqq->ref);
  2366. *async_cfqq = cfqq;
  2367. }
  2368. atomic_inc(&cfqq->ref);
  2369. return cfqq;
  2370. }
  2371. /*
  2372. * We drop cfq io contexts lazily, so we may find a dead one.
  2373. */
  2374. static void
  2375. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2376. struct cfq_io_context *cic)
  2377. {
  2378. unsigned long flags;
  2379. WARN_ON(!list_empty(&cic->queue_list));
  2380. spin_lock_irqsave(&ioc->lock, flags);
  2381. BUG_ON(ioc->ioc_data == cic);
  2382. radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
  2383. hlist_del_rcu(&cic->cic_list);
  2384. spin_unlock_irqrestore(&ioc->lock, flags);
  2385. cfq_cic_free(cic);
  2386. }
  2387. static struct cfq_io_context *
  2388. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2389. {
  2390. struct cfq_io_context *cic;
  2391. unsigned long flags;
  2392. void *k;
  2393. if (unlikely(!ioc))
  2394. return NULL;
  2395. rcu_read_lock();
  2396. /*
  2397. * we maintain a last-hit cache, to avoid browsing over the tree
  2398. */
  2399. cic = rcu_dereference(ioc->ioc_data);
  2400. if (cic && cic->key == cfqd) {
  2401. rcu_read_unlock();
  2402. return cic;
  2403. }
  2404. do {
  2405. cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
  2406. rcu_read_unlock();
  2407. if (!cic)
  2408. break;
  2409. /* ->key must be copied to avoid race with cfq_exit_queue() */
  2410. k = cic->key;
  2411. if (unlikely(!k)) {
  2412. cfq_drop_dead_cic(cfqd, ioc, cic);
  2413. rcu_read_lock();
  2414. continue;
  2415. }
  2416. spin_lock_irqsave(&ioc->lock, flags);
  2417. rcu_assign_pointer(ioc->ioc_data, cic);
  2418. spin_unlock_irqrestore(&ioc->lock, flags);
  2419. break;
  2420. } while (1);
  2421. return cic;
  2422. }
  2423. /*
  2424. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2425. * the process specific cfq io context when entered from the block layer.
  2426. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2427. */
  2428. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2429. struct cfq_io_context *cic, gfp_t gfp_mask)
  2430. {
  2431. unsigned long flags;
  2432. int ret;
  2433. ret = radix_tree_preload(gfp_mask);
  2434. if (!ret) {
  2435. cic->ioc = ioc;
  2436. cic->key = cfqd;
  2437. spin_lock_irqsave(&ioc->lock, flags);
  2438. ret = radix_tree_insert(&ioc->radix_root,
  2439. (unsigned long) cfqd, cic);
  2440. if (!ret)
  2441. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2442. spin_unlock_irqrestore(&ioc->lock, flags);
  2443. radix_tree_preload_end();
  2444. if (!ret) {
  2445. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2446. list_add(&cic->queue_list, &cfqd->cic_list);
  2447. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2448. }
  2449. }
  2450. if (ret)
  2451. printk(KERN_ERR "cfq: cic link failed!\n");
  2452. return ret;
  2453. }
  2454. /*
  2455. * Setup general io context and cfq io context. There can be several cfq
  2456. * io contexts per general io context, if this process is doing io to more
  2457. * than one device managed by cfq.
  2458. */
  2459. static struct cfq_io_context *
  2460. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2461. {
  2462. struct io_context *ioc = NULL;
  2463. struct cfq_io_context *cic;
  2464. might_sleep_if(gfp_mask & __GFP_WAIT);
  2465. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2466. if (!ioc)
  2467. return NULL;
  2468. cic = cfq_cic_lookup(cfqd, ioc);
  2469. if (cic)
  2470. goto out;
  2471. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2472. if (cic == NULL)
  2473. goto err;
  2474. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2475. goto err_free;
  2476. out:
  2477. smp_read_barrier_depends();
  2478. if (unlikely(ioc->ioprio_changed))
  2479. cfq_ioc_set_ioprio(ioc);
  2480. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2481. if (unlikely(ioc->cgroup_changed))
  2482. cfq_ioc_set_cgroup(ioc);
  2483. #endif
  2484. return cic;
  2485. err_free:
  2486. cfq_cic_free(cic);
  2487. err:
  2488. put_io_context(ioc);
  2489. return NULL;
  2490. }
  2491. static void
  2492. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2493. {
  2494. unsigned long elapsed = jiffies - cic->last_end_request;
  2495. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2496. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2497. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2498. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2499. }
  2500. static void
  2501. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2502. struct request *rq)
  2503. {
  2504. sector_t sdist;
  2505. u64 total;
  2506. if (!cfqq->last_request_pos)
  2507. sdist = 0;
  2508. else if (cfqq->last_request_pos < blk_rq_pos(rq))
  2509. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2510. else
  2511. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2512. /*
  2513. * Don't allow the seek distance to get too large from the
  2514. * odd fragment, pagein, etc
  2515. */
  2516. if (cfqq->seek_samples <= 60) /* second&third seek */
  2517. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
  2518. else
  2519. sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
  2520. cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
  2521. cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
  2522. total = cfqq->seek_total + (cfqq->seek_samples/2);
  2523. do_div(total, cfqq->seek_samples);
  2524. cfqq->seek_mean = (sector_t)total;
  2525. /*
  2526. * If this cfqq is shared between multiple processes, check to
  2527. * make sure that those processes are still issuing I/Os within
  2528. * the mean seek distance. If not, it may be time to break the
  2529. * queues apart again.
  2530. */
  2531. if (cfq_cfqq_coop(cfqq)) {
  2532. if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
  2533. cfqq->seeky_start = jiffies;
  2534. else if (!CFQQ_SEEKY(cfqq))
  2535. cfqq->seeky_start = 0;
  2536. }
  2537. }
  2538. /*
  2539. * Disable idle window if the process thinks too long or seeks so much that
  2540. * it doesn't matter
  2541. */
  2542. static void
  2543. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2544. struct cfq_io_context *cic)
  2545. {
  2546. int old_idle, enable_idle;
  2547. /*
  2548. * Don't idle for async or idle io prio class
  2549. */
  2550. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2551. return;
  2552. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2553. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2554. cfq_mark_cfqq_deep(cfqq);
  2555. if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2556. (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
  2557. && CFQQ_SEEKY(cfqq)))
  2558. enable_idle = 0;
  2559. else if (sample_valid(cic->ttime_samples)) {
  2560. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2561. enable_idle = 0;
  2562. else
  2563. enable_idle = 1;
  2564. }
  2565. if (old_idle != enable_idle) {
  2566. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2567. if (enable_idle)
  2568. cfq_mark_cfqq_idle_window(cfqq);
  2569. else
  2570. cfq_clear_cfqq_idle_window(cfqq);
  2571. }
  2572. }
  2573. /*
  2574. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2575. * no or if we aren't sure, a 1 will cause a preempt.
  2576. */
  2577. static bool
  2578. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2579. struct request *rq)
  2580. {
  2581. struct cfq_queue *cfqq;
  2582. cfqq = cfqd->active_queue;
  2583. if (!cfqq)
  2584. return false;
  2585. if (cfq_class_idle(new_cfqq))
  2586. return false;
  2587. if (cfq_class_idle(cfqq))
  2588. return true;
  2589. /*
  2590. * if the new request is sync, but the currently running queue is
  2591. * not, let the sync request have priority.
  2592. */
  2593. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2594. return true;
  2595. if (new_cfqq->cfqg != cfqq->cfqg)
  2596. return false;
  2597. if (cfq_slice_used(cfqq))
  2598. return true;
  2599. /* Allow preemption only if we are idling on sync-noidle tree */
  2600. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2601. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2602. new_cfqq->service_tree->count == 2 &&
  2603. RB_EMPTY_ROOT(&cfqq->sort_list))
  2604. return true;
  2605. /*
  2606. * So both queues are sync. Let the new request get disk time if
  2607. * it's a metadata request and the current queue is doing regular IO.
  2608. */
  2609. if (rq_is_meta(rq) && !cfqq->meta_pending)
  2610. return true;
  2611. /*
  2612. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2613. */
  2614. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2615. return true;
  2616. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2617. return false;
  2618. /*
  2619. * if this request is as-good as one we would expect from the
  2620. * current cfqq, let it preempt
  2621. */
  2622. if (cfq_rq_close(cfqd, cfqq, rq))
  2623. return true;
  2624. return false;
  2625. }
  2626. /*
  2627. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2628. * let it have half of its nominal slice.
  2629. */
  2630. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2631. {
  2632. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2633. cfq_slice_expired(cfqd, 1);
  2634. /*
  2635. * Put the new queue at the front of the of the current list,
  2636. * so we know that it will be selected next.
  2637. */
  2638. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2639. cfq_service_tree_add(cfqd, cfqq, 1);
  2640. cfqq->slice_end = 0;
  2641. cfq_mark_cfqq_slice_new(cfqq);
  2642. }
  2643. /*
  2644. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2645. * something we should do about it
  2646. */
  2647. static void
  2648. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2649. struct request *rq)
  2650. {
  2651. struct cfq_io_context *cic = RQ_CIC(rq);
  2652. cfqd->rq_queued++;
  2653. if (rq_is_meta(rq))
  2654. cfqq->meta_pending++;
  2655. cfq_update_io_thinktime(cfqd, cic);
  2656. cfq_update_io_seektime(cfqd, cfqq, rq);
  2657. cfq_update_idle_window(cfqd, cfqq, cic);
  2658. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2659. if (cfqq == cfqd->active_queue) {
  2660. if (cfq_cfqq_wait_busy(cfqq)) {
  2661. cfq_clear_cfqq_wait_busy(cfqq);
  2662. cfq_mark_cfqq_wait_busy_done(cfqq);
  2663. }
  2664. /*
  2665. * Remember that we saw a request from this process, but
  2666. * don't start queuing just yet. Otherwise we risk seeing lots
  2667. * of tiny requests, because we disrupt the normal plugging
  2668. * and merging. If the request is already larger than a single
  2669. * page, let it rip immediately. For that case we assume that
  2670. * merging is already done. Ditto for a busy system that
  2671. * has other work pending, don't risk delaying until the
  2672. * idle timer unplug to continue working.
  2673. */
  2674. if (cfq_cfqq_wait_request(cfqq)) {
  2675. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2676. cfqd->busy_queues > 1) {
  2677. del_timer(&cfqd->idle_slice_timer);
  2678. __blk_run_queue(cfqd->queue);
  2679. } else
  2680. cfq_mark_cfqq_must_dispatch(cfqq);
  2681. }
  2682. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2683. /*
  2684. * not the active queue - expire current slice if it is
  2685. * idle and has expired it's mean thinktime or this new queue
  2686. * has some old slice time left and is of higher priority or
  2687. * this new queue is RT and the current one is BE
  2688. */
  2689. cfq_preempt_queue(cfqd, cfqq);
  2690. __blk_run_queue(cfqd->queue);
  2691. }
  2692. }
  2693. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2694. {
  2695. struct cfq_data *cfqd = q->elevator->elevator_data;
  2696. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2697. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2698. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2699. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2700. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2701. cfq_add_rq_rb(rq);
  2702. cfq_rq_enqueued(cfqd, cfqq, rq);
  2703. }
  2704. /*
  2705. * Update hw_tag based on peak queue depth over 50 samples under
  2706. * sufficient load.
  2707. */
  2708. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2709. {
  2710. struct cfq_queue *cfqq = cfqd->active_queue;
  2711. if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
  2712. cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
  2713. if (cfqd->hw_tag == 1)
  2714. return;
  2715. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2716. rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
  2717. return;
  2718. /*
  2719. * If active queue hasn't enough requests and can idle, cfq might not
  2720. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2721. * case
  2722. */
  2723. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2724. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2725. CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
  2726. return;
  2727. if (cfqd->hw_tag_samples++ < 50)
  2728. return;
  2729. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2730. cfqd->hw_tag = 1;
  2731. else
  2732. cfqd->hw_tag = 0;
  2733. }
  2734. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2735. {
  2736. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2737. struct cfq_data *cfqd = cfqq->cfqd;
  2738. const int sync = rq_is_sync(rq);
  2739. unsigned long now;
  2740. now = jiffies;
  2741. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
  2742. cfq_update_hw_tag(cfqd);
  2743. WARN_ON(!cfqd->rq_in_driver[sync]);
  2744. WARN_ON(!cfqq->dispatched);
  2745. cfqd->rq_in_driver[sync]--;
  2746. cfqq->dispatched--;
  2747. if (cfq_cfqq_sync(cfqq))
  2748. cfqd->sync_flight--;
  2749. if (sync) {
  2750. RQ_CIC(rq)->last_end_request = now;
  2751. cfqd->last_end_sync_rq = now;
  2752. }
  2753. /*
  2754. * If this is the active queue, check if it needs to be expired,
  2755. * or if we want to idle in case it has no pending requests.
  2756. */
  2757. if (cfqd->active_queue == cfqq) {
  2758. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  2759. if (cfq_cfqq_slice_new(cfqq)) {
  2760. cfq_set_prio_slice(cfqd, cfqq);
  2761. cfq_clear_cfqq_slice_new(cfqq);
  2762. }
  2763. /*
  2764. * If this queue consumed its slice and this is last queue
  2765. * in the group, wait for next request before we expire
  2766. * the queue
  2767. */
  2768. if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
  2769. cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
  2770. cfq_mark_cfqq_wait_busy(cfqq);
  2771. }
  2772. /*
  2773. * Idling is not enabled on:
  2774. * - expired queues
  2775. * - idle-priority queues
  2776. * - async queues
  2777. * - queues with still some requests queued
  2778. * - when there is a close cooperator
  2779. */
  2780. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  2781. cfq_slice_expired(cfqd, 1);
  2782. else if (sync && cfqq_empty &&
  2783. !cfq_close_cooperator(cfqd, cfqq)) {
  2784. cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
  2785. /*
  2786. * Idling is enabled for SYNC_WORKLOAD.
  2787. * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
  2788. * only if we processed at least one !rq_noidle request
  2789. */
  2790. if (cfqd->serving_type == SYNC_WORKLOAD
  2791. || cfqd->noidle_tree_requires_idle
  2792. || cfqq->cfqg->nr_cfqq == 1)
  2793. cfq_arm_slice_timer(cfqd);
  2794. }
  2795. }
  2796. if (!rq_in_driver(cfqd))
  2797. cfq_schedule_dispatch(cfqd);
  2798. }
  2799. /*
  2800. * we temporarily boost lower priority queues if they are holding fs exclusive
  2801. * resources. they are boosted to normal prio (CLASS_BE/4)
  2802. */
  2803. static void cfq_prio_boost(struct cfq_queue *cfqq)
  2804. {
  2805. if (has_fs_excl()) {
  2806. /*
  2807. * boost idle prio on transactions that would lock out other
  2808. * users of the filesystem
  2809. */
  2810. if (cfq_class_idle(cfqq))
  2811. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2812. if (cfqq->ioprio > IOPRIO_NORM)
  2813. cfqq->ioprio = IOPRIO_NORM;
  2814. } else {
  2815. /*
  2816. * unboost the queue (if needed)
  2817. */
  2818. cfqq->ioprio_class = cfqq->org_ioprio_class;
  2819. cfqq->ioprio = cfqq->org_ioprio;
  2820. }
  2821. }
  2822. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  2823. {
  2824. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  2825. cfq_mark_cfqq_must_alloc_slice(cfqq);
  2826. return ELV_MQUEUE_MUST;
  2827. }
  2828. return ELV_MQUEUE_MAY;
  2829. }
  2830. static int cfq_may_queue(struct request_queue *q, int rw)
  2831. {
  2832. struct cfq_data *cfqd = q->elevator->elevator_data;
  2833. struct task_struct *tsk = current;
  2834. struct cfq_io_context *cic;
  2835. struct cfq_queue *cfqq;
  2836. /*
  2837. * don't force setup of a queue from here, as a call to may_queue
  2838. * does not necessarily imply that a request actually will be queued.
  2839. * so just lookup a possibly existing queue, or return 'may queue'
  2840. * if that fails
  2841. */
  2842. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  2843. if (!cic)
  2844. return ELV_MQUEUE_MAY;
  2845. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  2846. if (cfqq) {
  2847. cfq_init_prio_data(cfqq, cic->ioc);
  2848. cfq_prio_boost(cfqq);
  2849. return __cfq_may_queue(cfqq);
  2850. }
  2851. return ELV_MQUEUE_MAY;
  2852. }
  2853. /*
  2854. * queue lock held here
  2855. */
  2856. static void cfq_put_request(struct request *rq)
  2857. {
  2858. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2859. if (cfqq) {
  2860. const int rw = rq_data_dir(rq);
  2861. BUG_ON(!cfqq->allocated[rw]);
  2862. cfqq->allocated[rw]--;
  2863. put_io_context(RQ_CIC(rq)->ioc);
  2864. rq->elevator_private = NULL;
  2865. rq->elevator_private2 = NULL;
  2866. cfq_put_queue(cfqq);
  2867. }
  2868. }
  2869. static struct cfq_queue *
  2870. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  2871. struct cfq_queue *cfqq)
  2872. {
  2873. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  2874. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  2875. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  2876. cfq_put_queue(cfqq);
  2877. return cic_to_cfqq(cic, 1);
  2878. }
  2879. static int should_split_cfqq(struct cfq_queue *cfqq)
  2880. {
  2881. if (cfqq->seeky_start &&
  2882. time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
  2883. return 1;
  2884. return 0;
  2885. }
  2886. /*
  2887. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  2888. * was the last process referring to said cfqq.
  2889. */
  2890. static struct cfq_queue *
  2891. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  2892. {
  2893. if (cfqq_process_refs(cfqq) == 1) {
  2894. cfqq->seeky_start = 0;
  2895. cfqq->pid = current->pid;
  2896. cfq_clear_cfqq_coop(cfqq);
  2897. return cfqq;
  2898. }
  2899. cic_set_cfqq(cic, NULL, 1);
  2900. cfq_put_queue(cfqq);
  2901. return NULL;
  2902. }
  2903. /*
  2904. * Allocate cfq data structures associated with this request.
  2905. */
  2906. static int
  2907. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  2908. {
  2909. struct cfq_data *cfqd = q->elevator->elevator_data;
  2910. struct cfq_io_context *cic;
  2911. const int rw = rq_data_dir(rq);
  2912. const bool is_sync = rq_is_sync(rq);
  2913. struct cfq_queue *cfqq;
  2914. unsigned long flags;
  2915. might_sleep_if(gfp_mask & __GFP_WAIT);
  2916. cic = cfq_get_io_context(cfqd, gfp_mask);
  2917. spin_lock_irqsave(q->queue_lock, flags);
  2918. if (!cic)
  2919. goto queue_fail;
  2920. new_queue:
  2921. cfqq = cic_to_cfqq(cic, is_sync);
  2922. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2923. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  2924. cic_set_cfqq(cic, cfqq, is_sync);
  2925. } else {
  2926. /*
  2927. * If the queue was seeky for too long, break it apart.
  2928. */
  2929. if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
  2930. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  2931. cfqq = split_cfqq(cic, cfqq);
  2932. if (!cfqq)
  2933. goto new_queue;
  2934. }
  2935. /*
  2936. * Check to see if this queue is scheduled to merge with
  2937. * another, closely cooperating queue. The merging of
  2938. * queues happens here as it must be done in process context.
  2939. * The reference on new_cfqq was taken in merge_cfqqs.
  2940. */
  2941. if (cfqq->new_cfqq)
  2942. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  2943. }
  2944. cfqq->allocated[rw]++;
  2945. atomic_inc(&cfqq->ref);
  2946. spin_unlock_irqrestore(q->queue_lock, flags);
  2947. rq->elevator_private = cic;
  2948. rq->elevator_private2 = cfqq;
  2949. return 0;
  2950. queue_fail:
  2951. if (cic)
  2952. put_io_context(cic->ioc);
  2953. cfq_schedule_dispatch(cfqd);
  2954. spin_unlock_irqrestore(q->queue_lock, flags);
  2955. cfq_log(cfqd, "set_request fail");
  2956. return 1;
  2957. }
  2958. static void cfq_kick_queue(struct work_struct *work)
  2959. {
  2960. struct cfq_data *cfqd =
  2961. container_of(work, struct cfq_data, unplug_work);
  2962. struct request_queue *q = cfqd->queue;
  2963. spin_lock_irq(q->queue_lock);
  2964. __blk_run_queue(cfqd->queue);
  2965. spin_unlock_irq(q->queue_lock);
  2966. }
  2967. /*
  2968. * Timer running if the active_queue is currently idling inside its time slice
  2969. */
  2970. static void cfq_idle_slice_timer(unsigned long data)
  2971. {
  2972. struct cfq_data *cfqd = (struct cfq_data *) data;
  2973. struct cfq_queue *cfqq;
  2974. unsigned long flags;
  2975. int timed_out = 1;
  2976. cfq_log(cfqd, "idle timer fired");
  2977. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2978. cfqq = cfqd->active_queue;
  2979. if (cfqq) {
  2980. timed_out = 0;
  2981. /*
  2982. * We saw a request before the queue expired, let it through
  2983. */
  2984. if (cfq_cfqq_must_dispatch(cfqq))
  2985. goto out_kick;
  2986. /*
  2987. * expired
  2988. */
  2989. if (cfq_slice_used(cfqq))
  2990. goto expire;
  2991. /*
  2992. * only expire and reinvoke request handler, if there are
  2993. * other queues with pending requests
  2994. */
  2995. if (!cfqd->busy_queues)
  2996. goto out_cont;
  2997. /*
  2998. * not expired and it has a request pending, let it dispatch
  2999. */
  3000. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3001. goto out_kick;
  3002. /*
  3003. * Queue depth flag is reset only when the idle didn't succeed
  3004. */
  3005. cfq_clear_cfqq_deep(cfqq);
  3006. }
  3007. expire:
  3008. cfq_slice_expired(cfqd, timed_out);
  3009. out_kick:
  3010. cfq_schedule_dispatch(cfqd);
  3011. out_cont:
  3012. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3013. }
  3014. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3015. {
  3016. del_timer_sync(&cfqd->idle_slice_timer);
  3017. cancel_work_sync(&cfqd->unplug_work);
  3018. }
  3019. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3020. {
  3021. int i;
  3022. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3023. if (cfqd->async_cfqq[0][i])
  3024. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3025. if (cfqd->async_cfqq[1][i])
  3026. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3027. }
  3028. if (cfqd->async_idle_cfqq)
  3029. cfq_put_queue(cfqd->async_idle_cfqq);
  3030. }
  3031. static void cfq_exit_queue(struct elevator_queue *e)
  3032. {
  3033. struct cfq_data *cfqd = e->elevator_data;
  3034. struct request_queue *q = cfqd->queue;
  3035. cfq_shutdown_timer_wq(cfqd);
  3036. spin_lock_irq(q->queue_lock);
  3037. if (cfqd->active_queue)
  3038. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3039. while (!list_empty(&cfqd->cic_list)) {
  3040. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3041. struct cfq_io_context,
  3042. queue_list);
  3043. __cfq_exit_single_io_context(cfqd, cic);
  3044. }
  3045. cfq_put_async_queues(cfqd);
  3046. cfq_release_cfq_groups(cfqd);
  3047. blkiocg_del_blkio_group(&cfqd->root_group.blkg);
  3048. spin_unlock_irq(q->queue_lock);
  3049. cfq_shutdown_timer_wq(cfqd);
  3050. /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
  3051. synchronize_rcu();
  3052. kfree(cfqd);
  3053. }
  3054. static void *cfq_init_queue(struct request_queue *q)
  3055. {
  3056. struct cfq_data *cfqd;
  3057. int i, j;
  3058. struct cfq_group *cfqg;
  3059. struct cfq_rb_root *st;
  3060. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3061. if (!cfqd)
  3062. return NULL;
  3063. /* Init root service tree */
  3064. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3065. /* Init root group */
  3066. cfqg = &cfqd->root_group;
  3067. for_each_cfqg_st(cfqg, i, j, st)
  3068. *st = CFQ_RB_ROOT;
  3069. RB_CLEAR_NODE(&cfqg->rb_node);
  3070. /* Give preference to root group over other groups */
  3071. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3072. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3073. /*
  3074. * Take a reference to root group which we never drop. This is just
  3075. * to make sure that cfq_put_cfqg() does not try to kfree root group
  3076. */
  3077. atomic_set(&cfqg->ref, 1);
  3078. blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
  3079. 0);
  3080. #endif
  3081. /*
  3082. * Not strictly needed (since RB_ROOT just clears the node and we
  3083. * zeroed cfqd on alloc), but better be safe in case someone decides
  3084. * to add magic to the rb code
  3085. */
  3086. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3087. cfqd->prio_trees[i] = RB_ROOT;
  3088. /*
  3089. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3090. * Grab a permanent reference to it, so that the normal code flow
  3091. * will not attempt to free it.
  3092. */
  3093. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3094. atomic_inc(&cfqd->oom_cfqq.ref);
  3095. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3096. INIT_LIST_HEAD(&cfqd->cic_list);
  3097. cfqd->queue = q;
  3098. init_timer(&cfqd->idle_slice_timer);
  3099. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3100. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3101. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3102. cfqd->cfq_quantum = cfq_quantum;
  3103. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3104. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3105. cfqd->cfq_back_max = cfq_back_max;
  3106. cfqd->cfq_back_penalty = cfq_back_penalty;
  3107. cfqd->cfq_slice[0] = cfq_slice_async;
  3108. cfqd->cfq_slice[1] = cfq_slice_sync;
  3109. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3110. cfqd->cfq_slice_idle = cfq_slice_idle;
  3111. cfqd->cfq_latency = 1;
  3112. cfqd->cfq_group_isolation = 0;
  3113. cfqd->hw_tag = -1;
  3114. cfqd->last_end_sync_rq = jiffies;
  3115. return cfqd;
  3116. }
  3117. static void cfq_slab_kill(void)
  3118. {
  3119. /*
  3120. * Caller already ensured that pending RCU callbacks are completed,
  3121. * so we should have no busy allocations at this point.
  3122. */
  3123. if (cfq_pool)
  3124. kmem_cache_destroy(cfq_pool);
  3125. if (cfq_ioc_pool)
  3126. kmem_cache_destroy(cfq_ioc_pool);
  3127. }
  3128. static int __init cfq_slab_setup(void)
  3129. {
  3130. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3131. if (!cfq_pool)
  3132. goto fail;
  3133. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3134. if (!cfq_ioc_pool)
  3135. goto fail;
  3136. return 0;
  3137. fail:
  3138. cfq_slab_kill();
  3139. return -ENOMEM;
  3140. }
  3141. /*
  3142. * sysfs parts below -->
  3143. */
  3144. static ssize_t
  3145. cfq_var_show(unsigned int var, char *page)
  3146. {
  3147. return sprintf(page, "%d\n", var);
  3148. }
  3149. static ssize_t
  3150. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3151. {
  3152. char *p = (char *) page;
  3153. *var = simple_strtoul(p, &p, 10);
  3154. return count;
  3155. }
  3156. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3157. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3158. { \
  3159. struct cfq_data *cfqd = e->elevator_data; \
  3160. unsigned int __data = __VAR; \
  3161. if (__CONV) \
  3162. __data = jiffies_to_msecs(__data); \
  3163. return cfq_var_show(__data, (page)); \
  3164. }
  3165. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3166. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3167. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3168. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3169. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3170. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3171. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3172. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3173. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3174. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3175. SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
  3176. #undef SHOW_FUNCTION
  3177. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3178. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3179. { \
  3180. struct cfq_data *cfqd = e->elevator_data; \
  3181. unsigned int __data; \
  3182. int ret = cfq_var_store(&__data, (page), count); \
  3183. if (__data < (MIN)) \
  3184. __data = (MIN); \
  3185. else if (__data > (MAX)) \
  3186. __data = (MAX); \
  3187. if (__CONV) \
  3188. *(__PTR) = msecs_to_jiffies(__data); \
  3189. else \
  3190. *(__PTR) = __data; \
  3191. return ret; \
  3192. }
  3193. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3194. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3195. UINT_MAX, 1);
  3196. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3197. UINT_MAX, 1);
  3198. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3199. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3200. UINT_MAX, 0);
  3201. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3202. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3203. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3204. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3205. UINT_MAX, 0);
  3206. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3207. STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
  3208. #undef STORE_FUNCTION
  3209. #define CFQ_ATTR(name) \
  3210. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3211. static struct elv_fs_entry cfq_attrs[] = {
  3212. CFQ_ATTR(quantum),
  3213. CFQ_ATTR(fifo_expire_sync),
  3214. CFQ_ATTR(fifo_expire_async),
  3215. CFQ_ATTR(back_seek_max),
  3216. CFQ_ATTR(back_seek_penalty),
  3217. CFQ_ATTR(slice_sync),
  3218. CFQ_ATTR(slice_async),
  3219. CFQ_ATTR(slice_async_rq),
  3220. CFQ_ATTR(slice_idle),
  3221. CFQ_ATTR(low_latency),
  3222. CFQ_ATTR(group_isolation),
  3223. __ATTR_NULL
  3224. };
  3225. static struct elevator_type iosched_cfq = {
  3226. .ops = {
  3227. .elevator_merge_fn = cfq_merge,
  3228. .elevator_merged_fn = cfq_merged_request,
  3229. .elevator_merge_req_fn = cfq_merged_requests,
  3230. .elevator_allow_merge_fn = cfq_allow_merge,
  3231. .elevator_dispatch_fn = cfq_dispatch_requests,
  3232. .elevator_add_req_fn = cfq_insert_request,
  3233. .elevator_activate_req_fn = cfq_activate_request,
  3234. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3235. .elevator_queue_empty_fn = cfq_queue_empty,
  3236. .elevator_completed_req_fn = cfq_completed_request,
  3237. .elevator_former_req_fn = elv_rb_former_request,
  3238. .elevator_latter_req_fn = elv_rb_latter_request,
  3239. .elevator_set_req_fn = cfq_set_request,
  3240. .elevator_put_req_fn = cfq_put_request,
  3241. .elevator_may_queue_fn = cfq_may_queue,
  3242. .elevator_init_fn = cfq_init_queue,
  3243. .elevator_exit_fn = cfq_exit_queue,
  3244. .trim = cfq_free_io_context,
  3245. },
  3246. .elevator_attrs = cfq_attrs,
  3247. .elevator_name = "cfq",
  3248. .elevator_owner = THIS_MODULE,
  3249. };
  3250. static int __init cfq_init(void)
  3251. {
  3252. /*
  3253. * could be 0 on HZ < 1000 setups
  3254. */
  3255. if (!cfq_slice_async)
  3256. cfq_slice_async = 1;
  3257. if (!cfq_slice_idle)
  3258. cfq_slice_idle = 1;
  3259. if (cfq_slab_setup())
  3260. return -ENOMEM;
  3261. elv_register(&iosched_cfq);
  3262. return 0;
  3263. }
  3264. static void __exit cfq_exit(void)
  3265. {
  3266. DECLARE_COMPLETION_ONSTACK(all_gone);
  3267. elv_unregister(&iosched_cfq);
  3268. ioc_gone = &all_gone;
  3269. /* ioc_gone's update must be visible before reading ioc_count */
  3270. smp_wmb();
  3271. /*
  3272. * this also protects us from entering cfq_slab_kill() with
  3273. * pending RCU callbacks
  3274. */
  3275. if (elv_ioc_count_read(cfq_ioc_count))
  3276. wait_for_completion(&all_gone);
  3277. cfq_slab_kill();
  3278. }
  3279. module_init(cfq_init);
  3280. module_exit(cfq_exit);
  3281. MODULE_AUTHOR("Jens Axboe");
  3282. MODULE_LICENSE("GPL");
  3283. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");