ll_rw_blk.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. #include <linux/fault-inject.h>
  32. /*
  33. * for max sense size
  34. */
  35. #include <scsi/scsi_cmnd.h>
  36. static void blk_unplug_work(struct work_struct *work);
  37. static void blk_unplug_timeout(unsigned long data);
  38. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  39. static void init_request_from_bio(struct request *req, struct bio *bio);
  40. static int __make_request(struct request_queue *q, struct bio *bio);
  41. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  42. static void blk_recalc_rq_segments(struct request *rq);
  43. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  44. struct bio *bio);
  45. /*
  46. * For the allocated request tables
  47. */
  48. static struct kmem_cache *request_cachep;
  49. /*
  50. * For queue allocation
  51. */
  52. static struct kmem_cache *requestq_cachep;
  53. /*
  54. * For io context allocations
  55. */
  56. static struct kmem_cache *iocontext_cachep;
  57. /*
  58. * Controlling structure to kblockd
  59. */
  60. static struct workqueue_struct *kblockd_workqueue;
  61. unsigned long blk_max_low_pfn, blk_max_pfn;
  62. EXPORT_SYMBOL(blk_max_low_pfn);
  63. EXPORT_SYMBOL(blk_max_pfn);
  64. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  65. /* Amount of time in which a process may batch requests */
  66. #define BLK_BATCH_TIME (HZ/50UL)
  67. /* Number of requests a "batching" process may submit */
  68. #define BLK_BATCH_REQ 32
  69. /*
  70. * Return the threshold (number of used requests) at which the queue is
  71. * considered to be congested. It include a little hysteresis to keep the
  72. * context switch rate down.
  73. */
  74. static inline int queue_congestion_on_threshold(struct request_queue *q)
  75. {
  76. return q->nr_congestion_on;
  77. }
  78. /*
  79. * The threshold at which a queue is considered to be uncongested
  80. */
  81. static inline int queue_congestion_off_threshold(struct request_queue *q)
  82. {
  83. return q->nr_congestion_off;
  84. }
  85. static void blk_queue_congestion_threshold(struct request_queue *q)
  86. {
  87. int nr;
  88. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  89. if (nr > q->nr_requests)
  90. nr = q->nr_requests;
  91. q->nr_congestion_on = nr;
  92. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  93. if (nr < 1)
  94. nr = 1;
  95. q->nr_congestion_off = nr;
  96. }
  97. /**
  98. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  99. * @bdev: device
  100. *
  101. * Locates the passed device's request queue and returns the address of its
  102. * backing_dev_info
  103. *
  104. * Will return NULL if the request queue cannot be located.
  105. */
  106. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  107. {
  108. struct backing_dev_info *ret = NULL;
  109. struct request_queue *q = bdev_get_queue(bdev);
  110. if (q)
  111. ret = &q->backing_dev_info;
  112. return ret;
  113. }
  114. EXPORT_SYMBOL(blk_get_backing_dev_info);
  115. /**
  116. * blk_queue_prep_rq - set a prepare_request function for queue
  117. * @q: queue
  118. * @pfn: prepare_request function
  119. *
  120. * It's possible for a queue to register a prepare_request callback which
  121. * is invoked before the request is handed to the request_fn. The goal of
  122. * the function is to prepare a request for I/O, it can be used to build a
  123. * cdb from the request data for instance.
  124. *
  125. */
  126. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  127. {
  128. q->prep_rq_fn = pfn;
  129. }
  130. EXPORT_SYMBOL(blk_queue_prep_rq);
  131. /**
  132. * blk_queue_merge_bvec - set a merge_bvec function for queue
  133. * @q: queue
  134. * @mbfn: merge_bvec_fn
  135. *
  136. * Usually queues have static limitations on the max sectors or segments that
  137. * we can put in a request. Stacking drivers may have some settings that
  138. * are dynamic, and thus we have to query the queue whether it is ok to
  139. * add a new bio_vec to a bio at a given offset or not. If the block device
  140. * has such limitations, it needs to register a merge_bvec_fn to control
  141. * the size of bio's sent to it. Note that a block device *must* allow a
  142. * single page to be added to an empty bio. The block device driver may want
  143. * to use the bio_split() function to deal with these bio's. By default
  144. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  145. * honored.
  146. */
  147. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  148. {
  149. q->merge_bvec_fn = mbfn;
  150. }
  151. EXPORT_SYMBOL(blk_queue_merge_bvec);
  152. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  153. {
  154. q->softirq_done_fn = fn;
  155. }
  156. EXPORT_SYMBOL(blk_queue_softirq_done);
  157. /**
  158. * blk_queue_make_request - define an alternate make_request function for a device
  159. * @q: the request queue for the device to be affected
  160. * @mfn: the alternate make_request function
  161. *
  162. * Description:
  163. * The normal way for &struct bios to be passed to a device
  164. * driver is for them to be collected into requests on a request
  165. * queue, and then to allow the device driver to select requests
  166. * off that queue when it is ready. This works well for many block
  167. * devices. However some block devices (typically virtual devices
  168. * such as md or lvm) do not benefit from the processing on the
  169. * request queue, and are served best by having the requests passed
  170. * directly to them. This can be achieved by providing a function
  171. * to blk_queue_make_request().
  172. *
  173. * Caveat:
  174. * The driver that does this *must* be able to deal appropriately
  175. * with buffers in "highmemory". This can be accomplished by either calling
  176. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  177. * blk_queue_bounce() to create a buffer in normal memory.
  178. **/
  179. void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
  180. {
  181. /*
  182. * set defaults
  183. */
  184. q->nr_requests = BLKDEV_MAX_RQ;
  185. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  186. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  187. q->make_request_fn = mfn;
  188. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  189. q->backing_dev_info.state = 0;
  190. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  191. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  192. blk_queue_hardsect_size(q, 512);
  193. blk_queue_dma_alignment(q, 511);
  194. blk_queue_congestion_threshold(q);
  195. q->nr_batching = BLK_BATCH_REQ;
  196. q->unplug_thresh = 4; /* hmm */
  197. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  198. if (q->unplug_delay == 0)
  199. q->unplug_delay = 1;
  200. INIT_WORK(&q->unplug_work, blk_unplug_work);
  201. q->unplug_timer.function = blk_unplug_timeout;
  202. q->unplug_timer.data = (unsigned long)q;
  203. /*
  204. * by default assume old behaviour and bounce for any highmem page
  205. */
  206. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  207. }
  208. EXPORT_SYMBOL(blk_queue_make_request);
  209. static void rq_init(struct request_queue *q, struct request *rq)
  210. {
  211. INIT_LIST_HEAD(&rq->queuelist);
  212. INIT_LIST_HEAD(&rq->donelist);
  213. rq->errors = 0;
  214. rq->bio = rq->biotail = NULL;
  215. INIT_HLIST_NODE(&rq->hash);
  216. RB_CLEAR_NODE(&rq->rb_node);
  217. rq->ioprio = 0;
  218. rq->buffer = NULL;
  219. rq->ref_count = 1;
  220. rq->q = q;
  221. rq->special = NULL;
  222. rq->data_len = 0;
  223. rq->data = NULL;
  224. rq->nr_phys_segments = 0;
  225. rq->sense = NULL;
  226. rq->end_io = NULL;
  227. rq->end_io_data = NULL;
  228. rq->completion_data = NULL;
  229. rq->next_rq = NULL;
  230. }
  231. /**
  232. * blk_queue_ordered - does this queue support ordered writes
  233. * @q: the request queue
  234. * @ordered: one of QUEUE_ORDERED_*
  235. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  236. *
  237. * Description:
  238. * For journalled file systems, doing ordered writes on a commit
  239. * block instead of explicitly doing wait_on_buffer (which is bad
  240. * for performance) can be a big win. Block drivers supporting this
  241. * feature should call this function and indicate so.
  242. *
  243. **/
  244. int blk_queue_ordered(struct request_queue *q, unsigned ordered,
  245. prepare_flush_fn *prepare_flush_fn)
  246. {
  247. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  248. prepare_flush_fn == NULL) {
  249. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  250. return -EINVAL;
  251. }
  252. if (ordered != QUEUE_ORDERED_NONE &&
  253. ordered != QUEUE_ORDERED_DRAIN &&
  254. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  255. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  256. ordered != QUEUE_ORDERED_TAG &&
  257. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  258. ordered != QUEUE_ORDERED_TAG_FUA) {
  259. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  260. return -EINVAL;
  261. }
  262. q->ordered = ordered;
  263. q->next_ordered = ordered;
  264. q->prepare_flush_fn = prepare_flush_fn;
  265. return 0;
  266. }
  267. EXPORT_SYMBOL(blk_queue_ordered);
  268. /**
  269. * blk_queue_issue_flush_fn - set function for issuing a flush
  270. * @q: the request queue
  271. * @iff: the function to be called issuing the flush
  272. *
  273. * Description:
  274. * If a driver supports issuing a flush command, the support is notified
  275. * to the block layer by defining it through this call.
  276. *
  277. **/
  278. void blk_queue_issue_flush_fn(struct request_queue *q, issue_flush_fn *iff)
  279. {
  280. q->issue_flush_fn = iff;
  281. }
  282. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  283. /*
  284. * Cache flushing for ordered writes handling
  285. */
  286. inline unsigned blk_ordered_cur_seq(struct request_queue *q)
  287. {
  288. if (!q->ordseq)
  289. return 0;
  290. return 1 << ffz(q->ordseq);
  291. }
  292. unsigned blk_ordered_req_seq(struct request *rq)
  293. {
  294. struct request_queue *q = rq->q;
  295. BUG_ON(q->ordseq == 0);
  296. if (rq == &q->pre_flush_rq)
  297. return QUEUE_ORDSEQ_PREFLUSH;
  298. if (rq == &q->bar_rq)
  299. return QUEUE_ORDSEQ_BAR;
  300. if (rq == &q->post_flush_rq)
  301. return QUEUE_ORDSEQ_POSTFLUSH;
  302. /*
  303. * !fs requests don't need to follow barrier ordering. Always
  304. * put them at the front. This fixes the following deadlock.
  305. *
  306. * http://thread.gmane.org/gmane.linux.kernel/537473
  307. */
  308. if (!blk_fs_request(rq))
  309. return QUEUE_ORDSEQ_DRAIN;
  310. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  311. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  312. return QUEUE_ORDSEQ_DRAIN;
  313. else
  314. return QUEUE_ORDSEQ_DONE;
  315. }
  316. void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
  317. {
  318. struct request *rq;
  319. int uptodate;
  320. if (error && !q->orderr)
  321. q->orderr = error;
  322. BUG_ON(q->ordseq & seq);
  323. q->ordseq |= seq;
  324. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  325. return;
  326. /*
  327. * Okay, sequence complete.
  328. */
  329. rq = q->orig_bar_rq;
  330. uptodate = q->orderr ? q->orderr : 1;
  331. q->ordseq = 0;
  332. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  333. end_that_request_last(rq, uptodate);
  334. }
  335. static void pre_flush_end_io(struct request *rq, int error)
  336. {
  337. elv_completed_request(rq->q, rq);
  338. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  339. }
  340. static void bar_end_io(struct request *rq, int error)
  341. {
  342. elv_completed_request(rq->q, rq);
  343. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  344. }
  345. static void post_flush_end_io(struct request *rq, int error)
  346. {
  347. elv_completed_request(rq->q, rq);
  348. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  349. }
  350. static void queue_flush(struct request_queue *q, unsigned which)
  351. {
  352. struct request *rq;
  353. rq_end_io_fn *end_io;
  354. if (which == QUEUE_ORDERED_PREFLUSH) {
  355. rq = &q->pre_flush_rq;
  356. end_io = pre_flush_end_io;
  357. } else {
  358. rq = &q->post_flush_rq;
  359. end_io = post_flush_end_io;
  360. }
  361. rq->cmd_flags = REQ_HARDBARRIER;
  362. rq_init(q, rq);
  363. rq->elevator_private = NULL;
  364. rq->elevator_private2 = NULL;
  365. rq->rq_disk = q->bar_rq.rq_disk;
  366. rq->end_io = end_io;
  367. q->prepare_flush_fn(q, rq);
  368. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  369. }
  370. static inline struct request *start_ordered(struct request_queue *q,
  371. struct request *rq)
  372. {
  373. q->orderr = 0;
  374. q->ordered = q->next_ordered;
  375. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  376. /*
  377. * Prep proxy barrier request.
  378. */
  379. blkdev_dequeue_request(rq);
  380. q->orig_bar_rq = rq;
  381. rq = &q->bar_rq;
  382. rq->cmd_flags = 0;
  383. rq_init(q, rq);
  384. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  385. rq->cmd_flags |= REQ_RW;
  386. rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  387. rq->elevator_private = NULL;
  388. rq->elevator_private2 = NULL;
  389. init_request_from_bio(rq, q->orig_bar_rq->bio);
  390. rq->end_io = bar_end_io;
  391. /*
  392. * Queue ordered sequence. As we stack them at the head, we
  393. * need to queue in reverse order. Note that we rely on that
  394. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  395. * request gets inbetween ordered sequence.
  396. */
  397. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  398. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  399. else
  400. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  401. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  402. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  403. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  404. rq = &q->pre_flush_rq;
  405. } else
  406. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  407. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  408. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  409. else
  410. rq = NULL;
  411. return rq;
  412. }
  413. int blk_do_ordered(struct request_queue *q, struct request **rqp)
  414. {
  415. struct request *rq = *rqp;
  416. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  417. if (!q->ordseq) {
  418. if (!is_barrier)
  419. return 1;
  420. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  421. *rqp = start_ordered(q, rq);
  422. return 1;
  423. } else {
  424. /*
  425. * This can happen when the queue switches to
  426. * ORDERED_NONE while this request is on it.
  427. */
  428. blkdev_dequeue_request(rq);
  429. end_that_request_first(rq, -EOPNOTSUPP,
  430. rq->hard_nr_sectors);
  431. end_that_request_last(rq, -EOPNOTSUPP);
  432. *rqp = NULL;
  433. return 0;
  434. }
  435. }
  436. /*
  437. * Ordered sequence in progress
  438. */
  439. /* Special requests are not subject to ordering rules. */
  440. if (!blk_fs_request(rq) &&
  441. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  442. return 1;
  443. if (q->ordered & QUEUE_ORDERED_TAG) {
  444. /* Ordered by tag. Blocking the next barrier is enough. */
  445. if (is_barrier && rq != &q->bar_rq)
  446. *rqp = NULL;
  447. } else {
  448. /* Ordered by draining. Wait for turn. */
  449. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  450. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  451. *rqp = NULL;
  452. }
  453. return 1;
  454. }
  455. static void req_bio_endio(struct request *rq, struct bio *bio,
  456. unsigned int nbytes, int error)
  457. {
  458. struct request_queue *q = rq->q;
  459. if (&q->bar_rq != rq) {
  460. if (error)
  461. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  462. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  463. error = -EIO;
  464. if (unlikely(nbytes > bio->bi_size)) {
  465. printk("%s: want %u bytes done, only %u left\n",
  466. __FUNCTION__, nbytes, bio->bi_size);
  467. nbytes = bio->bi_size;
  468. }
  469. bio->bi_size -= nbytes;
  470. bio->bi_sector += (nbytes >> 9);
  471. if (bio->bi_size == 0)
  472. bio_endio(bio, error);
  473. } else {
  474. /*
  475. * Okay, this is the barrier request in progress, just
  476. * record the error;
  477. */
  478. if (error && !q->orderr)
  479. q->orderr = error;
  480. }
  481. }
  482. /**
  483. * blk_queue_bounce_limit - set bounce buffer limit for queue
  484. * @q: the request queue for the device
  485. * @dma_addr: bus address limit
  486. *
  487. * Description:
  488. * Different hardware can have different requirements as to what pages
  489. * it can do I/O directly to. A low level driver can call
  490. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  491. * buffers for doing I/O to pages residing above @page.
  492. **/
  493. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  494. {
  495. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  496. int dma = 0;
  497. q->bounce_gfp = GFP_NOIO;
  498. #if BITS_PER_LONG == 64
  499. /* Assume anything <= 4GB can be handled by IOMMU.
  500. Actually some IOMMUs can handle everything, but I don't
  501. know of a way to test this here. */
  502. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  503. dma = 1;
  504. q->bounce_pfn = max_low_pfn;
  505. #else
  506. if (bounce_pfn < blk_max_low_pfn)
  507. dma = 1;
  508. q->bounce_pfn = bounce_pfn;
  509. #endif
  510. if (dma) {
  511. init_emergency_isa_pool();
  512. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  513. q->bounce_pfn = bounce_pfn;
  514. }
  515. }
  516. EXPORT_SYMBOL(blk_queue_bounce_limit);
  517. /**
  518. * blk_queue_max_sectors - set max sectors for a request for this queue
  519. * @q: the request queue for the device
  520. * @max_sectors: max sectors in the usual 512b unit
  521. *
  522. * Description:
  523. * Enables a low level driver to set an upper limit on the size of
  524. * received requests.
  525. **/
  526. void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  527. {
  528. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  529. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  530. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  531. }
  532. if (BLK_DEF_MAX_SECTORS > max_sectors)
  533. q->max_hw_sectors = q->max_sectors = max_sectors;
  534. else {
  535. q->max_sectors = BLK_DEF_MAX_SECTORS;
  536. q->max_hw_sectors = max_sectors;
  537. }
  538. }
  539. EXPORT_SYMBOL(blk_queue_max_sectors);
  540. /**
  541. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  542. * @q: the request queue for the device
  543. * @max_segments: max number of segments
  544. *
  545. * Description:
  546. * Enables a low level driver to set an upper limit on the number of
  547. * physical data segments in a request. This would be the largest sized
  548. * scatter list the driver could handle.
  549. **/
  550. void blk_queue_max_phys_segments(struct request_queue *q,
  551. unsigned short max_segments)
  552. {
  553. if (!max_segments) {
  554. max_segments = 1;
  555. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  556. }
  557. q->max_phys_segments = max_segments;
  558. }
  559. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  560. /**
  561. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  562. * @q: the request queue for the device
  563. * @max_segments: max number of segments
  564. *
  565. * Description:
  566. * Enables a low level driver to set an upper limit on the number of
  567. * hw data segments in a request. This would be the largest number of
  568. * address/length pairs the host adapter can actually give as once
  569. * to the device.
  570. **/
  571. void blk_queue_max_hw_segments(struct request_queue *q,
  572. unsigned short max_segments)
  573. {
  574. if (!max_segments) {
  575. max_segments = 1;
  576. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  577. }
  578. q->max_hw_segments = max_segments;
  579. }
  580. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  581. /**
  582. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  583. * @q: the request queue for the device
  584. * @max_size: max size of segment in bytes
  585. *
  586. * Description:
  587. * Enables a low level driver to set an upper limit on the size of a
  588. * coalesced segment
  589. **/
  590. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  591. {
  592. if (max_size < PAGE_CACHE_SIZE) {
  593. max_size = PAGE_CACHE_SIZE;
  594. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  595. }
  596. q->max_segment_size = max_size;
  597. }
  598. EXPORT_SYMBOL(blk_queue_max_segment_size);
  599. /**
  600. * blk_queue_hardsect_size - set hardware sector size for the queue
  601. * @q: the request queue for the device
  602. * @size: the hardware sector size, in bytes
  603. *
  604. * Description:
  605. * This should typically be set to the lowest possible sector size
  606. * that the hardware can operate on (possible without reverting to
  607. * even internal read-modify-write operations). Usually the default
  608. * of 512 covers most hardware.
  609. **/
  610. void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  611. {
  612. q->hardsect_size = size;
  613. }
  614. EXPORT_SYMBOL(blk_queue_hardsect_size);
  615. /*
  616. * Returns the minimum that is _not_ zero, unless both are zero.
  617. */
  618. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  619. /**
  620. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  621. * @t: the stacking driver (top)
  622. * @b: the underlying device (bottom)
  623. **/
  624. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  625. {
  626. /* zero is "infinity" */
  627. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  628. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  629. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  630. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  631. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  632. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  633. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  634. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  635. }
  636. EXPORT_SYMBOL(blk_queue_stack_limits);
  637. /**
  638. * blk_queue_segment_boundary - set boundary rules for segment merging
  639. * @q: the request queue for the device
  640. * @mask: the memory boundary mask
  641. **/
  642. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  643. {
  644. if (mask < PAGE_CACHE_SIZE - 1) {
  645. mask = PAGE_CACHE_SIZE - 1;
  646. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  647. }
  648. q->seg_boundary_mask = mask;
  649. }
  650. EXPORT_SYMBOL(blk_queue_segment_boundary);
  651. /**
  652. * blk_queue_dma_alignment - set dma length and memory alignment
  653. * @q: the request queue for the device
  654. * @mask: alignment mask
  655. *
  656. * description:
  657. * set required memory and length aligment for direct dma transactions.
  658. * this is used when buiding direct io requests for the queue.
  659. *
  660. **/
  661. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  662. {
  663. q->dma_alignment = mask;
  664. }
  665. EXPORT_SYMBOL(blk_queue_dma_alignment);
  666. /**
  667. * blk_queue_find_tag - find a request by its tag and queue
  668. * @q: The request queue for the device
  669. * @tag: The tag of the request
  670. *
  671. * Notes:
  672. * Should be used when a device returns a tag and you want to match
  673. * it with a request.
  674. *
  675. * no locks need be held.
  676. **/
  677. struct request *blk_queue_find_tag(struct request_queue *q, int tag)
  678. {
  679. return blk_map_queue_find_tag(q->queue_tags, tag);
  680. }
  681. EXPORT_SYMBOL(blk_queue_find_tag);
  682. /**
  683. * __blk_free_tags - release a given set of tag maintenance info
  684. * @bqt: the tag map to free
  685. *
  686. * Tries to free the specified @bqt@. Returns true if it was
  687. * actually freed and false if there are still references using it
  688. */
  689. static int __blk_free_tags(struct blk_queue_tag *bqt)
  690. {
  691. int retval;
  692. retval = atomic_dec_and_test(&bqt->refcnt);
  693. if (retval) {
  694. BUG_ON(bqt->busy);
  695. BUG_ON(!list_empty(&bqt->busy_list));
  696. kfree(bqt->tag_index);
  697. bqt->tag_index = NULL;
  698. kfree(bqt->tag_map);
  699. bqt->tag_map = NULL;
  700. kfree(bqt);
  701. }
  702. return retval;
  703. }
  704. /**
  705. * __blk_queue_free_tags - release tag maintenance info
  706. * @q: the request queue for the device
  707. *
  708. * Notes:
  709. * blk_cleanup_queue() will take care of calling this function, if tagging
  710. * has been used. So there's no need to call this directly.
  711. **/
  712. static void __blk_queue_free_tags(struct request_queue *q)
  713. {
  714. struct blk_queue_tag *bqt = q->queue_tags;
  715. if (!bqt)
  716. return;
  717. __blk_free_tags(bqt);
  718. q->queue_tags = NULL;
  719. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  720. }
  721. /**
  722. * blk_free_tags - release a given set of tag maintenance info
  723. * @bqt: the tag map to free
  724. *
  725. * For externally managed @bqt@ frees the map. Callers of this
  726. * function must guarantee to have released all the queues that
  727. * might have been using this tag map.
  728. */
  729. void blk_free_tags(struct blk_queue_tag *bqt)
  730. {
  731. if (unlikely(!__blk_free_tags(bqt)))
  732. BUG();
  733. }
  734. EXPORT_SYMBOL(blk_free_tags);
  735. /**
  736. * blk_queue_free_tags - release tag maintenance info
  737. * @q: the request queue for the device
  738. *
  739. * Notes:
  740. * This is used to disabled tagged queuing to a device, yet leave
  741. * queue in function.
  742. **/
  743. void blk_queue_free_tags(struct request_queue *q)
  744. {
  745. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  746. }
  747. EXPORT_SYMBOL(blk_queue_free_tags);
  748. static int
  749. init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
  750. {
  751. struct request **tag_index;
  752. unsigned long *tag_map;
  753. int nr_ulongs;
  754. if (q && depth > q->nr_requests * 2) {
  755. depth = q->nr_requests * 2;
  756. printk(KERN_ERR "%s: adjusted depth to %d\n",
  757. __FUNCTION__, depth);
  758. }
  759. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  760. if (!tag_index)
  761. goto fail;
  762. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  763. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  764. if (!tag_map)
  765. goto fail;
  766. tags->real_max_depth = depth;
  767. tags->max_depth = depth;
  768. tags->tag_index = tag_index;
  769. tags->tag_map = tag_map;
  770. return 0;
  771. fail:
  772. kfree(tag_index);
  773. return -ENOMEM;
  774. }
  775. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  776. int depth)
  777. {
  778. struct blk_queue_tag *tags;
  779. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  780. if (!tags)
  781. goto fail;
  782. if (init_tag_map(q, tags, depth))
  783. goto fail;
  784. INIT_LIST_HEAD(&tags->busy_list);
  785. tags->busy = 0;
  786. atomic_set(&tags->refcnt, 1);
  787. return tags;
  788. fail:
  789. kfree(tags);
  790. return NULL;
  791. }
  792. /**
  793. * blk_init_tags - initialize the tag info for an external tag map
  794. * @depth: the maximum queue depth supported
  795. * @tags: the tag to use
  796. **/
  797. struct blk_queue_tag *blk_init_tags(int depth)
  798. {
  799. return __blk_queue_init_tags(NULL, depth);
  800. }
  801. EXPORT_SYMBOL(blk_init_tags);
  802. /**
  803. * blk_queue_init_tags - initialize the queue tag info
  804. * @q: the request queue for the device
  805. * @depth: the maximum queue depth supported
  806. * @tags: the tag to use
  807. **/
  808. int blk_queue_init_tags(struct request_queue *q, int depth,
  809. struct blk_queue_tag *tags)
  810. {
  811. int rc;
  812. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  813. if (!tags && !q->queue_tags) {
  814. tags = __blk_queue_init_tags(q, depth);
  815. if (!tags)
  816. goto fail;
  817. } else if (q->queue_tags) {
  818. if ((rc = blk_queue_resize_tags(q, depth)))
  819. return rc;
  820. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  821. return 0;
  822. } else
  823. atomic_inc(&tags->refcnt);
  824. /*
  825. * assign it, all done
  826. */
  827. q->queue_tags = tags;
  828. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  829. return 0;
  830. fail:
  831. kfree(tags);
  832. return -ENOMEM;
  833. }
  834. EXPORT_SYMBOL(blk_queue_init_tags);
  835. /**
  836. * blk_queue_resize_tags - change the queueing depth
  837. * @q: the request queue for the device
  838. * @new_depth: the new max command queueing depth
  839. *
  840. * Notes:
  841. * Must be called with the queue lock held.
  842. **/
  843. int blk_queue_resize_tags(struct request_queue *q, int new_depth)
  844. {
  845. struct blk_queue_tag *bqt = q->queue_tags;
  846. struct request **tag_index;
  847. unsigned long *tag_map;
  848. int max_depth, nr_ulongs;
  849. if (!bqt)
  850. return -ENXIO;
  851. /*
  852. * if we already have large enough real_max_depth. just
  853. * adjust max_depth. *NOTE* as requests with tag value
  854. * between new_depth and real_max_depth can be in-flight, tag
  855. * map can not be shrunk blindly here.
  856. */
  857. if (new_depth <= bqt->real_max_depth) {
  858. bqt->max_depth = new_depth;
  859. return 0;
  860. }
  861. /*
  862. * Currently cannot replace a shared tag map with a new
  863. * one, so error out if this is the case
  864. */
  865. if (atomic_read(&bqt->refcnt) != 1)
  866. return -EBUSY;
  867. /*
  868. * save the old state info, so we can copy it back
  869. */
  870. tag_index = bqt->tag_index;
  871. tag_map = bqt->tag_map;
  872. max_depth = bqt->real_max_depth;
  873. if (init_tag_map(q, bqt, new_depth))
  874. return -ENOMEM;
  875. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  876. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  877. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  878. kfree(tag_index);
  879. kfree(tag_map);
  880. return 0;
  881. }
  882. EXPORT_SYMBOL(blk_queue_resize_tags);
  883. /**
  884. * blk_queue_end_tag - end tag operations for a request
  885. * @q: the request queue for the device
  886. * @rq: the request that has completed
  887. *
  888. * Description:
  889. * Typically called when end_that_request_first() returns 0, meaning
  890. * all transfers have been done for a request. It's important to call
  891. * this function before end_that_request_last(), as that will put the
  892. * request back on the free list thus corrupting the internal tag list.
  893. *
  894. * Notes:
  895. * queue lock must be held.
  896. **/
  897. void blk_queue_end_tag(struct request_queue *q, struct request *rq)
  898. {
  899. struct blk_queue_tag *bqt = q->queue_tags;
  900. int tag = rq->tag;
  901. BUG_ON(tag == -1);
  902. if (unlikely(tag >= bqt->real_max_depth))
  903. /*
  904. * This can happen after tag depth has been reduced.
  905. * FIXME: how about a warning or info message here?
  906. */
  907. return;
  908. list_del_init(&rq->queuelist);
  909. rq->cmd_flags &= ~REQ_QUEUED;
  910. rq->tag = -1;
  911. if (unlikely(bqt->tag_index[tag] == NULL))
  912. printk(KERN_ERR "%s: tag %d is missing\n",
  913. __FUNCTION__, tag);
  914. bqt->tag_index[tag] = NULL;
  915. /*
  916. * We use test_and_clear_bit's memory ordering properties here.
  917. * The tag_map bit acts as a lock for tag_index[bit], so we need
  918. * a barrer before clearing the bit (precisely: release semantics).
  919. * Could use clear_bit_unlock when it is merged.
  920. */
  921. if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
  922. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  923. __FUNCTION__, tag);
  924. return;
  925. }
  926. bqt->busy--;
  927. }
  928. EXPORT_SYMBOL(blk_queue_end_tag);
  929. /**
  930. * blk_queue_start_tag - find a free tag and assign it
  931. * @q: the request queue for the device
  932. * @rq: the block request that needs tagging
  933. *
  934. * Description:
  935. * This can either be used as a stand-alone helper, or possibly be
  936. * assigned as the queue &prep_rq_fn (in which case &struct request
  937. * automagically gets a tag assigned). Note that this function
  938. * assumes that any type of request can be queued! if this is not
  939. * true for your device, you must check the request type before
  940. * calling this function. The request will also be removed from
  941. * the request queue, so it's the drivers responsibility to readd
  942. * it if it should need to be restarted for some reason.
  943. *
  944. * Notes:
  945. * queue lock must be held.
  946. **/
  947. int blk_queue_start_tag(struct request_queue *q, struct request *rq)
  948. {
  949. struct blk_queue_tag *bqt = q->queue_tags;
  950. int tag;
  951. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  952. printk(KERN_ERR
  953. "%s: request %p for device [%s] already tagged %d",
  954. __FUNCTION__, rq,
  955. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  956. BUG();
  957. }
  958. /*
  959. * Protect against shared tag maps, as we may not have exclusive
  960. * access to the tag map.
  961. */
  962. do {
  963. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  964. if (tag >= bqt->max_depth)
  965. return 1;
  966. } while (test_and_set_bit(tag, bqt->tag_map));
  967. /*
  968. * We rely on test_and_set_bit providing lock memory ordering semantics
  969. * (could use test_and_set_bit_lock when it is merged).
  970. */
  971. rq->cmd_flags |= REQ_QUEUED;
  972. rq->tag = tag;
  973. bqt->tag_index[tag] = rq;
  974. blkdev_dequeue_request(rq);
  975. list_add(&rq->queuelist, &bqt->busy_list);
  976. bqt->busy++;
  977. return 0;
  978. }
  979. EXPORT_SYMBOL(blk_queue_start_tag);
  980. /**
  981. * blk_queue_invalidate_tags - invalidate all pending tags
  982. * @q: the request queue for the device
  983. *
  984. * Description:
  985. * Hardware conditions may dictate a need to stop all pending requests.
  986. * In this case, we will safely clear the block side of the tag queue and
  987. * readd all requests to the request queue in the right order.
  988. *
  989. * Notes:
  990. * queue lock must be held.
  991. **/
  992. void blk_queue_invalidate_tags(struct request_queue *q)
  993. {
  994. struct blk_queue_tag *bqt = q->queue_tags;
  995. struct list_head *tmp, *n;
  996. struct request *rq;
  997. list_for_each_safe(tmp, n, &bqt->busy_list) {
  998. rq = list_entry_rq(tmp);
  999. if (rq->tag == -1) {
  1000. printk(KERN_ERR
  1001. "%s: bad tag found on list\n", __FUNCTION__);
  1002. list_del_init(&rq->queuelist);
  1003. rq->cmd_flags &= ~REQ_QUEUED;
  1004. } else
  1005. blk_queue_end_tag(q, rq);
  1006. rq->cmd_flags &= ~REQ_STARTED;
  1007. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1008. }
  1009. }
  1010. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1011. void blk_dump_rq_flags(struct request *rq, char *msg)
  1012. {
  1013. int bit;
  1014. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1015. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1016. rq->cmd_flags);
  1017. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1018. rq->nr_sectors,
  1019. rq->current_nr_sectors);
  1020. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1021. if (blk_pc_request(rq)) {
  1022. printk("cdb: ");
  1023. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1024. printk("%02x ", rq->cmd[bit]);
  1025. printk("\n");
  1026. }
  1027. }
  1028. EXPORT_SYMBOL(blk_dump_rq_flags);
  1029. void blk_recount_segments(struct request_queue *q, struct bio *bio)
  1030. {
  1031. struct request rq;
  1032. struct bio *nxt = bio->bi_next;
  1033. rq.q = q;
  1034. rq.bio = rq.biotail = bio;
  1035. bio->bi_next = NULL;
  1036. blk_recalc_rq_segments(&rq);
  1037. bio->bi_next = nxt;
  1038. bio->bi_phys_segments = rq.nr_phys_segments;
  1039. bio->bi_hw_segments = rq.nr_hw_segments;
  1040. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1041. }
  1042. EXPORT_SYMBOL(blk_recount_segments);
  1043. static void blk_recalc_rq_segments(struct request *rq)
  1044. {
  1045. int nr_phys_segs;
  1046. int nr_hw_segs;
  1047. unsigned int phys_size;
  1048. unsigned int hw_size;
  1049. struct bio_vec *bv, *bvprv = NULL;
  1050. int seg_size;
  1051. int hw_seg_size;
  1052. int cluster;
  1053. struct req_iterator iter;
  1054. int high, highprv = 1;
  1055. struct request_queue *q = rq->q;
  1056. if (!rq->bio)
  1057. return;
  1058. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1059. hw_seg_size = seg_size = 0;
  1060. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  1061. rq_for_each_segment(bv, rq, iter) {
  1062. /*
  1063. * the trick here is making sure that a high page is never
  1064. * considered part of another segment, since that might
  1065. * change with the bounce page.
  1066. */
  1067. high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
  1068. if (high || highprv)
  1069. goto new_hw_segment;
  1070. if (cluster) {
  1071. if (seg_size + bv->bv_len > q->max_segment_size)
  1072. goto new_segment;
  1073. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1074. goto new_segment;
  1075. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1076. goto new_segment;
  1077. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1078. goto new_hw_segment;
  1079. seg_size += bv->bv_len;
  1080. hw_seg_size += bv->bv_len;
  1081. bvprv = bv;
  1082. continue;
  1083. }
  1084. new_segment:
  1085. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1086. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1087. hw_seg_size += bv->bv_len;
  1088. else {
  1089. new_hw_segment:
  1090. if (nr_hw_segs == 1 &&
  1091. hw_seg_size > rq->bio->bi_hw_front_size)
  1092. rq->bio->bi_hw_front_size = hw_seg_size;
  1093. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1094. nr_hw_segs++;
  1095. }
  1096. nr_phys_segs++;
  1097. bvprv = bv;
  1098. seg_size = bv->bv_len;
  1099. highprv = high;
  1100. }
  1101. if (nr_hw_segs == 1 &&
  1102. hw_seg_size > rq->bio->bi_hw_front_size)
  1103. rq->bio->bi_hw_front_size = hw_seg_size;
  1104. if (hw_seg_size > rq->biotail->bi_hw_back_size)
  1105. rq->biotail->bi_hw_back_size = hw_seg_size;
  1106. rq->nr_phys_segments = nr_phys_segs;
  1107. rq->nr_hw_segments = nr_hw_segs;
  1108. }
  1109. static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
  1110. struct bio *nxt)
  1111. {
  1112. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1113. return 0;
  1114. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1115. return 0;
  1116. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1117. return 0;
  1118. /*
  1119. * bio and nxt are contigous in memory, check if the queue allows
  1120. * these two to be merged into one
  1121. */
  1122. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1123. return 1;
  1124. return 0;
  1125. }
  1126. static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
  1127. struct bio *nxt)
  1128. {
  1129. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1130. blk_recount_segments(q, bio);
  1131. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1132. blk_recount_segments(q, nxt);
  1133. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1134. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
  1135. return 0;
  1136. if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
  1137. return 0;
  1138. return 1;
  1139. }
  1140. /*
  1141. * map a request to scatterlist, return number of sg entries setup. Caller
  1142. * must make sure sg can hold rq->nr_phys_segments entries
  1143. */
  1144. int blk_rq_map_sg(struct request_queue *q, struct request *rq,
  1145. struct scatterlist *sg)
  1146. {
  1147. struct bio_vec *bvec, *bvprv;
  1148. struct req_iterator iter;
  1149. int nsegs, cluster;
  1150. nsegs = 0;
  1151. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1152. /*
  1153. * for each bio in rq
  1154. */
  1155. bvprv = NULL;
  1156. rq_for_each_segment(bvec, rq, iter) {
  1157. int nbytes = bvec->bv_len;
  1158. if (bvprv && cluster) {
  1159. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1160. goto new_segment;
  1161. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1162. goto new_segment;
  1163. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1164. goto new_segment;
  1165. sg[nsegs - 1].length += nbytes;
  1166. } else {
  1167. new_segment:
  1168. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1169. sg[nsegs].page = bvec->bv_page;
  1170. sg[nsegs].length = nbytes;
  1171. sg[nsegs].offset = bvec->bv_offset;
  1172. nsegs++;
  1173. }
  1174. bvprv = bvec;
  1175. } /* segments in rq */
  1176. return nsegs;
  1177. }
  1178. EXPORT_SYMBOL(blk_rq_map_sg);
  1179. /*
  1180. * the standard queue merge functions, can be overridden with device
  1181. * specific ones if so desired
  1182. */
  1183. static inline int ll_new_mergeable(struct request_queue *q,
  1184. struct request *req,
  1185. struct bio *bio)
  1186. {
  1187. int nr_phys_segs = bio_phys_segments(q, bio);
  1188. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1189. req->cmd_flags |= REQ_NOMERGE;
  1190. if (req == q->last_merge)
  1191. q->last_merge = NULL;
  1192. return 0;
  1193. }
  1194. /*
  1195. * A hw segment is just getting larger, bump just the phys
  1196. * counter.
  1197. */
  1198. req->nr_phys_segments += nr_phys_segs;
  1199. return 1;
  1200. }
  1201. static inline int ll_new_hw_segment(struct request_queue *q,
  1202. struct request *req,
  1203. struct bio *bio)
  1204. {
  1205. int nr_hw_segs = bio_hw_segments(q, bio);
  1206. int nr_phys_segs = bio_phys_segments(q, bio);
  1207. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1208. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1209. req->cmd_flags |= REQ_NOMERGE;
  1210. if (req == q->last_merge)
  1211. q->last_merge = NULL;
  1212. return 0;
  1213. }
  1214. /*
  1215. * This will form the start of a new hw segment. Bump both
  1216. * counters.
  1217. */
  1218. req->nr_hw_segments += nr_hw_segs;
  1219. req->nr_phys_segments += nr_phys_segs;
  1220. return 1;
  1221. }
  1222. static int ll_back_merge_fn(struct request_queue *q, struct request *req,
  1223. struct bio *bio)
  1224. {
  1225. unsigned short max_sectors;
  1226. int len;
  1227. if (unlikely(blk_pc_request(req)))
  1228. max_sectors = q->max_hw_sectors;
  1229. else
  1230. max_sectors = q->max_sectors;
  1231. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1232. req->cmd_flags |= REQ_NOMERGE;
  1233. if (req == q->last_merge)
  1234. q->last_merge = NULL;
  1235. return 0;
  1236. }
  1237. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1238. blk_recount_segments(q, req->biotail);
  1239. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1240. blk_recount_segments(q, bio);
  1241. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1242. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1243. !BIOVEC_VIRT_OVERSIZE(len)) {
  1244. int mergeable = ll_new_mergeable(q, req, bio);
  1245. if (mergeable) {
  1246. if (req->nr_hw_segments == 1)
  1247. req->bio->bi_hw_front_size = len;
  1248. if (bio->bi_hw_segments == 1)
  1249. bio->bi_hw_back_size = len;
  1250. }
  1251. return mergeable;
  1252. }
  1253. return ll_new_hw_segment(q, req, bio);
  1254. }
  1255. static int ll_front_merge_fn(struct request_queue *q, struct request *req,
  1256. struct bio *bio)
  1257. {
  1258. unsigned short max_sectors;
  1259. int len;
  1260. if (unlikely(blk_pc_request(req)))
  1261. max_sectors = q->max_hw_sectors;
  1262. else
  1263. max_sectors = q->max_sectors;
  1264. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1265. req->cmd_flags |= REQ_NOMERGE;
  1266. if (req == q->last_merge)
  1267. q->last_merge = NULL;
  1268. return 0;
  1269. }
  1270. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1271. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1272. blk_recount_segments(q, bio);
  1273. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1274. blk_recount_segments(q, req->bio);
  1275. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1276. !BIOVEC_VIRT_OVERSIZE(len)) {
  1277. int mergeable = ll_new_mergeable(q, req, bio);
  1278. if (mergeable) {
  1279. if (bio->bi_hw_segments == 1)
  1280. bio->bi_hw_front_size = len;
  1281. if (req->nr_hw_segments == 1)
  1282. req->biotail->bi_hw_back_size = len;
  1283. }
  1284. return mergeable;
  1285. }
  1286. return ll_new_hw_segment(q, req, bio);
  1287. }
  1288. static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
  1289. struct request *next)
  1290. {
  1291. int total_phys_segments;
  1292. int total_hw_segments;
  1293. /*
  1294. * First check if the either of the requests are re-queued
  1295. * requests. Can't merge them if they are.
  1296. */
  1297. if (req->special || next->special)
  1298. return 0;
  1299. /*
  1300. * Will it become too large?
  1301. */
  1302. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1303. return 0;
  1304. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1305. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1306. total_phys_segments--;
  1307. if (total_phys_segments > q->max_phys_segments)
  1308. return 0;
  1309. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1310. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1311. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1312. /*
  1313. * propagate the combined length to the end of the requests
  1314. */
  1315. if (req->nr_hw_segments == 1)
  1316. req->bio->bi_hw_front_size = len;
  1317. if (next->nr_hw_segments == 1)
  1318. next->biotail->bi_hw_back_size = len;
  1319. total_hw_segments--;
  1320. }
  1321. if (total_hw_segments > q->max_hw_segments)
  1322. return 0;
  1323. /* Merge is OK... */
  1324. req->nr_phys_segments = total_phys_segments;
  1325. req->nr_hw_segments = total_hw_segments;
  1326. return 1;
  1327. }
  1328. /*
  1329. * "plug" the device if there are no outstanding requests: this will
  1330. * force the transfer to start only after we have put all the requests
  1331. * on the list.
  1332. *
  1333. * This is called with interrupts off and no requests on the queue and
  1334. * with the queue lock held.
  1335. */
  1336. void blk_plug_device(struct request_queue *q)
  1337. {
  1338. WARN_ON(!irqs_disabled());
  1339. /*
  1340. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1341. * which will restart the queueing
  1342. */
  1343. if (blk_queue_stopped(q))
  1344. return;
  1345. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1346. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1347. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1348. }
  1349. }
  1350. EXPORT_SYMBOL(blk_plug_device);
  1351. /*
  1352. * remove the queue from the plugged list, if present. called with
  1353. * queue lock held and interrupts disabled.
  1354. */
  1355. int blk_remove_plug(struct request_queue *q)
  1356. {
  1357. WARN_ON(!irqs_disabled());
  1358. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1359. return 0;
  1360. del_timer(&q->unplug_timer);
  1361. return 1;
  1362. }
  1363. EXPORT_SYMBOL(blk_remove_plug);
  1364. /*
  1365. * remove the plug and let it rip..
  1366. */
  1367. void __generic_unplug_device(struct request_queue *q)
  1368. {
  1369. if (unlikely(blk_queue_stopped(q)))
  1370. return;
  1371. if (!blk_remove_plug(q))
  1372. return;
  1373. q->request_fn(q);
  1374. }
  1375. EXPORT_SYMBOL(__generic_unplug_device);
  1376. /**
  1377. * generic_unplug_device - fire a request queue
  1378. * @q: The &struct request_queue in question
  1379. *
  1380. * Description:
  1381. * Linux uses plugging to build bigger requests queues before letting
  1382. * the device have at them. If a queue is plugged, the I/O scheduler
  1383. * is still adding and merging requests on the queue. Once the queue
  1384. * gets unplugged, the request_fn defined for the queue is invoked and
  1385. * transfers started.
  1386. **/
  1387. void generic_unplug_device(struct request_queue *q)
  1388. {
  1389. spin_lock_irq(q->queue_lock);
  1390. __generic_unplug_device(q);
  1391. spin_unlock_irq(q->queue_lock);
  1392. }
  1393. EXPORT_SYMBOL(generic_unplug_device);
  1394. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1395. struct page *page)
  1396. {
  1397. struct request_queue *q = bdi->unplug_io_data;
  1398. /*
  1399. * devices don't necessarily have an ->unplug_fn defined
  1400. */
  1401. if (q->unplug_fn) {
  1402. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1403. q->rq.count[READ] + q->rq.count[WRITE]);
  1404. q->unplug_fn(q);
  1405. }
  1406. }
  1407. static void blk_unplug_work(struct work_struct *work)
  1408. {
  1409. struct request_queue *q =
  1410. container_of(work, struct request_queue, unplug_work);
  1411. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1412. q->rq.count[READ] + q->rq.count[WRITE]);
  1413. q->unplug_fn(q);
  1414. }
  1415. static void blk_unplug_timeout(unsigned long data)
  1416. {
  1417. struct request_queue *q = (struct request_queue *)data;
  1418. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1419. q->rq.count[READ] + q->rq.count[WRITE]);
  1420. kblockd_schedule_work(&q->unplug_work);
  1421. }
  1422. /**
  1423. * blk_start_queue - restart a previously stopped queue
  1424. * @q: The &struct request_queue in question
  1425. *
  1426. * Description:
  1427. * blk_start_queue() will clear the stop flag on the queue, and call
  1428. * the request_fn for the queue if it was in a stopped state when
  1429. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1430. **/
  1431. void blk_start_queue(struct request_queue *q)
  1432. {
  1433. WARN_ON(!irqs_disabled());
  1434. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1435. /*
  1436. * one level of recursion is ok and is much faster than kicking
  1437. * the unplug handling
  1438. */
  1439. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1440. q->request_fn(q);
  1441. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1442. } else {
  1443. blk_plug_device(q);
  1444. kblockd_schedule_work(&q->unplug_work);
  1445. }
  1446. }
  1447. EXPORT_SYMBOL(blk_start_queue);
  1448. /**
  1449. * blk_stop_queue - stop a queue
  1450. * @q: The &struct request_queue in question
  1451. *
  1452. * Description:
  1453. * The Linux block layer assumes that a block driver will consume all
  1454. * entries on the request queue when the request_fn strategy is called.
  1455. * Often this will not happen, because of hardware limitations (queue
  1456. * depth settings). If a device driver gets a 'queue full' response,
  1457. * or if it simply chooses not to queue more I/O at one point, it can
  1458. * call this function to prevent the request_fn from being called until
  1459. * the driver has signalled it's ready to go again. This happens by calling
  1460. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1461. **/
  1462. void blk_stop_queue(struct request_queue *q)
  1463. {
  1464. blk_remove_plug(q);
  1465. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1466. }
  1467. EXPORT_SYMBOL(blk_stop_queue);
  1468. /**
  1469. * blk_sync_queue - cancel any pending callbacks on a queue
  1470. * @q: the queue
  1471. *
  1472. * Description:
  1473. * The block layer may perform asynchronous callback activity
  1474. * on a queue, such as calling the unplug function after a timeout.
  1475. * A block device may call blk_sync_queue to ensure that any
  1476. * such activity is cancelled, thus allowing it to release resources
  1477. * that the callbacks might use. The caller must already have made sure
  1478. * that its ->make_request_fn will not re-add plugging prior to calling
  1479. * this function.
  1480. *
  1481. */
  1482. void blk_sync_queue(struct request_queue *q)
  1483. {
  1484. del_timer_sync(&q->unplug_timer);
  1485. }
  1486. EXPORT_SYMBOL(blk_sync_queue);
  1487. /**
  1488. * blk_run_queue - run a single device queue
  1489. * @q: The queue to run
  1490. */
  1491. void blk_run_queue(struct request_queue *q)
  1492. {
  1493. unsigned long flags;
  1494. spin_lock_irqsave(q->queue_lock, flags);
  1495. blk_remove_plug(q);
  1496. /*
  1497. * Only recurse once to avoid overrunning the stack, let the unplug
  1498. * handling reinvoke the handler shortly if we already got there.
  1499. */
  1500. if (!elv_queue_empty(q)) {
  1501. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1502. q->request_fn(q);
  1503. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1504. } else {
  1505. blk_plug_device(q);
  1506. kblockd_schedule_work(&q->unplug_work);
  1507. }
  1508. }
  1509. spin_unlock_irqrestore(q->queue_lock, flags);
  1510. }
  1511. EXPORT_SYMBOL(blk_run_queue);
  1512. /**
  1513. * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
  1514. * @kobj: the kobj belonging of the request queue to be released
  1515. *
  1516. * Description:
  1517. * blk_cleanup_queue is the pair to blk_init_queue() or
  1518. * blk_queue_make_request(). It should be called when a request queue is
  1519. * being released; typically when a block device is being de-registered.
  1520. * Currently, its primary task it to free all the &struct request
  1521. * structures that were allocated to the queue and the queue itself.
  1522. *
  1523. * Caveat:
  1524. * Hopefully the low level driver will have finished any
  1525. * outstanding requests first...
  1526. **/
  1527. static void blk_release_queue(struct kobject *kobj)
  1528. {
  1529. struct request_queue *q =
  1530. container_of(kobj, struct request_queue, kobj);
  1531. struct request_list *rl = &q->rq;
  1532. blk_sync_queue(q);
  1533. if (rl->rq_pool)
  1534. mempool_destroy(rl->rq_pool);
  1535. if (q->queue_tags)
  1536. __blk_queue_free_tags(q);
  1537. blk_trace_shutdown(q);
  1538. kmem_cache_free(requestq_cachep, q);
  1539. }
  1540. void blk_put_queue(struct request_queue *q)
  1541. {
  1542. kobject_put(&q->kobj);
  1543. }
  1544. EXPORT_SYMBOL(blk_put_queue);
  1545. void blk_cleanup_queue(struct request_queue * q)
  1546. {
  1547. mutex_lock(&q->sysfs_lock);
  1548. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1549. mutex_unlock(&q->sysfs_lock);
  1550. if (q->elevator)
  1551. elevator_exit(q->elevator);
  1552. blk_put_queue(q);
  1553. }
  1554. EXPORT_SYMBOL(blk_cleanup_queue);
  1555. static int blk_init_free_list(struct request_queue *q)
  1556. {
  1557. struct request_list *rl = &q->rq;
  1558. rl->count[READ] = rl->count[WRITE] = 0;
  1559. rl->starved[READ] = rl->starved[WRITE] = 0;
  1560. rl->elvpriv = 0;
  1561. init_waitqueue_head(&rl->wait[READ]);
  1562. init_waitqueue_head(&rl->wait[WRITE]);
  1563. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1564. mempool_free_slab, request_cachep, q->node);
  1565. if (!rl->rq_pool)
  1566. return -ENOMEM;
  1567. return 0;
  1568. }
  1569. struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
  1570. {
  1571. return blk_alloc_queue_node(gfp_mask, -1);
  1572. }
  1573. EXPORT_SYMBOL(blk_alloc_queue);
  1574. static struct kobj_type queue_ktype;
  1575. struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1576. {
  1577. struct request_queue *q;
  1578. q = kmem_cache_alloc_node(requestq_cachep,
  1579. gfp_mask | __GFP_ZERO, node_id);
  1580. if (!q)
  1581. return NULL;
  1582. init_timer(&q->unplug_timer);
  1583. kobject_set_name(&q->kobj, "%s", "queue");
  1584. q->kobj.ktype = &queue_ktype;
  1585. kobject_init(&q->kobj);
  1586. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1587. q->backing_dev_info.unplug_io_data = q;
  1588. mutex_init(&q->sysfs_lock);
  1589. return q;
  1590. }
  1591. EXPORT_SYMBOL(blk_alloc_queue_node);
  1592. /**
  1593. * blk_init_queue - prepare a request queue for use with a block device
  1594. * @rfn: The function to be called to process requests that have been
  1595. * placed on the queue.
  1596. * @lock: Request queue spin lock
  1597. *
  1598. * Description:
  1599. * If a block device wishes to use the standard request handling procedures,
  1600. * which sorts requests and coalesces adjacent requests, then it must
  1601. * call blk_init_queue(). The function @rfn will be called when there
  1602. * are requests on the queue that need to be processed. If the device
  1603. * supports plugging, then @rfn may not be called immediately when requests
  1604. * are available on the queue, but may be called at some time later instead.
  1605. * Plugged queues are generally unplugged when a buffer belonging to one
  1606. * of the requests on the queue is needed, or due to memory pressure.
  1607. *
  1608. * @rfn is not required, or even expected, to remove all requests off the
  1609. * queue, but only as many as it can handle at a time. If it does leave
  1610. * requests on the queue, it is responsible for arranging that the requests
  1611. * get dealt with eventually.
  1612. *
  1613. * The queue spin lock must be held while manipulating the requests on the
  1614. * request queue; this lock will be taken also from interrupt context, so irq
  1615. * disabling is needed for it.
  1616. *
  1617. * Function returns a pointer to the initialized request queue, or NULL if
  1618. * it didn't succeed.
  1619. *
  1620. * Note:
  1621. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1622. * when the block device is deactivated (such as at module unload).
  1623. **/
  1624. struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1625. {
  1626. return blk_init_queue_node(rfn, lock, -1);
  1627. }
  1628. EXPORT_SYMBOL(blk_init_queue);
  1629. struct request_queue *
  1630. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1631. {
  1632. struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1633. if (!q)
  1634. return NULL;
  1635. q->node = node_id;
  1636. if (blk_init_free_list(q)) {
  1637. kmem_cache_free(requestq_cachep, q);
  1638. return NULL;
  1639. }
  1640. /*
  1641. * if caller didn't supply a lock, they get per-queue locking with
  1642. * our embedded lock
  1643. */
  1644. if (!lock) {
  1645. spin_lock_init(&q->__queue_lock);
  1646. lock = &q->__queue_lock;
  1647. }
  1648. q->request_fn = rfn;
  1649. q->prep_rq_fn = NULL;
  1650. q->unplug_fn = generic_unplug_device;
  1651. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1652. q->queue_lock = lock;
  1653. blk_queue_segment_boundary(q, 0xffffffff);
  1654. blk_queue_make_request(q, __make_request);
  1655. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1656. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1657. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1658. q->sg_reserved_size = INT_MAX;
  1659. /*
  1660. * all done
  1661. */
  1662. if (!elevator_init(q, NULL)) {
  1663. blk_queue_congestion_threshold(q);
  1664. return q;
  1665. }
  1666. blk_put_queue(q);
  1667. return NULL;
  1668. }
  1669. EXPORT_SYMBOL(blk_init_queue_node);
  1670. int blk_get_queue(struct request_queue *q)
  1671. {
  1672. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1673. kobject_get(&q->kobj);
  1674. return 0;
  1675. }
  1676. return 1;
  1677. }
  1678. EXPORT_SYMBOL(blk_get_queue);
  1679. static inline void blk_free_request(struct request_queue *q, struct request *rq)
  1680. {
  1681. if (rq->cmd_flags & REQ_ELVPRIV)
  1682. elv_put_request(q, rq);
  1683. mempool_free(rq, q->rq.rq_pool);
  1684. }
  1685. static struct request *
  1686. blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
  1687. {
  1688. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1689. if (!rq)
  1690. return NULL;
  1691. /*
  1692. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1693. * see bio.h and blkdev.h
  1694. */
  1695. rq->cmd_flags = rw | REQ_ALLOCED;
  1696. if (priv) {
  1697. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1698. mempool_free(rq, q->rq.rq_pool);
  1699. return NULL;
  1700. }
  1701. rq->cmd_flags |= REQ_ELVPRIV;
  1702. }
  1703. return rq;
  1704. }
  1705. /*
  1706. * ioc_batching returns true if the ioc is a valid batching request and
  1707. * should be given priority access to a request.
  1708. */
  1709. static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
  1710. {
  1711. if (!ioc)
  1712. return 0;
  1713. /*
  1714. * Make sure the process is able to allocate at least 1 request
  1715. * even if the batch times out, otherwise we could theoretically
  1716. * lose wakeups.
  1717. */
  1718. return ioc->nr_batch_requests == q->nr_batching ||
  1719. (ioc->nr_batch_requests > 0
  1720. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1721. }
  1722. /*
  1723. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1724. * will cause the process to be a "batcher" on all queues in the system. This
  1725. * is the behaviour we want though - once it gets a wakeup it should be given
  1726. * a nice run.
  1727. */
  1728. static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
  1729. {
  1730. if (!ioc || ioc_batching(q, ioc))
  1731. return;
  1732. ioc->nr_batch_requests = q->nr_batching;
  1733. ioc->last_waited = jiffies;
  1734. }
  1735. static void __freed_request(struct request_queue *q, int rw)
  1736. {
  1737. struct request_list *rl = &q->rq;
  1738. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1739. blk_clear_queue_congested(q, rw);
  1740. if (rl->count[rw] + 1 <= q->nr_requests) {
  1741. if (waitqueue_active(&rl->wait[rw]))
  1742. wake_up(&rl->wait[rw]);
  1743. blk_clear_queue_full(q, rw);
  1744. }
  1745. }
  1746. /*
  1747. * A request has just been released. Account for it, update the full and
  1748. * congestion status, wake up any waiters. Called under q->queue_lock.
  1749. */
  1750. static void freed_request(struct request_queue *q, int rw, int priv)
  1751. {
  1752. struct request_list *rl = &q->rq;
  1753. rl->count[rw]--;
  1754. if (priv)
  1755. rl->elvpriv--;
  1756. __freed_request(q, rw);
  1757. if (unlikely(rl->starved[rw ^ 1]))
  1758. __freed_request(q, rw ^ 1);
  1759. }
  1760. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1761. /*
  1762. * Get a free request, queue_lock must be held.
  1763. * Returns NULL on failure, with queue_lock held.
  1764. * Returns !NULL on success, with queue_lock *not held*.
  1765. */
  1766. static struct request *get_request(struct request_queue *q, int rw_flags,
  1767. struct bio *bio, gfp_t gfp_mask)
  1768. {
  1769. struct request *rq = NULL;
  1770. struct request_list *rl = &q->rq;
  1771. struct io_context *ioc = NULL;
  1772. const int rw = rw_flags & 0x01;
  1773. int may_queue, priv;
  1774. may_queue = elv_may_queue(q, rw_flags);
  1775. if (may_queue == ELV_MQUEUE_NO)
  1776. goto rq_starved;
  1777. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1778. if (rl->count[rw]+1 >= q->nr_requests) {
  1779. ioc = current_io_context(GFP_ATOMIC, q->node);
  1780. /*
  1781. * The queue will fill after this allocation, so set
  1782. * it as full, and mark this process as "batching".
  1783. * This process will be allowed to complete a batch of
  1784. * requests, others will be blocked.
  1785. */
  1786. if (!blk_queue_full(q, rw)) {
  1787. ioc_set_batching(q, ioc);
  1788. blk_set_queue_full(q, rw);
  1789. } else {
  1790. if (may_queue != ELV_MQUEUE_MUST
  1791. && !ioc_batching(q, ioc)) {
  1792. /*
  1793. * The queue is full and the allocating
  1794. * process is not a "batcher", and not
  1795. * exempted by the IO scheduler
  1796. */
  1797. goto out;
  1798. }
  1799. }
  1800. }
  1801. blk_set_queue_congested(q, rw);
  1802. }
  1803. /*
  1804. * Only allow batching queuers to allocate up to 50% over the defined
  1805. * limit of requests, otherwise we could have thousands of requests
  1806. * allocated with any setting of ->nr_requests
  1807. */
  1808. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1809. goto out;
  1810. rl->count[rw]++;
  1811. rl->starved[rw] = 0;
  1812. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1813. if (priv)
  1814. rl->elvpriv++;
  1815. spin_unlock_irq(q->queue_lock);
  1816. rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
  1817. if (unlikely(!rq)) {
  1818. /*
  1819. * Allocation failed presumably due to memory. Undo anything
  1820. * we might have messed up.
  1821. *
  1822. * Allocating task should really be put onto the front of the
  1823. * wait queue, but this is pretty rare.
  1824. */
  1825. spin_lock_irq(q->queue_lock);
  1826. freed_request(q, rw, priv);
  1827. /*
  1828. * in the very unlikely event that allocation failed and no
  1829. * requests for this direction was pending, mark us starved
  1830. * so that freeing of a request in the other direction will
  1831. * notice us. another possible fix would be to split the
  1832. * rq mempool into READ and WRITE
  1833. */
  1834. rq_starved:
  1835. if (unlikely(rl->count[rw] == 0))
  1836. rl->starved[rw] = 1;
  1837. goto out;
  1838. }
  1839. /*
  1840. * ioc may be NULL here, and ioc_batching will be false. That's
  1841. * OK, if the queue is under the request limit then requests need
  1842. * not count toward the nr_batch_requests limit. There will always
  1843. * be some limit enforced by BLK_BATCH_TIME.
  1844. */
  1845. if (ioc_batching(q, ioc))
  1846. ioc->nr_batch_requests--;
  1847. rq_init(q, rq);
  1848. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1849. out:
  1850. return rq;
  1851. }
  1852. /*
  1853. * No available requests for this queue, unplug the device and wait for some
  1854. * requests to become available.
  1855. *
  1856. * Called with q->queue_lock held, and returns with it unlocked.
  1857. */
  1858. static struct request *get_request_wait(struct request_queue *q, int rw_flags,
  1859. struct bio *bio)
  1860. {
  1861. const int rw = rw_flags & 0x01;
  1862. struct request *rq;
  1863. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1864. while (!rq) {
  1865. DEFINE_WAIT(wait);
  1866. struct request_list *rl = &q->rq;
  1867. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1868. TASK_UNINTERRUPTIBLE);
  1869. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1870. if (!rq) {
  1871. struct io_context *ioc;
  1872. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1873. __generic_unplug_device(q);
  1874. spin_unlock_irq(q->queue_lock);
  1875. io_schedule();
  1876. /*
  1877. * After sleeping, we become a "batching" process and
  1878. * will be able to allocate at least one request, and
  1879. * up to a big batch of them for a small period time.
  1880. * See ioc_batching, ioc_set_batching
  1881. */
  1882. ioc = current_io_context(GFP_NOIO, q->node);
  1883. ioc_set_batching(q, ioc);
  1884. spin_lock_irq(q->queue_lock);
  1885. }
  1886. finish_wait(&rl->wait[rw], &wait);
  1887. }
  1888. return rq;
  1889. }
  1890. struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
  1891. {
  1892. struct request *rq;
  1893. BUG_ON(rw != READ && rw != WRITE);
  1894. spin_lock_irq(q->queue_lock);
  1895. if (gfp_mask & __GFP_WAIT) {
  1896. rq = get_request_wait(q, rw, NULL);
  1897. } else {
  1898. rq = get_request(q, rw, NULL, gfp_mask);
  1899. if (!rq)
  1900. spin_unlock_irq(q->queue_lock);
  1901. }
  1902. /* q->queue_lock is unlocked at this point */
  1903. return rq;
  1904. }
  1905. EXPORT_SYMBOL(blk_get_request);
  1906. /**
  1907. * blk_start_queueing - initiate dispatch of requests to device
  1908. * @q: request queue to kick into gear
  1909. *
  1910. * This is basically a helper to remove the need to know whether a queue
  1911. * is plugged or not if someone just wants to initiate dispatch of requests
  1912. * for this queue.
  1913. *
  1914. * The queue lock must be held with interrupts disabled.
  1915. */
  1916. void blk_start_queueing(struct request_queue *q)
  1917. {
  1918. if (!blk_queue_plugged(q))
  1919. q->request_fn(q);
  1920. else
  1921. __generic_unplug_device(q);
  1922. }
  1923. EXPORT_SYMBOL(blk_start_queueing);
  1924. /**
  1925. * blk_requeue_request - put a request back on queue
  1926. * @q: request queue where request should be inserted
  1927. * @rq: request to be inserted
  1928. *
  1929. * Description:
  1930. * Drivers often keep queueing requests until the hardware cannot accept
  1931. * more, when that condition happens we need to put the request back
  1932. * on the queue. Must be called with queue lock held.
  1933. */
  1934. void blk_requeue_request(struct request_queue *q, struct request *rq)
  1935. {
  1936. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1937. if (blk_rq_tagged(rq))
  1938. blk_queue_end_tag(q, rq);
  1939. elv_requeue_request(q, rq);
  1940. }
  1941. EXPORT_SYMBOL(blk_requeue_request);
  1942. /**
  1943. * blk_insert_request - insert a special request in to a request queue
  1944. * @q: request queue where request should be inserted
  1945. * @rq: request to be inserted
  1946. * @at_head: insert request at head or tail of queue
  1947. * @data: private data
  1948. *
  1949. * Description:
  1950. * Many block devices need to execute commands asynchronously, so they don't
  1951. * block the whole kernel from preemption during request execution. This is
  1952. * accomplished normally by inserting aritficial requests tagged as
  1953. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1954. * scheduled for actual execution by the request queue.
  1955. *
  1956. * We have the option of inserting the head or the tail of the queue.
  1957. * Typically we use the tail for new ioctls and so forth. We use the head
  1958. * of the queue for things like a QUEUE_FULL message from a device, or a
  1959. * host that is unable to accept a particular command.
  1960. */
  1961. void blk_insert_request(struct request_queue *q, struct request *rq,
  1962. int at_head, void *data)
  1963. {
  1964. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1965. unsigned long flags;
  1966. /*
  1967. * tell I/O scheduler that this isn't a regular read/write (ie it
  1968. * must not attempt merges on this) and that it acts as a soft
  1969. * barrier
  1970. */
  1971. rq->cmd_type = REQ_TYPE_SPECIAL;
  1972. rq->cmd_flags |= REQ_SOFTBARRIER;
  1973. rq->special = data;
  1974. spin_lock_irqsave(q->queue_lock, flags);
  1975. /*
  1976. * If command is tagged, release the tag
  1977. */
  1978. if (blk_rq_tagged(rq))
  1979. blk_queue_end_tag(q, rq);
  1980. drive_stat_acct(rq, rq->nr_sectors, 1);
  1981. __elv_add_request(q, rq, where, 0);
  1982. blk_start_queueing(q);
  1983. spin_unlock_irqrestore(q->queue_lock, flags);
  1984. }
  1985. EXPORT_SYMBOL(blk_insert_request);
  1986. static int __blk_rq_unmap_user(struct bio *bio)
  1987. {
  1988. int ret = 0;
  1989. if (bio) {
  1990. if (bio_flagged(bio, BIO_USER_MAPPED))
  1991. bio_unmap_user(bio);
  1992. else
  1993. ret = bio_uncopy_user(bio);
  1994. }
  1995. return ret;
  1996. }
  1997. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  1998. struct bio *bio)
  1999. {
  2000. if (!rq->bio)
  2001. blk_rq_bio_prep(q, rq, bio);
  2002. else if (!ll_back_merge_fn(q, rq, bio))
  2003. return -EINVAL;
  2004. else {
  2005. rq->biotail->bi_next = bio;
  2006. rq->biotail = bio;
  2007. rq->data_len += bio->bi_size;
  2008. }
  2009. return 0;
  2010. }
  2011. EXPORT_SYMBOL(blk_rq_append_bio);
  2012. static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
  2013. void __user *ubuf, unsigned int len)
  2014. {
  2015. unsigned long uaddr;
  2016. struct bio *bio, *orig_bio;
  2017. int reading, ret;
  2018. reading = rq_data_dir(rq) == READ;
  2019. /*
  2020. * if alignment requirement is satisfied, map in user pages for
  2021. * direct dma. else, set up kernel bounce buffers
  2022. */
  2023. uaddr = (unsigned long) ubuf;
  2024. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2025. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2026. else
  2027. bio = bio_copy_user(q, uaddr, len, reading);
  2028. if (IS_ERR(bio))
  2029. return PTR_ERR(bio);
  2030. orig_bio = bio;
  2031. blk_queue_bounce(q, &bio);
  2032. /*
  2033. * We link the bounce buffer in and could have to traverse it
  2034. * later so we have to get a ref to prevent it from being freed
  2035. */
  2036. bio_get(bio);
  2037. ret = blk_rq_append_bio(q, rq, bio);
  2038. if (!ret)
  2039. return bio->bi_size;
  2040. /* if it was boucned we must call the end io function */
  2041. bio_endio(bio, 0);
  2042. __blk_rq_unmap_user(orig_bio);
  2043. bio_put(bio);
  2044. return ret;
  2045. }
  2046. /**
  2047. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2048. * @q: request queue where request should be inserted
  2049. * @rq: request structure to fill
  2050. * @ubuf: the user buffer
  2051. * @len: length of user data
  2052. *
  2053. * Description:
  2054. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2055. * a kernel bounce buffer is used.
  2056. *
  2057. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2058. * still in process context.
  2059. *
  2060. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2061. * before being submitted to the device, as pages mapped may be out of
  2062. * reach. It's the callers responsibility to make sure this happens. The
  2063. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2064. * unmapping.
  2065. */
  2066. int blk_rq_map_user(struct request_queue *q, struct request *rq,
  2067. void __user *ubuf, unsigned long len)
  2068. {
  2069. unsigned long bytes_read = 0;
  2070. struct bio *bio = NULL;
  2071. int ret;
  2072. if (len > (q->max_hw_sectors << 9))
  2073. return -EINVAL;
  2074. if (!len || !ubuf)
  2075. return -EINVAL;
  2076. while (bytes_read != len) {
  2077. unsigned long map_len, end, start;
  2078. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2079. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2080. >> PAGE_SHIFT;
  2081. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2082. /*
  2083. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2084. * pages. If this happens we just lower the requested
  2085. * mapping len by a page so that we can fit
  2086. */
  2087. if (end - start > BIO_MAX_PAGES)
  2088. map_len -= PAGE_SIZE;
  2089. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2090. if (ret < 0)
  2091. goto unmap_rq;
  2092. if (!bio)
  2093. bio = rq->bio;
  2094. bytes_read += ret;
  2095. ubuf += ret;
  2096. }
  2097. rq->buffer = rq->data = NULL;
  2098. return 0;
  2099. unmap_rq:
  2100. blk_rq_unmap_user(bio);
  2101. return ret;
  2102. }
  2103. EXPORT_SYMBOL(blk_rq_map_user);
  2104. /**
  2105. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2106. * @q: request queue where request should be inserted
  2107. * @rq: request to map data to
  2108. * @iov: pointer to the iovec
  2109. * @iov_count: number of elements in the iovec
  2110. * @len: I/O byte count
  2111. *
  2112. * Description:
  2113. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2114. * a kernel bounce buffer is used.
  2115. *
  2116. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2117. * still in process context.
  2118. *
  2119. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2120. * before being submitted to the device, as pages mapped may be out of
  2121. * reach. It's the callers responsibility to make sure this happens. The
  2122. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2123. * unmapping.
  2124. */
  2125. int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
  2126. struct sg_iovec *iov, int iov_count, unsigned int len)
  2127. {
  2128. struct bio *bio;
  2129. if (!iov || iov_count <= 0)
  2130. return -EINVAL;
  2131. /* we don't allow misaligned data like bio_map_user() does. If the
  2132. * user is using sg, they're expected to know the alignment constraints
  2133. * and respect them accordingly */
  2134. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2135. if (IS_ERR(bio))
  2136. return PTR_ERR(bio);
  2137. if (bio->bi_size != len) {
  2138. bio_endio(bio, 0);
  2139. bio_unmap_user(bio);
  2140. return -EINVAL;
  2141. }
  2142. bio_get(bio);
  2143. blk_rq_bio_prep(q, rq, bio);
  2144. rq->buffer = rq->data = NULL;
  2145. return 0;
  2146. }
  2147. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2148. /**
  2149. * blk_rq_unmap_user - unmap a request with user data
  2150. * @bio: start of bio list
  2151. *
  2152. * Description:
  2153. * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
  2154. * supply the original rq->bio from the blk_rq_map_user() return, since
  2155. * the io completion may have changed rq->bio.
  2156. */
  2157. int blk_rq_unmap_user(struct bio *bio)
  2158. {
  2159. struct bio *mapped_bio;
  2160. int ret = 0, ret2;
  2161. while (bio) {
  2162. mapped_bio = bio;
  2163. if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
  2164. mapped_bio = bio->bi_private;
  2165. ret2 = __blk_rq_unmap_user(mapped_bio);
  2166. if (ret2 && !ret)
  2167. ret = ret2;
  2168. mapped_bio = bio;
  2169. bio = bio->bi_next;
  2170. bio_put(mapped_bio);
  2171. }
  2172. return ret;
  2173. }
  2174. EXPORT_SYMBOL(blk_rq_unmap_user);
  2175. /**
  2176. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2177. * @q: request queue where request should be inserted
  2178. * @rq: request to fill
  2179. * @kbuf: the kernel buffer
  2180. * @len: length of user data
  2181. * @gfp_mask: memory allocation flags
  2182. */
  2183. int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
  2184. unsigned int len, gfp_t gfp_mask)
  2185. {
  2186. struct bio *bio;
  2187. if (len > (q->max_hw_sectors << 9))
  2188. return -EINVAL;
  2189. if (!len || !kbuf)
  2190. return -EINVAL;
  2191. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2192. if (IS_ERR(bio))
  2193. return PTR_ERR(bio);
  2194. if (rq_data_dir(rq) == WRITE)
  2195. bio->bi_rw |= (1 << BIO_RW);
  2196. blk_rq_bio_prep(q, rq, bio);
  2197. blk_queue_bounce(q, &rq->bio);
  2198. rq->buffer = rq->data = NULL;
  2199. return 0;
  2200. }
  2201. EXPORT_SYMBOL(blk_rq_map_kern);
  2202. /**
  2203. * blk_execute_rq_nowait - insert a request into queue for execution
  2204. * @q: queue to insert the request in
  2205. * @bd_disk: matching gendisk
  2206. * @rq: request to insert
  2207. * @at_head: insert request at head or tail of queue
  2208. * @done: I/O completion handler
  2209. *
  2210. * Description:
  2211. * Insert a fully prepared request at the back of the io scheduler queue
  2212. * for execution. Don't wait for completion.
  2213. */
  2214. void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
  2215. struct request *rq, int at_head,
  2216. rq_end_io_fn *done)
  2217. {
  2218. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2219. rq->rq_disk = bd_disk;
  2220. rq->cmd_flags |= REQ_NOMERGE;
  2221. rq->end_io = done;
  2222. WARN_ON(irqs_disabled());
  2223. spin_lock_irq(q->queue_lock);
  2224. __elv_add_request(q, rq, where, 1);
  2225. __generic_unplug_device(q);
  2226. spin_unlock_irq(q->queue_lock);
  2227. }
  2228. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2229. /**
  2230. * blk_execute_rq - insert a request into queue for execution
  2231. * @q: queue to insert the request in
  2232. * @bd_disk: matching gendisk
  2233. * @rq: request to insert
  2234. * @at_head: insert request at head or tail of queue
  2235. *
  2236. * Description:
  2237. * Insert a fully prepared request at the back of the io scheduler queue
  2238. * for execution and wait for completion.
  2239. */
  2240. int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
  2241. struct request *rq, int at_head)
  2242. {
  2243. DECLARE_COMPLETION_ONSTACK(wait);
  2244. char sense[SCSI_SENSE_BUFFERSIZE];
  2245. int err = 0;
  2246. /*
  2247. * we need an extra reference to the request, so we can look at
  2248. * it after io completion
  2249. */
  2250. rq->ref_count++;
  2251. if (!rq->sense) {
  2252. memset(sense, 0, sizeof(sense));
  2253. rq->sense = sense;
  2254. rq->sense_len = 0;
  2255. }
  2256. rq->end_io_data = &wait;
  2257. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2258. wait_for_completion(&wait);
  2259. if (rq->errors)
  2260. err = -EIO;
  2261. return err;
  2262. }
  2263. EXPORT_SYMBOL(blk_execute_rq);
  2264. /**
  2265. * blkdev_issue_flush - queue a flush
  2266. * @bdev: blockdev to issue flush for
  2267. * @error_sector: error sector
  2268. *
  2269. * Description:
  2270. * Issue a flush for the block device in question. Caller can supply
  2271. * room for storing the error offset in case of a flush error, if they
  2272. * wish to. Caller must run wait_for_completion() on its own.
  2273. */
  2274. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2275. {
  2276. struct request_queue *q;
  2277. if (bdev->bd_disk == NULL)
  2278. return -ENXIO;
  2279. q = bdev_get_queue(bdev);
  2280. if (!q)
  2281. return -ENXIO;
  2282. if (!q->issue_flush_fn)
  2283. return -EOPNOTSUPP;
  2284. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2285. }
  2286. EXPORT_SYMBOL(blkdev_issue_flush);
  2287. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2288. {
  2289. int rw = rq_data_dir(rq);
  2290. if (!blk_fs_request(rq) || !rq->rq_disk)
  2291. return;
  2292. if (!new_io) {
  2293. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2294. } else {
  2295. disk_round_stats(rq->rq_disk);
  2296. rq->rq_disk->in_flight++;
  2297. }
  2298. }
  2299. /*
  2300. * add-request adds a request to the linked list.
  2301. * queue lock is held and interrupts disabled, as we muck with the
  2302. * request queue list.
  2303. */
  2304. static inline void add_request(struct request_queue * q, struct request * req)
  2305. {
  2306. drive_stat_acct(req, req->nr_sectors, 1);
  2307. /*
  2308. * elevator indicated where it wants this request to be
  2309. * inserted at elevator_merge time
  2310. */
  2311. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2312. }
  2313. /*
  2314. * disk_round_stats() - Round off the performance stats on a struct
  2315. * disk_stats.
  2316. *
  2317. * The average IO queue length and utilisation statistics are maintained
  2318. * by observing the current state of the queue length and the amount of
  2319. * time it has been in this state for.
  2320. *
  2321. * Normally, that accounting is done on IO completion, but that can result
  2322. * in more than a second's worth of IO being accounted for within any one
  2323. * second, leading to >100% utilisation. To deal with that, we call this
  2324. * function to do a round-off before returning the results when reading
  2325. * /proc/diskstats. This accounts immediately for all queue usage up to
  2326. * the current jiffies and restarts the counters again.
  2327. */
  2328. void disk_round_stats(struct gendisk *disk)
  2329. {
  2330. unsigned long now = jiffies;
  2331. if (now == disk->stamp)
  2332. return;
  2333. if (disk->in_flight) {
  2334. __disk_stat_add(disk, time_in_queue,
  2335. disk->in_flight * (now - disk->stamp));
  2336. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2337. }
  2338. disk->stamp = now;
  2339. }
  2340. EXPORT_SYMBOL_GPL(disk_round_stats);
  2341. /*
  2342. * queue lock must be held
  2343. */
  2344. void __blk_put_request(struct request_queue *q, struct request *req)
  2345. {
  2346. if (unlikely(!q))
  2347. return;
  2348. if (unlikely(--req->ref_count))
  2349. return;
  2350. elv_completed_request(q, req);
  2351. /*
  2352. * Request may not have originated from ll_rw_blk. if not,
  2353. * it didn't come out of our reserved rq pools
  2354. */
  2355. if (req->cmd_flags & REQ_ALLOCED) {
  2356. int rw = rq_data_dir(req);
  2357. int priv = req->cmd_flags & REQ_ELVPRIV;
  2358. BUG_ON(!list_empty(&req->queuelist));
  2359. BUG_ON(!hlist_unhashed(&req->hash));
  2360. blk_free_request(q, req);
  2361. freed_request(q, rw, priv);
  2362. }
  2363. }
  2364. EXPORT_SYMBOL_GPL(__blk_put_request);
  2365. void blk_put_request(struct request *req)
  2366. {
  2367. unsigned long flags;
  2368. struct request_queue *q = req->q;
  2369. /*
  2370. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2371. * following if (q) test.
  2372. */
  2373. if (q) {
  2374. spin_lock_irqsave(q->queue_lock, flags);
  2375. __blk_put_request(q, req);
  2376. spin_unlock_irqrestore(q->queue_lock, flags);
  2377. }
  2378. }
  2379. EXPORT_SYMBOL(blk_put_request);
  2380. /**
  2381. * blk_end_sync_rq - executes a completion event on a request
  2382. * @rq: request to complete
  2383. * @error: end io status of the request
  2384. */
  2385. void blk_end_sync_rq(struct request *rq, int error)
  2386. {
  2387. struct completion *waiting = rq->end_io_data;
  2388. rq->end_io_data = NULL;
  2389. __blk_put_request(rq->q, rq);
  2390. /*
  2391. * complete last, if this is a stack request the process (and thus
  2392. * the rq pointer) could be invalid right after this complete()
  2393. */
  2394. complete(waiting);
  2395. }
  2396. EXPORT_SYMBOL(blk_end_sync_rq);
  2397. /*
  2398. * Has to be called with the request spinlock acquired
  2399. */
  2400. static int attempt_merge(struct request_queue *q, struct request *req,
  2401. struct request *next)
  2402. {
  2403. if (!rq_mergeable(req) || !rq_mergeable(next))
  2404. return 0;
  2405. /*
  2406. * not contiguous
  2407. */
  2408. if (req->sector + req->nr_sectors != next->sector)
  2409. return 0;
  2410. if (rq_data_dir(req) != rq_data_dir(next)
  2411. || req->rq_disk != next->rq_disk
  2412. || next->special)
  2413. return 0;
  2414. /*
  2415. * If we are allowed to merge, then append bio list
  2416. * from next to rq and release next. merge_requests_fn
  2417. * will have updated segment counts, update sector
  2418. * counts here.
  2419. */
  2420. if (!ll_merge_requests_fn(q, req, next))
  2421. return 0;
  2422. /*
  2423. * At this point we have either done a back merge
  2424. * or front merge. We need the smaller start_time of
  2425. * the merged requests to be the current request
  2426. * for accounting purposes.
  2427. */
  2428. if (time_after(req->start_time, next->start_time))
  2429. req->start_time = next->start_time;
  2430. req->biotail->bi_next = next->bio;
  2431. req->biotail = next->biotail;
  2432. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2433. elv_merge_requests(q, req, next);
  2434. if (req->rq_disk) {
  2435. disk_round_stats(req->rq_disk);
  2436. req->rq_disk->in_flight--;
  2437. }
  2438. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2439. __blk_put_request(q, next);
  2440. return 1;
  2441. }
  2442. static inline int attempt_back_merge(struct request_queue *q,
  2443. struct request *rq)
  2444. {
  2445. struct request *next = elv_latter_request(q, rq);
  2446. if (next)
  2447. return attempt_merge(q, rq, next);
  2448. return 0;
  2449. }
  2450. static inline int attempt_front_merge(struct request_queue *q,
  2451. struct request *rq)
  2452. {
  2453. struct request *prev = elv_former_request(q, rq);
  2454. if (prev)
  2455. return attempt_merge(q, prev, rq);
  2456. return 0;
  2457. }
  2458. static void init_request_from_bio(struct request *req, struct bio *bio)
  2459. {
  2460. req->cmd_type = REQ_TYPE_FS;
  2461. /*
  2462. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2463. */
  2464. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2465. req->cmd_flags |= REQ_FAILFAST;
  2466. /*
  2467. * REQ_BARRIER implies no merging, but lets make it explicit
  2468. */
  2469. if (unlikely(bio_barrier(bio)))
  2470. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2471. if (bio_sync(bio))
  2472. req->cmd_flags |= REQ_RW_SYNC;
  2473. if (bio_rw_meta(bio))
  2474. req->cmd_flags |= REQ_RW_META;
  2475. req->errors = 0;
  2476. req->hard_sector = req->sector = bio->bi_sector;
  2477. req->ioprio = bio_prio(bio);
  2478. req->start_time = jiffies;
  2479. blk_rq_bio_prep(req->q, req, bio);
  2480. }
  2481. static int __make_request(struct request_queue *q, struct bio *bio)
  2482. {
  2483. struct request *req;
  2484. int el_ret, nr_sectors, barrier, err;
  2485. const unsigned short prio = bio_prio(bio);
  2486. const int sync = bio_sync(bio);
  2487. int rw_flags;
  2488. nr_sectors = bio_sectors(bio);
  2489. /*
  2490. * low level driver can indicate that it wants pages above a
  2491. * certain limit bounced to low memory (ie for highmem, or even
  2492. * ISA dma in theory)
  2493. */
  2494. blk_queue_bounce(q, &bio);
  2495. barrier = bio_barrier(bio);
  2496. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2497. err = -EOPNOTSUPP;
  2498. goto end_io;
  2499. }
  2500. spin_lock_irq(q->queue_lock);
  2501. if (unlikely(barrier) || elv_queue_empty(q))
  2502. goto get_rq;
  2503. el_ret = elv_merge(q, &req, bio);
  2504. switch (el_ret) {
  2505. case ELEVATOR_BACK_MERGE:
  2506. BUG_ON(!rq_mergeable(req));
  2507. if (!ll_back_merge_fn(q, req, bio))
  2508. break;
  2509. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2510. req->biotail->bi_next = bio;
  2511. req->biotail = bio;
  2512. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2513. req->ioprio = ioprio_best(req->ioprio, prio);
  2514. drive_stat_acct(req, nr_sectors, 0);
  2515. if (!attempt_back_merge(q, req))
  2516. elv_merged_request(q, req, el_ret);
  2517. goto out;
  2518. case ELEVATOR_FRONT_MERGE:
  2519. BUG_ON(!rq_mergeable(req));
  2520. if (!ll_front_merge_fn(q, req, bio))
  2521. break;
  2522. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2523. bio->bi_next = req->bio;
  2524. req->bio = bio;
  2525. /*
  2526. * may not be valid. if the low level driver said
  2527. * it didn't need a bounce buffer then it better
  2528. * not touch req->buffer either...
  2529. */
  2530. req->buffer = bio_data(bio);
  2531. req->current_nr_sectors = bio_cur_sectors(bio);
  2532. req->hard_cur_sectors = req->current_nr_sectors;
  2533. req->sector = req->hard_sector = bio->bi_sector;
  2534. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2535. req->ioprio = ioprio_best(req->ioprio, prio);
  2536. drive_stat_acct(req, nr_sectors, 0);
  2537. if (!attempt_front_merge(q, req))
  2538. elv_merged_request(q, req, el_ret);
  2539. goto out;
  2540. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2541. default:
  2542. ;
  2543. }
  2544. get_rq:
  2545. /*
  2546. * This sync check and mask will be re-done in init_request_from_bio(),
  2547. * but we need to set it earlier to expose the sync flag to the
  2548. * rq allocator and io schedulers.
  2549. */
  2550. rw_flags = bio_data_dir(bio);
  2551. if (sync)
  2552. rw_flags |= REQ_RW_SYNC;
  2553. /*
  2554. * Grab a free request. This is might sleep but can not fail.
  2555. * Returns with the queue unlocked.
  2556. */
  2557. req = get_request_wait(q, rw_flags, bio);
  2558. /*
  2559. * After dropping the lock and possibly sleeping here, our request
  2560. * may now be mergeable after it had proven unmergeable (above).
  2561. * We don't worry about that case for efficiency. It won't happen
  2562. * often, and the elevators are able to handle it.
  2563. */
  2564. init_request_from_bio(req, bio);
  2565. spin_lock_irq(q->queue_lock);
  2566. if (elv_queue_empty(q))
  2567. blk_plug_device(q);
  2568. add_request(q, req);
  2569. out:
  2570. if (sync)
  2571. __generic_unplug_device(q);
  2572. spin_unlock_irq(q->queue_lock);
  2573. return 0;
  2574. end_io:
  2575. bio_endio(bio, err);
  2576. return 0;
  2577. }
  2578. /*
  2579. * If bio->bi_dev is a partition, remap the location
  2580. */
  2581. static inline void blk_partition_remap(struct bio *bio)
  2582. {
  2583. struct block_device *bdev = bio->bi_bdev;
  2584. if (bdev != bdev->bd_contains) {
  2585. struct hd_struct *p = bdev->bd_part;
  2586. const int rw = bio_data_dir(bio);
  2587. p->sectors[rw] += bio_sectors(bio);
  2588. p->ios[rw]++;
  2589. bio->bi_sector += p->start_sect;
  2590. bio->bi_bdev = bdev->bd_contains;
  2591. blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
  2592. bdev->bd_dev, bio->bi_sector,
  2593. bio->bi_sector - p->start_sect);
  2594. }
  2595. }
  2596. static void handle_bad_sector(struct bio *bio)
  2597. {
  2598. char b[BDEVNAME_SIZE];
  2599. printk(KERN_INFO "attempt to access beyond end of device\n");
  2600. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2601. bdevname(bio->bi_bdev, b),
  2602. bio->bi_rw,
  2603. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2604. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2605. set_bit(BIO_EOF, &bio->bi_flags);
  2606. }
  2607. #ifdef CONFIG_FAIL_MAKE_REQUEST
  2608. static DECLARE_FAULT_ATTR(fail_make_request);
  2609. static int __init setup_fail_make_request(char *str)
  2610. {
  2611. return setup_fault_attr(&fail_make_request, str);
  2612. }
  2613. __setup("fail_make_request=", setup_fail_make_request);
  2614. static int should_fail_request(struct bio *bio)
  2615. {
  2616. if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
  2617. (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
  2618. return should_fail(&fail_make_request, bio->bi_size);
  2619. return 0;
  2620. }
  2621. static int __init fail_make_request_debugfs(void)
  2622. {
  2623. return init_fault_attr_dentries(&fail_make_request,
  2624. "fail_make_request");
  2625. }
  2626. late_initcall(fail_make_request_debugfs);
  2627. #else /* CONFIG_FAIL_MAKE_REQUEST */
  2628. static inline int should_fail_request(struct bio *bio)
  2629. {
  2630. return 0;
  2631. }
  2632. #endif /* CONFIG_FAIL_MAKE_REQUEST */
  2633. /**
  2634. * generic_make_request: hand a buffer to its device driver for I/O
  2635. * @bio: The bio describing the location in memory and on the device.
  2636. *
  2637. * generic_make_request() is used to make I/O requests of block
  2638. * devices. It is passed a &struct bio, which describes the I/O that needs
  2639. * to be done.
  2640. *
  2641. * generic_make_request() does not return any status. The
  2642. * success/failure status of the request, along with notification of
  2643. * completion, is delivered asynchronously through the bio->bi_end_io
  2644. * function described (one day) else where.
  2645. *
  2646. * The caller of generic_make_request must make sure that bi_io_vec
  2647. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2648. * set to describe the device address, and the
  2649. * bi_end_io and optionally bi_private are set to describe how
  2650. * completion notification should be signaled.
  2651. *
  2652. * generic_make_request and the drivers it calls may use bi_next if this
  2653. * bio happens to be merged with someone else, and may change bi_dev and
  2654. * bi_sector for remaps as it sees fit. So the values of these fields
  2655. * should NOT be depended on after the call to generic_make_request.
  2656. */
  2657. static inline void __generic_make_request(struct bio *bio)
  2658. {
  2659. struct request_queue *q;
  2660. sector_t maxsector;
  2661. sector_t old_sector;
  2662. int ret, nr_sectors = bio_sectors(bio);
  2663. dev_t old_dev;
  2664. might_sleep();
  2665. /* Test device or partition size, when known. */
  2666. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2667. if (maxsector) {
  2668. sector_t sector = bio->bi_sector;
  2669. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2670. /*
  2671. * This may well happen - the kernel calls bread()
  2672. * without checking the size of the device, e.g., when
  2673. * mounting a device.
  2674. */
  2675. handle_bad_sector(bio);
  2676. goto end_io;
  2677. }
  2678. }
  2679. /*
  2680. * Resolve the mapping until finished. (drivers are
  2681. * still free to implement/resolve their own stacking
  2682. * by explicitly returning 0)
  2683. *
  2684. * NOTE: we don't repeat the blk_size check for each new device.
  2685. * Stacking drivers are expected to know what they are doing.
  2686. */
  2687. old_sector = -1;
  2688. old_dev = 0;
  2689. do {
  2690. char b[BDEVNAME_SIZE];
  2691. q = bdev_get_queue(bio->bi_bdev);
  2692. if (!q) {
  2693. printk(KERN_ERR
  2694. "generic_make_request: Trying to access "
  2695. "nonexistent block-device %s (%Lu)\n",
  2696. bdevname(bio->bi_bdev, b),
  2697. (long long) bio->bi_sector);
  2698. end_io:
  2699. bio_endio(bio, -EIO);
  2700. break;
  2701. }
  2702. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2703. printk("bio too big device %s (%u > %u)\n",
  2704. bdevname(bio->bi_bdev, b),
  2705. bio_sectors(bio),
  2706. q->max_hw_sectors);
  2707. goto end_io;
  2708. }
  2709. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2710. goto end_io;
  2711. if (should_fail_request(bio))
  2712. goto end_io;
  2713. /*
  2714. * If this device has partitions, remap block n
  2715. * of partition p to block n+start(p) of the disk.
  2716. */
  2717. blk_partition_remap(bio);
  2718. if (old_sector != -1)
  2719. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2720. old_sector);
  2721. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2722. old_sector = bio->bi_sector;
  2723. old_dev = bio->bi_bdev->bd_dev;
  2724. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2725. if (maxsector) {
  2726. sector_t sector = bio->bi_sector;
  2727. if (maxsector < nr_sectors ||
  2728. maxsector - nr_sectors < sector) {
  2729. /*
  2730. * This may well happen - partitions are not
  2731. * checked to make sure they are within the size
  2732. * of the whole device.
  2733. */
  2734. handle_bad_sector(bio);
  2735. goto end_io;
  2736. }
  2737. }
  2738. ret = q->make_request_fn(q, bio);
  2739. } while (ret);
  2740. }
  2741. /*
  2742. * We only want one ->make_request_fn to be active at a time,
  2743. * else stack usage with stacked devices could be a problem.
  2744. * So use current->bio_{list,tail} to keep a list of requests
  2745. * submited by a make_request_fn function.
  2746. * current->bio_tail is also used as a flag to say if
  2747. * generic_make_request is currently active in this task or not.
  2748. * If it is NULL, then no make_request is active. If it is non-NULL,
  2749. * then a make_request is active, and new requests should be added
  2750. * at the tail
  2751. */
  2752. void generic_make_request(struct bio *bio)
  2753. {
  2754. if (current->bio_tail) {
  2755. /* make_request is active */
  2756. *(current->bio_tail) = bio;
  2757. bio->bi_next = NULL;
  2758. current->bio_tail = &bio->bi_next;
  2759. return;
  2760. }
  2761. /* following loop may be a bit non-obvious, and so deserves some
  2762. * explanation.
  2763. * Before entering the loop, bio->bi_next is NULL (as all callers
  2764. * ensure that) so we have a list with a single bio.
  2765. * We pretend that we have just taken it off a longer list, so
  2766. * we assign bio_list to the next (which is NULL) and bio_tail
  2767. * to &bio_list, thus initialising the bio_list of new bios to be
  2768. * added. __generic_make_request may indeed add some more bios
  2769. * through a recursive call to generic_make_request. If it
  2770. * did, we find a non-NULL value in bio_list and re-enter the loop
  2771. * from the top. In this case we really did just take the bio
  2772. * of the top of the list (no pretending) and so fixup bio_list and
  2773. * bio_tail or bi_next, and call into __generic_make_request again.
  2774. *
  2775. * The loop was structured like this to make only one call to
  2776. * __generic_make_request (which is important as it is large and
  2777. * inlined) and to keep the structure simple.
  2778. */
  2779. BUG_ON(bio->bi_next);
  2780. do {
  2781. current->bio_list = bio->bi_next;
  2782. if (bio->bi_next == NULL)
  2783. current->bio_tail = &current->bio_list;
  2784. else
  2785. bio->bi_next = NULL;
  2786. __generic_make_request(bio);
  2787. bio = current->bio_list;
  2788. } while (bio);
  2789. current->bio_tail = NULL; /* deactivate */
  2790. }
  2791. EXPORT_SYMBOL(generic_make_request);
  2792. /**
  2793. * submit_bio: submit a bio to the block device layer for I/O
  2794. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2795. * @bio: The &struct bio which describes the I/O
  2796. *
  2797. * submit_bio() is very similar in purpose to generic_make_request(), and
  2798. * uses that function to do most of the work. Both are fairly rough
  2799. * interfaces, @bio must be presetup and ready for I/O.
  2800. *
  2801. */
  2802. void submit_bio(int rw, struct bio *bio)
  2803. {
  2804. int count = bio_sectors(bio);
  2805. BIO_BUG_ON(!bio->bi_size);
  2806. BIO_BUG_ON(!bio->bi_io_vec);
  2807. bio->bi_rw |= rw;
  2808. if (rw & WRITE) {
  2809. count_vm_events(PGPGOUT, count);
  2810. } else {
  2811. task_io_account_read(bio->bi_size);
  2812. count_vm_events(PGPGIN, count);
  2813. }
  2814. if (unlikely(block_dump)) {
  2815. char b[BDEVNAME_SIZE];
  2816. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2817. current->comm, current->pid,
  2818. (rw & WRITE) ? "WRITE" : "READ",
  2819. (unsigned long long)bio->bi_sector,
  2820. bdevname(bio->bi_bdev,b));
  2821. }
  2822. generic_make_request(bio);
  2823. }
  2824. EXPORT_SYMBOL(submit_bio);
  2825. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2826. {
  2827. if (blk_fs_request(rq)) {
  2828. rq->hard_sector += nsect;
  2829. rq->hard_nr_sectors -= nsect;
  2830. /*
  2831. * Move the I/O submission pointers ahead if required.
  2832. */
  2833. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2834. (rq->sector <= rq->hard_sector)) {
  2835. rq->sector = rq->hard_sector;
  2836. rq->nr_sectors = rq->hard_nr_sectors;
  2837. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2838. rq->current_nr_sectors = rq->hard_cur_sectors;
  2839. rq->buffer = bio_data(rq->bio);
  2840. }
  2841. /*
  2842. * if total number of sectors is less than the first segment
  2843. * size, something has gone terribly wrong
  2844. */
  2845. if (rq->nr_sectors < rq->current_nr_sectors) {
  2846. printk("blk: request botched\n");
  2847. rq->nr_sectors = rq->current_nr_sectors;
  2848. }
  2849. }
  2850. }
  2851. static int __end_that_request_first(struct request *req, int uptodate,
  2852. int nr_bytes)
  2853. {
  2854. int total_bytes, bio_nbytes, error, next_idx = 0;
  2855. struct bio *bio;
  2856. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2857. /*
  2858. * extend uptodate bool to allow < 0 value to be direct io error
  2859. */
  2860. error = 0;
  2861. if (end_io_error(uptodate))
  2862. error = !uptodate ? -EIO : uptodate;
  2863. /*
  2864. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2865. * sense key with us all the way through
  2866. */
  2867. if (!blk_pc_request(req))
  2868. req->errors = 0;
  2869. if (!uptodate) {
  2870. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2871. printk("end_request: I/O error, dev %s, sector %llu\n",
  2872. req->rq_disk ? req->rq_disk->disk_name : "?",
  2873. (unsigned long long)req->sector);
  2874. }
  2875. if (blk_fs_request(req) && req->rq_disk) {
  2876. const int rw = rq_data_dir(req);
  2877. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2878. }
  2879. total_bytes = bio_nbytes = 0;
  2880. while ((bio = req->bio) != NULL) {
  2881. int nbytes;
  2882. if (nr_bytes >= bio->bi_size) {
  2883. req->bio = bio->bi_next;
  2884. nbytes = bio->bi_size;
  2885. req_bio_endio(req, bio, nbytes, error);
  2886. next_idx = 0;
  2887. bio_nbytes = 0;
  2888. } else {
  2889. int idx = bio->bi_idx + next_idx;
  2890. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2891. blk_dump_rq_flags(req, "__end_that");
  2892. printk("%s: bio idx %d >= vcnt %d\n",
  2893. __FUNCTION__,
  2894. bio->bi_idx, bio->bi_vcnt);
  2895. break;
  2896. }
  2897. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2898. BIO_BUG_ON(nbytes > bio->bi_size);
  2899. /*
  2900. * not a complete bvec done
  2901. */
  2902. if (unlikely(nbytes > nr_bytes)) {
  2903. bio_nbytes += nr_bytes;
  2904. total_bytes += nr_bytes;
  2905. break;
  2906. }
  2907. /*
  2908. * advance to the next vector
  2909. */
  2910. next_idx++;
  2911. bio_nbytes += nbytes;
  2912. }
  2913. total_bytes += nbytes;
  2914. nr_bytes -= nbytes;
  2915. if ((bio = req->bio)) {
  2916. /*
  2917. * end more in this run, or just return 'not-done'
  2918. */
  2919. if (unlikely(nr_bytes <= 0))
  2920. break;
  2921. }
  2922. }
  2923. /*
  2924. * completely done
  2925. */
  2926. if (!req->bio)
  2927. return 0;
  2928. /*
  2929. * if the request wasn't completed, update state
  2930. */
  2931. if (bio_nbytes) {
  2932. req_bio_endio(req, bio, bio_nbytes, error);
  2933. bio->bi_idx += next_idx;
  2934. bio_iovec(bio)->bv_offset += nr_bytes;
  2935. bio_iovec(bio)->bv_len -= nr_bytes;
  2936. }
  2937. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2938. blk_recalc_rq_segments(req);
  2939. return 1;
  2940. }
  2941. /**
  2942. * end_that_request_first - end I/O on a request
  2943. * @req: the request being processed
  2944. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2945. * @nr_sectors: number of sectors to end I/O on
  2946. *
  2947. * Description:
  2948. * Ends I/O on a number of sectors attached to @req, and sets it up
  2949. * for the next range of segments (if any) in the cluster.
  2950. *
  2951. * Return:
  2952. * 0 - we are done with this request, call end_that_request_last()
  2953. * 1 - still buffers pending for this request
  2954. **/
  2955. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2956. {
  2957. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2958. }
  2959. EXPORT_SYMBOL(end_that_request_first);
  2960. /**
  2961. * end_that_request_chunk - end I/O on a request
  2962. * @req: the request being processed
  2963. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2964. * @nr_bytes: number of bytes to complete
  2965. *
  2966. * Description:
  2967. * Ends I/O on a number of bytes attached to @req, and sets it up
  2968. * for the next range of segments (if any). Like end_that_request_first(),
  2969. * but deals with bytes instead of sectors.
  2970. *
  2971. * Return:
  2972. * 0 - we are done with this request, call end_that_request_last()
  2973. * 1 - still buffers pending for this request
  2974. **/
  2975. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2976. {
  2977. return __end_that_request_first(req, uptodate, nr_bytes);
  2978. }
  2979. EXPORT_SYMBOL(end_that_request_chunk);
  2980. /*
  2981. * splice the completion data to a local structure and hand off to
  2982. * process_completion_queue() to complete the requests
  2983. */
  2984. static void blk_done_softirq(struct softirq_action *h)
  2985. {
  2986. struct list_head *cpu_list, local_list;
  2987. local_irq_disable();
  2988. cpu_list = &__get_cpu_var(blk_cpu_done);
  2989. list_replace_init(cpu_list, &local_list);
  2990. local_irq_enable();
  2991. while (!list_empty(&local_list)) {
  2992. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2993. list_del_init(&rq->donelist);
  2994. rq->q->softirq_done_fn(rq);
  2995. }
  2996. }
  2997. static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2998. void *hcpu)
  2999. {
  3000. /*
  3001. * If a CPU goes away, splice its entries to the current CPU
  3002. * and trigger a run of the softirq
  3003. */
  3004. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3005. int cpu = (unsigned long) hcpu;
  3006. local_irq_disable();
  3007. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  3008. &__get_cpu_var(blk_cpu_done));
  3009. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3010. local_irq_enable();
  3011. }
  3012. return NOTIFY_OK;
  3013. }
  3014. static struct notifier_block blk_cpu_notifier __cpuinitdata = {
  3015. .notifier_call = blk_cpu_notify,
  3016. };
  3017. /**
  3018. * blk_complete_request - end I/O on a request
  3019. * @req: the request being processed
  3020. *
  3021. * Description:
  3022. * Ends all I/O on a request. It does not handle partial completions,
  3023. * unless the driver actually implements this in its completion callback
  3024. * through requeueing. Theh actual completion happens out-of-order,
  3025. * through a softirq handler. The user must have registered a completion
  3026. * callback through blk_queue_softirq_done().
  3027. **/
  3028. void blk_complete_request(struct request *req)
  3029. {
  3030. struct list_head *cpu_list;
  3031. unsigned long flags;
  3032. BUG_ON(!req->q->softirq_done_fn);
  3033. local_irq_save(flags);
  3034. cpu_list = &__get_cpu_var(blk_cpu_done);
  3035. list_add_tail(&req->donelist, cpu_list);
  3036. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3037. local_irq_restore(flags);
  3038. }
  3039. EXPORT_SYMBOL(blk_complete_request);
  3040. /*
  3041. * queue lock must be held
  3042. */
  3043. void end_that_request_last(struct request *req, int uptodate)
  3044. {
  3045. struct gendisk *disk = req->rq_disk;
  3046. int error;
  3047. /*
  3048. * extend uptodate bool to allow < 0 value to be direct io error
  3049. */
  3050. error = 0;
  3051. if (end_io_error(uptodate))
  3052. error = !uptodate ? -EIO : uptodate;
  3053. if (unlikely(laptop_mode) && blk_fs_request(req))
  3054. laptop_io_completion();
  3055. /*
  3056. * Account IO completion. bar_rq isn't accounted as a normal
  3057. * IO on queueing nor completion. Accounting the containing
  3058. * request is enough.
  3059. */
  3060. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  3061. unsigned long duration = jiffies - req->start_time;
  3062. const int rw = rq_data_dir(req);
  3063. __disk_stat_inc(disk, ios[rw]);
  3064. __disk_stat_add(disk, ticks[rw], duration);
  3065. disk_round_stats(disk);
  3066. disk->in_flight--;
  3067. }
  3068. if (req->end_io)
  3069. req->end_io(req, error);
  3070. else
  3071. __blk_put_request(req->q, req);
  3072. }
  3073. EXPORT_SYMBOL(end_that_request_last);
  3074. void end_request(struct request *req, int uptodate)
  3075. {
  3076. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  3077. add_disk_randomness(req->rq_disk);
  3078. blkdev_dequeue_request(req);
  3079. end_that_request_last(req, uptodate);
  3080. }
  3081. }
  3082. EXPORT_SYMBOL(end_request);
  3083. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  3084. struct bio *bio)
  3085. {
  3086. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3087. rq->cmd_flags |= (bio->bi_rw & 3);
  3088. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3089. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3090. rq->current_nr_sectors = bio_cur_sectors(bio);
  3091. rq->hard_cur_sectors = rq->current_nr_sectors;
  3092. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3093. rq->buffer = bio_data(bio);
  3094. rq->data_len = bio->bi_size;
  3095. rq->bio = rq->biotail = bio;
  3096. if (bio->bi_bdev)
  3097. rq->rq_disk = bio->bi_bdev->bd_disk;
  3098. }
  3099. int kblockd_schedule_work(struct work_struct *work)
  3100. {
  3101. return queue_work(kblockd_workqueue, work);
  3102. }
  3103. EXPORT_SYMBOL(kblockd_schedule_work);
  3104. void kblockd_flush_work(struct work_struct *work)
  3105. {
  3106. cancel_work_sync(work);
  3107. }
  3108. EXPORT_SYMBOL(kblockd_flush_work);
  3109. int __init blk_dev_init(void)
  3110. {
  3111. int i;
  3112. kblockd_workqueue = create_workqueue("kblockd");
  3113. if (!kblockd_workqueue)
  3114. panic("Failed to create kblockd\n");
  3115. request_cachep = kmem_cache_create("blkdev_requests",
  3116. sizeof(struct request), 0, SLAB_PANIC, NULL);
  3117. requestq_cachep = kmem_cache_create("blkdev_queue",
  3118. sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
  3119. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3120. sizeof(struct io_context), 0, SLAB_PANIC, NULL);
  3121. for_each_possible_cpu(i)
  3122. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3123. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3124. register_hotcpu_notifier(&blk_cpu_notifier);
  3125. blk_max_low_pfn = max_low_pfn - 1;
  3126. blk_max_pfn = max_pfn - 1;
  3127. return 0;
  3128. }
  3129. /*
  3130. * IO Context helper functions
  3131. */
  3132. void put_io_context(struct io_context *ioc)
  3133. {
  3134. if (ioc == NULL)
  3135. return;
  3136. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3137. if (atomic_dec_and_test(&ioc->refcount)) {
  3138. struct cfq_io_context *cic;
  3139. rcu_read_lock();
  3140. if (ioc->aic && ioc->aic->dtor)
  3141. ioc->aic->dtor(ioc->aic);
  3142. if (ioc->cic_root.rb_node != NULL) {
  3143. struct rb_node *n = rb_first(&ioc->cic_root);
  3144. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3145. cic->dtor(ioc);
  3146. }
  3147. rcu_read_unlock();
  3148. kmem_cache_free(iocontext_cachep, ioc);
  3149. }
  3150. }
  3151. EXPORT_SYMBOL(put_io_context);
  3152. /* Called by the exitting task */
  3153. void exit_io_context(void)
  3154. {
  3155. struct io_context *ioc;
  3156. struct cfq_io_context *cic;
  3157. task_lock(current);
  3158. ioc = current->io_context;
  3159. current->io_context = NULL;
  3160. task_unlock(current);
  3161. ioc->task = NULL;
  3162. if (ioc->aic && ioc->aic->exit)
  3163. ioc->aic->exit(ioc->aic);
  3164. if (ioc->cic_root.rb_node != NULL) {
  3165. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3166. cic->exit(ioc);
  3167. }
  3168. put_io_context(ioc);
  3169. }
  3170. /*
  3171. * If the current task has no IO context then create one and initialise it.
  3172. * Otherwise, return its existing IO context.
  3173. *
  3174. * This returned IO context doesn't have a specifically elevated refcount,
  3175. * but since the current task itself holds a reference, the context can be
  3176. * used in general code, so long as it stays within `current` context.
  3177. */
  3178. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3179. {
  3180. struct task_struct *tsk = current;
  3181. struct io_context *ret;
  3182. ret = tsk->io_context;
  3183. if (likely(ret))
  3184. return ret;
  3185. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3186. if (ret) {
  3187. atomic_set(&ret->refcount, 1);
  3188. ret->task = current;
  3189. ret->ioprio_changed = 0;
  3190. ret->last_waited = jiffies; /* doesn't matter... */
  3191. ret->nr_batch_requests = 0; /* because this is 0 */
  3192. ret->aic = NULL;
  3193. ret->cic_root.rb_node = NULL;
  3194. ret->ioc_data = NULL;
  3195. /* make sure set_task_ioprio() sees the settings above */
  3196. smp_wmb();
  3197. tsk->io_context = ret;
  3198. }
  3199. return ret;
  3200. }
  3201. /*
  3202. * If the current task has no IO context then create one and initialise it.
  3203. * If it does have a context, take a ref on it.
  3204. *
  3205. * This is always called in the context of the task which submitted the I/O.
  3206. */
  3207. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3208. {
  3209. struct io_context *ret;
  3210. ret = current_io_context(gfp_flags, node);
  3211. if (likely(ret))
  3212. atomic_inc(&ret->refcount);
  3213. return ret;
  3214. }
  3215. EXPORT_SYMBOL(get_io_context);
  3216. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3217. {
  3218. struct io_context *src = *psrc;
  3219. struct io_context *dst = *pdst;
  3220. if (src) {
  3221. BUG_ON(atomic_read(&src->refcount) == 0);
  3222. atomic_inc(&src->refcount);
  3223. put_io_context(dst);
  3224. *pdst = src;
  3225. }
  3226. }
  3227. EXPORT_SYMBOL(copy_io_context);
  3228. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3229. {
  3230. struct io_context *temp;
  3231. temp = *ioc1;
  3232. *ioc1 = *ioc2;
  3233. *ioc2 = temp;
  3234. }
  3235. EXPORT_SYMBOL(swap_io_context);
  3236. /*
  3237. * sysfs parts below
  3238. */
  3239. struct queue_sysfs_entry {
  3240. struct attribute attr;
  3241. ssize_t (*show)(struct request_queue *, char *);
  3242. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3243. };
  3244. static ssize_t
  3245. queue_var_show(unsigned int var, char *page)
  3246. {
  3247. return sprintf(page, "%d\n", var);
  3248. }
  3249. static ssize_t
  3250. queue_var_store(unsigned long *var, const char *page, size_t count)
  3251. {
  3252. char *p = (char *) page;
  3253. *var = simple_strtoul(p, &p, 10);
  3254. return count;
  3255. }
  3256. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3257. {
  3258. return queue_var_show(q->nr_requests, (page));
  3259. }
  3260. static ssize_t
  3261. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3262. {
  3263. struct request_list *rl = &q->rq;
  3264. unsigned long nr;
  3265. int ret = queue_var_store(&nr, page, count);
  3266. if (nr < BLKDEV_MIN_RQ)
  3267. nr = BLKDEV_MIN_RQ;
  3268. spin_lock_irq(q->queue_lock);
  3269. q->nr_requests = nr;
  3270. blk_queue_congestion_threshold(q);
  3271. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3272. blk_set_queue_congested(q, READ);
  3273. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3274. blk_clear_queue_congested(q, READ);
  3275. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3276. blk_set_queue_congested(q, WRITE);
  3277. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3278. blk_clear_queue_congested(q, WRITE);
  3279. if (rl->count[READ] >= q->nr_requests) {
  3280. blk_set_queue_full(q, READ);
  3281. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3282. blk_clear_queue_full(q, READ);
  3283. wake_up(&rl->wait[READ]);
  3284. }
  3285. if (rl->count[WRITE] >= q->nr_requests) {
  3286. blk_set_queue_full(q, WRITE);
  3287. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3288. blk_clear_queue_full(q, WRITE);
  3289. wake_up(&rl->wait[WRITE]);
  3290. }
  3291. spin_unlock_irq(q->queue_lock);
  3292. return ret;
  3293. }
  3294. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3295. {
  3296. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3297. return queue_var_show(ra_kb, (page));
  3298. }
  3299. static ssize_t
  3300. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3301. {
  3302. unsigned long ra_kb;
  3303. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3304. spin_lock_irq(q->queue_lock);
  3305. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3306. spin_unlock_irq(q->queue_lock);
  3307. return ret;
  3308. }
  3309. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3310. {
  3311. int max_sectors_kb = q->max_sectors >> 1;
  3312. return queue_var_show(max_sectors_kb, (page));
  3313. }
  3314. static ssize_t
  3315. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3316. {
  3317. unsigned long max_sectors_kb,
  3318. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3319. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3320. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3321. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3322. return -EINVAL;
  3323. /*
  3324. * Take the queue lock to update the readahead and max_sectors
  3325. * values synchronously:
  3326. */
  3327. spin_lock_irq(q->queue_lock);
  3328. q->max_sectors = max_sectors_kb << 1;
  3329. spin_unlock_irq(q->queue_lock);
  3330. return ret;
  3331. }
  3332. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3333. {
  3334. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3335. return queue_var_show(max_hw_sectors_kb, (page));
  3336. }
  3337. static struct queue_sysfs_entry queue_requests_entry = {
  3338. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3339. .show = queue_requests_show,
  3340. .store = queue_requests_store,
  3341. };
  3342. static struct queue_sysfs_entry queue_ra_entry = {
  3343. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3344. .show = queue_ra_show,
  3345. .store = queue_ra_store,
  3346. };
  3347. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3348. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3349. .show = queue_max_sectors_show,
  3350. .store = queue_max_sectors_store,
  3351. };
  3352. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3353. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3354. .show = queue_max_hw_sectors_show,
  3355. };
  3356. static struct queue_sysfs_entry queue_iosched_entry = {
  3357. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3358. .show = elv_iosched_show,
  3359. .store = elv_iosched_store,
  3360. };
  3361. static struct attribute *default_attrs[] = {
  3362. &queue_requests_entry.attr,
  3363. &queue_ra_entry.attr,
  3364. &queue_max_hw_sectors_entry.attr,
  3365. &queue_max_sectors_entry.attr,
  3366. &queue_iosched_entry.attr,
  3367. NULL,
  3368. };
  3369. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3370. static ssize_t
  3371. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3372. {
  3373. struct queue_sysfs_entry *entry = to_queue(attr);
  3374. struct request_queue *q =
  3375. container_of(kobj, struct request_queue, kobj);
  3376. ssize_t res;
  3377. if (!entry->show)
  3378. return -EIO;
  3379. mutex_lock(&q->sysfs_lock);
  3380. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3381. mutex_unlock(&q->sysfs_lock);
  3382. return -ENOENT;
  3383. }
  3384. res = entry->show(q, page);
  3385. mutex_unlock(&q->sysfs_lock);
  3386. return res;
  3387. }
  3388. static ssize_t
  3389. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3390. const char *page, size_t length)
  3391. {
  3392. struct queue_sysfs_entry *entry = to_queue(attr);
  3393. struct request_queue *q = container_of(kobj, struct request_queue, kobj);
  3394. ssize_t res;
  3395. if (!entry->store)
  3396. return -EIO;
  3397. mutex_lock(&q->sysfs_lock);
  3398. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3399. mutex_unlock(&q->sysfs_lock);
  3400. return -ENOENT;
  3401. }
  3402. res = entry->store(q, page, length);
  3403. mutex_unlock(&q->sysfs_lock);
  3404. return res;
  3405. }
  3406. static struct sysfs_ops queue_sysfs_ops = {
  3407. .show = queue_attr_show,
  3408. .store = queue_attr_store,
  3409. };
  3410. static struct kobj_type queue_ktype = {
  3411. .sysfs_ops = &queue_sysfs_ops,
  3412. .default_attrs = default_attrs,
  3413. .release = blk_release_queue,
  3414. };
  3415. int blk_register_queue(struct gendisk *disk)
  3416. {
  3417. int ret;
  3418. struct request_queue *q = disk->queue;
  3419. if (!q || !q->request_fn)
  3420. return -ENXIO;
  3421. q->kobj.parent = kobject_get(&disk->kobj);
  3422. ret = kobject_add(&q->kobj);
  3423. if (ret < 0)
  3424. return ret;
  3425. kobject_uevent(&q->kobj, KOBJ_ADD);
  3426. ret = elv_register_queue(q);
  3427. if (ret) {
  3428. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3429. kobject_del(&q->kobj);
  3430. return ret;
  3431. }
  3432. return 0;
  3433. }
  3434. void blk_unregister_queue(struct gendisk *disk)
  3435. {
  3436. struct request_queue *q = disk->queue;
  3437. if (q && q->request_fn) {
  3438. elv_unregister_queue(q);
  3439. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3440. kobject_del(&q->kobj);
  3441. kobject_put(&disk->kobj);
  3442. }
  3443. }