hw.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "ar9003_phy.h"
  26. #include "debug.h"
  27. #include "ath9k.h"
  28. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /* Private hardware callbacks */
  44. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  45. {
  46. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  47. }
  48. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  49. struct ath9k_channel *chan)
  50. {
  51. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  52. }
  53. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  54. {
  55. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  56. return;
  57. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  58. }
  59. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  60. {
  61. /* You will not have this callback if using the old ANI */
  62. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  63. return;
  64. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  65. }
  66. /********************/
  67. /* Helper Functions */
  68. /********************/
  69. #ifdef CONFIG_ATH9K_DEBUGFS
  70. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  71. {
  72. struct ath_softc *sc = common->priv;
  73. if (sync_cause)
  74. sc->debug.stats.istats.sync_cause_all++;
  75. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  76. sc->debug.stats.istats.sync_rtc_irq++;
  77. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  78. sc->debug.stats.istats.sync_mac_irq++;
  79. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  80. sc->debug.stats.istats.eeprom_illegal_access++;
  81. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  82. sc->debug.stats.istats.apb_timeout++;
  83. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  84. sc->debug.stats.istats.pci_mode_conflict++;
  85. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  86. sc->debug.stats.istats.host1_fatal++;
  87. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  88. sc->debug.stats.istats.host1_perr++;
  89. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  90. sc->debug.stats.istats.trcv_fifo_perr++;
  91. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  92. sc->debug.stats.istats.radm_cpl_ep++;
  93. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  94. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  95. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  96. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  97. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  98. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  99. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  100. sc->debug.stats.istats.radm_cpl_timeout++;
  101. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  102. sc->debug.stats.istats.local_timeout++;
  103. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  104. sc->debug.stats.istats.pm_access++;
  105. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  106. sc->debug.stats.istats.mac_awake++;
  107. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  108. sc->debug.stats.istats.mac_asleep++;
  109. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  110. sc->debug.stats.istats.mac_sleep_access++;
  111. }
  112. #endif
  113. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  114. {
  115. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  116. struct ath_common *common = ath9k_hw_common(ah);
  117. unsigned int clockrate;
  118. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  119. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  120. clockrate = 117;
  121. else if (!ah->curchan) /* should really check for CCK instead */
  122. clockrate = ATH9K_CLOCK_RATE_CCK;
  123. else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
  124. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  125. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  126. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  127. else
  128. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  129. if (conf_is_ht40(conf))
  130. clockrate *= 2;
  131. if (ah->curchan) {
  132. if (IS_CHAN_HALF_RATE(ah->curchan))
  133. clockrate /= 2;
  134. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  135. clockrate /= 4;
  136. }
  137. common->clockrate = clockrate;
  138. }
  139. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  140. {
  141. struct ath_common *common = ath9k_hw_common(ah);
  142. return usecs * common->clockrate;
  143. }
  144. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  145. {
  146. int i;
  147. BUG_ON(timeout < AH_TIME_QUANTUM);
  148. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  149. if ((REG_READ(ah, reg) & mask) == val)
  150. return true;
  151. udelay(AH_TIME_QUANTUM);
  152. }
  153. ath_dbg(ath9k_hw_common(ah), ANY,
  154. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  155. timeout, reg, REG_READ(ah, reg), mask, val);
  156. return false;
  157. }
  158. EXPORT_SYMBOL(ath9k_hw_wait);
  159. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  160. int hw_delay)
  161. {
  162. if (IS_CHAN_B(chan))
  163. hw_delay = (4 * hw_delay) / 22;
  164. else
  165. hw_delay /= 10;
  166. if (IS_CHAN_HALF_RATE(chan))
  167. hw_delay *= 2;
  168. else if (IS_CHAN_QUARTER_RATE(chan))
  169. hw_delay *= 4;
  170. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  171. }
  172. void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
  173. int column, unsigned int *writecnt)
  174. {
  175. int r;
  176. ENABLE_REGWRITE_BUFFER(ah);
  177. for (r = 0; r < array->ia_rows; r++) {
  178. REG_WRITE(ah, INI_RA(array, r, 0),
  179. INI_RA(array, r, column));
  180. DO_DELAY(*writecnt);
  181. }
  182. REGWRITE_BUFFER_FLUSH(ah);
  183. }
  184. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  185. {
  186. u32 retval;
  187. int i;
  188. for (i = 0, retval = 0; i < n; i++) {
  189. retval = (retval << 1) | (val & 1);
  190. val >>= 1;
  191. }
  192. return retval;
  193. }
  194. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  195. u8 phy, int kbps,
  196. u32 frameLen, u16 rateix,
  197. bool shortPreamble)
  198. {
  199. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  200. if (kbps == 0)
  201. return 0;
  202. switch (phy) {
  203. case WLAN_RC_PHY_CCK:
  204. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  205. if (shortPreamble)
  206. phyTime >>= 1;
  207. numBits = frameLen << 3;
  208. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  209. break;
  210. case WLAN_RC_PHY_OFDM:
  211. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  212. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  213. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  214. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  215. txTime = OFDM_SIFS_TIME_QUARTER
  216. + OFDM_PREAMBLE_TIME_QUARTER
  217. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  218. } else if (ah->curchan &&
  219. IS_CHAN_HALF_RATE(ah->curchan)) {
  220. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  221. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  222. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  223. txTime = OFDM_SIFS_TIME_HALF +
  224. OFDM_PREAMBLE_TIME_HALF
  225. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  226. } else {
  227. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  228. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  229. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  230. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  231. + (numSymbols * OFDM_SYMBOL_TIME);
  232. }
  233. break;
  234. default:
  235. ath_err(ath9k_hw_common(ah),
  236. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  237. txTime = 0;
  238. break;
  239. }
  240. return txTime;
  241. }
  242. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  243. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  244. struct ath9k_channel *chan,
  245. struct chan_centers *centers)
  246. {
  247. int8_t extoff;
  248. if (!IS_CHAN_HT40(chan)) {
  249. centers->ctl_center = centers->ext_center =
  250. centers->synth_center = chan->channel;
  251. return;
  252. }
  253. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  254. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  255. centers->synth_center =
  256. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  257. extoff = 1;
  258. } else {
  259. centers->synth_center =
  260. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  261. extoff = -1;
  262. }
  263. centers->ctl_center =
  264. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  265. /* 25 MHz spacing is supported by hw but not on upper layers */
  266. centers->ext_center =
  267. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. }
  269. /******************/
  270. /* Chip Revisions */
  271. /******************/
  272. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  273. {
  274. u32 val;
  275. switch (ah->hw_version.devid) {
  276. case AR5416_AR9100_DEVID:
  277. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  278. break;
  279. case AR9300_DEVID_AR9330:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  281. if (ah->get_mac_revision) {
  282. ah->hw_version.macRev = ah->get_mac_revision();
  283. } else {
  284. val = REG_READ(ah, AR_SREV);
  285. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  286. }
  287. return;
  288. case AR9300_DEVID_AR9340:
  289. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  290. val = REG_READ(ah, AR_SREV);
  291. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  292. return;
  293. case AR9300_DEVID_QCA955X:
  294. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. /* This should work for all families including legacy */
  335. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  336. {
  337. struct ath_common *common = ath9k_hw_common(ah);
  338. u32 regAddr[2] = { AR_STA_ID0 };
  339. u32 regHold[2];
  340. static const u32 patternData[4] = {
  341. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  342. };
  343. int i, j, loop_max;
  344. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  345. loop_max = 2;
  346. regAddr[1] = AR_PHY_BASE + (8 << 2);
  347. } else
  348. loop_max = 1;
  349. for (i = 0; i < loop_max; i++) {
  350. u32 addr = regAddr[i];
  351. u32 wrData, rdData;
  352. regHold[i] = REG_READ(ah, addr);
  353. for (j = 0; j < 0x100; j++) {
  354. wrData = (j << 16) | j;
  355. REG_WRITE(ah, addr, wrData);
  356. rdData = REG_READ(ah, addr);
  357. if (rdData != wrData) {
  358. ath_err(common,
  359. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  360. addr, wrData, rdData);
  361. return false;
  362. }
  363. }
  364. for (j = 0; j < 4; j++) {
  365. wrData = patternData[j];
  366. REG_WRITE(ah, addr, wrData);
  367. rdData = REG_READ(ah, addr);
  368. if (wrData != rdData) {
  369. ath_err(common,
  370. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  371. addr, wrData, rdData);
  372. return false;
  373. }
  374. }
  375. REG_WRITE(ah, regAddr[i], regHold[i]);
  376. }
  377. udelay(100);
  378. return true;
  379. }
  380. static void ath9k_hw_init_config(struct ath_hw *ah)
  381. {
  382. int i;
  383. ah->config.dma_beacon_response_time = 1;
  384. ah->config.sw_beacon_response_time = 6;
  385. ah->config.additional_swba_backoff = 0;
  386. ah->config.ack_6mb = 0x0;
  387. ah->config.cwm_ignore_extcca = 0;
  388. ah->config.pcie_clock_req = 0;
  389. ah->config.analog_shiftreg = 1;
  390. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  391. ah->config.spurchans[i][0] = AR_NO_SPUR;
  392. ah->config.spurchans[i][1] = AR_NO_SPUR;
  393. }
  394. ah->config.rx_intr_mitigation = true;
  395. ah->config.pcieSerDesWrite = true;
  396. /*
  397. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  398. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  399. * This means we use it for all AR5416 devices, and the few
  400. * minor PCI AR9280 devices out there.
  401. *
  402. * Serialization is required because these devices do not handle
  403. * well the case of two concurrent reads/writes due to the latency
  404. * involved. During one read/write another read/write can be issued
  405. * on another CPU while the previous read/write may still be working
  406. * on our hardware, if we hit this case the hardware poops in a loop.
  407. * We prevent this by serializing reads and writes.
  408. *
  409. * This issue is not present on PCI-Express devices or pre-AR5416
  410. * devices (legacy, 802.11abg).
  411. */
  412. if (num_possible_cpus() > 1)
  413. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  414. }
  415. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  416. {
  417. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  418. regulatory->country_code = CTRY_DEFAULT;
  419. regulatory->power_limit = MAX_RATE_POWER;
  420. ah->hw_version.magic = AR5416_MAGIC;
  421. ah->hw_version.subvendorid = 0;
  422. ah->atim_window = 0;
  423. ah->sta_id1_defaults =
  424. AR_STA_ID1_CRPT_MIC_ENABLE |
  425. AR_STA_ID1_MCAST_KSRCH;
  426. if (AR_SREV_9100(ah))
  427. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  428. ah->slottime = ATH9K_SLOT_TIME_9;
  429. ah->globaltxtimeout = (u32) -1;
  430. ah->power_mode = ATH9K_PM_UNDEFINED;
  431. ah->htc_reset_init = true;
  432. }
  433. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  434. {
  435. struct ath_common *common = ath9k_hw_common(ah);
  436. u32 sum;
  437. int i;
  438. u16 eeval;
  439. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  440. sum = 0;
  441. for (i = 0; i < 3; i++) {
  442. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  443. sum += eeval;
  444. common->macaddr[2 * i] = eeval >> 8;
  445. common->macaddr[2 * i + 1] = eeval & 0xff;
  446. }
  447. if (sum == 0 || sum == 0xffff * 3)
  448. return -EADDRNOTAVAIL;
  449. return 0;
  450. }
  451. static int ath9k_hw_post_init(struct ath_hw *ah)
  452. {
  453. struct ath_common *common = ath9k_hw_common(ah);
  454. int ecode;
  455. if (common->bus_ops->ath_bus_type != ATH_USB) {
  456. if (!ath9k_hw_chip_test(ah))
  457. return -ENODEV;
  458. }
  459. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  460. ecode = ar9002_hw_rf_claim(ah);
  461. if (ecode != 0)
  462. return ecode;
  463. }
  464. ecode = ath9k_hw_eeprom_init(ah);
  465. if (ecode != 0)
  466. return ecode;
  467. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  468. ah->eep_ops->get_eeprom_ver(ah),
  469. ah->eep_ops->get_eeprom_rev(ah));
  470. ath9k_hw_ani_init(ah);
  471. /*
  472. * EEPROM needs to be initialized before we do this.
  473. * This is required for regulatory compliance.
  474. */
  475. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  476. u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  477. if ((regdmn & 0xF0) == CTL_FCC) {
  478. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_2GHZ;
  479. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_5GHZ;
  480. }
  481. }
  482. return 0;
  483. }
  484. static int ath9k_hw_attach_ops(struct ath_hw *ah)
  485. {
  486. if (!AR_SREV_9300_20_OR_LATER(ah))
  487. return ar9002_hw_attach_ops(ah);
  488. ar9003_hw_attach_ops(ah);
  489. return 0;
  490. }
  491. /* Called for all hardware families */
  492. static int __ath9k_hw_init(struct ath_hw *ah)
  493. {
  494. struct ath_common *common = ath9k_hw_common(ah);
  495. int r = 0;
  496. ath9k_hw_read_revisions(ah);
  497. /*
  498. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  499. * We need to do this to avoid RMW of this register. We cannot
  500. * read the reg when chip is asleep.
  501. */
  502. if (AR_SREV_9300_20_OR_LATER(ah)) {
  503. ah->WARegVal = REG_READ(ah, AR_WA);
  504. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  505. AR_WA_ASPM_TIMER_BASED_DISABLE);
  506. }
  507. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  508. ath_err(common, "Couldn't reset chip\n");
  509. return -EIO;
  510. }
  511. if (AR_SREV_9565(ah)) {
  512. ah->WARegVal |= AR_WA_BIT22;
  513. REG_WRITE(ah, AR_WA, ah->WARegVal);
  514. }
  515. ath9k_hw_init_defaults(ah);
  516. ath9k_hw_init_config(ah);
  517. r = ath9k_hw_attach_ops(ah);
  518. if (r)
  519. return r;
  520. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  521. ath_err(common, "Couldn't wakeup chip\n");
  522. return -EIO;
  523. }
  524. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  525. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  526. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  527. !ah->is_pciexpress)) {
  528. ah->config.serialize_regmode =
  529. SER_REG_MODE_ON;
  530. } else {
  531. ah->config.serialize_regmode =
  532. SER_REG_MODE_OFF;
  533. }
  534. }
  535. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  536. ah->config.serialize_regmode);
  537. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  538. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  539. else
  540. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  541. switch (ah->hw_version.macVersion) {
  542. case AR_SREV_VERSION_5416_PCI:
  543. case AR_SREV_VERSION_5416_PCIE:
  544. case AR_SREV_VERSION_9160:
  545. case AR_SREV_VERSION_9100:
  546. case AR_SREV_VERSION_9280:
  547. case AR_SREV_VERSION_9285:
  548. case AR_SREV_VERSION_9287:
  549. case AR_SREV_VERSION_9271:
  550. case AR_SREV_VERSION_9300:
  551. case AR_SREV_VERSION_9330:
  552. case AR_SREV_VERSION_9485:
  553. case AR_SREV_VERSION_9340:
  554. case AR_SREV_VERSION_9462:
  555. case AR_SREV_VERSION_9550:
  556. case AR_SREV_VERSION_9565:
  557. break;
  558. default:
  559. ath_err(common,
  560. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  561. ah->hw_version.macVersion, ah->hw_version.macRev);
  562. return -EOPNOTSUPP;
  563. }
  564. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  565. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  566. ah->is_pciexpress = false;
  567. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  568. ath9k_hw_init_cal_settings(ah);
  569. ah->ani_function = ATH9K_ANI_ALL;
  570. if (!AR_SREV_9300_20_OR_LATER(ah))
  571. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  572. if (!ah->is_pciexpress)
  573. ath9k_hw_disablepcie(ah);
  574. r = ath9k_hw_post_init(ah);
  575. if (r)
  576. return r;
  577. ath9k_hw_init_mode_gain_regs(ah);
  578. r = ath9k_hw_fill_cap_info(ah);
  579. if (r)
  580. return r;
  581. r = ath9k_hw_init_macaddr(ah);
  582. if (r) {
  583. ath_err(common, "Failed to initialize MAC address\n");
  584. return r;
  585. }
  586. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  587. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  588. else
  589. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  590. if (AR_SREV_9330(ah))
  591. ah->bb_watchdog_timeout_ms = 85;
  592. else
  593. ah->bb_watchdog_timeout_ms = 25;
  594. common->state = ATH_HW_INITIALIZED;
  595. return 0;
  596. }
  597. int ath9k_hw_init(struct ath_hw *ah)
  598. {
  599. int ret;
  600. struct ath_common *common = ath9k_hw_common(ah);
  601. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  602. switch (ah->hw_version.devid) {
  603. case AR5416_DEVID_PCI:
  604. case AR5416_DEVID_PCIE:
  605. case AR5416_AR9100_DEVID:
  606. case AR9160_DEVID_PCI:
  607. case AR9280_DEVID_PCI:
  608. case AR9280_DEVID_PCIE:
  609. case AR9285_DEVID_PCIE:
  610. case AR9287_DEVID_PCI:
  611. case AR9287_DEVID_PCIE:
  612. case AR2427_DEVID_PCIE:
  613. case AR9300_DEVID_PCIE:
  614. case AR9300_DEVID_AR9485_PCIE:
  615. case AR9300_DEVID_AR9330:
  616. case AR9300_DEVID_AR9340:
  617. case AR9300_DEVID_QCA955X:
  618. case AR9300_DEVID_AR9580:
  619. case AR9300_DEVID_AR9462:
  620. case AR9485_DEVID_AR1111:
  621. case AR9300_DEVID_AR9565:
  622. break;
  623. default:
  624. if (common->bus_ops->ath_bus_type == ATH_USB)
  625. break;
  626. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  627. ah->hw_version.devid);
  628. return -EOPNOTSUPP;
  629. }
  630. ret = __ath9k_hw_init(ah);
  631. if (ret) {
  632. ath_err(common,
  633. "Unable to initialize hardware; initialization status: %d\n",
  634. ret);
  635. return ret;
  636. }
  637. return 0;
  638. }
  639. EXPORT_SYMBOL(ath9k_hw_init);
  640. static void ath9k_hw_init_qos(struct ath_hw *ah)
  641. {
  642. ENABLE_REGWRITE_BUFFER(ah);
  643. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  644. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  645. REG_WRITE(ah, AR_QOS_NO_ACK,
  646. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  647. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  648. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  649. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  650. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  651. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  652. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  653. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  654. REGWRITE_BUFFER_FLUSH(ah);
  655. }
  656. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  657. {
  658. struct ath_common *common = ath9k_hw_common(ah);
  659. int i = 0;
  660. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  661. udelay(100);
  662. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  663. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  664. udelay(100);
  665. if (WARN_ON_ONCE(i >= 100)) {
  666. ath_err(common, "PLL4 meaurement not done\n");
  667. break;
  668. }
  669. i++;
  670. }
  671. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  672. }
  673. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  674. static void ath9k_hw_init_pll(struct ath_hw *ah,
  675. struct ath9k_channel *chan)
  676. {
  677. u32 pll;
  678. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  679. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  681. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  683. AR_CH0_DPLL2_KD, 0x40);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  685. AR_CH0_DPLL2_KI, 0x4);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  687. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  689. AR_CH0_BB_DPLL1_NINI, 0x58);
  690. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  691. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  692. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  693. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  694. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  695. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  696. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  697. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  698. /* program BB PLL phase_shift to 0x6 */
  699. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  700. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  701. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  702. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  703. udelay(1000);
  704. } else if (AR_SREV_9330(ah)) {
  705. u32 ddr_dpll2, pll_control2, kd;
  706. if (ah->is_clk_25mhz) {
  707. ddr_dpll2 = 0x18e82f01;
  708. pll_control2 = 0xe04a3d;
  709. kd = 0x1d;
  710. } else {
  711. ddr_dpll2 = 0x19e82f01;
  712. pll_control2 = 0x886666;
  713. kd = 0x3d;
  714. }
  715. /* program DDR PLL ki and kd value */
  716. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  717. /* program DDR PLL phase_shift */
  718. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  719. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  720. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  721. udelay(1000);
  722. /* program refdiv, nint, frac to RTC register */
  723. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  724. /* program BB PLL kd and ki value */
  725. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  726. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  727. /* program BB PLL phase_shift */
  728. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  729. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  730. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  731. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  732. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  733. udelay(1000);
  734. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  735. udelay(100);
  736. if (ah->is_clk_25mhz) {
  737. pll2_divint = 0x54;
  738. pll2_divfrac = 0x1eb85;
  739. refdiv = 3;
  740. } else {
  741. if (AR_SREV_9340(ah)) {
  742. pll2_divint = 88;
  743. pll2_divfrac = 0;
  744. refdiv = 5;
  745. } else {
  746. pll2_divint = 0x11;
  747. pll2_divfrac = 0x26666;
  748. refdiv = 1;
  749. }
  750. }
  751. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  752. regval |= (0x1 << 16);
  753. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  754. udelay(100);
  755. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  756. (pll2_divint << 18) | pll2_divfrac);
  757. udelay(100);
  758. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  759. if (AR_SREV_9340(ah))
  760. regval = (regval & 0x80071fff) | (0x1 << 30) |
  761. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  762. else
  763. regval = (regval & 0x80071fff) | (0x3 << 30) |
  764. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  765. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  766. REG_WRITE(ah, AR_PHY_PLL_MODE,
  767. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  768. udelay(1000);
  769. }
  770. pll = ath9k_hw_compute_pll_control(ah, chan);
  771. if (AR_SREV_9565(ah))
  772. pll |= 0x40000;
  773. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  774. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  775. AR_SREV_9550(ah))
  776. udelay(1000);
  777. /* Switch the core clock for ar9271 to 117Mhz */
  778. if (AR_SREV_9271(ah)) {
  779. udelay(500);
  780. REG_WRITE(ah, 0x50040, 0x304);
  781. }
  782. udelay(RTC_PLL_SETTLE_DELAY);
  783. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  784. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  785. if (ah->is_clk_25mhz) {
  786. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  787. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  788. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  789. } else {
  790. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  791. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  792. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  793. }
  794. udelay(100);
  795. }
  796. }
  797. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  798. enum nl80211_iftype opmode)
  799. {
  800. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  801. u32 imr_reg = AR_IMR_TXERR |
  802. AR_IMR_TXURN |
  803. AR_IMR_RXERR |
  804. AR_IMR_RXORN |
  805. AR_IMR_BCNMISC;
  806. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  807. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  808. if (AR_SREV_9300_20_OR_LATER(ah)) {
  809. imr_reg |= AR_IMR_RXOK_HP;
  810. if (ah->config.rx_intr_mitigation)
  811. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  812. else
  813. imr_reg |= AR_IMR_RXOK_LP;
  814. } else {
  815. if (ah->config.rx_intr_mitigation)
  816. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  817. else
  818. imr_reg |= AR_IMR_RXOK;
  819. }
  820. if (ah->config.tx_intr_mitigation)
  821. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  822. else
  823. imr_reg |= AR_IMR_TXOK;
  824. ENABLE_REGWRITE_BUFFER(ah);
  825. REG_WRITE(ah, AR_IMR, imr_reg);
  826. ah->imrs2_reg |= AR_IMR_S2_GTT;
  827. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  828. if (!AR_SREV_9100(ah)) {
  829. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  830. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  831. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  832. }
  833. REGWRITE_BUFFER_FLUSH(ah);
  834. if (AR_SREV_9300_20_OR_LATER(ah)) {
  835. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  836. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  837. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  838. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  839. }
  840. }
  841. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  842. {
  843. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  844. val = min(val, (u32) 0xFFFF);
  845. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  846. }
  847. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  848. {
  849. u32 val = ath9k_hw_mac_to_clks(ah, us);
  850. val = min(val, (u32) 0xFFFF);
  851. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  852. }
  853. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  854. {
  855. u32 val = ath9k_hw_mac_to_clks(ah, us);
  856. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  857. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  858. }
  859. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  860. {
  861. u32 val = ath9k_hw_mac_to_clks(ah, us);
  862. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  863. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  864. }
  865. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  866. {
  867. if (tu > 0xFFFF) {
  868. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  869. tu);
  870. ah->globaltxtimeout = (u32) -1;
  871. return false;
  872. } else {
  873. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  874. ah->globaltxtimeout = tu;
  875. return true;
  876. }
  877. }
  878. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  879. {
  880. struct ath_common *common = ath9k_hw_common(ah);
  881. struct ieee80211_conf *conf = &common->hw->conf;
  882. const struct ath9k_channel *chan = ah->curchan;
  883. int acktimeout, ctstimeout, ack_offset = 0;
  884. int slottime;
  885. int sifstime;
  886. int rx_lat = 0, tx_lat = 0, eifs = 0;
  887. u32 reg;
  888. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  889. ah->misc_mode);
  890. if (!chan)
  891. return;
  892. if (ah->misc_mode != 0)
  893. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  894. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  895. rx_lat = 41;
  896. else
  897. rx_lat = 37;
  898. tx_lat = 54;
  899. if (IS_CHAN_5GHZ(chan))
  900. sifstime = 16;
  901. else
  902. sifstime = 10;
  903. if (IS_CHAN_HALF_RATE(chan)) {
  904. eifs = 175;
  905. rx_lat *= 2;
  906. tx_lat *= 2;
  907. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  908. tx_lat += 11;
  909. sifstime = 32;
  910. ack_offset = 16;
  911. slottime = 13;
  912. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  913. eifs = 340;
  914. rx_lat = (rx_lat * 4) - 1;
  915. tx_lat *= 4;
  916. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  917. tx_lat += 22;
  918. sifstime = 64;
  919. ack_offset = 32;
  920. slottime = 21;
  921. } else {
  922. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  923. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  924. reg = AR_USEC_ASYNC_FIFO;
  925. } else {
  926. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  927. common->clockrate;
  928. reg = REG_READ(ah, AR_USEC);
  929. }
  930. rx_lat = MS(reg, AR_USEC_RX_LAT);
  931. tx_lat = MS(reg, AR_USEC_TX_LAT);
  932. slottime = ah->slottime;
  933. }
  934. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  935. slottime += 3 * ah->coverage_class;
  936. acktimeout = slottime + sifstime + ack_offset;
  937. ctstimeout = acktimeout;
  938. /*
  939. * Workaround for early ACK timeouts, add an offset to match the
  940. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  941. * This was initially only meant to work around an issue with delayed
  942. * BA frames in some implementations, but it has been found to fix ACK
  943. * timeout issues in other cases as well.
  944. */
  945. if (conf->chandef.chan &&
  946. conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
  947. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  948. acktimeout += 64 - sifstime - ah->slottime;
  949. ctstimeout += 48 - sifstime - ah->slottime;
  950. }
  951. ath9k_hw_set_sifs_time(ah, sifstime);
  952. ath9k_hw_setslottime(ah, slottime);
  953. ath9k_hw_set_ack_timeout(ah, acktimeout);
  954. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  955. if (ah->globaltxtimeout != (u32) -1)
  956. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  957. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  958. REG_RMW(ah, AR_USEC,
  959. (common->clockrate - 1) |
  960. SM(rx_lat, AR_USEC_RX_LAT) |
  961. SM(tx_lat, AR_USEC_TX_LAT),
  962. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  963. }
  964. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  965. void ath9k_hw_deinit(struct ath_hw *ah)
  966. {
  967. struct ath_common *common = ath9k_hw_common(ah);
  968. if (common->state < ATH_HW_INITIALIZED)
  969. return;
  970. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  971. }
  972. EXPORT_SYMBOL(ath9k_hw_deinit);
  973. /*******/
  974. /* INI */
  975. /*******/
  976. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  977. {
  978. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  979. if (IS_CHAN_B(chan))
  980. ctl |= CTL_11B;
  981. else if (IS_CHAN_G(chan))
  982. ctl |= CTL_11G;
  983. else
  984. ctl |= CTL_11A;
  985. return ctl;
  986. }
  987. /****************************************/
  988. /* Reset and Channel Switching Routines */
  989. /****************************************/
  990. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  991. {
  992. struct ath_common *common = ath9k_hw_common(ah);
  993. int txbuf_size;
  994. ENABLE_REGWRITE_BUFFER(ah);
  995. /*
  996. * set AHB_MODE not to do cacheline prefetches
  997. */
  998. if (!AR_SREV_9300_20_OR_LATER(ah))
  999. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  1000. /*
  1001. * let mac dma reads be in 128 byte chunks
  1002. */
  1003. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  1004. REGWRITE_BUFFER_FLUSH(ah);
  1005. /*
  1006. * Restore TX Trigger Level to its pre-reset value.
  1007. * The initial value depends on whether aggregation is enabled, and is
  1008. * adjusted whenever underruns are detected.
  1009. */
  1010. if (!AR_SREV_9300_20_OR_LATER(ah))
  1011. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1012. ENABLE_REGWRITE_BUFFER(ah);
  1013. /*
  1014. * let mac dma writes be in 128 byte chunks
  1015. */
  1016. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1017. /*
  1018. * Setup receive FIFO threshold to hold off TX activities
  1019. */
  1020. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1021. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1022. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1023. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1024. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1025. ah->caps.rx_status_len);
  1026. }
  1027. /*
  1028. * reduce the number of usable entries in PCU TXBUF to avoid
  1029. * wrap around issues.
  1030. */
  1031. if (AR_SREV_9285(ah)) {
  1032. /* For AR9285 the number of Fifos are reduced to half.
  1033. * So set the usable tx buf size also to half to
  1034. * avoid data/delimiter underruns
  1035. */
  1036. txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
  1037. } else if (AR_SREV_9340_13_OR_LATER(ah)) {
  1038. /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
  1039. txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
  1040. } else {
  1041. txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
  1042. }
  1043. if (!AR_SREV_9271(ah))
  1044. REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
  1045. REGWRITE_BUFFER_FLUSH(ah);
  1046. if (AR_SREV_9300_20_OR_LATER(ah))
  1047. ath9k_hw_reset_txstatus_ring(ah);
  1048. }
  1049. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1050. {
  1051. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1052. u32 set = AR_STA_ID1_KSRCH_MODE;
  1053. switch (opmode) {
  1054. case NL80211_IFTYPE_ADHOC:
  1055. set |= AR_STA_ID1_ADHOC;
  1056. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1057. break;
  1058. case NL80211_IFTYPE_MESH_POINT:
  1059. case NL80211_IFTYPE_AP:
  1060. set |= AR_STA_ID1_STA_AP;
  1061. /* fall through */
  1062. case NL80211_IFTYPE_STATION:
  1063. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1064. break;
  1065. default:
  1066. if (!ah->is_monitoring)
  1067. set = 0;
  1068. break;
  1069. }
  1070. REG_RMW(ah, AR_STA_ID1, set, mask);
  1071. }
  1072. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1073. u32 *coef_mantissa, u32 *coef_exponent)
  1074. {
  1075. u32 coef_exp, coef_man;
  1076. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1077. if ((coef_scaled >> coef_exp) & 0x1)
  1078. break;
  1079. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1080. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1081. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1082. *coef_exponent = coef_exp - 16;
  1083. }
  1084. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1085. {
  1086. u32 rst_flags;
  1087. u32 tmpReg;
  1088. if (AR_SREV_9100(ah)) {
  1089. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1090. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1091. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1092. }
  1093. ENABLE_REGWRITE_BUFFER(ah);
  1094. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1095. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1096. udelay(10);
  1097. }
  1098. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1099. AR_RTC_FORCE_WAKE_ON_INT);
  1100. if (AR_SREV_9100(ah)) {
  1101. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1102. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1103. } else {
  1104. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1105. if (AR_SREV_9340(ah))
  1106. tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
  1107. else
  1108. tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
  1109. AR_INTR_SYNC_RADM_CPL_TIMEOUT;
  1110. if (tmpReg) {
  1111. u32 val;
  1112. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1113. val = AR_RC_HOSTIF;
  1114. if (!AR_SREV_9300_20_OR_LATER(ah))
  1115. val |= AR_RC_AHB;
  1116. REG_WRITE(ah, AR_RC, val);
  1117. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1118. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1119. rst_flags = AR_RTC_RC_MAC_WARM;
  1120. if (type == ATH9K_RESET_COLD)
  1121. rst_flags |= AR_RTC_RC_MAC_COLD;
  1122. }
  1123. if (AR_SREV_9330(ah)) {
  1124. int npend = 0;
  1125. int i;
  1126. /* AR9330 WAR:
  1127. * call external reset function to reset WMAC if:
  1128. * - doing a cold reset
  1129. * - we have pending frames in the TX queues
  1130. */
  1131. for (i = 0; i < AR_NUM_QCU; i++) {
  1132. npend = ath9k_hw_numtxpending(ah, i);
  1133. if (npend)
  1134. break;
  1135. }
  1136. if (ah->external_reset &&
  1137. (npend || type == ATH9K_RESET_COLD)) {
  1138. int reset_err = 0;
  1139. ath_dbg(ath9k_hw_common(ah), RESET,
  1140. "reset MAC via external reset\n");
  1141. reset_err = ah->external_reset();
  1142. if (reset_err) {
  1143. ath_err(ath9k_hw_common(ah),
  1144. "External reset failed, err=%d\n",
  1145. reset_err);
  1146. return false;
  1147. }
  1148. REG_WRITE(ah, AR_RTC_RESET, 1);
  1149. }
  1150. }
  1151. if (ath9k_hw_mci_is_enabled(ah))
  1152. ar9003_mci_check_gpm_offset(ah);
  1153. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1154. REGWRITE_BUFFER_FLUSH(ah);
  1155. udelay(50);
  1156. REG_WRITE(ah, AR_RTC_RC, 0);
  1157. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1158. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1159. return false;
  1160. }
  1161. if (!AR_SREV_9100(ah))
  1162. REG_WRITE(ah, AR_RC, 0);
  1163. if (AR_SREV_9100(ah))
  1164. udelay(50);
  1165. return true;
  1166. }
  1167. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1168. {
  1169. ENABLE_REGWRITE_BUFFER(ah);
  1170. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1171. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1172. udelay(10);
  1173. }
  1174. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1175. AR_RTC_FORCE_WAKE_ON_INT);
  1176. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1177. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1178. REG_WRITE(ah, AR_RTC_RESET, 0);
  1179. REGWRITE_BUFFER_FLUSH(ah);
  1180. if (!AR_SREV_9300_20_OR_LATER(ah))
  1181. udelay(2);
  1182. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1183. REG_WRITE(ah, AR_RC, 0);
  1184. REG_WRITE(ah, AR_RTC_RESET, 1);
  1185. if (!ath9k_hw_wait(ah,
  1186. AR_RTC_STATUS,
  1187. AR_RTC_STATUS_M,
  1188. AR_RTC_STATUS_ON,
  1189. AH_WAIT_TIMEOUT)) {
  1190. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1191. return false;
  1192. }
  1193. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1194. }
  1195. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1196. {
  1197. bool ret = false;
  1198. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1199. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1200. udelay(10);
  1201. }
  1202. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1203. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1204. if (!ah->reset_power_on)
  1205. type = ATH9K_RESET_POWER_ON;
  1206. switch (type) {
  1207. case ATH9K_RESET_POWER_ON:
  1208. ret = ath9k_hw_set_reset_power_on(ah);
  1209. if (ret)
  1210. ah->reset_power_on = true;
  1211. break;
  1212. case ATH9K_RESET_WARM:
  1213. case ATH9K_RESET_COLD:
  1214. ret = ath9k_hw_set_reset(ah, type);
  1215. break;
  1216. default:
  1217. break;
  1218. }
  1219. return ret;
  1220. }
  1221. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1222. struct ath9k_channel *chan)
  1223. {
  1224. int reset_type = ATH9K_RESET_WARM;
  1225. if (AR_SREV_9280(ah)) {
  1226. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1227. reset_type = ATH9K_RESET_POWER_ON;
  1228. else
  1229. reset_type = ATH9K_RESET_COLD;
  1230. } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
  1231. (REG_READ(ah, AR_CR) & AR_CR_RXE))
  1232. reset_type = ATH9K_RESET_COLD;
  1233. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1234. return false;
  1235. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1236. return false;
  1237. ah->chip_fullsleep = false;
  1238. if (AR_SREV_9330(ah))
  1239. ar9003_hw_internal_regulator_apply(ah);
  1240. ath9k_hw_init_pll(ah, chan);
  1241. ath9k_hw_set_rfmode(ah, chan);
  1242. return true;
  1243. }
  1244. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1245. struct ath9k_channel *chan)
  1246. {
  1247. struct ath_common *common = ath9k_hw_common(ah);
  1248. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1249. bool band_switch = false, mode_diff = false;
  1250. u8 ini_reloaded = 0;
  1251. u32 qnum;
  1252. int r;
  1253. if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
  1254. u32 cur = ah->curchan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ);
  1255. u32 new = chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ);
  1256. band_switch = (cur != new);
  1257. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1258. }
  1259. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1260. if (ath9k_hw_numtxpending(ah, qnum)) {
  1261. ath_dbg(common, QUEUE,
  1262. "Transmit frames pending on queue %d\n", qnum);
  1263. return false;
  1264. }
  1265. }
  1266. if (!ath9k_hw_rfbus_req(ah)) {
  1267. ath_err(common, "Could not kill baseband RX\n");
  1268. return false;
  1269. }
  1270. if (band_switch || mode_diff) {
  1271. ath9k_hw_mark_phy_inactive(ah);
  1272. udelay(5);
  1273. if (band_switch)
  1274. ath9k_hw_init_pll(ah, chan);
  1275. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1276. ath_err(common, "Failed to do fast channel change\n");
  1277. return false;
  1278. }
  1279. }
  1280. ath9k_hw_set_channel_regs(ah, chan);
  1281. r = ath9k_hw_rf_set_freq(ah, chan);
  1282. if (r) {
  1283. ath_err(common, "Failed to set channel\n");
  1284. return false;
  1285. }
  1286. ath9k_hw_set_clockrate(ah);
  1287. ath9k_hw_apply_txpower(ah, chan, false);
  1288. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1289. ath9k_hw_set_delta_slope(ah, chan);
  1290. ath9k_hw_spur_mitigate_freq(ah, chan);
  1291. if (band_switch || ini_reloaded)
  1292. ah->eep_ops->set_board_values(ah, chan);
  1293. ath9k_hw_init_bb(ah, chan);
  1294. ath9k_hw_rfbus_done(ah);
  1295. if (band_switch || ini_reloaded) {
  1296. ah->ah_flags |= AH_FASTCC;
  1297. ath9k_hw_init_cal(ah, chan);
  1298. ah->ah_flags &= ~AH_FASTCC;
  1299. }
  1300. return true;
  1301. }
  1302. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1303. {
  1304. u32 gpio_mask = ah->gpio_mask;
  1305. int i;
  1306. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1307. if (!(gpio_mask & 1))
  1308. continue;
  1309. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1310. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1311. }
  1312. }
  1313. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1314. int *hang_state, int *hang_pos)
  1315. {
  1316. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1317. u32 chain_state, dcs_pos, i;
  1318. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1319. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1320. for (i = 0; i < 3; i++) {
  1321. if (chain_state == dcu_chain_state[i]) {
  1322. *hang_state = chain_state;
  1323. *hang_pos = dcs_pos;
  1324. return true;
  1325. }
  1326. }
  1327. }
  1328. return false;
  1329. }
  1330. #define DCU_COMPLETE_STATE 1
  1331. #define DCU_COMPLETE_STATE_MASK 0x3
  1332. #define NUM_STATUS_READS 50
  1333. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1334. {
  1335. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1336. u32 i, hang_pos, hang_state, num_state = 6;
  1337. comp_state = REG_READ(ah, AR_DMADBG_6);
  1338. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1339. ath_dbg(ath9k_hw_common(ah), RESET,
  1340. "MAC Hang signature not found at DCU complete\n");
  1341. return false;
  1342. }
  1343. chain_state = REG_READ(ah, dcs_reg);
  1344. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1345. goto hang_check_iter;
  1346. dcs_reg = AR_DMADBG_5;
  1347. num_state = 4;
  1348. chain_state = REG_READ(ah, dcs_reg);
  1349. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1350. goto hang_check_iter;
  1351. ath_dbg(ath9k_hw_common(ah), RESET,
  1352. "MAC Hang signature 1 not found\n");
  1353. return false;
  1354. hang_check_iter:
  1355. ath_dbg(ath9k_hw_common(ah), RESET,
  1356. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1357. chain_state, comp_state, hang_state, hang_pos);
  1358. for (i = 0; i < NUM_STATUS_READS; i++) {
  1359. chain_state = REG_READ(ah, dcs_reg);
  1360. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1361. comp_state = REG_READ(ah, AR_DMADBG_6);
  1362. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1363. DCU_COMPLETE_STATE) ||
  1364. (chain_state != hang_state))
  1365. return false;
  1366. }
  1367. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1368. return true;
  1369. }
  1370. void ath9k_hw_check_nav(struct ath_hw *ah)
  1371. {
  1372. struct ath_common *common = ath9k_hw_common(ah);
  1373. u32 val;
  1374. val = REG_READ(ah, AR_NAV);
  1375. if (val != 0xdeadbeef && val > 0x7fff) {
  1376. ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
  1377. REG_WRITE(ah, AR_NAV, 0);
  1378. }
  1379. }
  1380. EXPORT_SYMBOL(ath9k_hw_check_nav);
  1381. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1382. {
  1383. int count = 50;
  1384. u32 reg;
  1385. if (AR_SREV_9300(ah))
  1386. return !ath9k_hw_detect_mac_hang(ah);
  1387. if (AR_SREV_9285_12_OR_LATER(ah))
  1388. return true;
  1389. do {
  1390. reg = REG_READ(ah, AR_OBS_BUS_1);
  1391. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1392. continue;
  1393. switch (reg & 0x7E000B00) {
  1394. case 0x1E000000:
  1395. case 0x52000B00:
  1396. case 0x18000B00:
  1397. continue;
  1398. default:
  1399. return true;
  1400. }
  1401. } while (count-- > 0);
  1402. return false;
  1403. }
  1404. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1405. static void ath9k_hw_init_mfp(struct ath_hw *ah)
  1406. {
  1407. /* Setup MFP options for CCMP */
  1408. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1409. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1410. * frames when constructing CCMP AAD. */
  1411. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1412. 0xc7ff);
  1413. ah->sw_mgmt_crypto = false;
  1414. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1415. /* Disable hardware crypto for management frames */
  1416. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1417. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1418. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1419. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1420. ah->sw_mgmt_crypto = true;
  1421. } else {
  1422. ah->sw_mgmt_crypto = true;
  1423. }
  1424. }
  1425. static void ath9k_hw_reset_opmode(struct ath_hw *ah,
  1426. u32 macStaId1, u32 saveDefAntenna)
  1427. {
  1428. struct ath_common *common = ath9k_hw_common(ah);
  1429. ENABLE_REGWRITE_BUFFER(ah);
  1430. REG_RMW(ah, AR_STA_ID1, macStaId1
  1431. | AR_STA_ID1_RTS_USE_DEF
  1432. | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1433. | ah->sta_id1_defaults,
  1434. ~AR_STA_ID1_SADH_MASK);
  1435. ath_hw_setbssidmask(common);
  1436. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1437. ath9k_hw_write_associd(ah);
  1438. REG_WRITE(ah, AR_ISR, ~0);
  1439. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1440. REGWRITE_BUFFER_FLUSH(ah);
  1441. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1442. }
  1443. static void ath9k_hw_init_queues(struct ath_hw *ah)
  1444. {
  1445. int i;
  1446. ENABLE_REGWRITE_BUFFER(ah);
  1447. for (i = 0; i < AR_NUM_DCU; i++)
  1448. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1449. REGWRITE_BUFFER_FLUSH(ah);
  1450. ah->intr_txqs = 0;
  1451. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1452. ath9k_hw_resettxqueue(ah, i);
  1453. }
  1454. /*
  1455. * For big endian systems turn on swapping for descriptors
  1456. */
  1457. static void ath9k_hw_init_desc(struct ath_hw *ah)
  1458. {
  1459. struct ath_common *common = ath9k_hw_common(ah);
  1460. if (AR_SREV_9100(ah)) {
  1461. u32 mask;
  1462. mask = REG_READ(ah, AR_CFG);
  1463. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1464. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1465. mask);
  1466. } else {
  1467. mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1468. REG_WRITE(ah, AR_CFG, mask);
  1469. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1470. REG_READ(ah, AR_CFG));
  1471. }
  1472. } else {
  1473. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1474. /* Configure AR9271 target WLAN */
  1475. if (AR_SREV_9271(ah))
  1476. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1477. else
  1478. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1479. }
  1480. #ifdef __BIG_ENDIAN
  1481. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1482. AR_SREV_9550(ah))
  1483. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1484. else
  1485. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1486. #endif
  1487. }
  1488. }
  1489. /*
  1490. * Fast channel change:
  1491. * (Change synthesizer based on channel freq without resetting chip)
  1492. */
  1493. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1494. {
  1495. struct ath_common *common = ath9k_hw_common(ah);
  1496. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1497. int ret;
  1498. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1499. goto fail;
  1500. if (ah->chip_fullsleep)
  1501. goto fail;
  1502. if (!ah->curchan)
  1503. goto fail;
  1504. if (chan->channel == ah->curchan->channel)
  1505. goto fail;
  1506. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1507. (CHANNEL_HALF | CHANNEL_QUARTER))
  1508. goto fail;
  1509. /*
  1510. * If cross-band fcc is not supoprted, bail out if
  1511. * either channelFlags or chanmode differ.
  1512. *
  1513. * chanmode will be different if the HT operating mode
  1514. * changes because of CSA.
  1515. */
  1516. if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH)) {
  1517. if ((chan->channelFlags & CHANNEL_ALL) !=
  1518. (ah->curchan->channelFlags & CHANNEL_ALL))
  1519. goto fail;
  1520. if (chan->chanmode != ah->curchan->chanmode)
  1521. goto fail;
  1522. }
  1523. if (!ath9k_hw_check_alive(ah))
  1524. goto fail;
  1525. /*
  1526. * For AR9462, make sure that calibration data for
  1527. * re-using are present.
  1528. */
  1529. if (AR_SREV_9462(ah) && (ah->caldata &&
  1530. (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
  1531. !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
  1532. !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
  1533. goto fail;
  1534. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1535. ah->curchan->channel, chan->channel);
  1536. ret = ath9k_hw_channel_change(ah, chan);
  1537. if (!ret)
  1538. goto fail;
  1539. if (ath9k_hw_mci_is_enabled(ah))
  1540. ar9003_mci_2g5g_switch(ah, false);
  1541. ath9k_hw_loadnf(ah, ah->curchan);
  1542. ath9k_hw_start_nfcal(ah, true);
  1543. if (AR_SREV_9271(ah))
  1544. ar9002_hw_load_ani_reg(ah, chan);
  1545. return 0;
  1546. fail:
  1547. return -EINVAL;
  1548. }
  1549. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1550. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1551. {
  1552. struct ath_common *common = ath9k_hw_common(ah);
  1553. u32 saveLedState;
  1554. u32 saveDefAntenna;
  1555. u32 macStaId1;
  1556. u64 tsf = 0;
  1557. int r;
  1558. bool start_mci_reset = false;
  1559. bool save_fullsleep = ah->chip_fullsleep;
  1560. if (ath9k_hw_mci_is_enabled(ah)) {
  1561. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1562. if (start_mci_reset)
  1563. return 0;
  1564. }
  1565. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1566. return -EIO;
  1567. if (ah->curchan && !ah->chip_fullsleep)
  1568. ath9k_hw_getnf(ah, ah->curchan);
  1569. ah->caldata = caldata;
  1570. if (caldata && (chan->channel != caldata->channel ||
  1571. chan->channelFlags != caldata->channelFlags ||
  1572. chan->chanmode != caldata->chanmode)) {
  1573. /* Operating channel changed, reset channel calibration data */
  1574. memset(caldata, 0, sizeof(*caldata));
  1575. ath9k_init_nfcal_hist_buffer(ah, chan);
  1576. } else if (caldata) {
  1577. clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
  1578. }
  1579. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1580. if (fastcc) {
  1581. r = ath9k_hw_do_fastcc(ah, chan);
  1582. if (!r)
  1583. return r;
  1584. }
  1585. if (ath9k_hw_mci_is_enabled(ah))
  1586. ar9003_mci_stop_bt(ah, save_fullsleep);
  1587. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1588. if (saveDefAntenna == 0)
  1589. saveDefAntenna = 1;
  1590. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1591. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1592. if (AR_SREV_9100(ah) ||
  1593. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1594. tsf = ath9k_hw_gettsf64(ah);
  1595. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1596. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1597. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1598. ath9k_hw_mark_phy_inactive(ah);
  1599. ah->paprd_table_write_done = false;
  1600. /* Only required on the first reset */
  1601. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1602. REG_WRITE(ah,
  1603. AR9271_RESET_POWER_DOWN_CONTROL,
  1604. AR9271_RADIO_RF_RST);
  1605. udelay(50);
  1606. }
  1607. if (!ath9k_hw_chip_reset(ah, chan)) {
  1608. ath_err(common, "Chip reset failed\n");
  1609. return -EINVAL;
  1610. }
  1611. /* Only required on the first reset */
  1612. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1613. ah->htc_reset_init = false;
  1614. REG_WRITE(ah,
  1615. AR9271_RESET_POWER_DOWN_CONTROL,
  1616. AR9271_GATE_MAC_CTL);
  1617. udelay(50);
  1618. }
  1619. /* Restore TSF */
  1620. if (tsf)
  1621. ath9k_hw_settsf64(ah, tsf);
  1622. if (AR_SREV_9280_20_OR_LATER(ah))
  1623. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1624. if (!AR_SREV_9300_20_OR_LATER(ah))
  1625. ar9002_hw_enable_async_fifo(ah);
  1626. r = ath9k_hw_process_ini(ah, chan);
  1627. if (r)
  1628. return r;
  1629. if (ath9k_hw_mci_is_enabled(ah))
  1630. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1631. /*
  1632. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1633. * right after the chip reset. When that happens, write a new
  1634. * value after the initvals have been applied, with an offset
  1635. * based on measured time difference
  1636. */
  1637. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1638. tsf += 1500;
  1639. ath9k_hw_settsf64(ah, tsf);
  1640. }
  1641. ath9k_hw_init_mfp(ah);
  1642. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1643. ath9k_hw_set_delta_slope(ah, chan);
  1644. ath9k_hw_spur_mitigate_freq(ah, chan);
  1645. ah->eep_ops->set_board_values(ah, chan);
  1646. ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
  1647. r = ath9k_hw_rf_set_freq(ah, chan);
  1648. if (r)
  1649. return r;
  1650. ath9k_hw_set_clockrate(ah);
  1651. ath9k_hw_init_queues(ah);
  1652. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1653. ath9k_hw_ani_cache_ini_regs(ah);
  1654. ath9k_hw_init_qos(ah);
  1655. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1656. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1657. ath9k_hw_init_global_settings(ah);
  1658. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1659. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1660. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1661. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1662. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1663. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1664. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1665. }
  1666. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1667. ath9k_hw_set_dma(ah);
  1668. if (!ath9k_hw_mci_is_enabled(ah))
  1669. REG_WRITE(ah, AR_OBS, 8);
  1670. if (ah->config.rx_intr_mitigation) {
  1671. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1672. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1673. }
  1674. if (ah->config.tx_intr_mitigation) {
  1675. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1676. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1677. }
  1678. ath9k_hw_init_bb(ah, chan);
  1679. if (caldata) {
  1680. clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
  1681. clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
  1682. }
  1683. if (!ath9k_hw_init_cal(ah, chan))
  1684. return -EIO;
  1685. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1686. return -EIO;
  1687. ENABLE_REGWRITE_BUFFER(ah);
  1688. ath9k_hw_restore_chainmask(ah);
  1689. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1690. REGWRITE_BUFFER_FLUSH(ah);
  1691. ath9k_hw_init_desc(ah);
  1692. if (ath9k_hw_btcoex_is_enabled(ah))
  1693. ath9k_hw_btcoex_enable(ah);
  1694. if (ath9k_hw_mci_is_enabled(ah))
  1695. ar9003_mci_check_bt(ah);
  1696. ath9k_hw_loadnf(ah, chan);
  1697. ath9k_hw_start_nfcal(ah, true);
  1698. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1699. ar9003_hw_bb_watchdog_config(ah);
  1700. ar9003_hw_disable_phy_restart(ah);
  1701. }
  1702. ath9k_hw_apply_gpio_override(ah);
  1703. if (AR_SREV_9565(ah) && common->bt_ant_diversity)
  1704. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1705. return 0;
  1706. }
  1707. EXPORT_SYMBOL(ath9k_hw_reset);
  1708. /******************************/
  1709. /* Power Management (Chipset) */
  1710. /******************************/
  1711. /*
  1712. * Notify Power Mgt is disabled in self-generated frames.
  1713. * If requested, force chip to sleep.
  1714. */
  1715. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1716. {
  1717. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1718. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1719. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1720. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1721. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1722. /* xxx Required for WLAN only case ? */
  1723. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1724. udelay(100);
  1725. }
  1726. /*
  1727. * Clear the RTC force wake bit to allow the
  1728. * mac to go to sleep.
  1729. */
  1730. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1731. if (ath9k_hw_mci_is_enabled(ah))
  1732. udelay(100);
  1733. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1734. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1735. /* Shutdown chip. Active low */
  1736. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1737. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1738. udelay(2);
  1739. }
  1740. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1741. if (AR_SREV_9300_20_OR_LATER(ah))
  1742. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1743. }
  1744. /*
  1745. * Notify Power Management is enabled in self-generating
  1746. * frames. If request, set power mode of chip to
  1747. * auto/normal. Duration in units of 128us (1/8 TU).
  1748. */
  1749. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1750. {
  1751. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1752. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1753. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1754. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1755. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1756. AR_RTC_FORCE_WAKE_ON_INT);
  1757. } else {
  1758. /* When chip goes into network sleep, it could be waken
  1759. * up by MCI_INT interrupt caused by BT's HW messages
  1760. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1761. * rate (~100us). This will cause chip to leave and
  1762. * re-enter network sleep mode frequently, which in
  1763. * consequence will have WLAN MCI HW to generate lots of
  1764. * SYS_WAKING and SYS_SLEEPING messages which will make
  1765. * BT CPU to busy to process.
  1766. */
  1767. if (ath9k_hw_mci_is_enabled(ah))
  1768. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1769. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1770. /*
  1771. * Clear the RTC force wake bit to allow the
  1772. * mac to go to sleep.
  1773. */
  1774. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1775. if (ath9k_hw_mci_is_enabled(ah))
  1776. udelay(30);
  1777. }
  1778. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1779. if (AR_SREV_9300_20_OR_LATER(ah))
  1780. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1781. }
  1782. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1783. {
  1784. u32 val;
  1785. int i;
  1786. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1787. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1788. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1789. udelay(10);
  1790. }
  1791. if ((REG_READ(ah, AR_RTC_STATUS) &
  1792. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1793. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1794. return false;
  1795. }
  1796. if (!AR_SREV_9300_20_OR_LATER(ah))
  1797. ath9k_hw_init_pll(ah, NULL);
  1798. }
  1799. if (AR_SREV_9100(ah))
  1800. REG_SET_BIT(ah, AR_RTC_RESET,
  1801. AR_RTC_RESET_EN);
  1802. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1803. AR_RTC_FORCE_WAKE_EN);
  1804. udelay(50);
  1805. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1806. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1807. if (val == AR_RTC_STATUS_ON)
  1808. break;
  1809. udelay(50);
  1810. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1811. AR_RTC_FORCE_WAKE_EN);
  1812. }
  1813. if (i == 0) {
  1814. ath_err(ath9k_hw_common(ah),
  1815. "Failed to wakeup in %uus\n",
  1816. POWER_UP_TIME / 20);
  1817. return false;
  1818. }
  1819. if (ath9k_hw_mci_is_enabled(ah))
  1820. ar9003_mci_set_power_awake(ah);
  1821. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1822. return true;
  1823. }
  1824. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1825. {
  1826. struct ath_common *common = ath9k_hw_common(ah);
  1827. int status = true;
  1828. static const char *modes[] = {
  1829. "AWAKE",
  1830. "FULL-SLEEP",
  1831. "NETWORK SLEEP",
  1832. "UNDEFINED"
  1833. };
  1834. if (ah->power_mode == mode)
  1835. return status;
  1836. ath_dbg(common, RESET, "%s -> %s\n",
  1837. modes[ah->power_mode], modes[mode]);
  1838. switch (mode) {
  1839. case ATH9K_PM_AWAKE:
  1840. status = ath9k_hw_set_power_awake(ah);
  1841. break;
  1842. case ATH9K_PM_FULL_SLEEP:
  1843. if (ath9k_hw_mci_is_enabled(ah))
  1844. ar9003_mci_set_full_sleep(ah);
  1845. ath9k_set_power_sleep(ah);
  1846. ah->chip_fullsleep = true;
  1847. break;
  1848. case ATH9K_PM_NETWORK_SLEEP:
  1849. ath9k_set_power_network_sleep(ah);
  1850. break;
  1851. default:
  1852. ath_err(common, "Unknown power mode %u\n", mode);
  1853. return false;
  1854. }
  1855. ah->power_mode = mode;
  1856. /*
  1857. * XXX: If this warning never comes up after a while then
  1858. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1859. * ath9k_hw_setpower() return type void.
  1860. */
  1861. if (!(ah->ah_flags & AH_UNPLUGGED))
  1862. ATH_DBG_WARN_ON_ONCE(!status);
  1863. return status;
  1864. }
  1865. EXPORT_SYMBOL(ath9k_hw_setpower);
  1866. /*******************/
  1867. /* Beacon Handling */
  1868. /*******************/
  1869. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1870. {
  1871. int flags = 0;
  1872. ENABLE_REGWRITE_BUFFER(ah);
  1873. switch (ah->opmode) {
  1874. case NL80211_IFTYPE_ADHOC:
  1875. REG_SET_BIT(ah, AR_TXCFG,
  1876. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1877. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1878. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1879. flags |= AR_NDP_TIMER_EN;
  1880. case NL80211_IFTYPE_MESH_POINT:
  1881. case NL80211_IFTYPE_AP:
  1882. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1883. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1884. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1885. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1886. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1887. flags |=
  1888. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1889. break;
  1890. default:
  1891. ath_dbg(ath9k_hw_common(ah), BEACON,
  1892. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1893. return;
  1894. break;
  1895. }
  1896. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1897. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1898. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1899. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1900. REGWRITE_BUFFER_FLUSH(ah);
  1901. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1902. }
  1903. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1904. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1905. const struct ath9k_beacon_state *bs)
  1906. {
  1907. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1908. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1909. struct ath_common *common = ath9k_hw_common(ah);
  1910. ENABLE_REGWRITE_BUFFER(ah);
  1911. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1912. REG_WRITE(ah, AR_BEACON_PERIOD,
  1913. TU_TO_USEC(bs->bs_intval));
  1914. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1915. TU_TO_USEC(bs->bs_intval));
  1916. REGWRITE_BUFFER_FLUSH(ah);
  1917. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1918. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1919. beaconintval = bs->bs_intval;
  1920. if (bs->bs_sleepduration > beaconintval)
  1921. beaconintval = bs->bs_sleepduration;
  1922. dtimperiod = bs->bs_dtimperiod;
  1923. if (bs->bs_sleepduration > dtimperiod)
  1924. dtimperiod = bs->bs_sleepduration;
  1925. if (beaconintval == dtimperiod)
  1926. nextTbtt = bs->bs_nextdtim;
  1927. else
  1928. nextTbtt = bs->bs_nexttbtt;
  1929. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1930. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1931. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1932. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1933. ENABLE_REGWRITE_BUFFER(ah);
  1934. REG_WRITE(ah, AR_NEXT_DTIM,
  1935. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1936. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1937. REG_WRITE(ah, AR_SLEEP1,
  1938. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1939. | AR_SLEEP1_ASSUME_DTIM);
  1940. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1941. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1942. else
  1943. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1944. REG_WRITE(ah, AR_SLEEP2,
  1945. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1946. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1947. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1948. REGWRITE_BUFFER_FLUSH(ah);
  1949. REG_SET_BIT(ah, AR_TIMER_MODE,
  1950. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1951. AR_DTIM_TIMER_EN);
  1952. /* TSF Out of Range Threshold */
  1953. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1954. }
  1955. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1956. /*******************/
  1957. /* HW Capabilities */
  1958. /*******************/
  1959. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1960. {
  1961. eeprom_chainmask &= chip_chainmask;
  1962. if (eeprom_chainmask)
  1963. return eeprom_chainmask;
  1964. else
  1965. return chip_chainmask;
  1966. }
  1967. /**
  1968. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1969. * @ah: the atheros hardware data structure
  1970. *
  1971. * We enable DFS support upstream on chipsets which have passed a series
  1972. * of tests. The testing requirements are going to be documented. Desired
  1973. * test requirements are documented at:
  1974. *
  1975. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1976. *
  1977. * Once a new chipset gets properly tested an individual commit can be used
  1978. * to document the testing for DFS for that chipset.
  1979. */
  1980. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1981. {
  1982. switch (ah->hw_version.macVersion) {
  1983. /* for temporary testing DFS with 9280 */
  1984. case AR_SREV_VERSION_9280:
  1985. /* AR9580 will likely be our first target to get testing on */
  1986. case AR_SREV_VERSION_9580:
  1987. return true;
  1988. default:
  1989. return false;
  1990. }
  1991. }
  1992. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1993. {
  1994. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1995. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1996. struct ath_common *common = ath9k_hw_common(ah);
  1997. unsigned int chip_chainmask;
  1998. u16 eeval;
  1999. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  2000. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  2001. regulatory->current_rd = eeval;
  2002. if (ah->opmode != NL80211_IFTYPE_AP &&
  2003. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2004. if (regulatory->current_rd == 0x64 ||
  2005. regulatory->current_rd == 0x65)
  2006. regulatory->current_rd += 5;
  2007. else if (regulatory->current_rd == 0x41)
  2008. regulatory->current_rd = 0x43;
  2009. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  2010. regulatory->current_rd);
  2011. }
  2012. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  2013. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  2014. ath_err(common,
  2015. "no band has been marked as supported in EEPROM\n");
  2016. return -EINVAL;
  2017. }
  2018. if (eeval & AR5416_OPFLAGS_11A)
  2019. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  2020. if (eeval & AR5416_OPFLAGS_11G)
  2021. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  2022. if (AR_SREV_9485(ah) ||
  2023. AR_SREV_9285(ah) ||
  2024. AR_SREV_9330(ah) ||
  2025. AR_SREV_9565(ah))
  2026. chip_chainmask = 1;
  2027. else if (AR_SREV_9462(ah))
  2028. chip_chainmask = 3;
  2029. else if (!AR_SREV_9280_20_OR_LATER(ah))
  2030. chip_chainmask = 7;
  2031. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  2032. chip_chainmask = 3;
  2033. else
  2034. chip_chainmask = 7;
  2035. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  2036. /*
  2037. * For AR9271 we will temporarilly uses the rx chainmax as read from
  2038. * the EEPROM.
  2039. */
  2040. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  2041. !(eeval & AR5416_OPFLAGS_11A) &&
  2042. !(AR_SREV_9271(ah)))
  2043. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  2044. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  2045. else if (AR_SREV_9100(ah))
  2046. pCap->rx_chainmask = 0x7;
  2047. else
  2048. /* Use rx_chainmask from EEPROM. */
  2049. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  2050. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  2051. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  2052. ah->txchainmask = pCap->tx_chainmask;
  2053. ah->rxchainmask = pCap->rx_chainmask;
  2054. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2055. /* enable key search for every frame in an aggregate */
  2056. if (AR_SREV_9300_20_OR_LATER(ah))
  2057. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2058. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2059. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2060. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2061. else
  2062. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2063. if (AR_SREV_9271(ah))
  2064. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2065. else if (AR_DEVID_7010(ah))
  2066. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2067. else if (AR_SREV_9300_20_OR_LATER(ah))
  2068. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2069. else if (AR_SREV_9287_11_OR_LATER(ah))
  2070. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2071. else if (AR_SREV_9285_12_OR_LATER(ah))
  2072. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2073. else if (AR_SREV_9280_20_OR_LATER(ah))
  2074. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2075. else
  2076. pCap->num_gpio_pins = AR_NUM_GPIO;
  2077. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2078. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2079. else
  2080. pCap->rts_aggr_limit = (8 * 1024);
  2081. #ifdef CONFIG_ATH9K_RFKILL
  2082. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2083. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2084. ah->rfkill_gpio =
  2085. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2086. ah->rfkill_polarity =
  2087. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2088. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2089. }
  2090. #endif
  2091. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2092. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2093. else
  2094. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2095. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2096. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2097. else
  2098. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2099. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2100. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2101. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  2102. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2103. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2104. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2105. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2106. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2107. pCap->txs_len = sizeof(struct ar9003_txs);
  2108. } else {
  2109. pCap->tx_desc_len = sizeof(struct ath_desc);
  2110. if (AR_SREV_9280_20(ah))
  2111. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2112. }
  2113. if (AR_SREV_9300_20_OR_LATER(ah))
  2114. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2115. if (AR_SREV_9300_20_OR_LATER(ah))
  2116. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2117. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2118. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2119. if (AR_SREV_9285(ah)) {
  2120. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2121. ant_div_ctl1 =
  2122. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2123. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
  2124. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2125. ath_info(common, "Enable LNA combining\n");
  2126. }
  2127. }
  2128. }
  2129. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2130. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2131. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2132. }
  2133. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  2134. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2135. if ((ant_div_ctl1 >> 0x6) == 0x3) {
  2136. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2137. ath_info(common, "Enable LNA combining\n");
  2138. }
  2139. }
  2140. if (ath9k_hw_dfs_tested(ah))
  2141. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2142. tx_chainmask = pCap->tx_chainmask;
  2143. rx_chainmask = pCap->rx_chainmask;
  2144. while (tx_chainmask || rx_chainmask) {
  2145. if (tx_chainmask & BIT(0))
  2146. pCap->max_txchains++;
  2147. if (rx_chainmask & BIT(0))
  2148. pCap->max_rxchains++;
  2149. tx_chainmask >>= 1;
  2150. rx_chainmask >>= 1;
  2151. }
  2152. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2153. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2154. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2155. if (AR_SREV_9462_20_OR_LATER(ah))
  2156. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2157. }
  2158. if (AR_SREV_9462(ah))
  2159. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
  2160. if (AR_SREV_9300_20_OR_LATER(ah) &&
  2161. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2162. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2163. /*
  2164. * Fast channel change across bands is available
  2165. * only for AR9462 and AR9565.
  2166. */
  2167. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2168. pCap->hw_caps |= ATH9K_HW_CAP_FCC_BAND_SWITCH;
  2169. return 0;
  2170. }
  2171. /****************************/
  2172. /* GPIO / RFKILL / Antennae */
  2173. /****************************/
  2174. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2175. u32 gpio, u32 type)
  2176. {
  2177. int addr;
  2178. u32 gpio_shift, tmp;
  2179. if (gpio > 11)
  2180. addr = AR_GPIO_OUTPUT_MUX3;
  2181. else if (gpio > 5)
  2182. addr = AR_GPIO_OUTPUT_MUX2;
  2183. else
  2184. addr = AR_GPIO_OUTPUT_MUX1;
  2185. gpio_shift = (gpio % 6) * 5;
  2186. if (AR_SREV_9280_20_OR_LATER(ah)
  2187. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2188. REG_RMW(ah, addr, (type << gpio_shift),
  2189. (0x1f << gpio_shift));
  2190. } else {
  2191. tmp = REG_READ(ah, addr);
  2192. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2193. tmp &= ~(0x1f << gpio_shift);
  2194. tmp |= (type << gpio_shift);
  2195. REG_WRITE(ah, addr, tmp);
  2196. }
  2197. }
  2198. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2199. {
  2200. u32 gpio_shift;
  2201. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2202. if (AR_DEVID_7010(ah)) {
  2203. gpio_shift = gpio;
  2204. REG_RMW(ah, AR7010_GPIO_OE,
  2205. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2206. (AR7010_GPIO_OE_MASK << gpio_shift));
  2207. return;
  2208. }
  2209. gpio_shift = gpio << 1;
  2210. REG_RMW(ah,
  2211. AR_GPIO_OE_OUT,
  2212. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2213. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2214. }
  2215. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2216. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2217. {
  2218. #define MS_REG_READ(x, y) \
  2219. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2220. if (gpio >= ah->caps.num_gpio_pins)
  2221. return 0xffffffff;
  2222. if (AR_DEVID_7010(ah)) {
  2223. u32 val;
  2224. val = REG_READ(ah, AR7010_GPIO_IN);
  2225. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2226. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2227. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2228. AR_GPIO_BIT(gpio)) != 0;
  2229. else if (AR_SREV_9271(ah))
  2230. return MS_REG_READ(AR9271, gpio) != 0;
  2231. else if (AR_SREV_9287_11_OR_LATER(ah))
  2232. return MS_REG_READ(AR9287, gpio) != 0;
  2233. else if (AR_SREV_9285_12_OR_LATER(ah))
  2234. return MS_REG_READ(AR9285, gpio) != 0;
  2235. else if (AR_SREV_9280_20_OR_LATER(ah))
  2236. return MS_REG_READ(AR928X, gpio) != 0;
  2237. else
  2238. return MS_REG_READ(AR, gpio) != 0;
  2239. }
  2240. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2241. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2242. u32 ah_signal_type)
  2243. {
  2244. u32 gpio_shift;
  2245. if (AR_DEVID_7010(ah)) {
  2246. gpio_shift = gpio;
  2247. REG_RMW(ah, AR7010_GPIO_OE,
  2248. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2249. (AR7010_GPIO_OE_MASK << gpio_shift));
  2250. return;
  2251. }
  2252. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2253. gpio_shift = 2 * gpio;
  2254. REG_RMW(ah,
  2255. AR_GPIO_OE_OUT,
  2256. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2257. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2258. }
  2259. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2260. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2261. {
  2262. if (AR_DEVID_7010(ah)) {
  2263. val = val ? 0 : 1;
  2264. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2265. AR_GPIO_BIT(gpio));
  2266. return;
  2267. }
  2268. if (AR_SREV_9271(ah))
  2269. val = ~val;
  2270. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2271. AR_GPIO_BIT(gpio));
  2272. }
  2273. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2274. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2275. {
  2276. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2277. }
  2278. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2279. /*********************/
  2280. /* General Operation */
  2281. /*********************/
  2282. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2283. {
  2284. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2285. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2286. if (phybits & AR_PHY_ERR_RADAR)
  2287. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2288. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2289. bits |= ATH9K_RX_FILTER_PHYERR;
  2290. return bits;
  2291. }
  2292. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2293. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2294. {
  2295. u32 phybits;
  2296. ENABLE_REGWRITE_BUFFER(ah);
  2297. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2298. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2299. REG_WRITE(ah, AR_RX_FILTER, bits);
  2300. phybits = 0;
  2301. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2302. phybits |= AR_PHY_ERR_RADAR;
  2303. if (bits & ATH9K_RX_FILTER_PHYERR)
  2304. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2305. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2306. if (phybits)
  2307. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2308. else
  2309. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2310. REGWRITE_BUFFER_FLUSH(ah);
  2311. }
  2312. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2313. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2314. {
  2315. if (ath9k_hw_mci_is_enabled(ah))
  2316. ar9003_mci_bt_gain_ctrl(ah);
  2317. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2318. return false;
  2319. ath9k_hw_init_pll(ah, NULL);
  2320. ah->htc_reset_init = true;
  2321. return true;
  2322. }
  2323. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2324. bool ath9k_hw_disable(struct ath_hw *ah)
  2325. {
  2326. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2327. return false;
  2328. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2329. return false;
  2330. ath9k_hw_init_pll(ah, NULL);
  2331. return true;
  2332. }
  2333. EXPORT_SYMBOL(ath9k_hw_disable);
  2334. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2335. {
  2336. enum eeprom_param gain_param;
  2337. if (IS_CHAN_2GHZ(chan))
  2338. gain_param = EEP_ANTENNA_GAIN_2G;
  2339. else
  2340. gain_param = EEP_ANTENNA_GAIN_5G;
  2341. return ah->eep_ops->get_eeprom(ah, gain_param);
  2342. }
  2343. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2344. bool test)
  2345. {
  2346. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2347. struct ieee80211_channel *channel;
  2348. int chan_pwr, new_pwr, max_gain;
  2349. int ant_gain, ant_reduction = 0;
  2350. if (!chan)
  2351. return;
  2352. channel = chan->chan;
  2353. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2354. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2355. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2356. ant_gain = get_antenna_gain(ah, chan);
  2357. if (ant_gain > max_gain)
  2358. ant_reduction = ant_gain - max_gain;
  2359. ah->eep_ops->set_txpower(ah, chan,
  2360. ath9k_regd_get_ctl(reg, chan),
  2361. ant_reduction, new_pwr, test);
  2362. }
  2363. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2364. {
  2365. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2366. struct ath9k_channel *chan = ah->curchan;
  2367. struct ieee80211_channel *channel = chan->chan;
  2368. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2369. if (test)
  2370. channel->max_power = MAX_RATE_POWER / 2;
  2371. ath9k_hw_apply_txpower(ah, chan, test);
  2372. if (test)
  2373. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2374. }
  2375. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2376. void ath9k_hw_setopmode(struct ath_hw *ah)
  2377. {
  2378. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2379. }
  2380. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2381. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2382. {
  2383. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2384. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2385. }
  2386. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2387. void ath9k_hw_write_associd(struct ath_hw *ah)
  2388. {
  2389. struct ath_common *common = ath9k_hw_common(ah);
  2390. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2391. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2392. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2393. }
  2394. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2395. #define ATH9K_MAX_TSF_READ 10
  2396. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2397. {
  2398. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2399. int i;
  2400. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2401. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2402. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2403. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2404. if (tsf_upper2 == tsf_upper1)
  2405. break;
  2406. tsf_upper1 = tsf_upper2;
  2407. }
  2408. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2409. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2410. }
  2411. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2412. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2413. {
  2414. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2415. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2416. }
  2417. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2418. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2419. {
  2420. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2421. AH_TSF_WRITE_TIMEOUT))
  2422. ath_dbg(ath9k_hw_common(ah), RESET,
  2423. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2424. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2425. }
  2426. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2427. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2428. {
  2429. if (set)
  2430. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2431. else
  2432. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2433. }
  2434. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2435. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2436. {
  2437. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2438. u32 macmode;
  2439. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2440. macmode = AR_2040_JOINED_RX_CLEAR;
  2441. else
  2442. macmode = 0;
  2443. REG_WRITE(ah, AR_2040_MODE, macmode);
  2444. }
  2445. /* HW Generic timers configuration */
  2446. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2447. {
  2448. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2449. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2450. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2451. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2452. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2453. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2454. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2455. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2456. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2457. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2458. AR_NDP2_TIMER_MODE, 0x0002},
  2459. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2460. AR_NDP2_TIMER_MODE, 0x0004},
  2461. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2462. AR_NDP2_TIMER_MODE, 0x0008},
  2463. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2464. AR_NDP2_TIMER_MODE, 0x0010},
  2465. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2466. AR_NDP2_TIMER_MODE, 0x0020},
  2467. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2468. AR_NDP2_TIMER_MODE, 0x0040},
  2469. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2470. AR_NDP2_TIMER_MODE, 0x0080}
  2471. };
  2472. /* HW generic timer primitives */
  2473. /* compute and clear index of rightmost 1 */
  2474. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2475. {
  2476. u32 b;
  2477. b = *mask;
  2478. b &= (0-b);
  2479. *mask &= ~b;
  2480. b *= debruijn32;
  2481. b >>= 27;
  2482. return timer_table->gen_timer_index[b];
  2483. }
  2484. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2485. {
  2486. return REG_READ(ah, AR_TSF_L32);
  2487. }
  2488. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2489. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2490. void (*trigger)(void *),
  2491. void (*overflow)(void *),
  2492. void *arg,
  2493. u8 timer_index)
  2494. {
  2495. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2496. struct ath_gen_timer *timer;
  2497. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2498. if (timer == NULL)
  2499. return NULL;
  2500. /* allocate a hardware generic timer slot */
  2501. timer_table->timers[timer_index] = timer;
  2502. timer->index = timer_index;
  2503. timer->trigger = trigger;
  2504. timer->overflow = overflow;
  2505. timer->arg = arg;
  2506. return timer;
  2507. }
  2508. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2509. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2510. struct ath_gen_timer *timer,
  2511. u32 trig_timeout,
  2512. u32 timer_period)
  2513. {
  2514. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2515. u32 tsf, timer_next;
  2516. BUG_ON(!timer_period);
  2517. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2518. tsf = ath9k_hw_gettsf32(ah);
  2519. timer_next = tsf + trig_timeout;
  2520. ath_dbg(ath9k_hw_common(ah), BTCOEX,
  2521. "current tsf %x period %x timer_next %x\n",
  2522. tsf, timer_period, timer_next);
  2523. /*
  2524. * Program generic timer registers
  2525. */
  2526. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2527. timer_next);
  2528. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2529. timer_period);
  2530. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2531. gen_tmr_configuration[timer->index].mode_mask);
  2532. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2533. /*
  2534. * Starting from AR9462, each generic timer can select which tsf
  2535. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2536. * 8 - 15 use tsf2.
  2537. */
  2538. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2539. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2540. (1 << timer->index));
  2541. else
  2542. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2543. (1 << timer->index));
  2544. }
  2545. /* Enable both trigger and thresh interrupt masks */
  2546. REG_SET_BIT(ah, AR_IMR_S5,
  2547. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2548. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2549. }
  2550. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2551. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2552. {
  2553. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2554. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2555. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2556. return;
  2557. }
  2558. /* Clear generic timer enable bits. */
  2559. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2560. gen_tmr_configuration[timer->index].mode_mask);
  2561. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2562. /*
  2563. * Need to switch back to TSF if it was using TSF2.
  2564. */
  2565. if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
  2566. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2567. (1 << timer->index));
  2568. }
  2569. }
  2570. /* Disable both trigger and thresh interrupt masks */
  2571. REG_CLR_BIT(ah, AR_IMR_S5,
  2572. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2573. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2574. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2575. }
  2576. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2577. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2578. {
  2579. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2580. /* free the hardware generic timer slot */
  2581. timer_table->timers[timer->index] = NULL;
  2582. kfree(timer);
  2583. }
  2584. EXPORT_SYMBOL(ath_gen_timer_free);
  2585. /*
  2586. * Generic Timer Interrupts handling
  2587. */
  2588. void ath_gen_timer_isr(struct ath_hw *ah)
  2589. {
  2590. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2591. struct ath_gen_timer *timer;
  2592. struct ath_common *common = ath9k_hw_common(ah);
  2593. u32 trigger_mask, thresh_mask, index;
  2594. /* get hardware generic timer interrupt status */
  2595. trigger_mask = ah->intr_gen_timer_trigger;
  2596. thresh_mask = ah->intr_gen_timer_thresh;
  2597. trigger_mask &= timer_table->timer_mask.val;
  2598. thresh_mask &= timer_table->timer_mask.val;
  2599. trigger_mask &= ~thresh_mask;
  2600. while (thresh_mask) {
  2601. index = rightmost_index(timer_table, &thresh_mask);
  2602. timer = timer_table->timers[index];
  2603. BUG_ON(!timer);
  2604. ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n",
  2605. index);
  2606. timer->overflow(timer->arg);
  2607. }
  2608. while (trigger_mask) {
  2609. index = rightmost_index(timer_table, &trigger_mask);
  2610. timer = timer_table->timers[index];
  2611. BUG_ON(!timer);
  2612. ath_dbg(common, BTCOEX,
  2613. "Gen timer[%d] trigger\n", index);
  2614. timer->trigger(timer->arg);
  2615. }
  2616. }
  2617. EXPORT_SYMBOL(ath_gen_timer_isr);
  2618. /********/
  2619. /* HTC */
  2620. /********/
  2621. static struct {
  2622. u32 version;
  2623. const char * name;
  2624. } ath_mac_bb_names[] = {
  2625. /* Devices with external radios */
  2626. { AR_SREV_VERSION_5416_PCI, "5416" },
  2627. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2628. { AR_SREV_VERSION_9100, "9100" },
  2629. { AR_SREV_VERSION_9160, "9160" },
  2630. /* Single-chip solutions */
  2631. { AR_SREV_VERSION_9280, "9280" },
  2632. { AR_SREV_VERSION_9285, "9285" },
  2633. { AR_SREV_VERSION_9287, "9287" },
  2634. { AR_SREV_VERSION_9271, "9271" },
  2635. { AR_SREV_VERSION_9300, "9300" },
  2636. { AR_SREV_VERSION_9330, "9330" },
  2637. { AR_SREV_VERSION_9340, "9340" },
  2638. { AR_SREV_VERSION_9485, "9485" },
  2639. { AR_SREV_VERSION_9462, "9462" },
  2640. { AR_SREV_VERSION_9550, "9550" },
  2641. { AR_SREV_VERSION_9565, "9565" },
  2642. };
  2643. /* For devices with external radios */
  2644. static struct {
  2645. u16 version;
  2646. const char * name;
  2647. } ath_rf_names[] = {
  2648. { 0, "5133" },
  2649. { AR_RAD5133_SREV_MAJOR, "5133" },
  2650. { AR_RAD5122_SREV_MAJOR, "5122" },
  2651. { AR_RAD2133_SREV_MAJOR, "2133" },
  2652. { AR_RAD2122_SREV_MAJOR, "2122" }
  2653. };
  2654. /*
  2655. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2656. */
  2657. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2658. {
  2659. int i;
  2660. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2661. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2662. return ath_mac_bb_names[i].name;
  2663. }
  2664. }
  2665. return "????";
  2666. }
  2667. /*
  2668. * Return the RF name. "????" is returned if the RF is unknown.
  2669. * Used for devices with external radios.
  2670. */
  2671. static const char *ath9k_hw_rf_name(u16 rf_version)
  2672. {
  2673. int i;
  2674. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2675. if (ath_rf_names[i].version == rf_version) {
  2676. return ath_rf_names[i].name;
  2677. }
  2678. }
  2679. return "????";
  2680. }
  2681. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2682. {
  2683. int used;
  2684. /* chipsets >= AR9280 are single-chip */
  2685. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2686. used = scnprintf(hw_name, len,
  2687. "Atheros AR%s Rev:%x",
  2688. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2689. ah->hw_version.macRev);
  2690. }
  2691. else {
  2692. used = scnprintf(hw_name, len,
  2693. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2694. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2695. ah->hw_version.macRev,
  2696. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
  2697. & AR_RADIO_SREV_MAJOR)),
  2698. ah->hw_version.phyRev);
  2699. }
  2700. hw_name[used] = '\0';
  2701. }
  2702. EXPORT_SYMBOL(ath9k_hw_name);