wmi.c 60 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211
  1. /*
  2. * Copyright (c) 2005-2011 Atheros Communications Inc.
  3. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/skbuff.h>
  18. #include "core.h"
  19. #include "htc.h"
  20. #include "debug.h"
  21. #include "wmi.h"
  22. #include "mac.h"
  23. void ath10k_wmi_flush_tx(struct ath10k *ar)
  24. {
  25. int ret;
  26. lockdep_assert_held(&ar->conf_mutex);
  27. if (ar->state == ATH10K_STATE_WEDGED) {
  28. ath10k_warn("wmi flush skipped - device is wedged anyway\n");
  29. return;
  30. }
  31. ret = wait_event_timeout(ar->wmi.wq,
  32. atomic_read(&ar->wmi.pending_tx_count) == 0,
  33. 5*HZ);
  34. if (atomic_read(&ar->wmi.pending_tx_count) == 0)
  35. return;
  36. if (ret == 0)
  37. ret = -ETIMEDOUT;
  38. if (ret < 0)
  39. ath10k_warn("wmi flush failed (%d)\n", ret);
  40. }
  41. int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
  42. {
  43. int ret;
  44. ret = wait_for_completion_timeout(&ar->wmi.service_ready,
  45. WMI_SERVICE_READY_TIMEOUT_HZ);
  46. return ret;
  47. }
  48. int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
  49. {
  50. int ret;
  51. ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
  52. WMI_UNIFIED_READY_TIMEOUT_HZ);
  53. return ret;
  54. }
  55. static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
  56. {
  57. struct sk_buff *skb;
  58. u32 round_len = roundup(len, 4);
  59. skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
  60. if (!skb)
  61. return NULL;
  62. skb_reserve(skb, WMI_SKB_HEADROOM);
  63. if (!IS_ALIGNED((unsigned long)skb->data, 4))
  64. ath10k_warn("Unaligned WMI skb\n");
  65. skb_put(skb, round_len);
  66. memset(skb->data, 0, round_len);
  67. return skb;
  68. }
  69. static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
  70. {
  71. dev_kfree_skb(skb);
  72. if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
  73. wake_up(&ar->wmi.wq);
  74. }
  75. /* WMI command API */
  76. static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
  77. enum wmi_cmd_id cmd_id)
  78. {
  79. struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
  80. struct wmi_cmd_hdr *cmd_hdr;
  81. int status;
  82. u32 cmd = 0;
  83. if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
  84. return -ENOMEM;
  85. cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
  86. cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  87. cmd_hdr->cmd_id = __cpu_to_le32(cmd);
  88. if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
  89. WMI_MAX_PENDING_TX_COUNT) {
  90. /* avoid using up memory when FW hangs */
  91. dev_kfree_skb(skb);
  92. atomic_dec(&ar->wmi.pending_tx_count);
  93. return -EBUSY;
  94. }
  95. memset(skb_cb, 0, sizeof(*skb_cb));
  96. trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
  97. status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
  98. if (status) {
  99. dev_kfree_skb_any(skb);
  100. atomic_dec(&ar->wmi.pending_tx_count);
  101. return status;
  102. }
  103. return 0;
  104. }
  105. static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
  106. {
  107. struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
  108. enum wmi_scan_event_type event_type;
  109. enum wmi_scan_completion_reason reason;
  110. u32 freq;
  111. u32 req_id;
  112. u32 scan_id;
  113. u32 vdev_id;
  114. event_type = __le32_to_cpu(event->event_type);
  115. reason = __le32_to_cpu(event->reason);
  116. freq = __le32_to_cpu(event->channel_freq);
  117. req_id = __le32_to_cpu(event->scan_req_id);
  118. scan_id = __le32_to_cpu(event->scan_id);
  119. vdev_id = __le32_to_cpu(event->vdev_id);
  120. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
  121. ath10k_dbg(ATH10K_DBG_WMI,
  122. "scan event type %d reason %d freq %d req_id %d "
  123. "scan_id %d vdev_id %d\n",
  124. event_type, reason, freq, req_id, scan_id, vdev_id);
  125. spin_lock_bh(&ar->data_lock);
  126. switch (event_type) {
  127. case WMI_SCAN_EVENT_STARTED:
  128. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
  129. if (ar->scan.in_progress && ar->scan.is_roc)
  130. ieee80211_ready_on_channel(ar->hw);
  131. complete(&ar->scan.started);
  132. break;
  133. case WMI_SCAN_EVENT_COMPLETED:
  134. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
  135. switch (reason) {
  136. case WMI_SCAN_REASON_COMPLETED:
  137. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
  138. break;
  139. case WMI_SCAN_REASON_CANCELLED:
  140. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
  141. break;
  142. case WMI_SCAN_REASON_PREEMPTED:
  143. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
  144. break;
  145. case WMI_SCAN_REASON_TIMEDOUT:
  146. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
  147. break;
  148. default:
  149. break;
  150. }
  151. ar->scan_channel = NULL;
  152. if (!ar->scan.in_progress) {
  153. ath10k_warn("no scan requested, ignoring\n");
  154. break;
  155. }
  156. if (ar->scan.is_roc) {
  157. ath10k_offchan_tx_purge(ar);
  158. if (!ar->scan.aborting)
  159. ieee80211_remain_on_channel_expired(ar->hw);
  160. } else {
  161. ieee80211_scan_completed(ar->hw, ar->scan.aborting);
  162. }
  163. del_timer(&ar->scan.timeout);
  164. complete_all(&ar->scan.completed);
  165. ar->scan.in_progress = false;
  166. break;
  167. case WMI_SCAN_EVENT_BSS_CHANNEL:
  168. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
  169. ar->scan_channel = NULL;
  170. break;
  171. case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
  172. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
  173. ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
  174. if (ar->scan.in_progress && ar->scan.is_roc &&
  175. ar->scan.roc_freq == freq) {
  176. complete(&ar->scan.on_channel);
  177. }
  178. break;
  179. case WMI_SCAN_EVENT_DEQUEUED:
  180. ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
  181. break;
  182. case WMI_SCAN_EVENT_PREEMPTED:
  183. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
  184. break;
  185. case WMI_SCAN_EVENT_START_FAILED:
  186. ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
  187. break;
  188. default:
  189. break;
  190. }
  191. spin_unlock_bh(&ar->data_lock);
  192. return 0;
  193. }
  194. static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
  195. {
  196. enum ieee80211_band band;
  197. switch (phy_mode) {
  198. case MODE_11A:
  199. case MODE_11NA_HT20:
  200. case MODE_11NA_HT40:
  201. case MODE_11AC_VHT20:
  202. case MODE_11AC_VHT40:
  203. case MODE_11AC_VHT80:
  204. band = IEEE80211_BAND_5GHZ;
  205. break;
  206. case MODE_11G:
  207. case MODE_11B:
  208. case MODE_11GONLY:
  209. case MODE_11NG_HT20:
  210. case MODE_11NG_HT40:
  211. case MODE_11AC_VHT20_2G:
  212. case MODE_11AC_VHT40_2G:
  213. case MODE_11AC_VHT80_2G:
  214. default:
  215. band = IEEE80211_BAND_2GHZ;
  216. }
  217. return band;
  218. }
  219. static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
  220. {
  221. u8 rate_idx = 0;
  222. /* rate in Kbps */
  223. switch (rate) {
  224. case 1000:
  225. rate_idx = 0;
  226. break;
  227. case 2000:
  228. rate_idx = 1;
  229. break;
  230. case 5500:
  231. rate_idx = 2;
  232. break;
  233. case 11000:
  234. rate_idx = 3;
  235. break;
  236. case 6000:
  237. rate_idx = 4;
  238. break;
  239. case 9000:
  240. rate_idx = 5;
  241. break;
  242. case 12000:
  243. rate_idx = 6;
  244. break;
  245. case 18000:
  246. rate_idx = 7;
  247. break;
  248. case 24000:
  249. rate_idx = 8;
  250. break;
  251. case 36000:
  252. rate_idx = 9;
  253. break;
  254. case 48000:
  255. rate_idx = 10;
  256. break;
  257. case 54000:
  258. rate_idx = 11;
  259. break;
  260. default:
  261. break;
  262. }
  263. if (band == IEEE80211_BAND_5GHZ) {
  264. if (rate_idx > 3)
  265. /* Omit CCK rates */
  266. rate_idx -= 4;
  267. else
  268. rate_idx = 0;
  269. }
  270. return rate_idx;
  271. }
  272. static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
  273. {
  274. struct wmi_mgmt_rx_event_v1 *ev_v1;
  275. struct wmi_mgmt_rx_event_v2 *ev_v2;
  276. struct wmi_mgmt_rx_hdr_v1 *ev_hdr;
  277. struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
  278. struct ieee80211_hdr *hdr;
  279. u32 rx_status;
  280. u32 channel;
  281. u32 phy_mode;
  282. u32 snr;
  283. u32 rate;
  284. u32 buf_len;
  285. u16 fc;
  286. int pull_len;
  287. if (test_bit(ATH10K_FW_FEATURE_EXT_WMI_MGMT_RX, ar->fw_features)) {
  288. ev_v2 = (struct wmi_mgmt_rx_event_v2 *)skb->data;
  289. ev_hdr = &ev_v2->hdr.v1;
  290. pull_len = sizeof(*ev_v2);
  291. } else {
  292. ev_v1 = (struct wmi_mgmt_rx_event_v1 *)skb->data;
  293. ev_hdr = &ev_v1->hdr;
  294. pull_len = sizeof(*ev_v1);
  295. }
  296. channel = __le32_to_cpu(ev_hdr->channel);
  297. buf_len = __le32_to_cpu(ev_hdr->buf_len);
  298. rx_status = __le32_to_cpu(ev_hdr->status);
  299. snr = __le32_to_cpu(ev_hdr->snr);
  300. phy_mode = __le32_to_cpu(ev_hdr->phy_mode);
  301. rate = __le32_to_cpu(ev_hdr->rate);
  302. memset(status, 0, sizeof(*status));
  303. ath10k_dbg(ATH10K_DBG_MGMT,
  304. "event mgmt rx status %08x\n", rx_status);
  305. if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
  306. dev_kfree_skb(skb);
  307. return 0;
  308. }
  309. if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
  310. dev_kfree_skb(skb);
  311. return 0;
  312. }
  313. if (rx_status & WMI_RX_STATUS_ERR_CRC)
  314. status->flag |= RX_FLAG_FAILED_FCS_CRC;
  315. if (rx_status & WMI_RX_STATUS_ERR_MIC)
  316. status->flag |= RX_FLAG_MMIC_ERROR;
  317. status->band = phy_mode_to_band(phy_mode);
  318. status->freq = ieee80211_channel_to_frequency(channel, status->band);
  319. status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
  320. status->rate_idx = get_rate_idx(rate, status->band);
  321. skb_pull(skb, pull_len);
  322. hdr = (struct ieee80211_hdr *)skb->data;
  323. fc = le16_to_cpu(hdr->frame_control);
  324. if (fc & IEEE80211_FCTL_PROTECTED) {
  325. status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
  326. RX_FLAG_MMIC_STRIPPED;
  327. hdr->frame_control = __cpu_to_le16(fc &
  328. ~IEEE80211_FCTL_PROTECTED);
  329. }
  330. ath10k_dbg(ATH10K_DBG_MGMT,
  331. "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
  332. skb, skb->len,
  333. fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
  334. ath10k_dbg(ATH10K_DBG_MGMT,
  335. "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
  336. status->freq, status->band, status->signal,
  337. status->rate_idx);
  338. /*
  339. * packets from HTC come aligned to 4byte boundaries
  340. * because they can originally come in along with a trailer
  341. */
  342. skb_trim(skb, buf_len);
  343. ieee80211_rx(ar->hw, skb);
  344. return 0;
  345. }
  346. static int freq_to_idx(struct ath10k *ar, int freq)
  347. {
  348. struct ieee80211_supported_band *sband;
  349. int band, ch, idx = 0;
  350. for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
  351. sband = ar->hw->wiphy->bands[band];
  352. if (!sband)
  353. continue;
  354. for (ch = 0; ch < sband->n_channels; ch++, idx++)
  355. if (sband->channels[ch].center_freq == freq)
  356. goto exit;
  357. }
  358. exit:
  359. return idx;
  360. }
  361. static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
  362. {
  363. struct wmi_chan_info_event *ev;
  364. struct survey_info *survey;
  365. u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count;
  366. int idx;
  367. ev = (struct wmi_chan_info_event *)skb->data;
  368. err_code = __le32_to_cpu(ev->err_code);
  369. freq = __le32_to_cpu(ev->freq);
  370. cmd_flags = __le32_to_cpu(ev->cmd_flags);
  371. noise_floor = __le32_to_cpu(ev->noise_floor);
  372. rx_clear_count = __le32_to_cpu(ev->rx_clear_count);
  373. cycle_count = __le32_to_cpu(ev->cycle_count);
  374. ath10k_dbg(ATH10K_DBG_WMI,
  375. "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n",
  376. err_code, freq, cmd_flags, noise_floor, rx_clear_count,
  377. cycle_count);
  378. spin_lock_bh(&ar->data_lock);
  379. if (!ar->scan.in_progress) {
  380. ath10k_warn("chan info event without a scan request?\n");
  381. goto exit;
  382. }
  383. idx = freq_to_idx(ar, freq);
  384. if (idx >= ARRAY_SIZE(ar->survey)) {
  385. ath10k_warn("chan info: invalid frequency %d (idx %d out of bounds)\n",
  386. freq, idx);
  387. goto exit;
  388. }
  389. if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) {
  390. /* During scanning chan info is reported twice for each
  391. * visited channel. The reported cycle count is global
  392. * and per-channel cycle count must be calculated */
  393. cycle_count -= ar->survey_last_cycle_count;
  394. rx_clear_count -= ar->survey_last_rx_clear_count;
  395. survey = &ar->survey[idx];
  396. survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count);
  397. survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count);
  398. survey->noise = noise_floor;
  399. survey->filled = SURVEY_INFO_CHANNEL_TIME |
  400. SURVEY_INFO_CHANNEL_TIME_RX |
  401. SURVEY_INFO_NOISE_DBM;
  402. }
  403. ar->survey_last_rx_clear_count = rx_clear_count;
  404. ar->survey_last_cycle_count = cycle_count;
  405. exit:
  406. spin_unlock_bh(&ar->data_lock);
  407. }
  408. static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
  409. {
  410. ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
  411. }
  412. static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
  413. {
  414. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
  415. }
  416. static void ath10k_wmi_event_update_stats(struct ath10k *ar,
  417. struct sk_buff *skb)
  418. {
  419. struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
  420. ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
  421. ath10k_debug_read_target_stats(ar, ev);
  422. }
  423. static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
  424. struct sk_buff *skb)
  425. {
  426. struct wmi_vdev_start_response_event *ev;
  427. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
  428. ev = (struct wmi_vdev_start_response_event *)skb->data;
  429. if (WARN_ON(__le32_to_cpu(ev->status)))
  430. return;
  431. complete(&ar->vdev_setup_done);
  432. }
  433. static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
  434. struct sk_buff *skb)
  435. {
  436. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
  437. complete(&ar->vdev_setup_done);
  438. }
  439. static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
  440. struct sk_buff *skb)
  441. {
  442. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
  443. }
  444. /*
  445. * FIXME
  446. *
  447. * We don't report to mac80211 sleep state of connected
  448. * stations. Due to this mac80211 can't fill in TIM IE
  449. * correctly.
  450. *
  451. * I know of no way of getting nullfunc frames that contain
  452. * sleep transition from connected stations - these do not
  453. * seem to be sent from the target to the host. There also
  454. * doesn't seem to be a dedicated event for that. So the
  455. * only way left to do this would be to read tim_bitmap
  456. * during SWBA.
  457. *
  458. * We could probably try using tim_bitmap from SWBA to tell
  459. * mac80211 which stations are asleep and which are not. The
  460. * problem here is calling mac80211 functions so many times
  461. * could take too long and make us miss the time to submit
  462. * the beacon to the target.
  463. *
  464. * So as a workaround we try to extend the TIM IE if there
  465. * is unicast buffered for stations with aid > 7 and fill it
  466. * in ourselves.
  467. */
  468. static void ath10k_wmi_update_tim(struct ath10k *ar,
  469. struct ath10k_vif *arvif,
  470. struct sk_buff *bcn,
  471. struct wmi_bcn_info *bcn_info)
  472. {
  473. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
  474. struct ieee80211_tim_ie *tim;
  475. u8 *ies, *ie;
  476. u8 ie_len, pvm_len;
  477. /* if next SWBA has no tim_changed the tim_bitmap is garbage.
  478. * we must copy the bitmap upon change and reuse it later */
  479. if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
  480. int i;
  481. BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
  482. sizeof(bcn_info->tim_info.tim_bitmap));
  483. for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
  484. __le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
  485. u32 v = __le32_to_cpu(t);
  486. arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
  487. }
  488. /* FW reports either length 0 or 16
  489. * so we calculate this on our own */
  490. arvif->u.ap.tim_len = 0;
  491. for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
  492. if (arvif->u.ap.tim_bitmap[i])
  493. arvif->u.ap.tim_len = i;
  494. arvif->u.ap.tim_len++;
  495. }
  496. ies = bcn->data;
  497. ies += ieee80211_hdrlen(hdr->frame_control);
  498. ies += 12; /* fixed parameters */
  499. ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
  500. (u8 *)skb_tail_pointer(bcn) - ies);
  501. if (!ie) {
  502. if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
  503. ath10k_warn("no tim ie found;\n");
  504. return;
  505. }
  506. tim = (void *)ie + 2;
  507. ie_len = ie[1];
  508. pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
  509. if (pvm_len < arvif->u.ap.tim_len) {
  510. int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
  511. int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
  512. void *next_ie = ie + 2 + ie_len;
  513. if (skb_put(bcn, expand_size)) {
  514. memmove(next_ie + expand_size, next_ie, move_size);
  515. ie[1] += expand_size;
  516. ie_len += expand_size;
  517. pvm_len += expand_size;
  518. } else {
  519. ath10k_warn("tim expansion failed\n");
  520. }
  521. }
  522. if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
  523. ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
  524. return;
  525. }
  526. tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
  527. memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
  528. ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
  529. tim->dtim_count, tim->dtim_period,
  530. tim->bitmap_ctrl, pvm_len);
  531. }
  532. static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
  533. struct wmi_p2p_noa_info *noa)
  534. {
  535. struct ieee80211_p2p_noa_attr *noa_attr;
  536. u8 ctwindow_oppps = noa->ctwindow_oppps;
  537. u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
  538. bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
  539. __le16 *noa_attr_len;
  540. u16 attr_len;
  541. u8 noa_descriptors = noa->num_descriptors;
  542. int i;
  543. /* P2P IE */
  544. data[0] = WLAN_EID_VENDOR_SPECIFIC;
  545. data[1] = len - 2;
  546. data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
  547. data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
  548. data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
  549. data[5] = WLAN_OUI_TYPE_WFA_P2P;
  550. /* NOA ATTR */
  551. data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
  552. noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
  553. noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
  554. noa_attr->index = noa->index;
  555. noa_attr->oppps_ctwindow = ctwindow;
  556. if (oppps)
  557. noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
  558. for (i = 0; i < noa_descriptors; i++) {
  559. noa_attr->desc[i].count =
  560. __le32_to_cpu(noa->descriptors[i].type_count);
  561. noa_attr->desc[i].duration = noa->descriptors[i].duration;
  562. noa_attr->desc[i].interval = noa->descriptors[i].interval;
  563. noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
  564. }
  565. attr_len = 2; /* index + oppps_ctwindow */
  566. attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
  567. *noa_attr_len = __cpu_to_le16(attr_len);
  568. }
  569. static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
  570. {
  571. u32 len = 0;
  572. u8 noa_descriptors = noa->num_descriptors;
  573. u8 opp_ps_info = noa->ctwindow_oppps;
  574. bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
  575. if (!noa_descriptors && !opps_enabled)
  576. return len;
  577. len += 1 + 1 + 4; /* EID + len + OUI */
  578. len += 1 + 2; /* noa attr + attr len */
  579. len += 1 + 1; /* index + oppps_ctwindow */
  580. len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
  581. return len;
  582. }
  583. static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
  584. struct sk_buff *bcn,
  585. struct wmi_bcn_info *bcn_info)
  586. {
  587. struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
  588. u8 *new_data, *old_data = arvif->u.ap.noa_data;
  589. u32 new_len;
  590. if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
  591. return;
  592. ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
  593. if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
  594. new_len = ath10k_p2p_calc_noa_ie_len(noa);
  595. if (!new_len)
  596. goto cleanup;
  597. new_data = kmalloc(new_len, GFP_ATOMIC);
  598. if (!new_data)
  599. goto cleanup;
  600. ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
  601. spin_lock_bh(&ar->data_lock);
  602. arvif->u.ap.noa_data = new_data;
  603. arvif->u.ap.noa_len = new_len;
  604. spin_unlock_bh(&ar->data_lock);
  605. kfree(old_data);
  606. }
  607. if (arvif->u.ap.noa_data)
  608. if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
  609. memcpy(skb_put(bcn, arvif->u.ap.noa_len),
  610. arvif->u.ap.noa_data,
  611. arvif->u.ap.noa_len);
  612. return;
  613. cleanup:
  614. spin_lock_bh(&ar->data_lock);
  615. arvif->u.ap.noa_data = NULL;
  616. arvif->u.ap.noa_len = 0;
  617. spin_unlock_bh(&ar->data_lock);
  618. kfree(old_data);
  619. }
  620. static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
  621. {
  622. struct wmi_host_swba_event *ev;
  623. u32 map;
  624. int i = -1;
  625. struct wmi_bcn_info *bcn_info;
  626. struct ath10k_vif *arvif;
  627. struct wmi_bcn_tx_arg arg;
  628. struct sk_buff *bcn;
  629. int vdev_id = 0;
  630. int ret;
  631. ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
  632. ev = (struct wmi_host_swba_event *)skb->data;
  633. map = __le32_to_cpu(ev->vdev_map);
  634. ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
  635. "-vdev map 0x%x\n",
  636. ev->vdev_map);
  637. for (; map; map >>= 1, vdev_id++) {
  638. if (!(map & 0x1))
  639. continue;
  640. i++;
  641. if (i >= WMI_MAX_AP_VDEV) {
  642. ath10k_warn("swba has corrupted vdev map\n");
  643. break;
  644. }
  645. bcn_info = &ev->bcn_info[i];
  646. ath10k_dbg(ATH10K_DBG_MGMT,
  647. "-bcn_info[%d]:\n"
  648. "--tim_len %d\n"
  649. "--tim_mcast %d\n"
  650. "--tim_changed %d\n"
  651. "--tim_num_ps_pending %d\n"
  652. "--tim_bitmap 0x%08x%08x%08x%08x\n",
  653. i,
  654. __le32_to_cpu(bcn_info->tim_info.tim_len),
  655. __le32_to_cpu(bcn_info->tim_info.tim_mcast),
  656. __le32_to_cpu(bcn_info->tim_info.tim_changed),
  657. __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
  658. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
  659. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
  660. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
  661. __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
  662. arvif = ath10k_get_arvif(ar, vdev_id);
  663. if (arvif == NULL) {
  664. ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
  665. continue;
  666. }
  667. bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
  668. if (!bcn) {
  669. ath10k_warn("could not get mac80211 beacon\n");
  670. continue;
  671. }
  672. ath10k_tx_h_seq_no(bcn);
  673. ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
  674. ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
  675. arg.vdev_id = arvif->vdev_id;
  676. arg.tx_rate = 0;
  677. arg.tx_power = 0;
  678. arg.bcn = bcn->data;
  679. arg.bcn_len = bcn->len;
  680. ret = ath10k_wmi_beacon_send(ar, &arg);
  681. if (ret)
  682. ath10k_warn("could not send beacon (%d)\n", ret);
  683. dev_kfree_skb_any(bcn);
  684. }
  685. }
  686. static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
  687. struct sk_buff *skb)
  688. {
  689. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
  690. }
  691. static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
  692. {
  693. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
  694. }
  695. static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
  696. {
  697. ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
  698. }
  699. static void ath10k_wmi_event_profile_match(struct ath10k *ar,
  700. struct sk_buff *skb)
  701. {
  702. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
  703. }
  704. static void ath10k_wmi_event_debug_print(struct ath10k *ar,
  705. struct sk_buff *skb)
  706. {
  707. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
  708. }
  709. static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
  710. {
  711. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
  712. }
  713. static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
  714. struct sk_buff *skb)
  715. {
  716. ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
  717. }
  718. static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
  719. struct sk_buff *skb)
  720. {
  721. ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
  722. }
  723. static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
  724. struct sk_buff *skb)
  725. {
  726. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
  727. }
  728. static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
  729. struct sk_buff *skb)
  730. {
  731. ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
  732. }
  733. static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
  734. struct sk_buff *skb)
  735. {
  736. ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
  737. }
  738. static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
  739. struct sk_buff *skb)
  740. {
  741. ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
  742. }
  743. static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
  744. struct sk_buff *skb)
  745. {
  746. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
  747. }
  748. static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
  749. struct sk_buff *skb)
  750. {
  751. ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
  752. }
  753. static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
  754. struct sk_buff *skb)
  755. {
  756. ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
  757. }
  758. static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
  759. struct sk_buff *skb)
  760. {
  761. ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
  762. }
  763. static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
  764. struct sk_buff *skb)
  765. {
  766. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
  767. }
  768. static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
  769. struct sk_buff *skb)
  770. {
  771. ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
  772. }
  773. static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
  774. struct sk_buff *skb)
  775. {
  776. ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
  777. }
  778. static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
  779. struct sk_buff *skb)
  780. {
  781. struct wmi_service_ready_event *ev = (void *)skb->data;
  782. if (skb->len < sizeof(*ev)) {
  783. ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
  784. skb->len, sizeof(*ev));
  785. return;
  786. }
  787. ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
  788. ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
  789. ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
  790. ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
  791. ar->fw_version_major =
  792. (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
  793. ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
  794. ar->fw_version_release =
  795. (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
  796. ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
  797. ar->phy_capability = __le32_to_cpu(ev->phy_capability);
  798. ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains);
  799. if (ar->fw_version_build > 636)
  800. set_bit(ATH10K_FW_FEATURE_EXT_WMI_MGMT_RX, ar->fw_features);
  801. if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) {
  802. ath10k_warn("hardware advertises support for more spatial streams than it should (%d > %d)\n",
  803. ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM);
  804. ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM;
  805. }
  806. ar->ath_common.regulatory.current_rd =
  807. __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
  808. ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
  809. sizeof(ev->wmi_service_bitmap));
  810. if (strlen(ar->hw->wiphy->fw_version) == 0) {
  811. snprintf(ar->hw->wiphy->fw_version,
  812. sizeof(ar->hw->wiphy->fw_version),
  813. "%u.%u.%u.%u",
  814. ar->fw_version_major,
  815. ar->fw_version_minor,
  816. ar->fw_version_release,
  817. ar->fw_version_build);
  818. }
  819. /* FIXME: it probably should be better to support this */
  820. if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
  821. ath10k_warn("target requested %d memory chunks; ignoring\n",
  822. __le32_to_cpu(ev->num_mem_reqs));
  823. }
  824. ath10k_dbg(ATH10K_DBG_WMI,
  825. "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n",
  826. __le32_to_cpu(ev->sw_version),
  827. __le32_to_cpu(ev->sw_version_1),
  828. __le32_to_cpu(ev->abi_version),
  829. __le32_to_cpu(ev->phy_capability),
  830. __le32_to_cpu(ev->ht_cap_info),
  831. __le32_to_cpu(ev->vht_cap_info),
  832. __le32_to_cpu(ev->vht_supp_mcs),
  833. __le32_to_cpu(ev->sys_cap_info),
  834. __le32_to_cpu(ev->num_mem_reqs),
  835. __le32_to_cpu(ev->num_rf_chains));
  836. complete(&ar->wmi.service_ready);
  837. }
  838. static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
  839. {
  840. struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
  841. if (WARN_ON(skb->len < sizeof(*ev)))
  842. return -EINVAL;
  843. memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
  844. ath10k_dbg(ATH10K_DBG_WMI,
  845. "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
  846. __le32_to_cpu(ev->sw_version),
  847. __le32_to_cpu(ev->abi_version),
  848. ev->mac_addr.addr,
  849. __le32_to_cpu(ev->status));
  850. complete(&ar->wmi.unified_ready);
  851. return 0;
  852. }
  853. static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
  854. {
  855. struct wmi_cmd_hdr *cmd_hdr;
  856. enum wmi_event_id id;
  857. u16 len;
  858. cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  859. id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
  860. if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
  861. return;
  862. len = skb->len;
  863. trace_ath10k_wmi_event(id, skb->data, skb->len);
  864. switch (id) {
  865. case WMI_MGMT_RX_EVENTID:
  866. ath10k_wmi_event_mgmt_rx(ar, skb);
  867. /* mgmt_rx() owns the skb now! */
  868. return;
  869. case WMI_SCAN_EVENTID:
  870. ath10k_wmi_event_scan(ar, skb);
  871. break;
  872. case WMI_CHAN_INFO_EVENTID:
  873. ath10k_wmi_event_chan_info(ar, skb);
  874. break;
  875. case WMI_ECHO_EVENTID:
  876. ath10k_wmi_event_echo(ar, skb);
  877. break;
  878. case WMI_DEBUG_MESG_EVENTID:
  879. ath10k_wmi_event_debug_mesg(ar, skb);
  880. break;
  881. case WMI_UPDATE_STATS_EVENTID:
  882. ath10k_wmi_event_update_stats(ar, skb);
  883. break;
  884. case WMI_VDEV_START_RESP_EVENTID:
  885. ath10k_wmi_event_vdev_start_resp(ar, skb);
  886. break;
  887. case WMI_VDEV_STOPPED_EVENTID:
  888. ath10k_wmi_event_vdev_stopped(ar, skb);
  889. break;
  890. case WMI_PEER_STA_KICKOUT_EVENTID:
  891. ath10k_wmi_event_peer_sta_kickout(ar, skb);
  892. break;
  893. case WMI_HOST_SWBA_EVENTID:
  894. ath10k_wmi_event_host_swba(ar, skb);
  895. break;
  896. case WMI_TBTTOFFSET_UPDATE_EVENTID:
  897. ath10k_wmi_event_tbttoffset_update(ar, skb);
  898. break;
  899. case WMI_PHYERR_EVENTID:
  900. ath10k_wmi_event_phyerr(ar, skb);
  901. break;
  902. case WMI_ROAM_EVENTID:
  903. ath10k_wmi_event_roam(ar, skb);
  904. break;
  905. case WMI_PROFILE_MATCH:
  906. ath10k_wmi_event_profile_match(ar, skb);
  907. break;
  908. case WMI_DEBUG_PRINT_EVENTID:
  909. ath10k_wmi_event_debug_print(ar, skb);
  910. break;
  911. case WMI_PDEV_QVIT_EVENTID:
  912. ath10k_wmi_event_pdev_qvit(ar, skb);
  913. break;
  914. case WMI_WLAN_PROFILE_DATA_EVENTID:
  915. ath10k_wmi_event_wlan_profile_data(ar, skb);
  916. break;
  917. case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
  918. ath10k_wmi_event_rtt_measurement_report(ar, skb);
  919. break;
  920. case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
  921. ath10k_wmi_event_tsf_measurement_report(ar, skb);
  922. break;
  923. case WMI_RTT_ERROR_REPORT_EVENTID:
  924. ath10k_wmi_event_rtt_error_report(ar, skb);
  925. break;
  926. case WMI_WOW_WAKEUP_HOST_EVENTID:
  927. ath10k_wmi_event_wow_wakeup_host(ar, skb);
  928. break;
  929. case WMI_DCS_INTERFERENCE_EVENTID:
  930. ath10k_wmi_event_dcs_interference(ar, skb);
  931. break;
  932. case WMI_PDEV_TPC_CONFIG_EVENTID:
  933. ath10k_wmi_event_pdev_tpc_config(ar, skb);
  934. break;
  935. case WMI_PDEV_FTM_INTG_EVENTID:
  936. ath10k_wmi_event_pdev_ftm_intg(ar, skb);
  937. break;
  938. case WMI_GTK_OFFLOAD_STATUS_EVENTID:
  939. ath10k_wmi_event_gtk_offload_status(ar, skb);
  940. break;
  941. case WMI_GTK_REKEY_FAIL_EVENTID:
  942. ath10k_wmi_event_gtk_rekey_fail(ar, skb);
  943. break;
  944. case WMI_TX_DELBA_COMPLETE_EVENTID:
  945. ath10k_wmi_event_delba_complete(ar, skb);
  946. break;
  947. case WMI_TX_ADDBA_COMPLETE_EVENTID:
  948. ath10k_wmi_event_addba_complete(ar, skb);
  949. break;
  950. case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
  951. ath10k_wmi_event_vdev_install_key_complete(ar, skb);
  952. break;
  953. case WMI_SERVICE_READY_EVENTID:
  954. ath10k_wmi_service_ready_event_rx(ar, skb);
  955. break;
  956. case WMI_READY_EVENTID:
  957. ath10k_wmi_ready_event_rx(ar, skb);
  958. break;
  959. default:
  960. ath10k_warn("Unknown eventid: %d\n", id);
  961. break;
  962. }
  963. dev_kfree_skb(skb);
  964. }
  965. static void ath10k_wmi_event_work(struct work_struct *work)
  966. {
  967. struct ath10k *ar = container_of(work, struct ath10k,
  968. wmi.wmi_event_work);
  969. struct sk_buff *skb;
  970. for (;;) {
  971. skb = skb_dequeue(&ar->wmi.wmi_event_list);
  972. if (!skb)
  973. break;
  974. ath10k_wmi_event_process(ar, skb);
  975. }
  976. }
  977. static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
  978. {
  979. struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
  980. enum wmi_event_id event_id;
  981. event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
  982. /* some events require to be handled ASAP
  983. * thus can't be defered to a worker thread */
  984. switch (event_id) {
  985. case WMI_HOST_SWBA_EVENTID:
  986. case WMI_MGMT_RX_EVENTID:
  987. ath10k_wmi_event_process(ar, skb);
  988. return;
  989. default:
  990. break;
  991. }
  992. skb_queue_tail(&ar->wmi.wmi_event_list, skb);
  993. queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
  994. }
  995. /* WMI Initialization functions */
  996. int ath10k_wmi_attach(struct ath10k *ar)
  997. {
  998. init_completion(&ar->wmi.service_ready);
  999. init_completion(&ar->wmi.unified_ready);
  1000. init_waitqueue_head(&ar->wmi.wq);
  1001. skb_queue_head_init(&ar->wmi.wmi_event_list);
  1002. INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
  1003. return 0;
  1004. }
  1005. void ath10k_wmi_detach(struct ath10k *ar)
  1006. {
  1007. /* HTC should've drained the packets already */
  1008. if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
  1009. ath10k_warn("there are still pending packets\n");
  1010. cancel_work_sync(&ar->wmi.wmi_event_work);
  1011. skb_queue_purge(&ar->wmi.wmi_event_list);
  1012. }
  1013. int ath10k_wmi_connect_htc_service(struct ath10k *ar)
  1014. {
  1015. int status;
  1016. struct ath10k_htc_svc_conn_req conn_req;
  1017. struct ath10k_htc_svc_conn_resp conn_resp;
  1018. memset(&conn_req, 0, sizeof(conn_req));
  1019. memset(&conn_resp, 0, sizeof(conn_resp));
  1020. /* these fields are the same for all service endpoints */
  1021. conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
  1022. conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
  1023. /* connect to control service */
  1024. conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
  1025. status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
  1026. if (status) {
  1027. ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
  1028. status);
  1029. return status;
  1030. }
  1031. ar->wmi.eid = conn_resp.eid;
  1032. return 0;
  1033. }
  1034. int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
  1035. u16 rd5g, u16 ctl2g, u16 ctl5g)
  1036. {
  1037. struct wmi_pdev_set_regdomain_cmd *cmd;
  1038. struct sk_buff *skb;
  1039. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1040. if (!skb)
  1041. return -ENOMEM;
  1042. cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
  1043. cmd->reg_domain = __cpu_to_le32(rd);
  1044. cmd->reg_domain_2G = __cpu_to_le32(rd2g);
  1045. cmd->reg_domain_5G = __cpu_to_le32(rd5g);
  1046. cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
  1047. cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
  1048. ath10k_dbg(ATH10K_DBG_WMI,
  1049. "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
  1050. rd, rd2g, rd5g, ctl2g, ctl5g);
  1051. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
  1052. }
  1053. int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
  1054. const struct wmi_channel_arg *arg)
  1055. {
  1056. struct wmi_set_channel_cmd *cmd;
  1057. struct sk_buff *skb;
  1058. if (arg->passive)
  1059. return -EINVAL;
  1060. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1061. if (!skb)
  1062. return -ENOMEM;
  1063. cmd = (struct wmi_set_channel_cmd *)skb->data;
  1064. cmd->chan.mhz = __cpu_to_le32(arg->freq);
  1065. cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
  1066. cmd->chan.mode = arg->mode;
  1067. cmd->chan.min_power = arg->min_power;
  1068. cmd->chan.max_power = arg->max_power;
  1069. cmd->chan.reg_power = arg->max_reg_power;
  1070. cmd->chan.reg_classid = arg->reg_class_id;
  1071. cmd->chan.antenna_max = arg->max_antenna_gain;
  1072. ath10k_dbg(ATH10K_DBG_WMI,
  1073. "wmi set channel mode %d freq %d\n",
  1074. arg->mode, arg->freq);
  1075. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
  1076. }
  1077. int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
  1078. {
  1079. struct wmi_pdev_suspend_cmd *cmd;
  1080. struct sk_buff *skb;
  1081. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1082. if (!skb)
  1083. return -ENOMEM;
  1084. cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
  1085. cmd->suspend_opt = WMI_PDEV_SUSPEND;
  1086. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
  1087. }
  1088. int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
  1089. {
  1090. struct sk_buff *skb;
  1091. skb = ath10k_wmi_alloc_skb(0);
  1092. if (skb == NULL)
  1093. return -ENOMEM;
  1094. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
  1095. }
  1096. int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
  1097. u32 value)
  1098. {
  1099. struct wmi_pdev_set_param_cmd *cmd;
  1100. struct sk_buff *skb;
  1101. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1102. if (!skb)
  1103. return -ENOMEM;
  1104. cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
  1105. cmd->param_id = __cpu_to_le32(id);
  1106. cmd->param_value = __cpu_to_le32(value);
  1107. ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
  1108. id, value);
  1109. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
  1110. }
  1111. int ath10k_wmi_cmd_init(struct ath10k *ar)
  1112. {
  1113. struct wmi_init_cmd *cmd;
  1114. struct sk_buff *buf;
  1115. struct wmi_resource_config config = {};
  1116. u32 val;
  1117. config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
  1118. config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
  1119. config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
  1120. config.num_offload_reorder_bufs =
  1121. __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
  1122. config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
  1123. config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
  1124. config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
  1125. config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
  1126. config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
  1127. config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1128. config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1129. config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
  1130. config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
  1131. config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
  1132. config.scan_max_pending_reqs =
  1133. __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
  1134. config.bmiss_offload_max_vdev =
  1135. __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
  1136. config.roam_offload_max_vdev =
  1137. __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
  1138. config.roam_offload_max_ap_profiles =
  1139. __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
  1140. config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
  1141. config.num_mcast_table_elems =
  1142. __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
  1143. config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
  1144. config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
  1145. config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
  1146. config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
  1147. config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
  1148. val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
  1149. config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
  1150. config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
  1151. config.gtk_offload_max_vdev =
  1152. __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
  1153. config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
  1154. config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
  1155. buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1156. if (!buf)
  1157. return -ENOMEM;
  1158. cmd = (struct wmi_init_cmd *)buf->data;
  1159. cmd->num_host_mem_chunks = 0;
  1160. memcpy(&cmd->resource_config, &config, sizeof(config));
  1161. ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
  1162. return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
  1163. }
  1164. static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
  1165. {
  1166. int len;
  1167. len = sizeof(struct wmi_start_scan_cmd);
  1168. if (arg->ie_len) {
  1169. if (!arg->ie)
  1170. return -EINVAL;
  1171. if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
  1172. return -EINVAL;
  1173. len += sizeof(struct wmi_ie_data);
  1174. len += roundup(arg->ie_len, 4);
  1175. }
  1176. if (arg->n_channels) {
  1177. if (!arg->channels)
  1178. return -EINVAL;
  1179. if (arg->n_channels > ARRAY_SIZE(arg->channels))
  1180. return -EINVAL;
  1181. len += sizeof(struct wmi_chan_list);
  1182. len += sizeof(__le32) * arg->n_channels;
  1183. }
  1184. if (arg->n_ssids) {
  1185. if (!arg->ssids)
  1186. return -EINVAL;
  1187. if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
  1188. return -EINVAL;
  1189. len += sizeof(struct wmi_ssid_list);
  1190. len += sizeof(struct wmi_ssid) * arg->n_ssids;
  1191. }
  1192. if (arg->n_bssids) {
  1193. if (!arg->bssids)
  1194. return -EINVAL;
  1195. if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
  1196. return -EINVAL;
  1197. len += sizeof(struct wmi_bssid_list);
  1198. len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
  1199. }
  1200. return len;
  1201. }
  1202. int ath10k_wmi_start_scan(struct ath10k *ar,
  1203. const struct wmi_start_scan_arg *arg)
  1204. {
  1205. struct wmi_start_scan_cmd *cmd;
  1206. struct sk_buff *skb;
  1207. struct wmi_ie_data *ie;
  1208. struct wmi_chan_list *channels;
  1209. struct wmi_ssid_list *ssids;
  1210. struct wmi_bssid_list *bssids;
  1211. u32 scan_id;
  1212. u32 scan_req_id;
  1213. int off;
  1214. int len = 0;
  1215. int i;
  1216. len = ath10k_wmi_start_scan_calc_len(arg);
  1217. if (len < 0)
  1218. return len; /* len contains error code here */
  1219. skb = ath10k_wmi_alloc_skb(len);
  1220. if (!skb)
  1221. return -ENOMEM;
  1222. scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX;
  1223. scan_id |= arg->scan_id;
  1224. scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
  1225. scan_req_id |= arg->scan_req_id;
  1226. cmd = (struct wmi_start_scan_cmd *)skb->data;
  1227. cmd->scan_id = __cpu_to_le32(scan_id);
  1228. cmd->scan_req_id = __cpu_to_le32(scan_req_id);
  1229. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1230. cmd->scan_priority = __cpu_to_le32(arg->scan_priority);
  1231. cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
  1232. cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active);
  1233. cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
  1234. cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time);
  1235. cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time);
  1236. cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time);
  1237. cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
  1238. cmd->idle_time = __cpu_to_le32(arg->idle_time);
  1239. cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time);
  1240. cmd->probe_delay = __cpu_to_le32(arg->probe_delay);
  1241. cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags);
  1242. /* TLV list starts after fields included in the struct */
  1243. off = sizeof(*cmd);
  1244. if (arg->n_channels) {
  1245. channels = (void *)skb->data + off;
  1246. channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
  1247. channels->num_chan = __cpu_to_le32(arg->n_channels);
  1248. for (i = 0; i < arg->n_channels; i++)
  1249. channels->channel_list[i] =
  1250. __cpu_to_le32(arg->channels[i]);
  1251. off += sizeof(*channels);
  1252. off += sizeof(__le32) * arg->n_channels;
  1253. }
  1254. if (arg->n_ssids) {
  1255. ssids = (void *)skb->data + off;
  1256. ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
  1257. ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
  1258. for (i = 0; i < arg->n_ssids; i++) {
  1259. ssids->ssids[i].ssid_len =
  1260. __cpu_to_le32(arg->ssids[i].len);
  1261. memcpy(&ssids->ssids[i].ssid,
  1262. arg->ssids[i].ssid,
  1263. arg->ssids[i].len);
  1264. }
  1265. off += sizeof(*ssids);
  1266. off += sizeof(struct wmi_ssid) * arg->n_ssids;
  1267. }
  1268. if (arg->n_bssids) {
  1269. bssids = (void *)skb->data + off;
  1270. bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
  1271. bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
  1272. for (i = 0; i < arg->n_bssids; i++)
  1273. memcpy(&bssids->bssid_list[i],
  1274. arg->bssids[i].bssid,
  1275. ETH_ALEN);
  1276. off += sizeof(*bssids);
  1277. off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
  1278. }
  1279. if (arg->ie_len) {
  1280. ie = (void *)skb->data + off;
  1281. ie->tag = __cpu_to_le32(WMI_IE_TAG);
  1282. ie->ie_len = __cpu_to_le32(arg->ie_len);
  1283. memcpy(ie->ie_data, arg->ie, arg->ie_len);
  1284. off += sizeof(*ie);
  1285. off += roundup(arg->ie_len, 4);
  1286. }
  1287. if (off != skb->len) {
  1288. dev_kfree_skb(skb);
  1289. return -EINVAL;
  1290. }
  1291. ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
  1292. return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
  1293. }
  1294. void ath10k_wmi_start_scan_init(struct ath10k *ar,
  1295. struct wmi_start_scan_arg *arg)
  1296. {
  1297. /* setup commonly used values */
  1298. arg->scan_req_id = 1;
  1299. arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
  1300. arg->dwell_time_active = 50;
  1301. arg->dwell_time_passive = 150;
  1302. arg->min_rest_time = 50;
  1303. arg->max_rest_time = 500;
  1304. arg->repeat_probe_time = 0;
  1305. arg->probe_spacing_time = 0;
  1306. arg->idle_time = 0;
  1307. arg->max_scan_time = 5000;
  1308. arg->probe_delay = 5;
  1309. arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
  1310. | WMI_SCAN_EVENT_COMPLETED
  1311. | WMI_SCAN_EVENT_BSS_CHANNEL
  1312. | WMI_SCAN_EVENT_FOREIGN_CHANNEL
  1313. | WMI_SCAN_EVENT_DEQUEUED;
  1314. arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
  1315. arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
  1316. arg->n_bssids = 1;
  1317. arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
  1318. }
  1319. int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
  1320. {
  1321. struct wmi_stop_scan_cmd *cmd;
  1322. struct sk_buff *skb;
  1323. u32 scan_id;
  1324. u32 req_id;
  1325. if (arg->req_id > 0xFFF)
  1326. return -EINVAL;
  1327. if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
  1328. return -EINVAL;
  1329. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1330. if (!skb)
  1331. return -ENOMEM;
  1332. scan_id = arg->u.scan_id;
  1333. scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
  1334. req_id = arg->req_id;
  1335. req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
  1336. cmd = (struct wmi_stop_scan_cmd *)skb->data;
  1337. cmd->req_type = __cpu_to_le32(arg->req_type);
  1338. cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id);
  1339. cmd->scan_id = __cpu_to_le32(scan_id);
  1340. cmd->scan_req_id = __cpu_to_le32(req_id);
  1341. ath10k_dbg(ATH10K_DBG_WMI,
  1342. "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
  1343. arg->req_id, arg->req_type, arg->u.scan_id);
  1344. return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
  1345. }
  1346. int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
  1347. enum wmi_vdev_type type,
  1348. enum wmi_vdev_subtype subtype,
  1349. const u8 macaddr[ETH_ALEN])
  1350. {
  1351. struct wmi_vdev_create_cmd *cmd;
  1352. struct sk_buff *skb;
  1353. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1354. if (!skb)
  1355. return -ENOMEM;
  1356. cmd = (struct wmi_vdev_create_cmd *)skb->data;
  1357. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1358. cmd->vdev_type = __cpu_to_le32(type);
  1359. cmd->vdev_subtype = __cpu_to_le32(subtype);
  1360. memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
  1361. ath10k_dbg(ATH10K_DBG_WMI,
  1362. "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
  1363. vdev_id, type, subtype, macaddr);
  1364. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
  1365. }
  1366. int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
  1367. {
  1368. struct wmi_vdev_delete_cmd *cmd;
  1369. struct sk_buff *skb;
  1370. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1371. if (!skb)
  1372. return -ENOMEM;
  1373. cmd = (struct wmi_vdev_delete_cmd *)skb->data;
  1374. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1375. ath10k_dbg(ATH10K_DBG_WMI,
  1376. "WMI vdev delete id %d\n", vdev_id);
  1377. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
  1378. }
  1379. static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
  1380. const struct wmi_vdev_start_request_arg *arg,
  1381. enum wmi_cmd_id cmd_id)
  1382. {
  1383. struct wmi_vdev_start_request_cmd *cmd;
  1384. struct sk_buff *skb;
  1385. const char *cmdname;
  1386. u32 flags = 0;
  1387. if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
  1388. cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
  1389. return -EINVAL;
  1390. if (WARN_ON(arg->ssid && arg->ssid_len == 0))
  1391. return -EINVAL;
  1392. if (WARN_ON(arg->hidden_ssid && !arg->ssid))
  1393. return -EINVAL;
  1394. if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
  1395. return -EINVAL;
  1396. if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
  1397. cmdname = "start";
  1398. else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
  1399. cmdname = "restart";
  1400. else
  1401. return -EINVAL; /* should not happen, we already check cmd_id */
  1402. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1403. if (!skb)
  1404. return -ENOMEM;
  1405. if (arg->hidden_ssid)
  1406. flags |= WMI_VDEV_START_HIDDEN_SSID;
  1407. if (arg->pmf_enabled)
  1408. flags |= WMI_VDEV_START_PMF_ENABLED;
  1409. cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
  1410. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1411. cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack);
  1412. cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
  1413. cmd->dtim_period = __cpu_to_le32(arg->dtim_period);
  1414. cmd->flags = __cpu_to_le32(flags);
  1415. cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate);
  1416. cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power);
  1417. if (arg->ssid) {
  1418. cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
  1419. memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
  1420. }
  1421. cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
  1422. cmd->chan.band_center_freq1 =
  1423. __cpu_to_le32(arg->channel.band_center_freq1);
  1424. cmd->chan.mode = arg->channel.mode;
  1425. cmd->chan.min_power = arg->channel.min_power;
  1426. cmd->chan.max_power = arg->channel.max_power;
  1427. cmd->chan.reg_power = arg->channel.max_reg_power;
  1428. cmd->chan.reg_classid = arg->channel.reg_class_id;
  1429. cmd->chan.antenna_max = arg->channel.max_antenna_gain;
  1430. ath10k_dbg(ATH10K_DBG_WMI,
  1431. "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
  1432. "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
  1433. arg->channel.mode, flags, arg->channel.max_power);
  1434. return ath10k_wmi_cmd_send(ar, skb, cmd_id);
  1435. }
  1436. int ath10k_wmi_vdev_start(struct ath10k *ar,
  1437. const struct wmi_vdev_start_request_arg *arg)
  1438. {
  1439. return ath10k_wmi_vdev_start_restart(ar, arg,
  1440. WMI_VDEV_START_REQUEST_CMDID);
  1441. }
  1442. int ath10k_wmi_vdev_restart(struct ath10k *ar,
  1443. const struct wmi_vdev_start_request_arg *arg)
  1444. {
  1445. return ath10k_wmi_vdev_start_restart(ar, arg,
  1446. WMI_VDEV_RESTART_REQUEST_CMDID);
  1447. }
  1448. int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
  1449. {
  1450. struct wmi_vdev_stop_cmd *cmd;
  1451. struct sk_buff *skb;
  1452. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1453. if (!skb)
  1454. return -ENOMEM;
  1455. cmd = (struct wmi_vdev_stop_cmd *)skb->data;
  1456. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1457. ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
  1458. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
  1459. }
  1460. int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
  1461. {
  1462. struct wmi_vdev_up_cmd *cmd;
  1463. struct sk_buff *skb;
  1464. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1465. if (!skb)
  1466. return -ENOMEM;
  1467. cmd = (struct wmi_vdev_up_cmd *)skb->data;
  1468. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1469. cmd->vdev_assoc_id = __cpu_to_le32(aid);
  1470. memcpy(&cmd->vdev_bssid.addr, bssid, 6);
  1471. ath10k_dbg(ATH10K_DBG_WMI,
  1472. "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
  1473. vdev_id, aid, bssid);
  1474. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
  1475. }
  1476. int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
  1477. {
  1478. struct wmi_vdev_down_cmd *cmd;
  1479. struct sk_buff *skb;
  1480. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1481. if (!skb)
  1482. return -ENOMEM;
  1483. cmd = (struct wmi_vdev_down_cmd *)skb->data;
  1484. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1485. ath10k_dbg(ATH10K_DBG_WMI,
  1486. "wmi mgmt vdev down id 0x%x\n", vdev_id);
  1487. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
  1488. }
  1489. int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
  1490. enum wmi_vdev_param param_id, u32 param_value)
  1491. {
  1492. struct wmi_vdev_set_param_cmd *cmd;
  1493. struct sk_buff *skb;
  1494. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1495. if (!skb)
  1496. return -ENOMEM;
  1497. cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
  1498. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1499. cmd->param_id = __cpu_to_le32(param_id);
  1500. cmd->param_value = __cpu_to_le32(param_value);
  1501. ath10k_dbg(ATH10K_DBG_WMI,
  1502. "wmi vdev id 0x%x set param %d value %d\n",
  1503. vdev_id, param_id, param_value);
  1504. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
  1505. }
  1506. int ath10k_wmi_vdev_install_key(struct ath10k *ar,
  1507. const struct wmi_vdev_install_key_arg *arg)
  1508. {
  1509. struct wmi_vdev_install_key_cmd *cmd;
  1510. struct sk_buff *skb;
  1511. if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
  1512. return -EINVAL;
  1513. if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
  1514. return -EINVAL;
  1515. skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
  1516. if (!skb)
  1517. return -ENOMEM;
  1518. cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
  1519. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1520. cmd->key_idx = __cpu_to_le32(arg->key_idx);
  1521. cmd->key_flags = __cpu_to_le32(arg->key_flags);
  1522. cmd->key_cipher = __cpu_to_le32(arg->key_cipher);
  1523. cmd->key_len = __cpu_to_le32(arg->key_len);
  1524. cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
  1525. cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
  1526. if (arg->macaddr)
  1527. memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
  1528. if (arg->key_data)
  1529. memcpy(cmd->key_data, arg->key_data, arg->key_len);
  1530. ath10k_dbg(ATH10K_DBG_WMI,
  1531. "wmi vdev install key idx %d cipher %d len %d\n",
  1532. arg->key_idx, arg->key_cipher, arg->key_len);
  1533. return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
  1534. }
  1535. int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
  1536. const u8 peer_addr[ETH_ALEN])
  1537. {
  1538. struct wmi_peer_create_cmd *cmd;
  1539. struct sk_buff *skb;
  1540. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1541. if (!skb)
  1542. return -ENOMEM;
  1543. cmd = (struct wmi_peer_create_cmd *)skb->data;
  1544. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1545. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1546. ath10k_dbg(ATH10K_DBG_WMI,
  1547. "wmi peer create vdev_id %d peer_addr %pM\n",
  1548. vdev_id, peer_addr);
  1549. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
  1550. }
  1551. int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
  1552. const u8 peer_addr[ETH_ALEN])
  1553. {
  1554. struct wmi_peer_delete_cmd *cmd;
  1555. struct sk_buff *skb;
  1556. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1557. if (!skb)
  1558. return -ENOMEM;
  1559. cmd = (struct wmi_peer_delete_cmd *)skb->data;
  1560. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1561. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1562. ath10k_dbg(ATH10K_DBG_WMI,
  1563. "wmi peer delete vdev_id %d peer_addr %pM\n",
  1564. vdev_id, peer_addr);
  1565. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
  1566. }
  1567. int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
  1568. const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
  1569. {
  1570. struct wmi_peer_flush_tids_cmd *cmd;
  1571. struct sk_buff *skb;
  1572. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1573. if (!skb)
  1574. return -ENOMEM;
  1575. cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
  1576. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1577. cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
  1578. memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
  1579. ath10k_dbg(ATH10K_DBG_WMI,
  1580. "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
  1581. vdev_id, peer_addr, tid_bitmap);
  1582. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
  1583. }
  1584. int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
  1585. const u8 *peer_addr, enum wmi_peer_param param_id,
  1586. u32 param_value)
  1587. {
  1588. struct wmi_peer_set_param_cmd *cmd;
  1589. struct sk_buff *skb;
  1590. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1591. if (!skb)
  1592. return -ENOMEM;
  1593. cmd = (struct wmi_peer_set_param_cmd *)skb->data;
  1594. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1595. cmd->param_id = __cpu_to_le32(param_id);
  1596. cmd->param_value = __cpu_to_le32(param_value);
  1597. memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
  1598. ath10k_dbg(ATH10K_DBG_WMI,
  1599. "wmi vdev %d peer 0x%pM set param %d value %d\n",
  1600. vdev_id, peer_addr, param_id, param_value);
  1601. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
  1602. }
  1603. int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
  1604. enum wmi_sta_ps_mode psmode)
  1605. {
  1606. struct wmi_sta_powersave_mode_cmd *cmd;
  1607. struct sk_buff *skb;
  1608. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1609. if (!skb)
  1610. return -ENOMEM;
  1611. cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
  1612. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1613. cmd->sta_ps_mode = __cpu_to_le32(psmode);
  1614. ath10k_dbg(ATH10K_DBG_WMI,
  1615. "wmi set powersave id 0x%x mode %d\n",
  1616. vdev_id, psmode);
  1617. return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
  1618. }
  1619. int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
  1620. enum wmi_sta_powersave_param param_id,
  1621. u32 value)
  1622. {
  1623. struct wmi_sta_powersave_param_cmd *cmd;
  1624. struct sk_buff *skb;
  1625. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1626. if (!skb)
  1627. return -ENOMEM;
  1628. cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
  1629. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1630. cmd->param_id = __cpu_to_le32(param_id);
  1631. cmd->param_value = __cpu_to_le32(value);
  1632. ath10k_dbg(ATH10K_DBG_WMI,
  1633. "wmi sta ps param vdev_id 0x%x param %d value %d\n",
  1634. vdev_id, param_id, value);
  1635. return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
  1636. }
  1637. int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
  1638. enum wmi_ap_ps_peer_param param_id, u32 value)
  1639. {
  1640. struct wmi_ap_ps_peer_cmd *cmd;
  1641. struct sk_buff *skb;
  1642. if (!mac)
  1643. return -EINVAL;
  1644. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1645. if (!skb)
  1646. return -ENOMEM;
  1647. cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
  1648. cmd->vdev_id = __cpu_to_le32(vdev_id);
  1649. cmd->param_id = __cpu_to_le32(param_id);
  1650. cmd->param_value = __cpu_to_le32(value);
  1651. memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
  1652. ath10k_dbg(ATH10K_DBG_WMI,
  1653. "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
  1654. vdev_id, param_id, value, mac);
  1655. return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
  1656. }
  1657. int ath10k_wmi_scan_chan_list(struct ath10k *ar,
  1658. const struct wmi_scan_chan_list_arg *arg)
  1659. {
  1660. struct wmi_scan_chan_list_cmd *cmd;
  1661. struct sk_buff *skb;
  1662. struct wmi_channel_arg *ch;
  1663. struct wmi_channel *ci;
  1664. int len;
  1665. int i;
  1666. len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
  1667. skb = ath10k_wmi_alloc_skb(len);
  1668. if (!skb)
  1669. return -EINVAL;
  1670. cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
  1671. cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
  1672. for (i = 0; i < arg->n_channels; i++) {
  1673. u32 flags = 0;
  1674. ch = &arg->channels[i];
  1675. ci = &cmd->chan_info[i];
  1676. if (ch->passive)
  1677. flags |= WMI_CHAN_FLAG_PASSIVE;
  1678. if (ch->allow_ibss)
  1679. flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
  1680. if (ch->allow_ht)
  1681. flags |= WMI_CHAN_FLAG_ALLOW_HT;
  1682. if (ch->allow_vht)
  1683. flags |= WMI_CHAN_FLAG_ALLOW_VHT;
  1684. if (ch->ht40plus)
  1685. flags |= WMI_CHAN_FLAG_HT40_PLUS;
  1686. ci->mhz = __cpu_to_le32(ch->freq);
  1687. ci->band_center_freq1 = __cpu_to_le32(ch->freq);
  1688. ci->band_center_freq2 = 0;
  1689. ci->min_power = ch->min_power;
  1690. ci->max_power = ch->max_power;
  1691. ci->reg_power = ch->max_reg_power;
  1692. ci->antenna_max = ch->max_antenna_gain;
  1693. ci->antenna_max = 0;
  1694. /* mode & flags share storage */
  1695. ci->mode = ch->mode;
  1696. ci->flags |= __cpu_to_le32(flags);
  1697. }
  1698. return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
  1699. }
  1700. int ath10k_wmi_peer_assoc(struct ath10k *ar,
  1701. const struct wmi_peer_assoc_complete_arg *arg)
  1702. {
  1703. struct wmi_peer_assoc_complete_cmd *cmd;
  1704. struct sk_buff *skb;
  1705. if (arg->peer_mpdu_density > 16)
  1706. return -EINVAL;
  1707. if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
  1708. return -EINVAL;
  1709. if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
  1710. return -EINVAL;
  1711. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1712. if (!skb)
  1713. return -ENOMEM;
  1714. cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
  1715. cmd->vdev_id = __cpu_to_le32(arg->vdev_id);
  1716. cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
  1717. cmd->peer_associd = __cpu_to_le32(arg->peer_aid);
  1718. cmd->peer_flags = __cpu_to_le32(arg->peer_flags);
  1719. cmd->peer_caps = __cpu_to_le32(arg->peer_caps);
  1720. cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
  1721. cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps);
  1722. cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu);
  1723. cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density);
  1724. cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps);
  1725. cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams);
  1726. cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps);
  1727. cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode);
  1728. memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
  1729. cmd->peer_legacy_rates.num_rates =
  1730. __cpu_to_le32(arg->peer_legacy_rates.num_rates);
  1731. memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
  1732. arg->peer_legacy_rates.num_rates);
  1733. cmd->peer_ht_rates.num_rates =
  1734. __cpu_to_le32(arg->peer_ht_rates.num_rates);
  1735. memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
  1736. arg->peer_ht_rates.num_rates);
  1737. cmd->peer_vht_rates.rx_max_rate =
  1738. __cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
  1739. cmd->peer_vht_rates.rx_mcs_set =
  1740. __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
  1741. cmd->peer_vht_rates.tx_max_rate =
  1742. __cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
  1743. cmd->peer_vht_rates.tx_mcs_set =
  1744. __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
  1745. ath10k_dbg(ATH10K_DBG_WMI,
  1746. "wmi peer assoc vdev %d addr %pM\n",
  1747. arg->vdev_id, arg->addr);
  1748. return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
  1749. }
  1750. int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
  1751. {
  1752. struct wmi_bcn_tx_cmd *cmd;
  1753. struct sk_buff *skb;
  1754. skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
  1755. if (!skb)
  1756. return -ENOMEM;
  1757. cmd = (struct wmi_bcn_tx_cmd *)skb->data;
  1758. cmd->hdr.vdev_id = __cpu_to_le32(arg->vdev_id);
  1759. cmd->hdr.tx_rate = __cpu_to_le32(arg->tx_rate);
  1760. cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
  1761. cmd->hdr.bcn_len = __cpu_to_le32(arg->bcn_len);
  1762. memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
  1763. return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
  1764. }
  1765. static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
  1766. const struct wmi_wmm_params_arg *arg)
  1767. {
  1768. params->cwmin = __cpu_to_le32(arg->cwmin);
  1769. params->cwmax = __cpu_to_le32(arg->cwmax);
  1770. params->aifs = __cpu_to_le32(arg->aifs);
  1771. params->txop = __cpu_to_le32(arg->txop);
  1772. params->acm = __cpu_to_le32(arg->acm);
  1773. params->no_ack = __cpu_to_le32(arg->no_ack);
  1774. }
  1775. int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
  1776. const struct wmi_pdev_set_wmm_params_arg *arg)
  1777. {
  1778. struct wmi_pdev_set_wmm_params *cmd;
  1779. struct sk_buff *skb;
  1780. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1781. if (!skb)
  1782. return -ENOMEM;
  1783. cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
  1784. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
  1785. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
  1786. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
  1787. ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
  1788. ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
  1789. return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
  1790. }
  1791. int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
  1792. {
  1793. struct wmi_request_stats_cmd *cmd;
  1794. struct sk_buff *skb;
  1795. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1796. if (!skb)
  1797. return -ENOMEM;
  1798. cmd = (struct wmi_request_stats_cmd *)skb->data;
  1799. cmd->stats_id = __cpu_to_le32(stats_id);
  1800. ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
  1801. return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
  1802. }
  1803. int ath10k_wmi_force_fw_hang(struct ath10k *ar,
  1804. enum wmi_force_fw_hang_type type, u32 delay_ms)
  1805. {
  1806. struct wmi_force_fw_hang_cmd *cmd;
  1807. struct sk_buff *skb;
  1808. skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
  1809. if (!skb)
  1810. return -ENOMEM;
  1811. cmd = (struct wmi_force_fw_hang_cmd *)skb->data;
  1812. cmd->type = __cpu_to_le32(type);
  1813. cmd->delay_ms = __cpu_to_le32(delay_ms);
  1814. ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n",
  1815. type, delay_ms);
  1816. return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID);
  1817. }