af_netlink.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182
  1. /*
  2. * NETLINK Kernel-user communication protocol.
  3. *
  4. * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
  5. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
  13. * added netlink_proto_exit
  14. * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
  15. * use nlk_sk, as sk->protinfo is on a diet 8)
  16. * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
  17. * - inc module use count of module that owns
  18. * the kernel socket in case userspace opens
  19. * socket of same protocol
  20. * - remove all module support, since netlink is
  21. * mandatory if CONFIG_NET=y these days
  22. */
  23. #include <linux/module.h>
  24. #include <linux/capability.h>
  25. #include <linux/kernel.h>
  26. #include <linux/init.h>
  27. #include <linux/signal.h>
  28. #include <linux/sched.h>
  29. #include <linux/errno.h>
  30. #include <linux/string.h>
  31. #include <linux/stat.h>
  32. #include <linux/socket.h>
  33. #include <linux/un.h>
  34. #include <linux/fcntl.h>
  35. #include <linux/termios.h>
  36. #include <linux/sockios.h>
  37. #include <linux/net.h>
  38. #include <linux/fs.h>
  39. #include <linux/slab.h>
  40. #include <asm/uaccess.h>
  41. #include <linux/skbuff.h>
  42. #include <linux/netdevice.h>
  43. #include <linux/rtnetlink.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/notifier.h>
  47. #include <linux/security.h>
  48. #include <linux/jhash.h>
  49. #include <linux/jiffies.h>
  50. #include <linux/random.h>
  51. #include <linux/bitops.h>
  52. #include <linux/mm.h>
  53. #include <linux/types.h>
  54. #include <linux/audit.h>
  55. #include <linux/mutex.h>
  56. #include <net/net_namespace.h>
  57. #include <net/sock.h>
  58. #include <net/scm.h>
  59. #include <net/netlink.h>
  60. #define NLGRPSZ(x) (ALIGN(x, sizeof(unsigned long) * 8) / 8)
  61. #define NLGRPLONGS(x) (NLGRPSZ(x)/sizeof(unsigned long))
  62. struct netlink_sock {
  63. /* struct sock has to be the first member of netlink_sock */
  64. struct sock sk;
  65. u32 pid;
  66. u32 dst_pid;
  67. u32 dst_group;
  68. u32 flags;
  69. u32 subscriptions;
  70. u32 ngroups;
  71. unsigned long *groups;
  72. unsigned long state;
  73. wait_queue_head_t wait;
  74. struct netlink_callback *cb;
  75. struct mutex *cb_mutex;
  76. struct mutex cb_def_mutex;
  77. void (*netlink_rcv)(struct sk_buff *skb);
  78. struct module *module;
  79. };
  80. struct listeners {
  81. struct rcu_head rcu;
  82. unsigned long masks[0];
  83. };
  84. #define NETLINK_KERNEL_SOCKET 0x1
  85. #define NETLINK_RECV_PKTINFO 0x2
  86. #define NETLINK_BROADCAST_SEND_ERROR 0x4
  87. #define NETLINK_RECV_NO_ENOBUFS 0x8
  88. static inline struct netlink_sock *nlk_sk(struct sock *sk)
  89. {
  90. return container_of(sk, struct netlink_sock, sk);
  91. }
  92. static inline int netlink_is_kernel(struct sock *sk)
  93. {
  94. return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
  95. }
  96. struct nl_pid_hash {
  97. struct hlist_head *table;
  98. unsigned long rehash_time;
  99. unsigned int mask;
  100. unsigned int shift;
  101. unsigned int entries;
  102. unsigned int max_shift;
  103. u32 rnd;
  104. };
  105. struct netlink_table {
  106. struct nl_pid_hash hash;
  107. struct hlist_head mc_list;
  108. struct listeners __rcu *listeners;
  109. unsigned int nl_nonroot;
  110. unsigned int groups;
  111. struct mutex *cb_mutex;
  112. struct module *module;
  113. int registered;
  114. };
  115. static struct netlink_table *nl_table;
  116. static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
  117. static int netlink_dump(struct sock *sk);
  118. static void netlink_destroy_callback(struct netlink_callback *cb);
  119. static DEFINE_RWLOCK(nl_table_lock);
  120. static atomic_t nl_table_users = ATOMIC_INIT(0);
  121. static ATOMIC_NOTIFIER_HEAD(netlink_chain);
  122. static inline u32 netlink_group_mask(u32 group)
  123. {
  124. return group ? 1 << (group - 1) : 0;
  125. }
  126. static inline struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
  127. {
  128. return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
  129. }
  130. static void netlink_sock_destruct(struct sock *sk)
  131. {
  132. struct netlink_sock *nlk = nlk_sk(sk);
  133. if (nlk->cb) {
  134. if (nlk->cb->done)
  135. nlk->cb->done(nlk->cb);
  136. netlink_destroy_callback(nlk->cb);
  137. }
  138. skb_queue_purge(&sk->sk_receive_queue);
  139. if (!sock_flag(sk, SOCK_DEAD)) {
  140. printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
  141. return;
  142. }
  143. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  144. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  145. WARN_ON(nlk_sk(sk)->groups);
  146. }
  147. /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
  148. * SMP. Look, when several writers sleep and reader wakes them up, all but one
  149. * immediately hit write lock and grab all the cpus. Exclusive sleep solves
  150. * this, _but_ remember, it adds useless work on UP machines.
  151. */
  152. void netlink_table_grab(void)
  153. __acquires(nl_table_lock)
  154. {
  155. might_sleep();
  156. write_lock_irq(&nl_table_lock);
  157. if (atomic_read(&nl_table_users)) {
  158. DECLARE_WAITQUEUE(wait, current);
  159. add_wait_queue_exclusive(&nl_table_wait, &wait);
  160. for (;;) {
  161. set_current_state(TASK_UNINTERRUPTIBLE);
  162. if (atomic_read(&nl_table_users) == 0)
  163. break;
  164. write_unlock_irq(&nl_table_lock);
  165. schedule();
  166. write_lock_irq(&nl_table_lock);
  167. }
  168. __set_current_state(TASK_RUNNING);
  169. remove_wait_queue(&nl_table_wait, &wait);
  170. }
  171. }
  172. void netlink_table_ungrab(void)
  173. __releases(nl_table_lock)
  174. {
  175. write_unlock_irq(&nl_table_lock);
  176. wake_up(&nl_table_wait);
  177. }
  178. static inline void
  179. netlink_lock_table(void)
  180. {
  181. /* read_lock() synchronizes us to netlink_table_grab */
  182. read_lock(&nl_table_lock);
  183. atomic_inc(&nl_table_users);
  184. read_unlock(&nl_table_lock);
  185. }
  186. static inline void
  187. netlink_unlock_table(void)
  188. {
  189. if (atomic_dec_and_test(&nl_table_users))
  190. wake_up(&nl_table_wait);
  191. }
  192. static struct sock *netlink_lookup(struct net *net, int protocol, u32 pid)
  193. {
  194. struct nl_pid_hash *hash = &nl_table[protocol].hash;
  195. struct hlist_head *head;
  196. struct sock *sk;
  197. struct hlist_node *node;
  198. read_lock(&nl_table_lock);
  199. head = nl_pid_hashfn(hash, pid);
  200. sk_for_each(sk, node, head) {
  201. if (net_eq(sock_net(sk), net) && (nlk_sk(sk)->pid == pid)) {
  202. sock_hold(sk);
  203. goto found;
  204. }
  205. }
  206. sk = NULL;
  207. found:
  208. read_unlock(&nl_table_lock);
  209. return sk;
  210. }
  211. static struct hlist_head *nl_pid_hash_zalloc(size_t size)
  212. {
  213. if (size <= PAGE_SIZE)
  214. return kzalloc(size, GFP_ATOMIC);
  215. else
  216. return (struct hlist_head *)
  217. __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
  218. get_order(size));
  219. }
  220. static void nl_pid_hash_free(struct hlist_head *table, size_t size)
  221. {
  222. if (size <= PAGE_SIZE)
  223. kfree(table);
  224. else
  225. free_pages((unsigned long)table, get_order(size));
  226. }
  227. static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
  228. {
  229. unsigned int omask, mask, shift;
  230. size_t osize, size;
  231. struct hlist_head *otable, *table;
  232. int i;
  233. omask = mask = hash->mask;
  234. osize = size = (mask + 1) * sizeof(*table);
  235. shift = hash->shift;
  236. if (grow) {
  237. if (++shift > hash->max_shift)
  238. return 0;
  239. mask = mask * 2 + 1;
  240. size *= 2;
  241. }
  242. table = nl_pid_hash_zalloc(size);
  243. if (!table)
  244. return 0;
  245. otable = hash->table;
  246. hash->table = table;
  247. hash->mask = mask;
  248. hash->shift = shift;
  249. get_random_bytes(&hash->rnd, sizeof(hash->rnd));
  250. for (i = 0; i <= omask; i++) {
  251. struct sock *sk;
  252. struct hlist_node *node, *tmp;
  253. sk_for_each_safe(sk, node, tmp, &otable[i])
  254. __sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
  255. }
  256. nl_pid_hash_free(otable, osize);
  257. hash->rehash_time = jiffies + 10 * 60 * HZ;
  258. return 1;
  259. }
  260. static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
  261. {
  262. int avg = hash->entries >> hash->shift;
  263. if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
  264. return 1;
  265. if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
  266. nl_pid_hash_rehash(hash, 0);
  267. return 1;
  268. }
  269. return 0;
  270. }
  271. static const struct proto_ops netlink_ops;
  272. static void
  273. netlink_update_listeners(struct sock *sk)
  274. {
  275. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  276. struct hlist_node *node;
  277. unsigned long mask;
  278. unsigned int i;
  279. for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
  280. mask = 0;
  281. sk_for_each_bound(sk, node, &tbl->mc_list) {
  282. if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
  283. mask |= nlk_sk(sk)->groups[i];
  284. }
  285. tbl->listeners->masks[i] = mask;
  286. }
  287. /* this function is only called with the netlink table "grabbed", which
  288. * makes sure updates are visible before bind or setsockopt return. */
  289. }
  290. static int netlink_insert(struct sock *sk, struct net *net, u32 pid)
  291. {
  292. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  293. struct hlist_head *head;
  294. int err = -EADDRINUSE;
  295. struct sock *osk;
  296. struct hlist_node *node;
  297. int len;
  298. netlink_table_grab();
  299. head = nl_pid_hashfn(hash, pid);
  300. len = 0;
  301. sk_for_each(osk, node, head) {
  302. if (net_eq(sock_net(osk), net) && (nlk_sk(osk)->pid == pid))
  303. break;
  304. len++;
  305. }
  306. if (node)
  307. goto err;
  308. err = -EBUSY;
  309. if (nlk_sk(sk)->pid)
  310. goto err;
  311. err = -ENOMEM;
  312. if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
  313. goto err;
  314. if (len && nl_pid_hash_dilute(hash, len))
  315. head = nl_pid_hashfn(hash, pid);
  316. hash->entries++;
  317. nlk_sk(sk)->pid = pid;
  318. sk_add_node(sk, head);
  319. err = 0;
  320. err:
  321. netlink_table_ungrab();
  322. return err;
  323. }
  324. static void netlink_remove(struct sock *sk)
  325. {
  326. netlink_table_grab();
  327. if (sk_del_node_init(sk))
  328. nl_table[sk->sk_protocol].hash.entries--;
  329. if (nlk_sk(sk)->subscriptions)
  330. __sk_del_bind_node(sk);
  331. netlink_table_ungrab();
  332. }
  333. static struct proto netlink_proto = {
  334. .name = "NETLINK",
  335. .owner = THIS_MODULE,
  336. .obj_size = sizeof(struct netlink_sock),
  337. };
  338. static int __netlink_create(struct net *net, struct socket *sock,
  339. struct mutex *cb_mutex, int protocol)
  340. {
  341. struct sock *sk;
  342. struct netlink_sock *nlk;
  343. sock->ops = &netlink_ops;
  344. sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
  345. if (!sk)
  346. return -ENOMEM;
  347. sock_init_data(sock, sk);
  348. nlk = nlk_sk(sk);
  349. if (cb_mutex)
  350. nlk->cb_mutex = cb_mutex;
  351. else {
  352. nlk->cb_mutex = &nlk->cb_def_mutex;
  353. mutex_init(nlk->cb_mutex);
  354. }
  355. init_waitqueue_head(&nlk->wait);
  356. sk->sk_destruct = netlink_sock_destruct;
  357. sk->sk_protocol = protocol;
  358. return 0;
  359. }
  360. static int netlink_create(struct net *net, struct socket *sock, int protocol,
  361. int kern)
  362. {
  363. struct module *module = NULL;
  364. struct mutex *cb_mutex;
  365. struct netlink_sock *nlk;
  366. int err = 0;
  367. sock->state = SS_UNCONNECTED;
  368. if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
  369. return -ESOCKTNOSUPPORT;
  370. if (protocol < 0 || protocol >= MAX_LINKS)
  371. return -EPROTONOSUPPORT;
  372. netlink_lock_table();
  373. #ifdef CONFIG_MODULES
  374. if (!nl_table[protocol].registered) {
  375. netlink_unlock_table();
  376. request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
  377. netlink_lock_table();
  378. }
  379. #endif
  380. if (nl_table[protocol].registered &&
  381. try_module_get(nl_table[protocol].module))
  382. module = nl_table[protocol].module;
  383. else
  384. err = -EPROTONOSUPPORT;
  385. cb_mutex = nl_table[protocol].cb_mutex;
  386. netlink_unlock_table();
  387. if (err < 0)
  388. goto out;
  389. err = __netlink_create(net, sock, cb_mutex, protocol);
  390. if (err < 0)
  391. goto out_module;
  392. local_bh_disable();
  393. sock_prot_inuse_add(net, &netlink_proto, 1);
  394. local_bh_enable();
  395. nlk = nlk_sk(sock->sk);
  396. nlk->module = module;
  397. out:
  398. return err;
  399. out_module:
  400. module_put(module);
  401. goto out;
  402. }
  403. static int netlink_release(struct socket *sock)
  404. {
  405. struct sock *sk = sock->sk;
  406. struct netlink_sock *nlk;
  407. if (!sk)
  408. return 0;
  409. netlink_remove(sk);
  410. sock_orphan(sk);
  411. nlk = nlk_sk(sk);
  412. /*
  413. * OK. Socket is unlinked, any packets that arrive now
  414. * will be purged.
  415. */
  416. sock->sk = NULL;
  417. wake_up_interruptible_all(&nlk->wait);
  418. skb_queue_purge(&sk->sk_write_queue);
  419. if (nlk->pid) {
  420. struct netlink_notify n = {
  421. .net = sock_net(sk),
  422. .protocol = sk->sk_protocol,
  423. .pid = nlk->pid,
  424. };
  425. atomic_notifier_call_chain(&netlink_chain,
  426. NETLINK_URELEASE, &n);
  427. }
  428. module_put(nlk->module);
  429. netlink_table_grab();
  430. if (netlink_is_kernel(sk)) {
  431. BUG_ON(nl_table[sk->sk_protocol].registered == 0);
  432. if (--nl_table[sk->sk_protocol].registered == 0) {
  433. kfree(nl_table[sk->sk_protocol].listeners);
  434. nl_table[sk->sk_protocol].module = NULL;
  435. nl_table[sk->sk_protocol].registered = 0;
  436. }
  437. } else if (nlk->subscriptions)
  438. netlink_update_listeners(sk);
  439. netlink_table_ungrab();
  440. kfree(nlk->groups);
  441. nlk->groups = NULL;
  442. local_bh_disable();
  443. sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
  444. local_bh_enable();
  445. sock_put(sk);
  446. return 0;
  447. }
  448. static int netlink_autobind(struct socket *sock)
  449. {
  450. struct sock *sk = sock->sk;
  451. struct net *net = sock_net(sk);
  452. struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
  453. struct hlist_head *head;
  454. struct sock *osk;
  455. struct hlist_node *node;
  456. s32 pid = task_tgid_vnr(current);
  457. int err;
  458. static s32 rover = -4097;
  459. retry:
  460. cond_resched();
  461. netlink_table_grab();
  462. head = nl_pid_hashfn(hash, pid);
  463. sk_for_each(osk, node, head) {
  464. if (!net_eq(sock_net(osk), net))
  465. continue;
  466. if (nlk_sk(osk)->pid == pid) {
  467. /* Bind collision, search negative pid values. */
  468. pid = rover--;
  469. if (rover > -4097)
  470. rover = -4097;
  471. netlink_table_ungrab();
  472. goto retry;
  473. }
  474. }
  475. netlink_table_ungrab();
  476. err = netlink_insert(sk, net, pid);
  477. if (err == -EADDRINUSE)
  478. goto retry;
  479. /* If 2 threads race to autobind, that is fine. */
  480. if (err == -EBUSY)
  481. err = 0;
  482. return err;
  483. }
  484. static inline int netlink_capable(const struct socket *sock, unsigned int flag)
  485. {
  486. return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
  487. capable(CAP_NET_ADMIN);
  488. }
  489. static void
  490. netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
  491. {
  492. struct netlink_sock *nlk = nlk_sk(sk);
  493. if (nlk->subscriptions && !subscriptions)
  494. __sk_del_bind_node(sk);
  495. else if (!nlk->subscriptions && subscriptions)
  496. sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
  497. nlk->subscriptions = subscriptions;
  498. }
  499. static int netlink_realloc_groups(struct sock *sk)
  500. {
  501. struct netlink_sock *nlk = nlk_sk(sk);
  502. unsigned int groups;
  503. unsigned long *new_groups;
  504. int err = 0;
  505. netlink_table_grab();
  506. groups = nl_table[sk->sk_protocol].groups;
  507. if (!nl_table[sk->sk_protocol].registered) {
  508. err = -ENOENT;
  509. goto out_unlock;
  510. }
  511. if (nlk->ngroups >= groups)
  512. goto out_unlock;
  513. new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
  514. if (new_groups == NULL) {
  515. err = -ENOMEM;
  516. goto out_unlock;
  517. }
  518. memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
  519. NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
  520. nlk->groups = new_groups;
  521. nlk->ngroups = groups;
  522. out_unlock:
  523. netlink_table_ungrab();
  524. return err;
  525. }
  526. static int netlink_bind(struct socket *sock, struct sockaddr *addr,
  527. int addr_len)
  528. {
  529. struct sock *sk = sock->sk;
  530. struct net *net = sock_net(sk);
  531. struct netlink_sock *nlk = nlk_sk(sk);
  532. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  533. int err;
  534. if (nladdr->nl_family != AF_NETLINK)
  535. return -EINVAL;
  536. /* Only superuser is allowed to listen multicasts */
  537. if (nladdr->nl_groups) {
  538. if (!netlink_capable(sock, NL_NONROOT_RECV))
  539. return -EPERM;
  540. err = netlink_realloc_groups(sk);
  541. if (err)
  542. return err;
  543. }
  544. if (nlk->pid) {
  545. if (nladdr->nl_pid != nlk->pid)
  546. return -EINVAL;
  547. } else {
  548. err = nladdr->nl_pid ?
  549. netlink_insert(sk, net, nladdr->nl_pid) :
  550. netlink_autobind(sock);
  551. if (err)
  552. return err;
  553. }
  554. if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
  555. return 0;
  556. netlink_table_grab();
  557. netlink_update_subscriptions(sk, nlk->subscriptions +
  558. hweight32(nladdr->nl_groups) -
  559. hweight32(nlk->groups[0]));
  560. nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
  561. netlink_update_listeners(sk);
  562. netlink_table_ungrab();
  563. return 0;
  564. }
  565. static int netlink_connect(struct socket *sock, struct sockaddr *addr,
  566. int alen, int flags)
  567. {
  568. int err = 0;
  569. struct sock *sk = sock->sk;
  570. struct netlink_sock *nlk = nlk_sk(sk);
  571. struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
  572. if (alen < sizeof(addr->sa_family))
  573. return -EINVAL;
  574. if (addr->sa_family == AF_UNSPEC) {
  575. sk->sk_state = NETLINK_UNCONNECTED;
  576. nlk->dst_pid = 0;
  577. nlk->dst_group = 0;
  578. return 0;
  579. }
  580. if (addr->sa_family != AF_NETLINK)
  581. return -EINVAL;
  582. /* Only superuser is allowed to send multicasts */
  583. if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
  584. return -EPERM;
  585. if (!nlk->pid)
  586. err = netlink_autobind(sock);
  587. if (err == 0) {
  588. sk->sk_state = NETLINK_CONNECTED;
  589. nlk->dst_pid = nladdr->nl_pid;
  590. nlk->dst_group = ffs(nladdr->nl_groups);
  591. }
  592. return err;
  593. }
  594. static int netlink_getname(struct socket *sock, struct sockaddr *addr,
  595. int *addr_len, int peer)
  596. {
  597. struct sock *sk = sock->sk;
  598. struct netlink_sock *nlk = nlk_sk(sk);
  599. DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
  600. nladdr->nl_family = AF_NETLINK;
  601. nladdr->nl_pad = 0;
  602. *addr_len = sizeof(*nladdr);
  603. if (peer) {
  604. nladdr->nl_pid = nlk->dst_pid;
  605. nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
  606. } else {
  607. nladdr->nl_pid = nlk->pid;
  608. nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
  609. }
  610. return 0;
  611. }
  612. static void netlink_overrun(struct sock *sk)
  613. {
  614. struct netlink_sock *nlk = nlk_sk(sk);
  615. if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
  616. if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
  617. sk->sk_err = ENOBUFS;
  618. sk->sk_error_report(sk);
  619. }
  620. }
  621. atomic_inc(&sk->sk_drops);
  622. }
  623. static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
  624. {
  625. struct sock *sock;
  626. struct netlink_sock *nlk;
  627. sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, pid);
  628. if (!sock)
  629. return ERR_PTR(-ECONNREFUSED);
  630. /* Don't bother queuing skb if kernel socket has no input function */
  631. nlk = nlk_sk(sock);
  632. if (sock->sk_state == NETLINK_CONNECTED &&
  633. nlk->dst_pid != nlk_sk(ssk)->pid) {
  634. sock_put(sock);
  635. return ERR_PTR(-ECONNREFUSED);
  636. }
  637. return sock;
  638. }
  639. struct sock *netlink_getsockbyfilp(struct file *filp)
  640. {
  641. struct inode *inode = filp->f_path.dentry->d_inode;
  642. struct sock *sock;
  643. if (!S_ISSOCK(inode->i_mode))
  644. return ERR_PTR(-ENOTSOCK);
  645. sock = SOCKET_I(inode)->sk;
  646. if (sock->sk_family != AF_NETLINK)
  647. return ERR_PTR(-EINVAL);
  648. sock_hold(sock);
  649. return sock;
  650. }
  651. /*
  652. * Attach a skb to a netlink socket.
  653. * The caller must hold a reference to the destination socket. On error, the
  654. * reference is dropped. The skb is not send to the destination, just all
  655. * all error checks are performed and memory in the queue is reserved.
  656. * Return values:
  657. * < 0: error. skb freed, reference to sock dropped.
  658. * 0: continue
  659. * 1: repeat lookup - reference dropped while waiting for socket memory.
  660. */
  661. int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
  662. long *timeo, struct sock *ssk)
  663. {
  664. struct netlink_sock *nlk;
  665. nlk = nlk_sk(sk);
  666. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  667. test_bit(0, &nlk->state)) {
  668. DECLARE_WAITQUEUE(wait, current);
  669. if (!*timeo) {
  670. if (!ssk || netlink_is_kernel(ssk))
  671. netlink_overrun(sk);
  672. sock_put(sk);
  673. kfree_skb(skb);
  674. return -EAGAIN;
  675. }
  676. __set_current_state(TASK_INTERRUPTIBLE);
  677. add_wait_queue(&nlk->wait, &wait);
  678. if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  679. test_bit(0, &nlk->state)) &&
  680. !sock_flag(sk, SOCK_DEAD))
  681. *timeo = schedule_timeout(*timeo);
  682. __set_current_state(TASK_RUNNING);
  683. remove_wait_queue(&nlk->wait, &wait);
  684. sock_put(sk);
  685. if (signal_pending(current)) {
  686. kfree_skb(skb);
  687. return sock_intr_errno(*timeo);
  688. }
  689. return 1;
  690. }
  691. skb_set_owner_r(skb, sk);
  692. return 0;
  693. }
  694. static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  695. {
  696. int len = skb->len;
  697. skb_queue_tail(&sk->sk_receive_queue, skb);
  698. sk->sk_data_ready(sk, len);
  699. return len;
  700. }
  701. int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
  702. {
  703. int len = __netlink_sendskb(sk, skb);
  704. sock_put(sk);
  705. return len;
  706. }
  707. void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
  708. {
  709. kfree_skb(skb);
  710. sock_put(sk);
  711. }
  712. static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
  713. {
  714. int delta;
  715. skb_orphan(skb);
  716. delta = skb->end - skb->tail;
  717. if (delta * 2 < skb->truesize)
  718. return skb;
  719. if (skb_shared(skb)) {
  720. struct sk_buff *nskb = skb_clone(skb, allocation);
  721. if (!nskb)
  722. return skb;
  723. kfree_skb(skb);
  724. skb = nskb;
  725. }
  726. if (!pskb_expand_head(skb, 0, -delta, allocation))
  727. skb->truesize -= delta;
  728. return skb;
  729. }
  730. static void netlink_rcv_wake(struct sock *sk)
  731. {
  732. struct netlink_sock *nlk = nlk_sk(sk);
  733. if (skb_queue_empty(&sk->sk_receive_queue))
  734. clear_bit(0, &nlk->state);
  735. if (!test_bit(0, &nlk->state))
  736. wake_up_interruptible(&nlk->wait);
  737. }
  738. static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb)
  739. {
  740. int ret;
  741. struct netlink_sock *nlk = nlk_sk(sk);
  742. ret = -ECONNREFUSED;
  743. if (nlk->netlink_rcv != NULL) {
  744. ret = skb->len;
  745. skb_set_owner_r(skb, sk);
  746. nlk->netlink_rcv(skb);
  747. }
  748. kfree_skb(skb);
  749. sock_put(sk);
  750. return ret;
  751. }
  752. int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
  753. u32 pid, int nonblock)
  754. {
  755. struct sock *sk;
  756. int err;
  757. long timeo;
  758. skb = netlink_trim(skb, gfp_any());
  759. timeo = sock_sndtimeo(ssk, nonblock);
  760. retry:
  761. sk = netlink_getsockbypid(ssk, pid);
  762. if (IS_ERR(sk)) {
  763. kfree_skb(skb);
  764. return PTR_ERR(sk);
  765. }
  766. if (netlink_is_kernel(sk))
  767. return netlink_unicast_kernel(sk, skb);
  768. if (sk_filter(sk, skb)) {
  769. err = skb->len;
  770. kfree_skb(skb);
  771. sock_put(sk);
  772. return err;
  773. }
  774. err = netlink_attachskb(sk, skb, &timeo, ssk);
  775. if (err == 1)
  776. goto retry;
  777. if (err)
  778. return err;
  779. return netlink_sendskb(sk, skb);
  780. }
  781. EXPORT_SYMBOL(netlink_unicast);
  782. int netlink_has_listeners(struct sock *sk, unsigned int group)
  783. {
  784. int res = 0;
  785. struct listeners *listeners;
  786. BUG_ON(!netlink_is_kernel(sk));
  787. rcu_read_lock();
  788. listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
  789. if (group - 1 < nl_table[sk->sk_protocol].groups)
  790. res = test_bit(group - 1, listeners->masks);
  791. rcu_read_unlock();
  792. return res;
  793. }
  794. EXPORT_SYMBOL_GPL(netlink_has_listeners);
  795. static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
  796. {
  797. struct netlink_sock *nlk = nlk_sk(sk);
  798. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
  799. !test_bit(0, &nlk->state)) {
  800. skb_set_owner_r(skb, sk);
  801. __netlink_sendskb(sk, skb);
  802. return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
  803. }
  804. return -1;
  805. }
  806. struct netlink_broadcast_data {
  807. struct sock *exclude_sk;
  808. struct net *net;
  809. u32 pid;
  810. u32 group;
  811. int failure;
  812. int delivery_failure;
  813. int congested;
  814. int delivered;
  815. gfp_t allocation;
  816. struct sk_buff *skb, *skb2;
  817. int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
  818. void *tx_data;
  819. };
  820. static int do_one_broadcast(struct sock *sk,
  821. struct netlink_broadcast_data *p)
  822. {
  823. struct netlink_sock *nlk = nlk_sk(sk);
  824. int val;
  825. if (p->exclude_sk == sk)
  826. goto out;
  827. if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
  828. !test_bit(p->group - 1, nlk->groups))
  829. goto out;
  830. if (!net_eq(sock_net(sk), p->net))
  831. goto out;
  832. if (p->failure) {
  833. netlink_overrun(sk);
  834. goto out;
  835. }
  836. sock_hold(sk);
  837. if (p->skb2 == NULL) {
  838. if (skb_shared(p->skb)) {
  839. p->skb2 = skb_clone(p->skb, p->allocation);
  840. } else {
  841. p->skb2 = skb_get(p->skb);
  842. /*
  843. * skb ownership may have been set when
  844. * delivered to a previous socket.
  845. */
  846. skb_orphan(p->skb2);
  847. }
  848. }
  849. if (p->skb2 == NULL) {
  850. netlink_overrun(sk);
  851. /* Clone failed. Notify ALL listeners. */
  852. p->failure = 1;
  853. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  854. p->delivery_failure = 1;
  855. } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
  856. kfree_skb(p->skb2);
  857. p->skb2 = NULL;
  858. } else if (sk_filter(sk, p->skb2)) {
  859. kfree_skb(p->skb2);
  860. p->skb2 = NULL;
  861. } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
  862. netlink_overrun(sk);
  863. if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
  864. p->delivery_failure = 1;
  865. } else {
  866. p->congested |= val;
  867. p->delivered = 1;
  868. p->skb2 = NULL;
  869. }
  870. sock_put(sk);
  871. out:
  872. return 0;
  873. }
  874. int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 pid,
  875. u32 group, gfp_t allocation,
  876. int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
  877. void *filter_data)
  878. {
  879. struct net *net = sock_net(ssk);
  880. struct netlink_broadcast_data info;
  881. struct hlist_node *node;
  882. struct sock *sk;
  883. skb = netlink_trim(skb, allocation);
  884. info.exclude_sk = ssk;
  885. info.net = net;
  886. info.pid = pid;
  887. info.group = group;
  888. info.failure = 0;
  889. info.delivery_failure = 0;
  890. info.congested = 0;
  891. info.delivered = 0;
  892. info.allocation = allocation;
  893. info.skb = skb;
  894. info.skb2 = NULL;
  895. info.tx_filter = filter;
  896. info.tx_data = filter_data;
  897. /* While we sleep in clone, do not allow to change socket list */
  898. netlink_lock_table();
  899. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  900. do_one_broadcast(sk, &info);
  901. consume_skb(skb);
  902. netlink_unlock_table();
  903. if (info.delivery_failure) {
  904. kfree_skb(info.skb2);
  905. return -ENOBUFS;
  906. } else
  907. consume_skb(info.skb2);
  908. if (info.delivered) {
  909. if (info.congested && (allocation & __GFP_WAIT))
  910. yield();
  911. return 0;
  912. }
  913. return -ESRCH;
  914. }
  915. EXPORT_SYMBOL(netlink_broadcast_filtered);
  916. int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
  917. u32 group, gfp_t allocation)
  918. {
  919. return netlink_broadcast_filtered(ssk, skb, pid, group, allocation,
  920. NULL, NULL);
  921. }
  922. EXPORT_SYMBOL(netlink_broadcast);
  923. struct netlink_set_err_data {
  924. struct sock *exclude_sk;
  925. u32 pid;
  926. u32 group;
  927. int code;
  928. };
  929. static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
  930. {
  931. struct netlink_sock *nlk = nlk_sk(sk);
  932. int ret = 0;
  933. if (sk == p->exclude_sk)
  934. goto out;
  935. if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
  936. goto out;
  937. if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
  938. !test_bit(p->group - 1, nlk->groups))
  939. goto out;
  940. if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
  941. ret = 1;
  942. goto out;
  943. }
  944. sk->sk_err = p->code;
  945. sk->sk_error_report(sk);
  946. out:
  947. return ret;
  948. }
  949. /**
  950. * netlink_set_err - report error to broadcast listeners
  951. * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
  952. * @pid: the PID of a process that we want to skip (if any)
  953. * @groups: the broadcast group that will notice the error
  954. * @code: error code, must be negative (as usual in kernelspace)
  955. *
  956. * This function returns the number of broadcast listeners that have set the
  957. * NETLINK_RECV_NO_ENOBUFS socket option.
  958. */
  959. int netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
  960. {
  961. struct netlink_set_err_data info;
  962. struct hlist_node *node;
  963. struct sock *sk;
  964. int ret = 0;
  965. info.exclude_sk = ssk;
  966. info.pid = pid;
  967. info.group = group;
  968. /* sk->sk_err wants a positive error value */
  969. info.code = -code;
  970. read_lock(&nl_table_lock);
  971. sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
  972. ret += do_one_set_err(sk, &info);
  973. read_unlock(&nl_table_lock);
  974. return ret;
  975. }
  976. EXPORT_SYMBOL(netlink_set_err);
  977. /* must be called with netlink table grabbed */
  978. static void netlink_update_socket_mc(struct netlink_sock *nlk,
  979. unsigned int group,
  980. int is_new)
  981. {
  982. int old, new = !!is_new, subscriptions;
  983. old = test_bit(group - 1, nlk->groups);
  984. subscriptions = nlk->subscriptions - old + new;
  985. if (new)
  986. __set_bit(group - 1, nlk->groups);
  987. else
  988. __clear_bit(group - 1, nlk->groups);
  989. netlink_update_subscriptions(&nlk->sk, subscriptions);
  990. netlink_update_listeners(&nlk->sk);
  991. }
  992. static int netlink_setsockopt(struct socket *sock, int level, int optname,
  993. char __user *optval, unsigned int optlen)
  994. {
  995. struct sock *sk = sock->sk;
  996. struct netlink_sock *nlk = nlk_sk(sk);
  997. unsigned int val = 0;
  998. int err;
  999. if (level != SOL_NETLINK)
  1000. return -ENOPROTOOPT;
  1001. if (optlen >= sizeof(int) &&
  1002. get_user(val, (unsigned int __user *)optval))
  1003. return -EFAULT;
  1004. switch (optname) {
  1005. case NETLINK_PKTINFO:
  1006. if (val)
  1007. nlk->flags |= NETLINK_RECV_PKTINFO;
  1008. else
  1009. nlk->flags &= ~NETLINK_RECV_PKTINFO;
  1010. err = 0;
  1011. break;
  1012. case NETLINK_ADD_MEMBERSHIP:
  1013. case NETLINK_DROP_MEMBERSHIP: {
  1014. if (!netlink_capable(sock, NL_NONROOT_RECV))
  1015. return -EPERM;
  1016. err = netlink_realloc_groups(sk);
  1017. if (err)
  1018. return err;
  1019. if (!val || val - 1 >= nlk->ngroups)
  1020. return -EINVAL;
  1021. netlink_table_grab();
  1022. netlink_update_socket_mc(nlk, val,
  1023. optname == NETLINK_ADD_MEMBERSHIP);
  1024. netlink_table_ungrab();
  1025. err = 0;
  1026. break;
  1027. }
  1028. case NETLINK_BROADCAST_ERROR:
  1029. if (val)
  1030. nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
  1031. else
  1032. nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
  1033. err = 0;
  1034. break;
  1035. case NETLINK_NO_ENOBUFS:
  1036. if (val) {
  1037. nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
  1038. clear_bit(0, &nlk->state);
  1039. wake_up_interruptible(&nlk->wait);
  1040. } else
  1041. nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
  1042. err = 0;
  1043. break;
  1044. default:
  1045. err = -ENOPROTOOPT;
  1046. }
  1047. return err;
  1048. }
  1049. static int netlink_getsockopt(struct socket *sock, int level, int optname,
  1050. char __user *optval, int __user *optlen)
  1051. {
  1052. struct sock *sk = sock->sk;
  1053. struct netlink_sock *nlk = nlk_sk(sk);
  1054. int len, val, err;
  1055. if (level != SOL_NETLINK)
  1056. return -ENOPROTOOPT;
  1057. if (get_user(len, optlen))
  1058. return -EFAULT;
  1059. if (len < 0)
  1060. return -EINVAL;
  1061. switch (optname) {
  1062. case NETLINK_PKTINFO:
  1063. if (len < sizeof(int))
  1064. return -EINVAL;
  1065. len = sizeof(int);
  1066. val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
  1067. if (put_user(len, optlen) ||
  1068. put_user(val, optval))
  1069. return -EFAULT;
  1070. err = 0;
  1071. break;
  1072. case NETLINK_BROADCAST_ERROR:
  1073. if (len < sizeof(int))
  1074. return -EINVAL;
  1075. len = sizeof(int);
  1076. val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
  1077. if (put_user(len, optlen) ||
  1078. put_user(val, optval))
  1079. return -EFAULT;
  1080. err = 0;
  1081. break;
  1082. case NETLINK_NO_ENOBUFS:
  1083. if (len < sizeof(int))
  1084. return -EINVAL;
  1085. len = sizeof(int);
  1086. val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
  1087. if (put_user(len, optlen) ||
  1088. put_user(val, optval))
  1089. return -EFAULT;
  1090. err = 0;
  1091. break;
  1092. default:
  1093. err = -ENOPROTOOPT;
  1094. }
  1095. return err;
  1096. }
  1097. static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
  1098. {
  1099. struct nl_pktinfo info;
  1100. info.group = NETLINK_CB(skb).dst_group;
  1101. put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
  1102. }
  1103. static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
  1104. struct msghdr *msg, size_t len)
  1105. {
  1106. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1107. struct sock *sk = sock->sk;
  1108. struct netlink_sock *nlk = nlk_sk(sk);
  1109. struct sockaddr_nl *addr = msg->msg_name;
  1110. u32 dst_pid;
  1111. u32 dst_group;
  1112. struct sk_buff *skb;
  1113. int err;
  1114. struct scm_cookie scm;
  1115. if (msg->msg_flags&MSG_OOB)
  1116. return -EOPNOTSUPP;
  1117. if (NULL == siocb->scm)
  1118. siocb->scm = &scm;
  1119. err = scm_send(sock, msg, siocb->scm);
  1120. if (err < 0)
  1121. return err;
  1122. if (msg->msg_namelen) {
  1123. err = -EINVAL;
  1124. if (addr->nl_family != AF_NETLINK)
  1125. goto out;
  1126. dst_pid = addr->nl_pid;
  1127. dst_group = ffs(addr->nl_groups);
  1128. err = -EPERM;
  1129. if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND))
  1130. goto out;
  1131. } else {
  1132. dst_pid = nlk->dst_pid;
  1133. dst_group = nlk->dst_group;
  1134. }
  1135. if (!nlk->pid) {
  1136. err = netlink_autobind(sock);
  1137. if (err)
  1138. goto out;
  1139. }
  1140. err = -EMSGSIZE;
  1141. if (len > sk->sk_sndbuf - 32)
  1142. goto out;
  1143. err = -ENOBUFS;
  1144. skb = alloc_skb(len, GFP_KERNEL);
  1145. if (skb == NULL)
  1146. goto out;
  1147. NETLINK_CB(skb).pid = nlk->pid;
  1148. NETLINK_CB(skb).dst_group = dst_group;
  1149. memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
  1150. err = -EFAULT;
  1151. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  1152. kfree_skb(skb);
  1153. goto out;
  1154. }
  1155. err = security_netlink_send(sk, skb);
  1156. if (err) {
  1157. kfree_skb(skb);
  1158. goto out;
  1159. }
  1160. if (dst_group) {
  1161. atomic_inc(&skb->users);
  1162. netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL);
  1163. }
  1164. err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
  1165. out:
  1166. scm_destroy(siocb->scm);
  1167. return err;
  1168. }
  1169. static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
  1170. struct msghdr *msg, size_t len,
  1171. int flags)
  1172. {
  1173. struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
  1174. struct scm_cookie scm;
  1175. struct sock *sk = sock->sk;
  1176. struct netlink_sock *nlk = nlk_sk(sk);
  1177. int noblock = flags&MSG_DONTWAIT;
  1178. size_t copied;
  1179. struct sk_buff *skb, *data_skb;
  1180. int err, ret;
  1181. if (flags&MSG_OOB)
  1182. return -EOPNOTSUPP;
  1183. copied = 0;
  1184. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1185. if (skb == NULL)
  1186. goto out;
  1187. data_skb = skb;
  1188. #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
  1189. if (unlikely(skb_shinfo(skb)->frag_list)) {
  1190. /*
  1191. * If this skb has a frag_list, then here that means that we
  1192. * will have to use the frag_list skb's data for compat tasks
  1193. * and the regular skb's data for normal (non-compat) tasks.
  1194. *
  1195. * If we need to send the compat skb, assign it to the
  1196. * 'data_skb' variable so that it will be used below for data
  1197. * copying. We keep 'skb' for everything else, including
  1198. * freeing both later.
  1199. */
  1200. if (flags & MSG_CMSG_COMPAT)
  1201. data_skb = skb_shinfo(skb)->frag_list;
  1202. }
  1203. #endif
  1204. msg->msg_namelen = 0;
  1205. copied = data_skb->len;
  1206. if (len < copied) {
  1207. msg->msg_flags |= MSG_TRUNC;
  1208. copied = len;
  1209. }
  1210. skb_reset_transport_header(data_skb);
  1211. err = skb_copy_datagram_iovec(data_skb, 0, msg->msg_iov, copied);
  1212. if (msg->msg_name) {
  1213. struct sockaddr_nl *addr = (struct sockaddr_nl *)msg->msg_name;
  1214. addr->nl_family = AF_NETLINK;
  1215. addr->nl_pad = 0;
  1216. addr->nl_pid = NETLINK_CB(skb).pid;
  1217. addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
  1218. msg->msg_namelen = sizeof(*addr);
  1219. }
  1220. if (nlk->flags & NETLINK_RECV_PKTINFO)
  1221. netlink_cmsg_recv_pktinfo(msg, skb);
  1222. if (NULL == siocb->scm) {
  1223. memset(&scm, 0, sizeof(scm));
  1224. siocb->scm = &scm;
  1225. }
  1226. siocb->scm->creds = *NETLINK_CREDS(skb);
  1227. if (flags & MSG_TRUNC)
  1228. copied = data_skb->len;
  1229. skb_free_datagram(sk, skb);
  1230. if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
  1231. ret = netlink_dump(sk);
  1232. if (ret) {
  1233. sk->sk_err = ret;
  1234. sk->sk_error_report(sk);
  1235. }
  1236. }
  1237. scm_recv(sock, msg, siocb->scm, flags);
  1238. out:
  1239. netlink_rcv_wake(sk);
  1240. return err ? : copied;
  1241. }
  1242. static void netlink_data_ready(struct sock *sk, int len)
  1243. {
  1244. BUG();
  1245. }
  1246. /*
  1247. * We export these functions to other modules. They provide a
  1248. * complete set of kernel non-blocking support for message
  1249. * queueing.
  1250. */
  1251. struct sock *
  1252. netlink_kernel_create(struct net *net, int unit, unsigned int groups,
  1253. void (*input)(struct sk_buff *skb),
  1254. struct mutex *cb_mutex, struct module *module)
  1255. {
  1256. struct socket *sock;
  1257. struct sock *sk;
  1258. struct netlink_sock *nlk;
  1259. struct listeners *listeners = NULL;
  1260. BUG_ON(!nl_table);
  1261. if (unit < 0 || unit >= MAX_LINKS)
  1262. return NULL;
  1263. if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
  1264. return NULL;
  1265. /*
  1266. * We have to just have a reference on the net from sk, but don't
  1267. * get_net it. Besides, we cannot get and then put the net here.
  1268. * So we create one inside init_net and the move it to net.
  1269. */
  1270. if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
  1271. goto out_sock_release_nosk;
  1272. sk = sock->sk;
  1273. sk_change_net(sk, net);
  1274. if (groups < 32)
  1275. groups = 32;
  1276. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1277. if (!listeners)
  1278. goto out_sock_release;
  1279. sk->sk_data_ready = netlink_data_ready;
  1280. if (input)
  1281. nlk_sk(sk)->netlink_rcv = input;
  1282. if (netlink_insert(sk, net, 0))
  1283. goto out_sock_release;
  1284. nlk = nlk_sk(sk);
  1285. nlk->flags |= NETLINK_KERNEL_SOCKET;
  1286. netlink_table_grab();
  1287. if (!nl_table[unit].registered) {
  1288. nl_table[unit].groups = groups;
  1289. rcu_assign_pointer(nl_table[unit].listeners, listeners);
  1290. nl_table[unit].cb_mutex = cb_mutex;
  1291. nl_table[unit].module = module;
  1292. nl_table[unit].registered = 1;
  1293. } else {
  1294. kfree(listeners);
  1295. nl_table[unit].registered++;
  1296. }
  1297. netlink_table_ungrab();
  1298. return sk;
  1299. out_sock_release:
  1300. kfree(listeners);
  1301. netlink_kernel_release(sk);
  1302. return NULL;
  1303. out_sock_release_nosk:
  1304. sock_release(sock);
  1305. return NULL;
  1306. }
  1307. EXPORT_SYMBOL(netlink_kernel_create);
  1308. void
  1309. netlink_kernel_release(struct sock *sk)
  1310. {
  1311. sk_release_kernel(sk);
  1312. }
  1313. EXPORT_SYMBOL(netlink_kernel_release);
  1314. int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1315. {
  1316. struct listeners *new, *old;
  1317. struct netlink_table *tbl = &nl_table[sk->sk_protocol];
  1318. if (groups < 32)
  1319. groups = 32;
  1320. if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
  1321. new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
  1322. if (!new)
  1323. return -ENOMEM;
  1324. old = rcu_dereference_protected(tbl->listeners, 1);
  1325. memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
  1326. rcu_assign_pointer(tbl->listeners, new);
  1327. kfree_rcu(old, rcu);
  1328. }
  1329. tbl->groups = groups;
  1330. return 0;
  1331. }
  1332. /**
  1333. * netlink_change_ngroups - change number of multicast groups
  1334. *
  1335. * This changes the number of multicast groups that are available
  1336. * on a certain netlink family. Note that it is not possible to
  1337. * change the number of groups to below 32. Also note that it does
  1338. * not implicitly call netlink_clear_multicast_users() when the
  1339. * number of groups is reduced.
  1340. *
  1341. * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
  1342. * @groups: The new number of groups.
  1343. */
  1344. int netlink_change_ngroups(struct sock *sk, unsigned int groups)
  1345. {
  1346. int err;
  1347. netlink_table_grab();
  1348. err = __netlink_change_ngroups(sk, groups);
  1349. netlink_table_ungrab();
  1350. return err;
  1351. }
  1352. void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1353. {
  1354. struct sock *sk;
  1355. struct hlist_node *node;
  1356. struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
  1357. sk_for_each_bound(sk, node, &tbl->mc_list)
  1358. netlink_update_socket_mc(nlk_sk(sk), group, 0);
  1359. }
  1360. /**
  1361. * netlink_clear_multicast_users - kick off multicast listeners
  1362. *
  1363. * This function removes all listeners from the given group.
  1364. * @ksk: The kernel netlink socket, as returned by
  1365. * netlink_kernel_create().
  1366. * @group: The multicast group to clear.
  1367. */
  1368. void netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
  1369. {
  1370. netlink_table_grab();
  1371. __netlink_clear_multicast_users(ksk, group);
  1372. netlink_table_ungrab();
  1373. }
  1374. void netlink_set_nonroot(int protocol, unsigned int flags)
  1375. {
  1376. if ((unsigned int)protocol < MAX_LINKS)
  1377. nl_table[protocol].nl_nonroot = flags;
  1378. }
  1379. EXPORT_SYMBOL(netlink_set_nonroot);
  1380. static void netlink_destroy_callback(struct netlink_callback *cb)
  1381. {
  1382. kfree_skb(cb->skb);
  1383. kfree(cb);
  1384. }
  1385. struct nlmsghdr *
  1386. __nlmsg_put(struct sk_buff *skb, u32 pid, u32 seq, int type, int len, int flags)
  1387. {
  1388. struct nlmsghdr *nlh;
  1389. int size = NLMSG_LENGTH(len);
  1390. nlh = (struct nlmsghdr*)skb_put(skb, NLMSG_ALIGN(size));
  1391. nlh->nlmsg_type = type;
  1392. nlh->nlmsg_len = size;
  1393. nlh->nlmsg_flags = flags;
  1394. nlh->nlmsg_pid = pid;
  1395. nlh->nlmsg_seq = seq;
  1396. if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
  1397. memset(NLMSG_DATA(nlh) + len, 0, NLMSG_ALIGN(size) - size);
  1398. return nlh;
  1399. }
  1400. EXPORT_SYMBOL(__nlmsg_put);
  1401. /*
  1402. * It looks a bit ugly.
  1403. * It would be better to create kernel thread.
  1404. */
  1405. static int netlink_dump(struct sock *sk)
  1406. {
  1407. struct netlink_sock *nlk = nlk_sk(sk);
  1408. struct netlink_callback *cb;
  1409. struct sk_buff *skb = NULL;
  1410. struct nlmsghdr *nlh;
  1411. int len, err = -ENOBUFS;
  1412. int alloc_size;
  1413. mutex_lock(nlk->cb_mutex);
  1414. cb = nlk->cb;
  1415. if (cb == NULL) {
  1416. err = -EINVAL;
  1417. goto errout_skb;
  1418. }
  1419. alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
  1420. skb = sock_rmalloc(sk, alloc_size, 0, GFP_KERNEL);
  1421. if (!skb)
  1422. goto errout_skb;
  1423. len = cb->dump(skb, cb);
  1424. if (len > 0) {
  1425. mutex_unlock(nlk->cb_mutex);
  1426. if (sk_filter(sk, skb))
  1427. kfree_skb(skb);
  1428. else
  1429. __netlink_sendskb(sk, skb);
  1430. return 0;
  1431. }
  1432. nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
  1433. if (!nlh)
  1434. goto errout_skb;
  1435. nl_dump_check_consistent(cb, nlh);
  1436. memcpy(nlmsg_data(nlh), &len, sizeof(len));
  1437. if (sk_filter(sk, skb))
  1438. kfree_skb(skb);
  1439. else
  1440. __netlink_sendskb(sk, skb);
  1441. if (cb->done)
  1442. cb->done(cb);
  1443. nlk->cb = NULL;
  1444. mutex_unlock(nlk->cb_mutex);
  1445. netlink_destroy_callback(cb);
  1446. return 0;
  1447. errout_skb:
  1448. mutex_unlock(nlk->cb_mutex);
  1449. kfree_skb(skb);
  1450. return err;
  1451. }
  1452. int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
  1453. const struct nlmsghdr *nlh,
  1454. struct netlink_dump_control *control)
  1455. {
  1456. struct netlink_callback *cb;
  1457. struct sock *sk;
  1458. struct netlink_sock *nlk;
  1459. int ret;
  1460. cb = kzalloc(sizeof(*cb), GFP_KERNEL);
  1461. if (cb == NULL)
  1462. return -ENOBUFS;
  1463. cb->dump = control->dump;
  1464. cb->done = control->done;
  1465. cb->nlh = nlh;
  1466. cb->data = control->data;
  1467. cb->min_dump_alloc = control->min_dump_alloc;
  1468. atomic_inc(&skb->users);
  1469. cb->skb = skb;
  1470. sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).pid);
  1471. if (sk == NULL) {
  1472. netlink_destroy_callback(cb);
  1473. return -ECONNREFUSED;
  1474. }
  1475. nlk = nlk_sk(sk);
  1476. /* A dump is in progress... */
  1477. mutex_lock(nlk->cb_mutex);
  1478. if (nlk->cb) {
  1479. mutex_unlock(nlk->cb_mutex);
  1480. netlink_destroy_callback(cb);
  1481. sock_put(sk);
  1482. return -EBUSY;
  1483. }
  1484. nlk->cb = cb;
  1485. mutex_unlock(nlk->cb_mutex);
  1486. ret = netlink_dump(sk);
  1487. sock_put(sk);
  1488. if (ret)
  1489. return ret;
  1490. /* We successfully started a dump, by returning -EINTR we
  1491. * signal not to send ACK even if it was requested.
  1492. */
  1493. return -EINTR;
  1494. }
  1495. EXPORT_SYMBOL(netlink_dump_start);
  1496. void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
  1497. {
  1498. struct sk_buff *skb;
  1499. struct nlmsghdr *rep;
  1500. struct nlmsgerr *errmsg;
  1501. size_t payload = sizeof(*errmsg);
  1502. /* error messages get the original request appened */
  1503. if (err)
  1504. payload += nlmsg_len(nlh);
  1505. skb = nlmsg_new(payload, GFP_KERNEL);
  1506. if (!skb) {
  1507. struct sock *sk;
  1508. sk = netlink_lookup(sock_net(in_skb->sk),
  1509. in_skb->sk->sk_protocol,
  1510. NETLINK_CB(in_skb).pid);
  1511. if (sk) {
  1512. sk->sk_err = ENOBUFS;
  1513. sk->sk_error_report(sk);
  1514. sock_put(sk);
  1515. }
  1516. return;
  1517. }
  1518. rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
  1519. NLMSG_ERROR, payload, 0);
  1520. errmsg = nlmsg_data(rep);
  1521. errmsg->error = err;
  1522. memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
  1523. netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
  1524. }
  1525. EXPORT_SYMBOL(netlink_ack);
  1526. int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
  1527. struct nlmsghdr *))
  1528. {
  1529. struct nlmsghdr *nlh;
  1530. int err;
  1531. while (skb->len >= nlmsg_total_size(0)) {
  1532. int msglen;
  1533. nlh = nlmsg_hdr(skb);
  1534. err = 0;
  1535. if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
  1536. return 0;
  1537. /* Only requests are handled by the kernel */
  1538. if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
  1539. goto ack;
  1540. /* Skip control messages */
  1541. if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
  1542. goto ack;
  1543. err = cb(skb, nlh);
  1544. if (err == -EINTR)
  1545. goto skip;
  1546. ack:
  1547. if (nlh->nlmsg_flags & NLM_F_ACK || err)
  1548. netlink_ack(skb, nlh, err);
  1549. skip:
  1550. msglen = NLMSG_ALIGN(nlh->nlmsg_len);
  1551. if (msglen > skb->len)
  1552. msglen = skb->len;
  1553. skb_pull(skb, msglen);
  1554. }
  1555. return 0;
  1556. }
  1557. EXPORT_SYMBOL(netlink_rcv_skb);
  1558. /**
  1559. * nlmsg_notify - send a notification netlink message
  1560. * @sk: netlink socket to use
  1561. * @skb: notification message
  1562. * @pid: destination netlink pid for reports or 0
  1563. * @group: destination multicast group or 0
  1564. * @report: 1 to report back, 0 to disable
  1565. * @flags: allocation flags
  1566. */
  1567. int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 pid,
  1568. unsigned int group, int report, gfp_t flags)
  1569. {
  1570. int err = 0;
  1571. if (group) {
  1572. int exclude_pid = 0;
  1573. if (report) {
  1574. atomic_inc(&skb->users);
  1575. exclude_pid = pid;
  1576. }
  1577. /* errors reported via destination sk->sk_err, but propagate
  1578. * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
  1579. err = nlmsg_multicast(sk, skb, exclude_pid, group, flags);
  1580. }
  1581. if (report) {
  1582. int err2;
  1583. err2 = nlmsg_unicast(sk, skb, pid);
  1584. if (!err || err == -ESRCH)
  1585. err = err2;
  1586. }
  1587. return err;
  1588. }
  1589. EXPORT_SYMBOL(nlmsg_notify);
  1590. #ifdef CONFIG_PROC_FS
  1591. struct nl_seq_iter {
  1592. struct seq_net_private p;
  1593. int link;
  1594. int hash_idx;
  1595. };
  1596. static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
  1597. {
  1598. struct nl_seq_iter *iter = seq->private;
  1599. int i, j;
  1600. struct sock *s;
  1601. struct hlist_node *node;
  1602. loff_t off = 0;
  1603. for (i = 0; i < MAX_LINKS; i++) {
  1604. struct nl_pid_hash *hash = &nl_table[i].hash;
  1605. for (j = 0; j <= hash->mask; j++) {
  1606. sk_for_each(s, node, &hash->table[j]) {
  1607. if (sock_net(s) != seq_file_net(seq))
  1608. continue;
  1609. if (off == pos) {
  1610. iter->link = i;
  1611. iter->hash_idx = j;
  1612. return s;
  1613. }
  1614. ++off;
  1615. }
  1616. }
  1617. }
  1618. return NULL;
  1619. }
  1620. static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
  1621. __acquires(nl_table_lock)
  1622. {
  1623. read_lock(&nl_table_lock);
  1624. return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
  1625. }
  1626. static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1627. {
  1628. struct sock *s;
  1629. struct nl_seq_iter *iter;
  1630. int i, j;
  1631. ++*pos;
  1632. if (v == SEQ_START_TOKEN)
  1633. return netlink_seq_socket_idx(seq, 0);
  1634. iter = seq->private;
  1635. s = v;
  1636. do {
  1637. s = sk_next(s);
  1638. } while (s && sock_net(s) != seq_file_net(seq));
  1639. if (s)
  1640. return s;
  1641. i = iter->link;
  1642. j = iter->hash_idx + 1;
  1643. do {
  1644. struct nl_pid_hash *hash = &nl_table[i].hash;
  1645. for (; j <= hash->mask; j++) {
  1646. s = sk_head(&hash->table[j]);
  1647. while (s && sock_net(s) != seq_file_net(seq))
  1648. s = sk_next(s);
  1649. if (s) {
  1650. iter->link = i;
  1651. iter->hash_idx = j;
  1652. return s;
  1653. }
  1654. }
  1655. j = 0;
  1656. } while (++i < MAX_LINKS);
  1657. return NULL;
  1658. }
  1659. static void netlink_seq_stop(struct seq_file *seq, void *v)
  1660. __releases(nl_table_lock)
  1661. {
  1662. read_unlock(&nl_table_lock);
  1663. }
  1664. static int netlink_seq_show(struct seq_file *seq, void *v)
  1665. {
  1666. if (v == SEQ_START_TOKEN)
  1667. seq_puts(seq,
  1668. "sk Eth Pid Groups "
  1669. "Rmem Wmem Dump Locks Drops Inode\n");
  1670. else {
  1671. struct sock *s = v;
  1672. struct netlink_sock *nlk = nlk_sk(s);
  1673. seq_printf(seq, "%pK %-3d %-6d %08x %-8d %-8d %pK %-8d %-8d %-8lu\n",
  1674. s,
  1675. s->sk_protocol,
  1676. nlk->pid,
  1677. nlk->groups ? (u32)nlk->groups[0] : 0,
  1678. sk_rmem_alloc_get(s),
  1679. sk_wmem_alloc_get(s),
  1680. nlk->cb,
  1681. atomic_read(&s->sk_refcnt),
  1682. atomic_read(&s->sk_drops),
  1683. sock_i_ino(s)
  1684. );
  1685. }
  1686. return 0;
  1687. }
  1688. static const struct seq_operations netlink_seq_ops = {
  1689. .start = netlink_seq_start,
  1690. .next = netlink_seq_next,
  1691. .stop = netlink_seq_stop,
  1692. .show = netlink_seq_show,
  1693. };
  1694. static int netlink_seq_open(struct inode *inode, struct file *file)
  1695. {
  1696. return seq_open_net(inode, file, &netlink_seq_ops,
  1697. sizeof(struct nl_seq_iter));
  1698. }
  1699. static const struct file_operations netlink_seq_fops = {
  1700. .owner = THIS_MODULE,
  1701. .open = netlink_seq_open,
  1702. .read = seq_read,
  1703. .llseek = seq_lseek,
  1704. .release = seq_release_net,
  1705. };
  1706. #endif
  1707. int netlink_register_notifier(struct notifier_block *nb)
  1708. {
  1709. return atomic_notifier_chain_register(&netlink_chain, nb);
  1710. }
  1711. EXPORT_SYMBOL(netlink_register_notifier);
  1712. int netlink_unregister_notifier(struct notifier_block *nb)
  1713. {
  1714. return atomic_notifier_chain_unregister(&netlink_chain, nb);
  1715. }
  1716. EXPORT_SYMBOL(netlink_unregister_notifier);
  1717. static const struct proto_ops netlink_ops = {
  1718. .family = PF_NETLINK,
  1719. .owner = THIS_MODULE,
  1720. .release = netlink_release,
  1721. .bind = netlink_bind,
  1722. .connect = netlink_connect,
  1723. .socketpair = sock_no_socketpair,
  1724. .accept = sock_no_accept,
  1725. .getname = netlink_getname,
  1726. .poll = datagram_poll,
  1727. .ioctl = sock_no_ioctl,
  1728. .listen = sock_no_listen,
  1729. .shutdown = sock_no_shutdown,
  1730. .setsockopt = netlink_setsockopt,
  1731. .getsockopt = netlink_getsockopt,
  1732. .sendmsg = netlink_sendmsg,
  1733. .recvmsg = netlink_recvmsg,
  1734. .mmap = sock_no_mmap,
  1735. .sendpage = sock_no_sendpage,
  1736. };
  1737. static const struct net_proto_family netlink_family_ops = {
  1738. .family = PF_NETLINK,
  1739. .create = netlink_create,
  1740. .owner = THIS_MODULE, /* for consistency 8) */
  1741. };
  1742. static int __net_init netlink_net_init(struct net *net)
  1743. {
  1744. #ifdef CONFIG_PROC_FS
  1745. if (!proc_net_fops_create(net, "netlink", 0, &netlink_seq_fops))
  1746. return -ENOMEM;
  1747. #endif
  1748. return 0;
  1749. }
  1750. static void __net_exit netlink_net_exit(struct net *net)
  1751. {
  1752. #ifdef CONFIG_PROC_FS
  1753. proc_net_remove(net, "netlink");
  1754. #endif
  1755. }
  1756. static void __init netlink_add_usersock_entry(void)
  1757. {
  1758. struct listeners *listeners;
  1759. int groups = 32;
  1760. listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
  1761. if (!listeners)
  1762. panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
  1763. netlink_table_grab();
  1764. nl_table[NETLINK_USERSOCK].groups = groups;
  1765. rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
  1766. nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
  1767. nl_table[NETLINK_USERSOCK].registered = 1;
  1768. netlink_table_ungrab();
  1769. }
  1770. static struct pernet_operations __net_initdata netlink_net_ops = {
  1771. .init = netlink_net_init,
  1772. .exit = netlink_net_exit,
  1773. };
  1774. static int __init netlink_proto_init(void)
  1775. {
  1776. struct sk_buff *dummy_skb;
  1777. int i;
  1778. unsigned long limit;
  1779. unsigned int order;
  1780. int err = proto_register(&netlink_proto, 0);
  1781. if (err != 0)
  1782. goto out;
  1783. BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb));
  1784. nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
  1785. if (!nl_table)
  1786. goto panic;
  1787. if (totalram_pages >= (128 * 1024))
  1788. limit = totalram_pages >> (21 - PAGE_SHIFT);
  1789. else
  1790. limit = totalram_pages >> (23 - PAGE_SHIFT);
  1791. order = get_bitmask_order(limit) - 1 + PAGE_SHIFT;
  1792. limit = (1UL << order) / sizeof(struct hlist_head);
  1793. order = get_bitmask_order(min(limit, (unsigned long)UINT_MAX)) - 1;
  1794. for (i = 0; i < MAX_LINKS; i++) {
  1795. struct nl_pid_hash *hash = &nl_table[i].hash;
  1796. hash->table = nl_pid_hash_zalloc(1 * sizeof(*hash->table));
  1797. if (!hash->table) {
  1798. while (i-- > 0)
  1799. nl_pid_hash_free(nl_table[i].hash.table,
  1800. 1 * sizeof(*hash->table));
  1801. kfree(nl_table);
  1802. goto panic;
  1803. }
  1804. hash->max_shift = order;
  1805. hash->shift = 0;
  1806. hash->mask = 0;
  1807. hash->rehash_time = jiffies;
  1808. }
  1809. netlink_add_usersock_entry();
  1810. sock_register(&netlink_family_ops);
  1811. register_pernet_subsys(&netlink_net_ops);
  1812. /* The netlink device handler may be needed early. */
  1813. rtnetlink_init();
  1814. out:
  1815. return err;
  1816. panic:
  1817. panic("netlink_init: Cannot allocate nl_table\n");
  1818. }
  1819. core_initcall(netlink_proto_init);