vfpmodule.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. /*
  2. * linux/arch/arm/vfp/vfpmodule.c
  3. *
  4. * Copyright (C) 2004 ARM Limited.
  5. * Written by Deep Blue Solutions Limited.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/types.h>
  12. #include <linux/cpu.h>
  13. #include <linux/cpu_pm.h>
  14. #include <linux/kernel.h>
  15. #include <linux/notifier.h>
  16. #include <linux/signal.h>
  17. #include <linux/sched.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <asm/cp15.h>
  21. #include <asm/cputype.h>
  22. #include <asm/system_info.h>
  23. #include <asm/thread_notify.h>
  24. #include <asm/vfp.h>
  25. #include "vfpinstr.h"
  26. #include "vfp.h"
  27. /*
  28. * Our undef handlers (in entry.S)
  29. */
  30. void vfp_testing_entry(void);
  31. void vfp_support_entry(void);
  32. void vfp_null_entry(void);
  33. void (*vfp_vector)(void) = vfp_null_entry;
  34. /*
  35. * Dual-use variable.
  36. * Used in startup: set to non-zero if VFP checks fail
  37. * After startup, holds VFP architecture
  38. */
  39. unsigned int VFP_arch;
  40. /*
  41. * The pointer to the vfpstate structure of the thread which currently
  42. * owns the context held in the VFP hardware, or NULL if the hardware
  43. * context is invalid.
  44. *
  45. * For UP, this is sufficient to tell which thread owns the VFP context.
  46. * However, for SMP, we also need to check the CPU number stored in the
  47. * saved state too to catch migrations.
  48. */
  49. union vfp_state *vfp_current_hw_state[NR_CPUS];
  50. /*
  51. * Is 'thread's most up to date state stored in this CPUs hardware?
  52. * Must be called from non-preemptible context.
  53. */
  54. static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
  55. {
  56. #ifdef CONFIG_SMP
  57. if (thread->vfpstate.hard.cpu != cpu)
  58. return false;
  59. #endif
  60. return vfp_current_hw_state[cpu] == &thread->vfpstate;
  61. }
  62. /*
  63. * Force a reload of the VFP context from the thread structure. We do
  64. * this by ensuring that access to the VFP hardware is disabled, and
  65. * clear vfp_current_hw_state. Must be called from non-preemptible context.
  66. */
  67. static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
  68. {
  69. if (vfp_state_in_hw(cpu, thread)) {
  70. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
  71. vfp_current_hw_state[cpu] = NULL;
  72. }
  73. #ifdef CONFIG_SMP
  74. thread->vfpstate.hard.cpu = NR_CPUS;
  75. #endif
  76. }
  77. /*
  78. * Per-thread VFP initialization.
  79. */
  80. static void vfp_thread_flush(struct thread_info *thread)
  81. {
  82. union vfp_state *vfp = &thread->vfpstate;
  83. unsigned int cpu;
  84. /*
  85. * Disable VFP to ensure we initialize it first. We must ensure
  86. * that the modification of vfp_current_hw_state[] and hardware
  87. * disable are done for the same CPU and without preemption.
  88. *
  89. * Do this first to ensure that preemption won't overwrite our
  90. * state saving should access to the VFP be enabled at this point.
  91. */
  92. cpu = get_cpu();
  93. if (vfp_current_hw_state[cpu] == vfp)
  94. vfp_current_hw_state[cpu] = NULL;
  95. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
  96. put_cpu();
  97. memset(vfp, 0, sizeof(union vfp_state));
  98. vfp->hard.fpexc = FPEXC_EN;
  99. vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
  100. #ifdef CONFIG_SMP
  101. vfp->hard.cpu = NR_CPUS;
  102. #endif
  103. }
  104. static void vfp_thread_exit(struct thread_info *thread)
  105. {
  106. /* release case: Per-thread VFP cleanup. */
  107. union vfp_state *vfp = &thread->vfpstate;
  108. unsigned int cpu = get_cpu();
  109. if (vfp_current_hw_state[cpu] == vfp)
  110. vfp_current_hw_state[cpu] = NULL;
  111. put_cpu();
  112. }
  113. static void vfp_thread_copy(struct thread_info *thread)
  114. {
  115. struct thread_info *parent = current_thread_info();
  116. vfp_sync_hwstate(parent);
  117. thread->vfpstate = parent->vfpstate;
  118. #ifdef CONFIG_SMP
  119. thread->vfpstate.hard.cpu = NR_CPUS;
  120. #endif
  121. }
  122. /*
  123. * When this function is called with the following 'cmd's, the following
  124. * is true while this function is being run:
  125. * THREAD_NOFTIFY_SWTICH:
  126. * - the previously running thread will not be scheduled onto another CPU.
  127. * - the next thread to be run (v) will not be running on another CPU.
  128. * - thread->cpu is the local CPU number
  129. * - not preemptible as we're called in the middle of a thread switch
  130. * THREAD_NOTIFY_FLUSH:
  131. * - the thread (v) will be running on the local CPU, so
  132. * v === current_thread_info()
  133. * - thread->cpu is the local CPU number at the time it is accessed,
  134. * but may change at any time.
  135. * - we could be preempted if tree preempt rcu is enabled, so
  136. * it is unsafe to use thread->cpu.
  137. * THREAD_NOTIFY_EXIT
  138. * - the thread (v) will be running on the local CPU, so
  139. * v === current_thread_info()
  140. * - thread->cpu is the local CPU number at the time it is accessed,
  141. * but may change at any time.
  142. * - we could be preempted if tree preempt rcu is enabled, so
  143. * it is unsafe to use thread->cpu.
  144. */
  145. static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
  146. {
  147. struct thread_info *thread = v;
  148. u32 fpexc;
  149. #ifdef CONFIG_SMP
  150. unsigned int cpu;
  151. #endif
  152. switch (cmd) {
  153. case THREAD_NOTIFY_SWITCH:
  154. fpexc = fmrx(FPEXC);
  155. #ifdef CONFIG_SMP
  156. cpu = thread->cpu;
  157. /*
  158. * On SMP, if VFP is enabled, save the old state in
  159. * case the thread migrates to a different CPU. The
  160. * restoring is done lazily.
  161. */
  162. if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
  163. vfp_save_state(vfp_current_hw_state[cpu], fpexc);
  164. #endif
  165. /*
  166. * Always disable VFP so we can lazily save/restore the
  167. * old state.
  168. */
  169. fmxr(FPEXC, fpexc & ~FPEXC_EN);
  170. break;
  171. case THREAD_NOTIFY_FLUSH:
  172. vfp_thread_flush(thread);
  173. break;
  174. case THREAD_NOTIFY_EXIT:
  175. vfp_thread_exit(thread);
  176. break;
  177. case THREAD_NOTIFY_COPY:
  178. vfp_thread_copy(thread);
  179. break;
  180. }
  181. return NOTIFY_DONE;
  182. }
  183. static struct notifier_block vfp_notifier_block = {
  184. .notifier_call = vfp_notifier,
  185. };
  186. /*
  187. * Raise a SIGFPE for the current process.
  188. * sicode describes the signal being raised.
  189. */
  190. static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
  191. {
  192. siginfo_t info;
  193. memset(&info, 0, sizeof(info));
  194. info.si_signo = SIGFPE;
  195. info.si_code = sicode;
  196. info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
  197. /*
  198. * This is the same as NWFPE, because it's not clear what
  199. * this is used for
  200. */
  201. current->thread.error_code = 0;
  202. current->thread.trap_no = 6;
  203. send_sig_info(SIGFPE, &info, current);
  204. }
  205. static void vfp_panic(char *reason, u32 inst)
  206. {
  207. int i;
  208. printk(KERN_ERR "VFP: Error: %s\n", reason);
  209. printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
  210. fmrx(FPEXC), fmrx(FPSCR), inst);
  211. for (i = 0; i < 32; i += 2)
  212. printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
  213. i, vfp_get_float(i), i+1, vfp_get_float(i+1));
  214. }
  215. /*
  216. * Process bitmask of exception conditions.
  217. */
  218. static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
  219. {
  220. int si_code = 0;
  221. pr_debug("VFP: raising exceptions %08x\n", exceptions);
  222. if (exceptions == VFP_EXCEPTION_ERROR) {
  223. vfp_panic("unhandled bounce", inst);
  224. vfp_raise_sigfpe(0, regs);
  225. return;
  226. }
  227. /*
  228. * If any of the status flags are set, update the FPSCR.
  229. * Comparison instructions always return at least one of
  230. * these flags set.
  231. */
  232. if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
  233. fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
  234. fpscr |= exceptions;
  235. fmxr(FPSCR, fpscr);
  236. #define RAISE(stat,en,sig) \
  237. if (exceptions & stat && fpscr & en) \
  238. si_code = sig;
  239. /*
  240. * These are arranged in priority order, least to highest.
  241. */
  242. RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
  243. RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
  244. RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
  245. RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
  246. RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
  247. if (si_code)
  248. vfp_raise_sigfpe(si_code, regs);
  249. }
  250. /*
  251. * Emulate a VFP instruction.
  252. */
  253. static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
  254. {
  255. u32 exceptions = VFP_EXCEPTION_ERROR;
  256. pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
  257. if (INST_CPRTDO(inst)) {
  258. if (!INST_CPRT(inst)) {
  259. /*
  260. * CPDO
  261. */
  262. if (vfp_single(inst)) {
  263. exceptions = vfp_single_cpdo(inst, fpscr);
  264. } else {
  265. exceptions = vfp_double_cpdo(inst, fpscr);
  266. }
  267. } else {
  268. /*
  269. * A CPRT instruction can not appear in FPINST2, nor
  270. * can it cause an exception. Therefore, we do not
  271. * have to emulate it.
  272. */
  273. }
  274. } else {
  275. /*
  276. * A CPDT instruction can not appear in FPINST2, nor can
  277. * it cause an exception. Therefore, we do not have to
  278. * emulate it.
  279. */
  280. }
  281. return exceptions & ~VFP_NAN_FLAG;
  282. }
  283. /*
  284. * Package up a bounce condition.
  285. */
  286. void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
  287. {
  288. u32 fpscr, orig_fpscr, fpsid, exceptions;
  289. pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
  290. /*
  291. * At this point, FPEXC can have the following configuration:
  292. *
  293. * EX DEX IXE
  294. * 0 1 x - synchronous exception
  295. * 1 x 0 - asynchronous exception
  296. * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
  297. * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
  298. * implementation), undefined otherwise
  299. *
  300. * Clear various bits and enable access to the VFP so we can
  301. * handle the bounce.
  302. */
  303. fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
  304. fpsid = fmrx(FPSID);
  305. orig_fpscr = fpscr = fmrx(FPSCR);
  306. /*
  307. * Check for the special VFP subarch 1 and FPSCR.IXE bit case
  308. */
  309. if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
  310. && (fpscr & FPSCR_IXE)) {
  311. /*
  312. * Synchronous exception, emulate the trigger instruction
  313. */
  314. goto emulate;
  315. }
  316. if (fpexc & FPEXC_EX) {
  317. #ifndef CONFIG_CPU_FEROCEON
  318. /*
  319. * Asynchronous exception. The instruction is read from FPINST
  320. * and the interrupted instruction has to be restarted.
  321. */
  322. trigger = fmrx(FPINST);
  323. regs->ARM_pc -= 4;
  324. #endif
  325. } else if (!(fpexc & FPEXC_DEX)) {
  326. /*
  327. * Illegal combination of bits. It can be caused by an
  328. * unallocated VFP instruction but with FPSCR.IXE set and not
  329. * on VFP subarch 1.
  330. */
  331. vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
  332. goto exit;
  333. }
  334. /*
  335. * Modify fpscr to indicate the number of iterations remaining.
  336. * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
  337. * whether FPEXC.VECITR or FPSCR.LEN is used.
  338. */
  339. if (fpexc & (FPEXC_EX | FPEXC_VV)) {
  340. u32 len;
  341. len = fpexc + (1 << FPEXC_LENGTH_BIT);
  342. fpscr &= ~FPSCR_LENGTH_MASK;
  343. fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
  344. }
  345. /*
  346. * Handle the first FP instruction. We used to take note of the
  347. * FPEXC bounce reason, but this appears to be unreliable.
  348. * Emulate the bounced instruction instead.
  349. */
  350. exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
  351. if (exceptions)
  352. vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
  353. /*
  354. * If there isn't a second FP instruction, exit now. Note that
  355. * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
  356. */
  357. if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
  358. goto exit;
  359. /*
  360. * The barrier() here prevents fpinst2 being read
  361. * before the condition above.
  362. */
  363. barrier();
  364. trigger = fmrx(FPINST2);
  365. emulate:
  366. exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
  367. if (exceptions)
  368. vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
  369. exit:
  370. preempt_enable();
  371. }
  372. static void vfp_enable(void *unused)
  373. {
  374. u32 access = get_copro_access();
  375. /*
  376. * Enable full access to VFP (cp10 and cp11)
  377. */
  378. set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
  379. }
  380. #ifdef CONFIG_CPU_PM
  381. static int vfp_pm_suspend(void)
  382. {
  383. struct thread_info *ti = current_thread_info();
  384. u32 fpexc = fmrx(FPEXC);
  385. /* if vfp is on, then save state for resumption */
  386. if (fpexc & FPEXC_EN) {
  387. printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
  388. vfp_save_state(&ti->vfpstate, fpexc);
  389. /* disable, just in case */
  390. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
  391. }
  392. /* clear any information we had about last context state */
  393. memset(vfp_current_hw_state, 0, sizeof(vfp_current_hw_state));
  394. return 0;
  395. }
  396. static void vfp_pm_resume(void)
  397. {
  398. /* ensure we have access to the vfp */
  399. vfp_enable(NULL);
  400. /* and disable it to ensure the next usage restores the state */
  401. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
  402. }
  403. static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
  404. void *v)
  405. {
  406. switch (cmd) {
  407. case CPU_PM_ENTER:
  408. vfp_pm_suspend();
  409. break;
  410. case CPU_PM_ENTER_FAILED:
  411. case CPU_PM_EXIT:
  412. vfp_pm_resume();
  413. break;
  414. }
  415. return NOTIFY_OK;
  416. }
  417. static struct notifier_block vfp_cpu_pm_notifier_block = {
  418. .notifier_call = vfp_cpu_pm_notifier,
  419. };
  420. static void vfp_pm_init(void)
  421. {
  422. cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
  423. }
  424. #else
  425. static inline void vfp_pm_init(void) { }
  426. #endif /* CONFIG_CPU_PM */
  427. /*
  428. * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
  429. * with the hardware state.
  430. */
  431. void vfp_sync_hwstate(struct thread_info *thread)
  432. {
  433. unsigned int cpu = get_cpu();
  434. if (vfp_state_in_hw(cpu, thread)) {
  435. u32 fpexc = fmrx(FPEXC);
  436. /*
  437. * Save the last VFP state on this CPU.
  438. */
  439. fmxr(FPEXC, fpexc | FPEXC_EN);
  440. vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
  441. fmxr(FPEXC, fpexc);
  442. }
  443. put_cpu();
  444. }
  445. /* Ensure that the thread reloads the hardware VFP state on the next use. */
  446. void vfp_flush_hwstate(struct thread_info *thread)
  447. {
  448. unsigned int cpu = get_cpu();
  449. vfp_force_reload(cpu, thread);
  450. put_cpu();
  451. }
  452. /*
  453. * VFP hardware can lose all context when a CPU goes offline.
  454. * As we will be running in SMP mode with CPU hotplug, we will save the
  455. * hardware state at every thread switch. We clear our held state when
  456. * a CPU has been killed, indicating that the VFP hardware doesn't contain
  457. * a threads VFP state. When a CPU starts up, we re-enable access to the
  458. * VFP hardware.
  459. *
  460. * Both CPU_DYING and CPU_STARTING are called on the CPU which
  461. * is being offlined/onlined.
  462. */
  463. static int vfp_hotplug(struct notifier_block *b, unsigned long action,
  464. void *hcpu)
  465. {
  466. if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
  467. vfp_force_reload((long)hcpu, current_thread_info());
  468. } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
  469. vfp_enable(NULL);
  470. return NOTIFY_OK;
  471. }
  472. /*
  473. * VFP support code initialisation.
  474. */
  475. static int __init vfp_init(void)
  476. {
  477. unsigned int vfpsid;
  478. unsigned int cpu_arch = cpu_architecture();
  479. if (cpu_arch >= CPU_ARCH_ARMv6)
  480. vfp_enable(NULL);
  481. /*
  482. * First check that there is a VFP that we can use.
  483. * The handler is already setup to just log calls, so
  484. * we just need to read the VFPSID register.
  485. */
  486. vfp_vector = vfp_testing_entry;
  487. barrier();
  488. vfpsid = fmrx(FPSID);
  489. barrier();
  490. vfp_vector = vfp_null_entry;
  491. printk(KERN_INFO "VFP support v0.3: ");
  492. if (VFP_arch)
  493. printk("not present\n");
  494. else if (vfpsid & FPSID_NODOUBLE) {
  495. printk("no double precision support\n");
  496. } else {
  497. hotcpu_notifier(vfp_hotplug, 0);
  498. smp_call_function(vfp_enable, NULL, 1);
  499. VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
  500. printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
  501. (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
  502. (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
  503. (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
  504. (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
  505. (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
  506. vfp_vector = vfp_support_entry;
  507. thread_register_notifier(&vfp_notifier_block);
  508. vfp_pm_init();
  509. /*
  510. * We detected VFP, and the support code is
  511. * in place; report VFP support to userspace.
  512. */
  513. elf_hwcap |= HWCAP_VFP;
  514. #ifdef CONFIG_VFPv3
  515. if (VFP_arch >= 2) {
  516. elf_hwcap |= HWCAP_VFPv3;
  517. /*
  518. * Check for VFPv3 D16. CPUs in this configuration
  519. * only have 16 x 64bit registers.
  520. */
  521. if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
  522. elf_hwcap |= HWCAP_VFPv3D16;
  523. }
  524. #endif
  525. /*
  526. * Check for the presence of the Advanced SIMD
  527. * load/store instructions, integer and single
  528. * precision floating point operations. Only check
  529. * for NEON if the hardware has the MVFR registers.
  530. */
  531. if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
  532. #ifdef CONFIG_NEON
  533. if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
  534. elf_hwcap |= HWCAP_NEON;
  535. #endif
  536. if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
  537. elf_hwcap |= HWCAP_VFPv4;
  538. }
  539. }
  540. return 0;
  541. }
  542. late_initcall(vfp_init);