xmit.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  109. {
  110. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  111. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  112. sizeof(tx_info->rate_driver_data));
  113. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  114. }
  115. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  116. {
  117. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  118. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  119. }
  120. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  121. struct ath_buf *bf)
  122. {
  123. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  124. ARRAY_SIZE(bf->rates));
  125. }
  126. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  127. {
  128. struct ath_txq *txq = tid->ac->txq;
  129. struct sk_buff *skb;
  130. struct ath_buf *bf;
  131. struct list_head bf_head;
  132. struct ath_tx_status ts;
  133. struct ath_frame_info *fi;
  134. bool sendbar = false;
  135. INIT_LIST_HEAD(&bf_head);
  136. memset(&ts, 0, sizeof(ts));
  137. while ((skb = __skb_dequeue(&tid->buf_q))) {
  138. fi = get_frame_info(skb);
  139. bf = fi->bf;
  140. if (!bf) {
  141. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  142. if (!bf) {
  143. ieee80211_free_txskb(sc->hw, skb);
  144. continue;
  145. }
  146. }
  147. if (fi->retries) {
  148. list_add_tail(&bf->list, &bf_head);
  149. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  150. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  151. sendbar = true;
  152. } else {
  153. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  154. ath_tx_send_normal(sc, txq, NULL, skb);
  155. }
  156. }
  157. if (sendbar) {
  158. ath_txq_unlock(sc, txq);
  159. ath_send_bar(tid, tid->seq_start);
  160. ath_txq_lock(sc, txq);
  161. }
  162. }
  163. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  164. int seqno)
  165. {
  166. int index, cindex;
  167. index = ATH_BA_INDEX(tid->seq_start, seqno);
  168. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  169. __clear_bit(cindex, tid->tx_buf);
  170. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  171. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  172. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  173. if (tid->bar_index >= 0)
  174. tid->bar_index--;
  175. }
  176. }
  177. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  178. u16 seqno)
  179. {
  180. int index, cindex;
  181. index = ATH_BA_INDEX(tid->seq_start, seqno);
  182. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  183. __set_bit(cindex, tid->tx_buf);
  184. if (index >= ((tid->baw_tail - tid->baw_head) &
  185. (ATH_TID_MAX_BUFS - 1))) {
  186. tid->baw_tail = cindex;
  187. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  188. }
  189. }
  190. /*
  191. * TODO: For frame(s) that are in the retry state, we will reuse the
  192. * sequence number(s) without setting the retry bit. The
  193. * alternative is to give up on these and BAR the receiver's window
  194. * forward.
  195. */
  196. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  197. struct ath_atx_tid *tid)
  198. {
  199. struct sk_buff *skb;
  200. struct ath_buf *bf;
  201. struct list_head bf_head;
  202. struct ath_tx_status ts;
  203. struct ath_frame_info *fi;
  204. memset(&ts, 0, sizeof(ts));
  205. INIT_LIST_HEAD(&bf_head);
  206. while ((skb = __skb_dequeue(&tid->buf_q))) {
  207. fi = get_frame_info(skb);
  208. bf = fi->bf;
  209. if (!bf) {
  210. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  211. continue;
  212. }
  213. list_add_tail(&bf->list, &bf_head);
  214. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  215. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  216. }
  217. tid->seq_next = tid->seq_start;
  218. tid->baw_tail = tid->baw_head;
  219. tid->bar_index = -1;
  220. }
  221. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  222. struct sk_buff *skb, int count)
  223. {
  224. struct ath_frame_info *fi = get_frame_info(skb);
  225. struct ath_buf *bf = fi->bf;
  226. struct ieee80211_hdr *hdr;
  227. int prev = fi->retries;
  228. TX_STAT_INC(txq->axq_qnum, a_retries);
  229. fi->retries += count;
  230. if (prev > 0)
  231. return;
  232. hdr = (struct ieee80211_hdr *)skb->data;
  233. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  234. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  235. sizeof(*hdr), DMA_TO_DEVICE);
  236. }
  237. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  238. {
  239. struct ath_buf *bf = NULL;
  240. spin_lock_bh(&sc->tx.txbuflock);
  241. if (unlikely(list_empty(&sc->tx.txbuf))) {
  242. spin_unlock_bh(&sc->tx.txbuflock);
  243. return NULL;
  244. }
  245. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  246. list_del(&bf->list);
  247. spin_unlock_bh(&sc->tx.txbuflock);
  248. return bf;
  249. }
  250. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  251. {
  252. spin_lock_bh(&sc->tx.txbuflock);
  253. list_add_tail(&bf->list, &sc->tx.txbuf);
  254. spin_unlock_bh(&sc->tx.txbuflock);
  255. }
  256. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  257. {
  258. struct ath_buf *tbf;
  259. tbf = ath_tx_get_buffer(sc);
  260. if (WARN_ON(!tbf))
  261. return NULL;
  262. ATH_TXBUF_RESET(tbf);
  263. tbf->bf_mpdu = bf->bf_mpdu;
  264. tbf->bf_buf_addr = bf->bf_buf_addr;
  265. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  266. tbf->bf_state = bf->bf_state;
  267. return tbf;
  268. }
  269. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  270. struct ath_tx_status *ts, int txok,
  271. int *nframes, int *nbad)
  272. {
  273. struct ath_frame_info *fi;
  274. u16 seq_st = 0;
  275. u32 ba[WME_BA_BMP_SIZE >> 5];
  276. int ba_index;
  277. int isaggr = 0;
  278. *nbad = 0;
  279. *nframes = 0;
  280. isaggr = bf_isaggr(bf);
  281. if (isaggr) {
  282. seq_st = ts->ts_seqnum;
  283. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  284. }
  285. while (bf) {
  286. fi = get_frame_info(bf->bf_mpdu);
  287. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  288. (*nframes)++;
  289. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  290. (*nbad)++;
  291. bf = bf->bf_next;
  292. }
  293. }
  294. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  295. struct ath_buf *bf, struct list_head *bf_q,
  296. struct ath_tx_status *ts, int txok)
  297. {
  298. struct ath_node *an = NULL;
  299. struct sk_buff *skb;
  300. struct ieee80211_sta *sta;
  301. struct ieee80211_hw *hw = sc->hw;
  302. struct ieee80211_hdr *hdr;
  303. struct ieee80211_tx_info *tx_info;
  304. struct ath_atx_tid *tid = NULL;
  305. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  306. struct list_head bf_head;
  307. struct sk_buff_head bf_pending;
  308. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  309. u32 ba[WME_BA_BMP_SIZE >> 5];
  310. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  311. bool rc_update = true, isba;
  312. struct ieee80211_tx_rate rates[4];
  313. struct ath_frame_info *fi;
  314. int nframes;
  315. u8 tidno;
  316. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  317. int i, retries;
  318. int bar_index = -1;
  319. skb = bf->bf_mpdu;
  320. hdr = (struct ieee80211_hdr *)skb->data;
  321. tx_info = IEEE80211_SKB_CB(skb);
  322. memcpy(rates, bf->rates, sizeof(rates));
  323. retries = ts->ts_longretry + 1;
  324. for (i = 0; i < ts->ts_rateindex; i++)
  325. retries += rates[i].count;
  326. rcu_read_lock();
  327. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  328. if (!sta) {
  329. rcu_read_unlock();
  330. INIT_LIST_HEAD(&bf_head);
  331. while (bf) {
  332. bf_next = bf->bf_next;
  333. if (!bf->bf_stale || bf_next != NULL)
  334. list_move_tail(&bf->list, &bf_head);
  335. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  336. bf = bf_next;
  337. }
  338. return;
  339. }
  340. an = (struct ath_node *)sta->drv_priv;
  341. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  342. tid = ATH_AN_2_TID(an, tidno);
  343. seq_first = tid->seq_start;
  344. isba = ts->ts_flags & ATH9K_TX_BA;
  345. /*
  346. * The hardware occasionally sends a tx status for the wrong TID.
  347. * In this case, the BA status cannot be considered valid and all
  348. * subframes need to be retransmitted
  349. *
  350. * Only BlockAcks have a TID and therefore normal Acks cannot be
  351. * checked
  352. */
  353. if (isba && tidno != ts->tid)
  354. txok = false;
  355. isaggr = bf_isaggr(bf);
  356. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  357. if (isaggr && txok) {
  358. if (ts->ts_flags & ATH9K_TX_BA) {
  359. seq_st = ts->ts_seqnum;
  360. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  361. } else {
  362. /*
  363. * AR5416 can become deaf/mute when BA
  364. * issue happens. Chip needs to be reset.
  365. * But AP code may have sychronization issues
  366. * when perform internal reset in this routine.
  367. * Only enable reset in STA mode for now.
  368. */
  369. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  370. needreset = 1;
  371. }
  372. }
  373. __skb_queue_head_init(&bf_pending);
  374. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  375. while (bf) {
  376. u16 seqno = bf->bf_state.seqno;
  377. txfail = txpending = sendbar = 0;
  378. bf_next = bf->bf_next;
  379. skb = bf->bf_mpdu;
  380. tx_info = IEEE80211_SKB_CB(skb);
  381. fi = get_frame_info(skb);
  382. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  383. /*
  384. * Outside of the current BlockAck window,
  385. * maybe part of a previous session
  386. */
  387. txfail = 1;
  388. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  389. /* transmit completion, subframe is
  390. * acked by block ack */
  391. acked_cnt++;
  392. } else if (!isaggr && txok) {
  393. /* transmit completion */
  394. acked_cnt++;
  395. } else if (flush) {
  396. txpending = 1;
  397. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  398. if (txok || !an->sleeping)
  399. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  400. retries);
  401. txpending = 1;
  402. } else {
  403. txfail = 1;
  404. txfail_cnt++;
  405. bar_index = max_t(int, bar_index,
  406. ATH_BA_INDEX(seq_first, seqno));
  407. }
  408. /*
  409. * Make sure the last desc is reclaimed if it
  410. * not a holding desc.
  411. */
  412. INIT_LIST_HEAD(&bf_head);
  413. if (bf_next != NULL || !bf_last->bf_stale)
  414. list_move_tail(&bf->list, &bf_head);
  415. if (!txpending) {
  416. /*
  417. * complete the acked-ones/xretried ones; update
  418. * block-ack window
  419. */
  420. ath_tx_update_baw(sc, tid, seqno);
  421. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  422. memcpy(tx_info->control.rates, rates, sizeof(rates));
  423. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  424. rc_update = false;
  425. }
  426. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  427. !txfail);
  428. } else {
  429. /* retry the un-acked ones */
  430. if (bf->bf_next == NULL && bf_last->bf_stale) {
  431. struct ath_buf *tbf;
  432. tbf = ath_clone_txbuf(sc, bf_last);
  433. /*
  434. * Update tx baw and complete the
  435. * frame with failed status if we
  436. * run out of tx buf.
  437. */
  438. if (!tbf) {
  439. ath_tx_update_baw(sc, tid, seqno);
  440. ath_tx_complete_buf(sc, bf, txq,
  441. &bf_head, ts, 0);
  442. bar_index = max_t(int, bar_index,
  443. ATH_BA_INDEX(seq_first, seqno));
  444. break;
  445. }
  446. fi->bf = tbf;
  447. }
  448. /*
  449. * Put this buffer to the temporary pending
  450. * queue to retain ordering
  451. */
  452. __skb_queue_tail(&bf_pending, skb);
  453. }
  454. bf = bf_next;
  455. }
  456. /* prepend un-acked frames to the beginning of the pending frame queue */
  457. if (!skb_queue_empty(&bf_pending)) {
  458. if (an->sleeping)
  459. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  460. skb_queue_splice(&bf_pending, &tid->buf_q);
  461. if (!an->sleeping) {
  462. ath_tx_queue_tid(txq, tid);
  463. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  464. tid->ac->clear_ps_filter = true;
  465. }
  466. }
  467. if (bar_index >= 0) {
  468. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  469. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  470. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  471. ath_txq_unlock(sc, txq);
  472. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  473. ath_txq_lock(sc, txq);
  474. }
  475. rcu_read_unlock();
  476. if (needreset)
  477. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  478. }
  479. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  480. {
  481. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  482. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  483. }
  484. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  485. struct ath_tx_status *ts, struct ath_buf *bf,
  486. struct list_head *bf_head)
  487. {
  488. struct ieee80211_tx_info *info;
  489. bool txok, flush;
  490. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  491. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  492. txq->axq_tx_inprogress = false;
  493. txq->axq_depth--;
  494. if (bf_is_ampdu_not_probing(bf))
  495. txq->axq_ampdu_depth--;
  496. if (!bf_isampdu(bf)) {
  497. if (!flush) {
  498. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  499. memcpy(info->control.rates, bf->rates,
  500. sizeof(info->control.rates));
  501. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  502. }
  503. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  504. } else
  505. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  506. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
  507. ath_txq_schedule(sc, txq);
  508. }
  509. static bool ath_lookup_legacy(struct ath_buf *bf)
  510. {
  511. struct sk_buff *skb;
  512. struct ieee80211_tx_info *tx_info;
  513. struct ieee80211_tx_rate *rates;
  514. int i;
  515. skb = bf->bf_mpdu;
  516. tx_info = IEEE80211_SKB_CB(skb);
  517. rates = tx_info->control.rates;
  518. for (i = 0; i < 4; i++) {
  519. if (!rates[i].count || rates[i].idx < 0)
  520. break;
  521. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  522. return true;
  523. }
  524. return false;
  525. }
  526. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  527. struct ath_atx_tid *tid)
  528. {
  529. struct sk_buff *skb;
  530. struct ieee80211_tx_info *tx_info;
  531. struct ieee80211_tx_rate *rates;
  532. u32 max_4ms_framelen, frmlen;
  533. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  534. int q = tid->ac->txq->mac80211_qnum;
  535. int i;
  536. skb = bf->bf_mpdu;
  537. tx_info = IEEE80211_SKB_CB(skb);
  538. rates = bf->rates;
  539. /*
  540. * Find the lowest frame length among the rate series that will have a
  541. * 4ms (or TXOP limited) transmit duration.
  542. */
  543. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  544. for (i = 0; i < 4; i++) {
  545. int modeidx;
  546. if (!rates[i].count)
  547. continue;
  548. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  549. legacy = 1;
  550. break;
  551. }
  552. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  553. modeidx = MCS_HT40;
  554. else
  555. modeidx = MCS_HT20;
  556. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  557. modeidx++;
  558. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  559. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  560. }
  561. /*
  562. * limit aggregate size by the minimum rate if rate selected is
  563. * not a probe rate, if rate selected is a probe rate then
  564. * avoid aggregation of this packet.
  565. */
  566. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  567. return 0;
  568. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  569. /*
  570. * Override the default aggregation limit for BTCOEX.
  571. */
  572. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  573. if (bt_aggr_limit)
  574. aggr_limit = bt_aggr_limit;
  575. /*
  576. * h/w can accept aggregates up to 16 bit lengths (65535).
  577. * The IE, however can hold up to 65536, which shows up here
  578. * as zero. Ignore 65536 since we are constrained by hw.
  579. */
  580. if (tid->an->maxampdu)
  581. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  582. return aggr_limit;
  583. }
  584. /*
  585. * Returns the number of delimiters to be added to
  586. * meet the minimum required mpdudensity.
  587. */
  588. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  589. struct ath_buf *bf, u16 frmlen,
  590. bool first_subfrm)
  591. {
  592. #define FIRST_DESC_NDELIMS 60
  593. u32 nsymbits, nsymbols;
  594. u16 minlen;
  595. u8 flags, rix;
  596. int width, streams, half_gi, ndelim, mindelim;
  597. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  598. /* Select standard number of delimiters based on frame length alone */
  599. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  600. /*
  601. * If encryption enabled, hardware requires some more padding between
  602. * subframes.
  603. * TODO - this could be improved to be dependent on the rate.
  604. * The hardware can keep up at lower rates, but not higher rates
  605. */
  606. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  607. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  608. ndelim += ATH_AGGR_ENCRYPTDELIM;
  609. /*
  610. * Add delimiter when using RTS/CTS with aggregation
  611. * and non enterprise AR9003 card
  612. */
  613. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  614. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  615. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  616. /*
  617. * Convert desired mpdu density from microeconds to bytes based
  618. * on highest rate in rate series (i.e. first rate) to determine
  619. * required minimum length for subframe. Take into account
  620. * whether high rate is 20 or 40Mhz and half or full GI.
  621. *
  622. * If there is no mpdu density restriction, no further calculation
  623. * is needed.
  624. */
  625. if (tid->an->mpdudensity == 0)
  626. return ndelim;
  627. rix = bf->rates[0].idx;
  628. flags = bf->rates[0].flags;
  629. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  630. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  631. if (half_gi)
  632. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  633. else
  634. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  635. if (nsymbols == 0)
  636. nsymbols = 1;
  637. streams = HT_RC_2_STREAMS(rix);
  638. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  639. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  640. if (frmlen < minlen) {
  641. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  642. ndelim = max(mindelim, ndelim);
  643. }
  644. return ndelim;
  645. }
  646. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  647. struct ath_txq *txq,
  648. struct ath_atx_tid *tid,
  649. struct list_head *bf_q,
  650. int *aggr_len)
  651. {
  652. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  653. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  654. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  655. u16 aggr_limit = 0, al = 0, bpad = 0,
  656. al_delta, h_baw = tid->baw_size / 2;
  657. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  658. struct ieee80211_tx_info *tx_info;
  659. struct ath_frame_info *fi;
  660. struct sk_buff *skb;
  661. u16 seqno;
  662. do {
  663. skb = skb_peek(&tid->buf_q);
  664. fi = get_frame_info(skb);
  665. bf = fi->bf;
  666. if (!fi->bf)
  667. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  668. if (!bf) {
  669. __skb_unlink(skb, &tid->buf_q);
  670. ieee80211_free_txskb(sc->hw, skb);
  671. continue;
  672. }
  673. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  674. seqno = bf->bf_state.seqno;
  675. /* do not step over block-ack window */
  676. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  677. status = ATH_AGGR_BAW_CLOSED;
  678. break;
  679. }
  680. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  681. struct ath_tx_status ts = {};
  682. struct list_head bf_head;
  683. INIT_LIST_HEAD(&bf_head);
  684. list_add(&bf->list, &bf_head);
  685. __skb_unlink(skb, &tid->buf_q);
  686. ath_tx_update_baw(sc, tid, seqno);
  687. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  688. continue;
  689. }
  690. if (!bf_first)
  691. bf_first = bf;
  692. if (!rl) {
  693. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  694. aggr_limit = ath_lookup_rate(sc, bf, tid);
  695. rl = 1;
  696. }
  697. /* do not exceed aggregation limit */
  698. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  699. if (nframes &&
  700. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  701. ath_lookup_legacy(bf))) {
  702. status = ATH_AGGR_LIMITED;
  703. break;
  704. }
  705. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  706. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  707. break;
  708. /* do not exceed subframe limit */
  709. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  710. status = ATH_AGGR_LIMITED;
  711. break;
  712. }
  713. /* add padding for previous frame to aggregation length */
  714. al += bpad + al_delta;
  715. /*
  716. * Get the delimiters needed to meet the MPDU
  717. * density for this node.
  718. */
  719. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  720. !nframes);
  721. bpad = PADBYTES(al_delta) + (ndelim << 2);
  722. nframes++;
  723. bf->bf_next = NULL;
  724. /* link buffers of this frame to the aggregate */
  725. if (!fi->retries)
  726. ath_tx_addto_baw(sc, tid, seqno);
  727. bf->bf_state.ndelim = ndelim;
  728. __skb_unlink(skb, &tid->buf_q);
  729. list_add_tail(&bf->list, bf_q);
  730. if (bf_prev)
  731. bf_prev->bf_next = bf;
  732. bf_prev = bf;
  733. } while (!skb_queue_empty(&tid->buf_q));
  734. *aggr_len = al;
  735. return status;
  736. #undef PADBYTES
  737. }
  738. /*
  739. * rix - rate index
  740. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  741. * width - 0 for 20 MHz, 1 for 40 MHz
  742. * half_gi - to use 4us v/s 3.6 us for symbol time
  743. */
  744. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  745. int width, int half_gi, bool shortPreamble)
  746. {
  747. u32 nbits, nsymbits, duration, nsymbols;
  748. int streams;
  749. /* find number of symbols: PLCP + data */
  750. streams = HT_RC_2_STREAMS(rix);
  751. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  752. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  753. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  754. if (!half_gi)
  755. duration = SYMBOL_TIME(nsymbols);
  756. else
  757. duration = SYMBOL_TIME_HALFGI(nsymbols);
  758. /* addup duration for legacy/ht training and signal fields */
  759. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  760. return duration;
  761. }
  762. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  763. {
  764. int streams = HT_RC_2_STREAMS(mcs);
  765. int symbols, bits;
  766. int bytes = 0;
  767. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  768. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  769. bits -= OFDM_PLCP_BITS;
  770. bytes = bits / 8;
  771. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  772. if (bytes > 65532)
  773. bytes = 65532;
  774. return bytes;
  775. }
  776. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  777. {
  778. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  779. int mcs;
  780. /* 4ms is the default (and maximum) duration */
  781. if (!txop || txop > 4096)
  782. txop = 4096;
  783. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  784. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  785. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  786. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  787. for (mcs = 0; mcs < 32; mcs++) {
  788. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  789. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  790. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  791. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  792. }
  793. }
  794. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  795. struct ath_tx_info *info, int len)
  796. {
  797. struct ath_hw *ah = sc->sc_ah;
  798. struct sk_buff *skb;
  799. struct ieee80211_tx_info *tx_info;
  800. struct ieee80211_tx_rate *rates;
  801. const struct ieee80211_rate *rate;
  802. struct ieee80211_hdr *hdr;
  803. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  804. int i;
  805. u8 rix = 0;
  806. skb = bf->bf_mpdu;
  807. tx_info = IEEE80211_SKB_CB(skb);
  808. rates = bf->rates;
  809. hdr = (struct ieee80211_hdr *)skb->data;
  810. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  811. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  812. info->rtscts_rate = fi->rtscts_rate;
  813. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  814. bool is_40, is_sgi, is_sp;
  815. int phy;
  816. if (!rates[i].count || (rates[i].idx < 0))
  817. continue;
  818. rix = rates[i].idx;
  819. info->rates[i].Tries = rates[i].count;
  820. if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  821. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  822. info->flags |= ATH9K_TXDESC_RTSENA;
  823. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  824. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  825. info->flags |= ATH9K_TXDESC_CTSENA;
  826. }
  827. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  828. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  829. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  830. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  831. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  832. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  833. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  834. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  835. /* MCS rates */
  836. info->rates[i].Rate = rix | 0x80;
  837. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  838. ah->txchainmask, info->rates[i].Rate);
  839. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  840. is_40, is_sgi, is_sp);
  841. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  842. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  843. continue;
  844. }
  845. /* legacy rates */
  846. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  847. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  848. !(rate->flags & IEEE80211_RATE_ERP_G))
  849. phy = WLAN_RC_PHY_CCK;
  850. else
  851. phy = WLAN_RC_PHY_OFDM;
  852. info->rates[i].Rate = rate->hw_value;
  853. if (rate->hw_value_short) {
  854. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  855. info->rates[i].Rate |= rate->hw_value_short;
  856. } else {
  857. is_sp = false;
  858. }
  859. if (bf->bf_state.bfs_paprd)
  860. info->rates[i].ChSel = ah->txchainmask;
  861. else
  862. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  863. ah->txchainmask, info->rates[i].Rate);
  864. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  865. phy, rate->bitrate * 100, len, rix, is_sp);
  866. }
  867. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  868. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  869. info->flags &= ~ATH9K_TXDESC_RTSENA;
  870. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  871. if (info->flags & ATH9K_TXDESC_RTSENA)
  872. info->flags &= ~ATH9K_TXDESC_CTSENA;
  873. }
  874. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  875. {
  876. struct ieee80211_hdr *hdr;
  877. enum ath9k_pkt_type htype;
  878. __le16 fc;
  879. hdr = (struct ieee80211_hdr *)skb->data;
  880. fc = hdr->frame_control;
  881. if (ieee80211_is_beacon(fc))
  882. htype = ATH9K_PKT_TYPE_BEACON;
  883. else if (ieee80211_is_probe_resp(fc))
  884. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  885. else if (ieee80211_is_atim(fc))
  886. htype = ATH9K_PKT_TYPE_ATIM;
  887. else if (ieee80211_is_pspoll(fc))
  888. htype = ATH9K_PKT_TYPE_PSPOLL;
  889. else
  890. htype = ATH9K_PKT_TYPE_NORMAL;
  891. return htype;
  892. }
  893. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  894. struct ath_txq *txq, int len)
  895. {
  896. struct ath_hw *ah = sc->sc_ah;
  897. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  898. struct ath_buf *bf_first = bf;
  899. struct ath_tx_info info;
  900. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  901. memset(&info, 0, sizeof(info));
  902. info.is_first = true;
  903. info.is_last = true;
  904. info.txpower = MAX_RATE_POWER;
  905. info.qcu = txq->axq_qnum;
  906. info.flags = ATH9K_TXDESC_INTREQ;
  907. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  908. info.flags |= ATH9K_TXDESC_NOACK;
  909. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  910. info.flags |= ATH9K_TXDESC_LDPC;
  911. ath_buf_set_rate(sc, bf, &info, len);
  912. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  913. info.flags |= ATH9K_TXDESC_CLRDMASK;
  914. if (bf->bf_state.bfs_paprd)
  915. info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
  916. while (bf) {
  917. struct sk_buff *skb = bf->bf_mpdu;
  918. struct ath_frame_info *fi = get_frame_info(skb);
  919. info.type = get_hw_packet_type(skb);
  920. if (bf->bf_next)
  921. info.link = bf->bf_next->bf_daddr;
  922. else
  923. info.link = 0;
  924. info.buf_addr[0] = bf->bf_buf_addr;
  925. info.buf_len[0] = skb->len;
  926. info.pkt_len = fi->framelen;
  927. info.keyix = fi->keyix;
  928. info.keytype = fi->keytype;
  929. if (aggr) {
  930. if (bf == bf_first)
  931. info.aggr = AGGR_BUF_FIRST;
  932. else if (!bf->bf_next)
  933. info.aggr = AGGR_BUF_LAST;
  934. else
  935. info.aggr = AGGR_BUF_MIDDLE;
  936. info.ndelim = bf->bf_state.ndelim;
  937. info.aggr_len = len;
  938. }
  939. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  940. bf = bf->bf_next;
  941. }
  942. }
  943. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  944. struct ath_atx_tid *tid)
  945. {
  946. struct ath_buf *bf;
  947. enum ATH_AGGR_STATUS status;
  948. struct ieee80211_tx_info *tx_info;
  949. struct list_head bf_q;
  950. int aggr_len;
  951. do {
  952. if (skb_queue_empty(&tid->buf_q))
  953. return;
  954. INIT_LIST_HEAD(&bf_q);
  955. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  956. /*
  957. * no frames picked up to be aggregated;
  958. * block-ack window is not open.
  959. */
  960. if (list_empty(&bf_q))
  961. break;
  962. bf = list_first_entry(&bf_q, struct ath_buf, list);
  963. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  964. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  965. if (tid->ac->clear_ps_filter) {
  966. tid->ac->clear_ps_filter = false;
  967. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  968. } else {
  969. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  970. }
  971. /* if only one frame, send as non-aggregate */
  972. if (bf == bf->bf_lastbf) {
  973. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  974. bf->bf_state.bf_type = BUF_AMPDU;
  975. } else {
  976. TX_STAT_INC(txq->axq_qnum, a_aggr);
  977. }
  978. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  979. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  980. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  981. status != ATH_AGGR_BAW_CLOSED);
  982. }
  983. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  984. u16 tid, u16 *ssn)
  985. {
  986. struct ath_atx_tid *txtid;
  987. struct ath_node *an;
  988. u8 density;
  989. an = (struct ath_node *)sta->drv_priv;
  990. txtid = ATH_AN_2_TID(an, tid);
  991. /* update ampdu factor/density, they may have changed. This may happen
  992. * in HT IBSS when a beacon with HT-info is received after the station
  993. * has already been added.
  994. */
  995. if (sta->ht_cap.ht_supported) {
  996. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  997. sta->ht_cap.ampdu_factor);
  998. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  999. an->mpdudensity = density;
  1000. }
  1001. txtid->active = true;
  1002. txtid->paused = true;
  1003. *ssn = txtid->seq_start = txtid->seq_next;
  1004. txtid->bar_index = -1;
  1005. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1006. txtid->baw_head = txtid->baw_tail = 0;
  1007. return 0;
  1008. }
  1009. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1010. {
  1011. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1012. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1013. struct ath_txq *txq = txtid->ac->txq;
  1014. ath_txq_lock(sc, txq);
  1015. txtid->active = false;
  1016. txtid->paused = true;
  1017. ath_tx_flush_tid(sc, txtid);
  1018. ath_txq_unlock_complete(sc, txq);
  1019. }
  1020. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1021. struct ath_node *an)
  1022. {
  1023. struct ath_atx_tid *tid;
  1024. struct ath_atx_ac *ac;
  1025. struct ath_txq *txq;
  1026. bool buffered;
  1027. int tidno;
  1028. for (tidno = 0, tid = &an->tid[tidno];
  1029. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1030. if (!tid->sched)
  1031. continue;
  1032. ac = tid->ac;
  1033. txq = ac->txq;
  1034. ath_txq_lock(sc, txq);
  1035. buffered = !skb_queue_empty(&tid->buf_q);
  1036. tid->sched = false;
  1037. list_del(&tid->list);
  1038. if (ac->sched) {
  1039. ac->sched = false;
  1040. list_del(&ac->list);
  1041. }
  1042. ath_txq_unlock(sc, txq);
  1043. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1044. }
  1045. }
  1046. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1047. {
  1048. struct ath_atx_tid *tid;
  1049. struct ath_atx_ac *ac;
  1050. struct ath_txq *txq;
  1051. int tidno;
  1052. for (tidno = 0, tid = &an->tid[tidno];
  1053. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1054. ac = tid->ac;
  1055. txq = ac->txq;
  1056. ath_txq_lock(sc, txq);
  1057. ac->clear_ps_filter = true;
  1058. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1059. ath_tx_queue_tid(txq, tid);
  1060. ath_txq_schedule(sc, txq);
  1061. }
  1062. ath_txq_unlock_complete(sc, txq);
  1063. }
  1064. }
  1065. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1066. u16 tidno)
  1067. {
  1068. struct ath_atx_tid *tid;
  1069. struct ath_node *an;
  1070. struct ath_txq *txq;
  1071. an = (struct ath_node *)sta->drv_priv;
  1072. tid = ATH_AN_2_TID(an, tidno);
  1073. txq = tid->ac->txq;
  1074. ath_txq_lock(sc, txq);
  1075. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1076. tid->paused = false;
  1077. if (!skb_queue_empty(&tid->buf_q)) {
  1078. ath_tx_queue_tid(txq, tid);
  1079. ath_txq_schedule(sc, txq);
  1080. }
  1081. ath_txq_unlock_complete(sc, txq);
  1082. }
  1083. /********************/
  1084. /* Queue Management */
  1085. /********************/
  1086. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1087. {
  1088. struct ath_hw *ah = sc->sc_ah;
  1089. struct ath9k_tx_queue_info qi;
  1090. static const int subtype_txq_to_hwq[] = {
  1091. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1092. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1093. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1094. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1095. };
  1096. int axq_qnum, i;
  1097. memset(&qi, 0, sizeof(qi));
  1098. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1099. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1100. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1101. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1102. qi.tqi_physCompBuf = 0;
  1103. /*
  1104. * Enable interrupts only for EOL and DESC conditions.
  1105. * We mark tx descriptors to receive a DESC interrupt
  1106. * when a tx queue gets deep; otherwise waiting for the
  1107. * EOL to reap descriptors. Note that this is done to
  1108. * reduce interrupt load and this only defers reaping
  1109. * descriptors, never transmitting frames. Aside from
  1110. * reducing interrupts this also permits more concurrency.
  1111. * The only potential downside is if the tx queue backs
  1112. * up in which case the top half of the kernel may backup
  1113. * due to a lack of tx descriptors.
  1114. *
  1115. * The UAPSD queue is an exception, since we take a desc-
  1116. * based intr on the EOSP frames.
  1117. */
  1118. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1119. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1120. } else {
  1121. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1122. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1123. else
  1124. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1125. TXQ_FLAG_TXDESCINT_ENABLE;
  1126. }
  1127. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1128. if (axq_qnum == -1) {
  1129. /*
  1130. * NB: don't print a message, this happens
  1131. * normally on parts with too few tx queues
  1132. */
  1133. return NULL;
  1134. }
  1135. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1136. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1137. txq->axq_qnum = axq_qnum;
  1138. txq->mac80211_qnum = -1;
  1139. txq->axq_link = NULL;
  1140. __skb_queue_head_init(&txq->complete_q);
  1141. INIT_LIST_HEAD(&txq->axq_q);
  1142. INIT_LIST_HEAD(&txq->axq_acq);
  1143. spin_lock_init(&txq->axq_lock);
  1144. txq->axq_depth = 0;
  1145. txq->axq_ampdu_depth = 0;
  1146. txq->axq_tx_inprogress = false;
  1147. sc->tx.txqsetup |= 1<<axq_qnum;
  1148. txq->txq_headidx = txq->txq_tailidx = 0;
  1149. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1150. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1151. }
  1152. return &sc->tx.txq[axq_qnum];
  1153. }
  1154. int ath_txq_update(struct ath_softc *sc, int qnum,
  1155. struct ath9k_tx_queue_info *qinfo)
  1156. {
  1157. struct ath_hw *ah = sc->sc_ah;
  1158. int error = 0;
  1159. struct ath9k_tx_queue_info qi;
  1160. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1161. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1162. qi.tqi_aifs = qinfo->tqi_aifs;
  1163. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1164. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1165. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1166. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1167. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1168. ath_err(ath9k_hw_common(sc->sc_ah),
  1169. "Unable to update hardware queue %u!\n", qnum);
  1170. error = -EIO;
  1171. } else {
  1172. ath9k_hw_resettxqueue(ah, qnum);
  1173. }
  1174. return error;
  1175. }
  1176. int ath_cabq_update(struct ath_softc *sc)
  1177. {
  1178. struct ath9k_tx_queue_info qi;
  1179. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1180. int qnum = sc->beacon.cabq->axq_qnum;
  1181. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1182. /*
  1183. * Ensure the readytime % is within the bounds.
  1184. */
  1185. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1186. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1187. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1188. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1189. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1190. sc->config.cabqReadytime) / 100;
  1191. ath_txq_update(sc, qnum, &qi);
  1192. return 0;
  1193. }
  1194. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1195. struct list_head *list)
  1196. {
  1197. struct ath_buf *bf, *lastbf;
  1198. struct list_head bf_head;
  1199. struct ath_tx_status ts;
  1200. memset(&ts, 0, sizeof(ts));
  1201. ts.ts_status = ATH9K_TX_FLUSH;
  1202. INIT_LIST_HEAD(&bf_head);
  1203. while (!list_empty(list)) {
  1204. bf = list_first_entry(list, struct ath_buf, list);
  1205. if (bf->bf_stale) {
  1206. list_del(&bf->list);
  1207. ath_tx_return_buffer(sc, bf);
  1208. continue;
  1209. }
  1210. lastbf = bf->bf_lastbf;
  1211. list_cut_position(&bf_head, list, &lastbf->list);
  1212. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1213. }
  1214. }
  1215. /*
  1216. * Drain a given TX queue (could be Beacon or Data)
  1217. *
  1218. * This assumes output has been stopped and
  1219. * we do not need to block ath_tx_tasklet.
  1220. */
  1221. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1222. {
  1223. ath_txq_lock(sc, txq);
  1224. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1225. int idx = txq->txq_tailidx;
  1226. while (!list_empty(&txq->txq_fifo[idx])) {
  1227. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1228. INCR(idx, ATH_TXFIFO_DEPTH);
  1229. }
  1230. txq->txq_tailidx = idx;
  1231. }
  1232. txq->axq_link = NULL;
  1233. txq->axq_tx_inprogress = false;
  1234. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1235. ath_txq_unlock_complete(sc, txq);
  1236. }
  1237. bool ath_drain_all_txq(struct ath_softc *sc)
  1238. {
  1239. struct ath_hw *ah = sc->sc_ah;
  1240. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1241. struct ath_txq *txq;
  1242. int i;
  1243. u32 npend = 0;
  1244. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1245. return true;
  1246. ath9k_hw_abort_tx_dma(ah);
  1247. /* Check if any queue remains active */
  1248. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1249. if (!ATH_TXQ_SETUP(sc, i))
  1250. continue;
  1251. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1252. npend |= BIT(i);
  1253. }
  1254. if (npend)
  1255. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1256. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1257. if (!ATH_TXQ_SETUP(sc, i))
  1258. continue;
  1259. /*
  1260. * The caller will resume queues with ieee80211_wake_queues.
  1261. * Mark the queue as not stopped to prevent ath_tx_complete
  1262. * from waking the queue too early.
  1263. */
  1264. txq = &sc->tx.txq[i];
  1265. txq->stopped = false;
  1266. ath_draintxq(sc, txq);
  1267. }
  1268. return !npend;
  1269. }
  1270. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1271. {
  1272. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1273. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1274. }
  1275. /* For each axq_acq entry, for each tid, try to schedule packets
  1276. * for transmit until ampdu_depth has reached min Q depth.
  1277. */
  1278. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1279. {
  1280. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1281. struct ath_atx_tid *tid, *last_tid;
  1282. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1283. list_empty(&txq->axq_acq) ||
  1284. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1285. return;
  1286. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1287. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1288. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1289. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1290. list_del(&ac->list);
  1291. ac->sched = false;
  1292. while (!list_empty(&ac->tid_q)) {
  1293. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1294. list);
  1295. list_del(&tid->list);
  1296. tid->sched = false;
  1297. if (tid->paused)
  1298. continue;
  1299. ath_tx_sched_aggr(sc, txq, tid);
  1300. /*
  1301. * add tid to round-robin queue if more frames
  1302. * are pending for the tid
  1303. */
  1304. if (!skb_queue_empty(&tid->buf_q))
  1305. ath_tx_queue_tid(txq, tid);
  1306. if (tid == last_tid ||
  1307. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1308. break;
  1309. }
  1310. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1311. ac->sched = true;
  1312. list_add_tail(&ac->list, &txq->axq_acq);
  1313. }
  1314. if (ac == last_ac ||
  1315. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1316. return;
  1317. }
  1318. }
  1319. /***********/
  1320. /* TX, DMA */
  1321. /***********/
  1322. /*
  1323. * Insert a chain of ath_buf (descriptors) on a txq and
  1324. * assume the descriptors are already chained together by caller.
  1325. */
  1326. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1327. struct list_head *head, bool internal)
  1328. {
  1329. struct ath_hw *ah = sc->sc_ah;
  1330. struct ath_common *common = ath9k_hw_common(ah);
  1331. struct ath_buf *bf, *bf_last;
  1332. bool puttxbuf = false;
  1333. bool edma;
  1334. /*
  1335. * Insert the frame on the outbound list and
  1336. * pass it on to the hardware.
  1337. */
  1338. if (list_empty(head))
  1339. return;
  1340. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1341. bf = list_first_entry(head, struct ath_buf, list);
  1342. bf_last = list_entry(head->prev, struct ath_buf, list);
  1343. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1344. txq->axq_qnum, txq->axq_depth);
  1345. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1346. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1347. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1348. puttxbuf = true;
  1349. } else {
  1350. list_splice_tail_init(head, &txq->axq_q);
  1351. if (txq->axq_link) {
  1352. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1353. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1354. txq->axq_qnum, txq->axq_link,
  1355. ito64(bf->bf_daddr), bf->bf_desc);
  1356. } else if (!edma)
  1357. puttxbuf = true;
  1358. txq->axq_link = bf_last->bf_desc;
  1359. }
  1360. if (puttxbuf) {
  1361. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1362. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1363. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1364. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1365. }
  1366. if (!edma) {
  1367. TX_STAT_INC(txq->axq_qnum, txstart);
  1368. ath9k_hw_txstart(ah, txq->axq_qnum);
  1369. }
  1370. if (!internal) {
  1371. txq->axq_depth++;
  1372. if (bf_is_ampdu_not_probing(bf))
  1373. txq->axq_ampdu_depth++;
  1374. }
  1375. }
  1376. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_txq *txq,
  1377. struct ath_atx_tid *tid, struct sk_buff *skb,
  1378. struct ath_tx_control *txctl)
  1379. {
  1380. struct ath_frame_info *fi = get_frame_info(skb);
  1381. struct list_head bf_head;
  1382. struct ath_buf *bf;
  1383. /*
  1384. * Do not queue to h/w when any of the following conditions is true:
  1385. * - there are pending frames in software queue
  1386. * - the TID is currently paused for ADDBA/BAR request
  1387. * - seqno is not within block-ack window
  1388. * - h/w queue depth exceeds low water mark
  1389. */
  1390. if ((!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1391. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1392. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) &&
  1393. txq != sc->tx.uapsdq) {
  1394. /*
  1395. * Add this frame to software queue for scheduling later
  1396. * for aggregation.
  1397. */
  1398. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1399. __skb_queue_tail(&tid->buf_q, skb);
  1400. if (!txctl->an || !txctl->an->sleeping)
  1401. ath_tx_queue_tid(txq, tid);
  1402. return;
  1403. }
  1404. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1405. if (!bf) {
  1406. ieee80211_free_txskb(sc->hw, skb);
  1407. return;
  1408. }
  1409. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1410. bf->bf_state.bf_type = BUF_AMPDU;
  1411. INIT_LIST_HEAD(&bf_head);
  1412. list_add(&bf->list, &bf_head);
  1413. /* Add sub-frame to BAW */
  1414. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1415. /* Queue to h/w without aggregation */
  1416. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1417. bf->bf_lastbf = bf;
  1418. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1419. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1420. }
  1421. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1422. struct ath_atx_tid *tid, struct sk_buff *skb)
  1423. {
  1424. struct ath_frame_info *fi = get_frame_info(skb);
  1425. struct list_head bf_head;
  1426. struct ath_buf *bf;
  1427. bf = fi->bf;
  1428. INIT_LIST_HEAD(&bf_head);
  1429. list_add_tail(&bf->list, &bf_head);
  1430. bf->bf_state.bf_type = 0;
  1431. bf->bf_next = NULL;
  1432. bf->bf_lastbf = bf;
  1433. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1434. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1435. TX_STAT_INC(txq->axq_qnum, queued);
  1436. }
  1437. static void setup_frame_info(struct ieee80211_hw *hw,
  1438. struct ieee80211_sta *sta,
  1439. struct sk_buff *skb,
  1440. int framelen)
  1441. {
  1442. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1443. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1444. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1445. const struct ieee80211_rate *rate;
  1446. struct ath_frame_info *fi = get_frame_info(skb);
  1447. struct ath_node *an = NULL;
  1448. enum ath9k_key_type keytype;
  1449. bool short_preamble = false;
  1450. /*
  1451. * We check if Short Preamble is needed for the CTS rate by
  1452. * checking the BSS's global flag.
  1453. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1454. */
  1455. if (tx_info->control.vif &&
  1456. tx_info->control.vif->bss_conf.use_short_preamble)
  1457. short_preamble = true;
  1458. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1459. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1460. if (sta)
  1461. an = (struct ath_node *) sta->drv_priv;
  1462. memset(fi, 0, sizeof(*fi));
  1463. if (hw_key)
  1464. fi->keyix = hw_key->hw_key_idx;
  1465. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1466. fi->keyix = an->ps_key;
  1467. else
  1468. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1469. fi->keytype = keytype;
  1470. fi->framelen = framelen;
  1471. fi->rtscts_rate = rate->hw_value;
  1472. if (short_preamble)
  1473. fi->rtscts_rate |= rate->hw_value_short;
  1474. }
  1475. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1476. {
  1477. struct ath_hw *ah = sc->sc_ah;
  1478. struct ath9k_channel *curchan = ah->curchan;
  1479. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1480. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1481. (chainmask == 0x7) && (rate < 0x90))
  1482. return 0x3;
  1483. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1484. IS_CCK_RATE(rate))
  1485. return 0x2;
  1486. else
  1487. return chainmask;
  1488. }
  1489. /*
  1490. * Assign a descriptor (and sequence number if necessary,
  1491. * and map buffer for DMA. Frees skb on error
  1492. */
  1493. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1494. struct ath_txq *txq,
  1495. struct ath_atx_tid *tid,
  1496. struct sk_buff *skb)
  1497. {
  1498. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1499. struct ath_frame_info *fi = get_frame_info(skb);
  1500. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1501. struct ath_buf *bf;
  1502. int fragno;
  1503. u16 seqno;
  1504. bf = ath_tx_get_buffer(sc);
  1505. if (!bf) {
  1506. ath_dbg(common, XMIT, "TX buffers are full\n");
  1507. return NULL;
  1508. }
  1509. ATH_TXBUF_RESET(bf);
  1510. if (tid) {
  1511. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1512. seqno = tid->seq_next;
  1513. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1514. if (fragno)
  1515. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1516. if (!ieee80211_has_morefrags(hdr->frame_control))
  1517. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1518. bf->bf_state.seqno = seqno;
  1519. }
  1520. bf->bf_mpdu = skb;
  1521. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1522. skb->len, DMA_TO_DEVICE);
  1523. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1524. bf->bf_mpdu = NULL;
  1525. bf->bf_buf_addr = 0;
  1526. ath_err(ath9k_hw_common(sc->sc_ah),
  1527. "dma_mapping_error() on TX\n");
  1528. ath_tx_return_buffer(sc, bf);
  1529. return NULL;
  1530. }
  1531. fi->bf = bf;
  1532. return bf;
  1533. }
  1534. /* Upon failure caller should free skb */
  1535. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1536. struct ath_tx_control *txctl)
  1537. {
  1538. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1539. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1540. struct ieee80211_sta *sta = txctl->sta;
  1541. struct ieee80211_vif *vif = info->control.vif;
  1542. struct ath_softc *sc = hw->priv;
  1543. struct ath_txq *txq = txctl->txq;
  1544. struct ath_atx_tid *tid = NULL;
  1545. struct ath_buf *bf;
  1546. int padpos, padsize;
  1547. int frmlen = skb->len + FCS_LEN;
  1548. u8 tidno;
  1549. int q;
  1550. /* NOTE: sta can be NULL according to net/mac80211.h */
  1551. if (sta)
  1552. txctl->an = (struct ath_node *)sta->drv_priv;
  1553. if (info->control.hw_key)
  1554. frmlen += info->control.hw_key->icv_len;
  1555. /*
  1556. * As a temporary workaround, assign seq# here; this will likely need
  1557. * to be cleaned up to work better with Beacon transmission and virtual
  1558. * BSSes.
  1559. */
  1560. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1561. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1562. sc->tx.seq_no += 0x10;
  1563. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1564. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1565. }
  1566. /* Add the padding after the header if this is not already done */
  1567. padpos = ieee80211_hdrlen(hdr->frame_control);
  1568. padsize = padpos & 3;
  1569. if (padsize && skb->len > padpos) {
  1570. if (skb_headroom(skb) < padsize)
  1571. return -ENOMEM;
  1572. skb_push(skb, padsize);
  1573. memmove(skb->data, skb->data + padsize, padpos);
  1574. hdr = (struct ieee80211_hdr *) skb->data;
  1575. }
  1576. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1577. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1578. !ieee80211_is_data(hdr->frame_control))
  1579. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1580. setup_frame_info(hw, sta, skb, frmlen);
  1581. /*
  1582. * At this point, the vif, hw_key and sta pointers in the tx control
  1583. * info are no longer valid (overwritten by the ath_frame_info data.
  1584. */
  1585. q = skb_get_queue_mapping(skb);
  1586. ath_txq_lock(sc, txq);
  1587. if (txq == sc->tx.txq_map[q] &&
  1588. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1589. !txq->stopped) {
  1590. ieee80211_stop_queue(sc->hw, q);
  1591. txq->stopped = true;
  1592. }
  1593. if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
  1594. ath_txq_unlock(sc, txq);
  1595. txq = sc->tx.uapsdq;
  1596. ath_txq_lock(sc, txq);
  1597. }
  1598. if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
  1599. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1600. IEEE80211_QOS_CTL_TID_MASK;
  1601. tid = ATH_AN_2_TID(txctl->an, tidno);
  1602. WARN_ON(tid->ac->txq != txctl->txq);
  1603. }
  1604. if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1605. /*
  1606. * Try aggregation if it's a unicast data frame
  1607. * and the destination is HT capable.
  1608. */
  1609. ath_tx_send_ampdu(sc, txq, tid, skb, txctl);
  1610. goto out;
  1611. }
  1612. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1613. if (!bf) {
  1614. if (txctl->paprd)
  1615. dev_kfree_skb_any(skb);
  1616. else
  1617. ieee80211_free_txskb(sc->hw, skb);
  1618. goto out;
  1619. }
  1620. bf->bf_state.bfs_paprd = txctl->paprd;
  1621. if (txctl->paprd)
  1622. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1623. ath_set_rates(vif, sta, bf);
  1624. ath_tx_send_normal(sc, txq, tid, skb);
  1625. out:
  1626. ath_txq_unlock(sc, txq);
  1627. return 0;
  1628. }
  1629. /*****************/
  1630. /* TX Completion */
  1631. /*****************/
  1632. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1633. int tx_flags, struct ath_txq *txq)
  1634. {
  1635. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1636. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1637. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1638. int q, padpos, padsize;
  1639. unsigned long flags;
  1640. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1641. if (sc->sc_ah->caldata)
  1642. sc->sc_ah->caldata->paprd_packet_sent = true;
  1643. if (!(tx_flags & ATH_TX_ERROR))
  1644. /* Frame was ACKed */
  1645. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1646. padpos = ieee80211_hdrlen(hdr->frame_control);
  1647. padsize = padpos & 3;
  1648. if (padsize && skb->len>padpos+padsize) {
  1649. /*
  1650. * Remove MAC header padding before giving the frame back to
  1651. * mac80211.
  1652. */
  1653. memmove(skb->data + padsize, skb->data, padpos);
  1654. skb_pull(skb, padsize);
  1655. }
  1656. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1657. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1658. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1659. ath_dbg(common, PS,
  1660. "Going back to sleep after having received TX status (0x%lx)\n",
  1661. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1662. PS_WAIT_FOR_CAB |
  1663. PS_WAIT_FOR_PSPOLL_DATA |
  1664. PS_WAIT_FOR_TX_ACK));
  1665. }
  1666. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1667. __skb_queue_tail(&txq->complete_q, skb);
  1668. q = skb_get_queue_mapping(skb);
  1669. if (txq == sc->tx.uapsdq)
  1670. txq = sc->tx.txq_map[q];
  1671. if (txq == sc->tx.txq_map[q]) {
  1672. if (WARN_ON(--txq->pending_frames < 0))
  1673. txq->pending_frames = 0;
  1674. if (txq->stopped &&
  1675. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1676. ieee80211_wake_queue(sc->hw, q);
  1677. txq->stopped = false;
  1678. }
  1679. }
  1680. }
  1681. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1682. struct ath_txq *txq, struct list_head *bf_q,
  1683. struct ath_tx_status *ts, int txok)
  1684. {
  1685. struct sk_buff *skb = bf->bf_mpdu;
  1686. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1687. unsigned long flags;
  1688. int tx_flags = 0;
  1689. if (!txok)
  1690. tx_flags |= ATH_TX_ERROR;
  1691. if (ts->ts_status & ATH9K_TXERR_FILT)
  1692. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1693. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1694. bf->bf_buf_addr = 0;
  1695. if (bf->bf_state.bfs_paprd) {
  1696. if (time_after(jiffies,
  1697. bf->bf_state.bfs_paprd_timestamp +
  1698. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1699. dev_kfree_skb_any(skb);
  1700. else
  1701. complete(&sc->paprd_complete);
  1702. } else {
  1703. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1704. ath_tx_complete(sc, skb, tx_flags, txq);
  1705. }
  1706. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1707. * accidentally reference it later.
  1708. */
  1709. bf->bf_mpdu = NULL;
  1710. /*
  1711. * Return the list of ath_buf of this mpdu to free queue
  1712. */
  1713. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1714. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1715. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1716. }
  1717. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1718. struct ath_tx_status *ts, int nframes, int nbad,
  1719. int txok)
  1720. {
  1721. struct sk_buff *skb = bf->bf_mpdu;
  1722. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1723. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1724. struct ieee80211_hw *hw = sc->hw;
  1725. struct ath_hw *ah = sc->sc_ah;
  1726. u8 i, tx_rateindex;
  1727. if (txok)
  1728. tx_info->status.ack_signal = ts->ts_rssi;
  1729. tx_rateindex = ts->ts_rateindex;
  1730. WARN_ON(tx_rateindex >= hw->max_rates);
  1731. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1732. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1733. BUG_ON(nbad > nframes);
  1734. }
  1735. tx_info->status.ampdu_len = nframes;
  1736. tx_info->status.ampdu_ack_len = nframes - nbad;
  1737. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1738. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1739. /*
  1740. * If an underrun error is seen assume it as an excessive
  1741. * retry only if max frame trigger level has been reached
  1742. * (2 KB for single stream, and 4 KB for dual stream).
  1743. * Adjust the long retry as if the frame was tried
  1744. * hw->max_rate_tries times to affect how rate control updates
  1745. * PER for the failed rate.
  1746. * In case of congestion on the bus penalizing this type of
  1747. * underruns should help hardware actually transmit new frames
  1748. * successfully by eventually preferring slower rates.
  1749. * This itself should also alleviate congestion on the bus.
  1750. */
  1751. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1752. ATH9K_TX_DELIM_UNDERRUN)) &&
  1753. ieee80211_is_data(hdr->frame_control) &&
  1754. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1755. tx_info->status.rates[tx_rateindex].count =
  1756. hw->max_rate_tries;
  1757. }
  1758. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1759. tx_info->status.rates[i].count = 0;
  1760. tx_info->status.rates[i].idx = -1;
  1761. }
  1762. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1763. }
  1764. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1765. {
  1766. struct ath_hw *ah = sc->sc_ah;
  1767. struct ath_common *common = ath9k_hw_common(ah);
  1768. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1769. struct list_head bf_head;
  1770. struct ath_desc *ds;
  1771. struct ath_tx_status ts;
  1772. int status;
  1773. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1774. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1775. txq->axq_link);
  1776. ath_txq_lock(sc, txq);
  1777. for (;;) {
  1778. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1779. break;
  1780. if (list_empty(&txq->axq_q)) {
  1781. txq->axq_link = NULL;
  1782. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1783. ath_txq_schedule(sc, txq);
  1784. break;
  1785. }
  1786. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1787. /*
  1788. * There is a race condition that a BH gets scheduled
  1789. * after sw writes TxE and before hw re-load the last
  1790. * descriptor to get the newly chained one.
  1791. * Software must keep the last DONE descriptor as a
  1792. * holding descriptor - software does so by marking
  1793. * it with the STALE flag.
  1794. */
  1795. bf_held = NULL;
  1796. if (bf->bf_stale) {
  1797. bf_held = bf;
  1798. if (list_is_last(&bf_held->list, &txq->axq_q))
  1799. break;
  1800. bf = list_entry(bf_held->list.next, struct ath_buf,
  1801. list);
  1802. }
  1803. lastbf = bf->bf_lastbf;
  1804. ds = lastbf->bf_desc;
  1805. memset(&ts, 0, sizeof(ts));
  1806. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1807. if (status == -EINPROGRESS)
  1808. break;
  1809. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1810. /*
  1811. * Remove ath_buf's of the same transmit unit from txq,
  1812. * however leave the last descriptor back as the holding
  1813. * descriptor for hw.
  1814. */
  1815. lastbf->bf_stale = true;
  1816. INIT_LIST_HEAD(&bf_head);
  1817. if (!list_is_singular(&lastbf->list))
  1818. list_cut_position(&bf_head,
  1819. &txq->axq_q, lastbf->list.prev);
  1820. if (bf_held) {
  1821. list_del(&bf_held->list);
  1822. ath_tx_return_buffer(sc, bf_held);
  1823. }
  1824. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1825. }
  1826. ath_txq_unlock_complete(sc, txq);
  1827. }
  1828. void ath_tx_tasklet(struct ath_softc *sc)
  1829. {
  1830. struct ath_hw *ah = sc->sc_ah;
  1831. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  1832. int i;
  1833. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1834. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1835. ath_tx_processq(sc, &sc->tx.txq[i]);
  1836. }
  1837. }
  1838. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1839. {
  1840. struct ath_tx_status ts;
  1841. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1842. struct ath_hw *ah = sc->sc_ah;
  1843. struct ath_txq *txq;
  1844. struct ath_buf *bf, *lastbf;
  1845. struct list_head bf_head;
  1846. struct list_head *fifo_list;
  1847. int status;
  1848. for (;;) {
  1849. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1850. break;
  1851. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  1852. if (status == -EINPROGRESS)
  1853. break;
  1854. if (status == -EIO) {
  1855. ath_dbg(common, XMIT, "Error processing tx status\n");
  1856. break;
  1857. }
  1858. /* Process beacon completions separately */
  1859. if (ts.qid == sc->beacon.beaconq) {
  1860. sc->beacon.tx_processed = true;
  1861. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  1862. continue;
  1863. }
  1864. txq = &sc->tx.txq[ts.qid];
  1865. ath_txq_lock(sc, txq);
  1866. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1867. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  1868. if (list_empty(fifo_list)) {
  1869. ath_txq_unlock(sc, txq);
  1870. return;
  1871. }
  1872. bf = list_first_entry(fifo_list, struct ath_buf, list);
  1873. if (bf->bf_stale) {
  1874. list_del(&bf->list);
  1875. ath_tx_return_buffer(sc, bf);
  1876. bf = list_first_entry(fifo_list, struct ath_buf, list);
  1877. }
  1878. lastbf = bf->bf_lastbf;
  1879. INIT_LIST_HEAD(&bf_head);
  1880. if (list_is_last(&lastbf->list, fifo_list)) {
  1881. list_splice_tail_init(fifo_list, &bf_head);
  1882. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1883. if (!list_empty(&txq->axq_q)) {
  1884. struct list_head bf_q;
  1885. INIT_LIST_HEAD(&bf_q);
  1886. txq->axq_link = NULL;
  1887. list_splice_tail_init(&txq->axq_q, &bf_q);
  1888. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  1889. }
  1890. } else {
  1891. lastbf->bf_stale = true;
  1892. if (bf != lastbf)
  1893. list_cut_position(&bf_head, fifo_list,
  1894. lastbf->list.prev);
  1895. }
  1896. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1897. ath_txq_unlock_complete(sc, txq);
  1898. }
  1899. }
  1900. /*****************/
  1901. /* Init, Cleanup */
  1902. /*****************/
  1903. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1904. {
  1905. struct ath_descdma *dd = &sc->txsdma;
  1906. u8 txs_len = sc->sc_ah->caps.txs_len;
  1907. dd->dd_desc_len = size * txs_len;
  1908. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  1909. &dd->dd_desc_paddr, GFP_KERNEL);
  1910. if (!dd->dd_desc)
  1911. return -ENOMEM;
  1912. return 0;
  1913. }
  1914. static int ath_tx_edma_init(struct ath_softc *sc)
  1915. {
  1916. int err;
  1917. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1918. if (!err)
  1919. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1920. sc->txsdma.dd_desc_paddr,
  1921. ATH_TXSTATUS_RING_SIZE);
  1922. return err;
  1923. }
  1924. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1925. {
  1926. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1927. int error = 0;
  1928. spin_lock_init(&sc->tx.txbuflock);
  1929. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1930. "tx", nbufs, 1, 1);
  1931. if (error != 0) {
  1932. ath_err(common,
  1933. "Failed to allocate tx descriptors: %d\n", error);
  1934. return error;
  1935. }
  1936. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1937. "beacon", ATH_BCBUF, 1, 1);
  1938. if (error != 0) {
  1939. ath_err(common,
  1940. "Failed to allocate beacon descriptors: %d\n", error);
  1941. return error;
  1942. }
  1943. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1944. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1945. error = ath_tx_edma_init(sc);
  1946. return error;
  1947. }
  1948. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1949. {
  1950. struct ath_atx_tid *tid;
  1951. struct ath_atx_ac *ac;
  1952. int tidno, acno;
  1953. for (tidno = 0, tid = &an->tid[tidno];
  1954. tidno < IEEE80211_NUM_TIDS;
  1955. tidno++, tid++) {
  1956. tid->an = an;
  1957. tid->tidno = tidno;
  1958. tid->seq_start = tid->seq_next = 0;
  1959. tid->baw_size = WME_MAX_BA;
  1960. tid->baw_head = tid->baw_tail = 0;
  1961. tid->sched = false;
  1962. tid->paused = false;
  1963. tid->active = false;
  1964. __skb_queue_head_init(&tid->buf_q);
  1965. acno = TID_TO_WME_AC(tidno);
  1966. tid->ac = &an->ac[acno];
  1967. }
  1968. for (acno = 0, ac = &an->ac[acno];
  1969. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  1970. ac->sched = false;
  1971. ac->txq = sc->tx.txq_map[acno];
  1972. INIT_LIST_HEAD(&ac->tid_q);
  1973. }
  1974. }
  1975. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  1976. {
  1977. struct ath_atx_ac *ac;
  1978. struct ath_atx_tid *tid;
  1979. struct ath_txq *txq;
  1980. int tidno;
  1981. for (tidno = 0, tid = &an->tid[tidno];
  1982. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1983. ac = tid->ac;
  1984. txq = ac->txq;
  1985. ath_txq_lock(sc, txq);
  1986. if (tid->sched) {
  1987. list_del(&tid->list);
  1988. tid->sched = false;
  1989. }
  1990. if (ac->sched) {
  1991. list_del(&ac->list);
  1992. tid->ac->sched = false;
  1993. }
  1994. ath_tid_drain(sc, txq, tid);
  1995. tid->active = false;
  1996. ath_txq_unlock(sc, txq);
  1997. }
  1998. }