t3_hw.c 99 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355
  1. /*
  2. * This file is part of the Chelsio T3 Ethernet driver.
  3. *
  4. * Copyright (C) 2003-2006 Chelsio Communications. All rights reserved.
  5. *
  6. * This program is distributed in the hope that it will be useful, but WITHOUT
  7. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  8. * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
  9. * release for licensing terms and conditions.
  10. */
  11. #include "common.h"
  12. #include "regs.h"
  13. #include "sge_defs.h"
  14. #include "firmware_exports.h"
  15. /**
  16. * t3_wait_op_done_val - wait until an operation is completed
  17. * @adapter: the adapter performing the operation
  18. * @reg: the register to check for completion
  19. * @mask: a single-bit field within @reg that indicates completion
  20. * @polarity: the value of the field when the operation is completed
  21. * @attempts: number of check iterations
  22. * @delay: delay in usecs between iterations
  23. * @valp: where to store the value of the register at completion time
  24. *
  25. * Wait until an operation is completed by checking a bit in a register
  26. * up to @attempts times. If @valp is not NULL the value of the register
  27. * at the time it indicated completion is stored there. Returns 0 if the
  28. * operation completes and -EAGAIN otherwise.
  29. */
  30. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  31. int polarity, int attempts, int delay, u32 *valp)
  32. {
  33. while (1) {
  34. u32 val = t3_read_reg(adapter, reg);
  35. if (!!(val & mask) == polarity) {
  36. if (valp)
  37. *valp = val;
  38. return 0;
  39. }
  40. if (--attempts == 0)
  41. return -EAGAIN;
  42. if (delay)
  43. udelay(delay);
  44. }
  45. }
  46. /**
  47. * t3_write_regs - write a bunch of registers
  48. * @adapter: the adapter to program
  49. * @p: an array of register address/register value pairs
  50. * @n: the number of address/value pairs
  51. * @offset: register address offset
  52. *
  53. * Takes an array of register address/register value pairs and writes each
  54. * value to the corresponding register. Register addresses are adjusted
  55. * by the supplied offset.
  56. */
  57. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  58. int n, unsigned int offset)
  59. {
  60. while (n--) {
  61. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  62. p++;
  63. }
  64. }
  65. /**
  66. * t3_set_reg_field - set a register field to a value
  67. * @adapter: the adapter to program
  68. * @addr: the register address
  69. * @mask: specifies the portion of the register to modify
  70. * @val: the new value for the register field
  71. *
  72. * Sets a register field specified by the supplied mask to the
  73. * given value.
  74. */
  75. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  76. u32 val)
  77. {
  78. u32 v = t3_read_reg(adapter, addr) & ~mask;
  79. t3_write_reg(adapter, addr, v | val);
  80. t3_read_reg(adapter, addr); /* flush */
  81. }
  82. /**
  83. * t3_read_indirect - read indirectly addressed registers
  84. * @adap: the adapter
  85. * @addr_reg: register holding the indirect address
  86. * @data_reg: register holding the value of the indirect register
  87. * @vals: where the read register values are stored
  88. * @start_idx: index of first indirect register to read
  89. * @nregs: how many indirect registers to read
  90. *
  91. * Reads registers that are accessed indirectly through an address/data
  92. * register pair.
  93. */
  94. void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  95. unsigned int data_reg, u32 *vals, unsigned int nregs,
  96. unsigned int start_idx)
  97. {
  98. while (nregs--) {
  99. t3_write_reg(adap, addr_reg, start_idx);
  100. *vals++ = t3_read_reg(adap, data_reg);
  101. start_idx++;
  102. }
  103. }
  104. /**
  105. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  106. * @mc7: identifies MC7 to read from
  107. * @start: index of first 64-bit word to read
  108. * @n: number of 64-bit words to read
  109. * @buf: where to store the read result
  110. *
  111. * Read n 64-bit words from MC7 starting at word start, using backdoor
  112. * accesses.
  113. */
  114. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  115. u64 *buf)
  116. {
  117. static const int shift[] = { 0, 0, 16, 24 };
  118. static const int step[] = { 0, 32, 16, 8 };
  119. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  120. struct adapter *adap = mc7->adapter;
  121. if (start >= size64 || start + n > size64)
  122. return -EINVAL;
  123. start *= (8 << mc7->width);
  124. while (n--) {
  125. int i;
  126. u64 val64 = 0;
  127. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  128. int attempts = 10;
  129. u32 val;
  130. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  131. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  132. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  133. while ((val & F_BUSY) && attempts--)
  134. val = t3_read_reg(adap,
  135. mc7->offset + A_MC7_BD_OP);
  136. if (val & F_BUSY)
  137. return -EIO;
  138. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  139. if (mc7->width == 0) {
  140. val64 = t3_read_reg(adap,
  141. mc7->offset +
  142. A_MC7_BD_DATA0);
  143. val64 |= (u64) val << 32;
  144. } else {
  145. if (mc7->width > 1)
  146. val >>= shift[mc7->width];
  147. val64 |= (u64) val << (step[mc7->width] * i);
  148. }
  149. start += 8;
  150. }
  151. *buf++ = val64;
  152. }
  153. return 0;
  154. }
  155. /*
  156. * Initialize MI1.
  157. */
  158. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  159. {
  160. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  161. u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
  162. V_CLKDIV(clkdiv);
  163. if (!(ai->caps & SUPPORTED_10000baseT_Full))
  164. val |= V_ST(1);
  165. t3_write_reg(adap, A_MI1_CFG, val);
  166. }
  167. #define MDIO_ATTEMPTS 10
  168. /*
  169. * MI1 read/write operations for direct-addressed PHYs.
  170. */
  171. static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  172. int reg_addr, unsigned int *valp)
  173. {
  174. int ret;
  175. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  176. if (mmd_addr)
  177. return -EINVAL;
  178. mutex_lock(&adapter->mdio_lock);
  179. t3_write_reg(adapter, A_MI1_ADDR, addr);
  180. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  181. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  182. if (!ret)
  183. *valp = t3_read_reg(adapter, A_MI1_DATA);
  184. mutex_unlock(&adapter->mdio_lock);
  185. return ret;
  186. }
  187. static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  188. int reg_addr, unsigned int val)
  189. {
  190. int ret;
  191. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  192. if (mmd_addr)
  193. return -EINVAL;
  194. mutex_lock(&adapter->mdio_lock);
  195. t3_write_reg(adapter, A_MI1_ADDR, addr);
  196. t3_write_reg(adapter, A_MI1_DATA, val);
  197. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  198. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  199. mutex_unlock(&adapter->mdio_lock);
  200. return ret;
  201. }
  202. static const struct mdio_ops mi1_mdio_ops = {
  203. mi1_read,
  204. mi1_write
  205. };
  206. /*
  207. * MI1 read/write operations for indirect-addressed PHYs.
  208. */
  209. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  210. int reg_addr, unsigned int *valp)
  211. {
  212. int ret;
  213. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  214. mutex_lock(&adapter->mdio_lock);
  215. t3_write_reg(adapter, A_MI1_ADDR, addr);
  216. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  217. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  218. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  219. if (!ret) {
  220. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  221. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  222. MDIO_ATTEMPTS, 20);
  223. if (!ret)
  224. *valp = t3_read_reg(adapter, A_MI1_DATA);
  225. }
  226. mutex_unlock(&adapter->mdio_lock);
  227. return ret;
  228. }
  229. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  230. int reg_addr, unsigned int val)
  231. {
  232. int ret;
  233. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  234. mutex_lock(&adapter->mdio_lock);
  235. t3_write_reg(adapter, A_MI1_ADDR, addr);
  236. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  237. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  238. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  239. if (!ret) {
  240. t3_write_reg(adapter, A_MI1_DATA, val);
  241. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  242. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  243. MDIO_ATTEMPTS, 20);
  244. }
  245. mutex_unlock(&adapter->mdio_lock);
  246. return ret;
  247. }
  248. static const struct mdio_ops mi1_mdio_ext_ops = {
  249. mi1_ext_read,
  250. mi1_ext_write
  251. };
  252. /**
  253. * t3_mdio_change_bits - modify the value of a PHY register
  254. * @phy: the PHY to operate on
  255. * @mmd: the device address
  256. * @reg: the register address
  257. * @clear: what part of the register value to mask off
  258. * @set: what part of the register value to set
  259. *
  260. * Changes the value of a PHY register by applying a mask to its current
  261. * value and ORing the result with a new value.
  262. */
  263. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  264. unsigned int set)
  265. {
  266. int ret;
  267. unsigned int val;
  268. ret = mdio_read(phy, mmd, reg, &val);
  269. if (!ret) {
  270. val &= ~clear;
  271. ret = mdio_write(phy, mmd, reg, val | set);
  272. }
  273. return ret;
  274. }
  275. /**
  276. * t3_phy_reset - reset a PHY block
  277. * @phy: the PHY to operate on
  278. * @mmd: the device address of the PHY block to reset
  279. * @wait: how long to wait for the reset to complete in 1ms increments
  280. *
  281. * Resets a PHY block and optionally waits for the reset to complete.
  282. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  283. * for 10G PHYs.
  284. */
  285. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  286. {
  287. int err;
  288. unsigned int ctl;
  289. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  290. if (err || !wait)
  291. return err;
  292. do {
  293. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  294. if (err)
  295. return err;
  296. ctl &= BMCR_RESET;
  297. if (ctl)
  298. msleep(1);
  299. } while (ctl && --wait);
  300. return ctl ? -1 : 0;
  301. }
  302. /**
  303. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  304. * @phy: the PHY to operate on
  305. * @advert: bitmap of capabilities the PHY should advertise
  306. *
  307. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  308. * requested capabilities.
  309. */
  310. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  311. {
  312. int err;
  313. unsigned int val = 0;
  314. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  315. if (err)
  316. return err;
  317. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  318. if (advert & ADVERTISED_1000baseT_Half)
  319. val |= ADVERTISE_1000HALF;
  320. if (advert & ADVERTISED_1000baseT_Full)
  321. val |= ADVERTISE_1000FULL;
  322. err = mdio_write(phy, 0, MII_CTRL1000, val);
  323. if (err)
  324. return err;
  325. val = 1;
  326. if (advert & ADVERTISED_10baseT_Half)
  327. val |= ADVERTISE_10HALF;
  328. if (advert & ADVERTISED_10baseT_Full)
  329. val |= ADVERTISE_10FULL;
  330. if (advert & ADVERTISED_100baseT_Half)
  331. val |= ADVERTISE_100HALF;
  332. if (advert & ADVERTISED_100baseT_Full)
  333. val |= ADVERTISE_100FULL;
  334. if (advert & ADVERTISED_Pause)
  335. val |= ADVERTISE_PAUSE_CAP;
  336. if (advert & ADVERTISED_Asym_Pause)
  337. val |= ADVERTISE_PAUSE_ASYM;
  338. return mdio_write(phy, 0, MII_ADVERTISE, val);
  339. }
  340. /**
  341. * t3_set_phy_speed_duplex - force PHY speed and duplex
  342. * @phy: the PHY to operate on
  343. * @speed: requested PHY speed
  344. * @duplex: requested PHY duplex
  345. *
  346. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  347. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  348. */
  349. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  350. {
  351. int err;
  352. unsigned int ctl;
  353. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  354. if (err)
  355. return err;
  356. if (speed >= 0) {
  357. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  358. if (speed == SPEED_100)
  359. ctl |= BMCR_SPEED100;
  360. else if (speed == SPEED_1000)
  361. ctl |= BMCR_SPEED1000;
  362. }
  363. if (duplex >= 0) {
  364. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  365. if (duplex == DUPLEX_FULL)
  366. ctl |= BMCR_FULLDPLX;
  367. }
  368. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  369. ctl |= BMCR_ANENABLE;
  370. return mdio_write(phy, 0, MII_BMCR, ctl);
  371. }
  372. static const struct adapter_info t3_adap_info[] = {
  373. {2, 0, 0, 0,
  374. F_GPIO2_OEN | F_GPIO4_OEN |
  375. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  376. SUPPORTED_OFFLOAD,
  377. &mi1_mdio_ops, "Chelsio PE9000"},
  378. {2, 0, 0, 0,
  379. F_GPIO2_OEN | F_GPIO4_OEN |
  380. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  381. SUPPORTED_OFFLOAD,
  382. &mi1_mdio_ops, "Chelsio T302"},
  383. {1, 0, 0, 0,
  384. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  385. F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  386. SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
  387. &mi1_mdio_ext_ops, "Chelsio T310"},
  388. {2, 0, 0, 0,
  389. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  390. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  391. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  392. SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_OFFLOAD,
  393. &mi1_mdio_ext_ops, "Chelsio T320"},
  394. };
  395. /*
  396. * Return the adapter_info structure with a given index. Out-of-range indices
  397. * return NULL.
  398. */
  399. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  400. {
  401. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  402. }
  403. #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
  404. SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
  405. #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
  406. static const struct port_type_info port_types[] = {
  407. {NULL},
  408. {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  409. "10GBASE-XR"},
  410. {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  411. "10/100/1000BASE-T"},
  412. {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  413. "10/100/1000BASE-T"},
  414. {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  415. {NULL, CAPS_10G, "10GBASE-KX4"},
  416. {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  417. {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  418. "10GBASE-SR"},
  419. {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  420. };
  421. #undef CAPS_1G
  422. #undef CAPS_10G
  423. #define VPD_ENTRY(name, len) \
  424. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  425. /*
  426. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  427. * VPD-R sections.
  428. */
  429. struct t3_vpd {
  430. u8 id_tag;
  431. u8 id_len[2];
  432. u8 id_data[16];
  433. u8 vpdr_tag;
  434. u8 vpdr_len[2];
  435. VPD_ENTRY(pn, 16); /* part number */
  436. VPD_ENTRY(ec, 16); /* EC level */
  437. VPD_ENTRY(sn, 16); /* serial number */
  438. VPD_ENTRY(na, 12); /* MAC address base */
  439. VPD_ENTRY(cclk, 6); /* core clock */
  440. VPD_ENTRY(mclk, 6); /* mem clock */
  441. VPD_ENTRY(uclk, 6); /* uP clk */
  442. VPD_ENTRY(mdc, 6); /* MDIO clk */
  443. VPD_ENTRY(mt, 2); /* mem timing */
  444. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  445. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  446. VPD_ENTRY(port0, 2); /* PHY0 complex */
  447. VPD_ENTRY(port1, 2); /* PHY1 complex */
  448. VPD_ENTRY(port2, 2); /* PHY2 complex */
  449. VPD_ENTRY(port3, 2); /* PHY3 complex */
  450. VPD_ENTRY(rv, 1); /* csum */
  451. u32 pad; /* for multiple-of-4 sizing and alignment */
  452. };
  453. #define EEPROM_MAX_POLL 4
  454. #define EEPROM_STAT_ADDR 0x4000
  455. #define VPD_BASE 0xc00
  456. /**
  457. * t3_seeprom_read - read a VPD EEPROM location
  458. * @adapter: adapter to read
  459. * @addr: EEPROM address
  460. * @data: where to store the read data
  461. *
  462. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  463. * VPD ROM capability. A zero is written to the flag bit when the
  464. * addres is written to the control register. The hardware device will
  465. * set the flag to 1 when 4 bytes have been read into the data register.
  466. */
  467. int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
  468. {
  469. u16 val;
  470. int attempts = EEPROM_MAX_POLL;
  471. unsigned int base = adapter->params.pci.vpd_cap_addr;
  472. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  473. return -EINVAL;
  474. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  475. do {
  476. udelay(10);
  477. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  478. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  479. if (!(val & PCI_VPD_ADDR_F)) {
  480. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  481. return -EIO;
  482. }
  483. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
  484. *data = le32_to_cpu(*data);
  485. return 0;
  486. }
  487. /**
  488. * t3_seeprom_write - write a VPD EEPROM location
  489. * @adapter: adapter to write
  490. * @addr: EEPROM address
  491. * @data: value to write
  492. *
  493. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  494. * VPD ROM capability.
  495. */
  496. int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
  497. {
  498. u16 val;
  499. int attempts = EEPROM_MAX_POLL;
  500. unsigned int base = adapter->params.pci.vpd_cap_addr;
  501. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  502. return -EINVAL;
  503. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  504. cpu_to_le32(data));
  505. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  506. addr | PCI_VPD_ADDR_F);
  507. do {
  508. msleep(1);
  509. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  510. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  511. if (val & PCI_VPD_ADDR_F) {
  512. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  513. return -EIO;
  514. }
  515. return 0;
  516. }
  517. /**
  518. * t3_seeprom_wp - enable/disable EEPROM write protection
  519. * @adapter: the adapter
  520. * @enable: 1 to enable write protection, 0 to disable it
  521. *
  522. * Enables or disables write protection on the serial EEPROM.
  523. */
  524. int t3_seeprom_wp(struct adapter *adapter, int enable)
  525. {
  526. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  527. }
  528. /*
  529. * Convert a character holding a hex digit to a number.
  530. */
  531. static unsigned int hex2int(unsigned char c)
  532. {
  533. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  534. }
  535. /**
  536. * get_vpd_params - read VPD parameters from VPD EEPROM
  537. * @adapter: adapter to read
  538. * @p: where to store the parameters
  539. *
  540. * Reads card parameters stored in VPD EEPROM.
  541. */
  542. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  543. {
  544. int i, addr, ret;
  545. struct t3_vpd vpd;
  546. /*
  547. * Card information is normally at VPD_BASE but some early cards had
  548. * it at 0.
  549. */
  550. ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
  551. if (ret)
  552. return ret;
  553. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  554. for (i = 0; i < sizeof(vpd); i += 4) {
  555. ret = t3_seeprom_read(adapter, addr + i,
  556. (u32 *)((u8 *)&vpd + i));
  557. if (ret)
  558. return ret;
  559. }
  560. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  561. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  562. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  563. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  564. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  565. /* Old eeproms didn't have port information */
  566. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  567. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  568. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  569. } else {
  570. p->port_type[0] = hex2int(vpd.port0_data[0]);
  571. p->port_type[1] = hex2int(vpd.port1_data[0]);
  572. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  573. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  574. }
  575. for (i = 0; i < 6; i++)
  576. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  577. hex2int(vpd.na_data[2 * i + 1]);
  578. return 0;
  579. }
  580. /* serial flash and firmware constants */
  581. enum {
  582. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  583. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  584. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  585. /* flash command opcodes */
  586. SF_PROG_PAGE = 2, /* program page */
  587. SF_WR_DISABLE = 4, /* disable writes */
  588. SF_RD_STATUS = 5, /* read status register */
  589. SF_WR_ENABLE = 6, /* enable writes */
  590. SF_RD_DATA_FAST = 0xb, /* read flash */
  591. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  592. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  593. FW_VERS_ADDR = 0x77ffc /* flash address holding FW version */
  594. };
  595. /**
  596. * sf1_read - read data from the serial flash
  597. * @adapter: the adapter
  598. * @byte_cnt: number of bytes to read
  599. * @cont: whether another operation will be chained
  600. * @valp: where to store the read data
  601. *
  602. * Reads up to 4 bytes of data from the serial flash. The location of
  603. * the read needs to be specified prior to calling this by issuing the
  604. * appropriate commands to the serial flash.
  605. */
  606. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  607. u32 *valp)
  608. {
  609. int ret;
  610. if (!byte_cnt || byte_cnt > 4)
  611. return -EINVAL;
  612. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  613. return -EBUSY;
  614. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  615. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  616. if (!ret)
  617. *valp = t3_read_reg(adapter, A_SF_DATA);
  618. return ret;
  619. }
  620. /**
  621. * sf1_write - write data to the serial flash
  622. * @adapter: the adapter
  623. * @byte_cnt: number of bytes to write
  624. * @cont: whether another operation will be chained
  625. * @val: value to write
  626. *
  627. * Writes up to 4 bytes of data to the serial flash. The location of
  628. * the write needs to be specified prior to calling this by issuing the
  629. * appropriate commands to the serial flash.
  630. */
  631. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  632. u32 val)
  633. {
  634. if (!byte_cnt || byte_cnt > 4)
  635. return -EINVAL;
  636. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  637. return -EBUSY;
  638. t3_write_reg(adapter, A_SF_DATA, val);
  639. t3_write_reg(adapter, A_SF_OP,
  640. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  641. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  642. }
  643. /**
  644. * flash_wait_op - wait for a flash operation to complete
  645. * @adapter: the adapter
  646. * @attempts: max number of polls of the status register
  647. * @delay: delay between polls in ms
  648. *
  649. * Wait for a flash operation to complete by polling the status register.
  650. */
  651. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  652. {
  653. int ret;
  654. u32 status;
  655. while (1) {
  656. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  657. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  658. return ret;
  659. if (!(status & 1))
  660. return 0;
  661. if (--attempts == 0)
  662. return -EAGAIN;
  663. if (delay)
  664. msleep(delay);
  665. }
  666. }
  667. /**
  668. * t3_read_flash - read words from serial flash
  669. * @adapter: the adapter
  670. * @addr: the start address for the read
  671. * @nwords: how many 32-bit words to read
  672. * @data: where to store the read data
  673. * @byte_oriented: whether to store data as bytes or as words
  674. *
  675. * Read the specified number of 32-bit words from the serial flash.
  676. * If @byte_oriented is set the read data is stored as a byte array
  677. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  678. * natural endianess.
  679. */
  680. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  681. unsigned int nwords, u32 *data, int byte_oriented)
  682. {
  683. int ret;
  684. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  685. return -EINVAL;
  686. addr = swab32(addr) | SF_RD_DATA_FAST;
  687. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  688. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  689. return ret;
  690. for (; nwords; nwords--, data++) {
  691. ret = sf1_read(adapter, 4, nwords > 1, data);
  692. if (ret)
  693. return ret;
  694. if (byte_oriented)
  695. *data = htonl(*data);
  696. }
  697. return 0;
  698. }
  699. /**
  700. * t3_write_flash - write up to a page of data to the serial flash
  701. * @adapter: the adapter
  702. * @addr: the start address to write
  703. * @n: length of data to write
  704. * @data: the data to write
  705. *
  706. * Writes up to a page of data (256 bytes) to the serial flash starting
  707. * at the given address.
  708. */
  709. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  710. unsigned int n, const u8 *data)
  711. {
  712. int ret;
  713. u32 buf[64];
  714. unsigned int i, c, left, val, offset = addr & 0xff;
  715. if (addr + n > SF_SIZE || offset + n > 256)
  716. return -EINVAL;
  717. val = swab32(addr) | SF_PROG_PAGE;
  718. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  719. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  720. return ret;
  721. for (left = n; left; left -= c) {
  722. c = min(left, 4U);
  723. for (val = 0, i = 0; i < c; ++i)
  724. val = (val << 8) + *data++;
  725. ret = sf1_write(adapter, c, c != left, val);
  726. if (ret)
  727. return ret;
  728. }
  729. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  730. return ret;
  731. /* Read the page to verify the write succeeded */
  732. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  733. if (ret)
  734. return ret;
  735. if (memcmp(data - n, (u8 *) buf + offset, n))
  736. return -EIO;
  737. return 0;
  738. }
  739. enum fw_version_type {
  740. FW_VERSION_N3,
  741. FW_VERSION_T3
  742. };
  743. /**
  744. * t3_get_fw_version - read the firmware version
  745. * @adapter: the adapter
  746. * @vers: where to place the version
  747. *
  748. * Reads the FW version from flash.
  749. */
  750. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  751. {
  752. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  753. }
  754. /**
  755. * t3_check_fw_version - check if the FW is compatible with this driver
  756. * @adapter: the adapter
  757. *
  758. * Checks if an adapter's FW is compatible with the driver. Returns 0
  759. * if the versions are compatible, a negative error otherwise.
  760. */
  761. int t3_check_fw_version(struct adapter *adapter)
  762. {
  763. int ret;
  764. u32 vers;
  765. unsigned int type, major, minor;
  766. ret = t3_get_fw_version(adapter, &vers);
  767. if (ret)
  768. return ret;
  769. type = G_FW_VERSION_TYPE(vers);
  770. major = G_FW_VERSION_MAJOR(vers);
  771. minor = G_FW_VERSION_MINOR(vers);
  772. if (type == FW_VERSION_T3 && major == 3 && minor == 1)
  773. return 0;
  774. CH_ERR(adapter, "found wrong FW version(%u.%u), "
  775. "driver needs version 3.1\n", major, minor);
  776. return -EINVAL;
  777. }
  778. /**
  779. * t3_flash_erase_sectors - erase a range of flash sectors
  780. * @adapter: the adapter
  781. * @start: the first sector to erase
  782. * @end: the last sector to erase
  783. *
  784. * Erases the sectors in the given range.
  785. */
  786. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  787. {
  788. while (start <= end) {
  789. int ret;
  790. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  791. (ret = sf1_write(adapter, 4, 0,
  792. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  793. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  794. return ret;
  795. start++;
  796. }
  797. return 0;
  798. }
  799. /*
  800. * t3_load_fw - download firmware
  801. * @adapter: the adapter
  802. * @fw_data: the firrware image to write
  803. * @size: image size
  804. *
  805. * Write the supplied firmware image to the card's serial flash.
  806. * The FW image has the following sections: @size - 8 bytes of code and
  807. * data, followed by 4 bytes of FW version, followed by the 32-bit
  808. * 1's complement checksum of the whole image.
  809. */
  810. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  811. {
  812. u32 csum;
  813. unsigned int i;
  814. const u32 *p = (const u32 *)fw_data;
  815. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  816. if (size & 3)
  817. return -EINVAL;
  818. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  819. return -EFBIG;
  820. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  821. csum += ntohl(p[i]);
  822. if (csum != 0xffffffff) {
  823. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  824. csum);
  825. return -EINVAL;
  826. }
  827. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  828. if (ret)
  829. goto out;
  830. size -= 8; /* trim off version and checksum */
  831. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  832. unsigned int chunk_size = min(size, 256U);
  833. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  834. if (ret)
  835. goto out;
  836. addr += chunk_size;
  837. fw_data += chunk_size;
  838. size -= chunk_size;
  839. }
  840. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  841. out:
  842. if (ret)
  843. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  844. return ret;
  845. }
  846. #define CIM_CTL_BASE 0x2000
  847. /**
  848. * t3_cim_ctl_blk_read - read a block from CIM control region
  849. *
  850. * @adap: the adapter
  851. * @addr: the start address within the CIM control region
  852. * @n: number of words to read
  853. * @valp: where to store the result
  854. *
  855. * Reads a block of 4-byte words from the CIM control region.
  856. */
  857. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  858. unsigned int n, unsigned int *valp)
  859. {
  860. int ret = 0;
  861. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  862. return -EBUSY;
  863. for ( ; !ret && n--; addr += 4) {
  864. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  865. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  866. 0, 5, 2);
  867. if (!ret)
  868. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  869. }
  870. return ret;
  871. }
  872. /**
  873. * t3_link_changed - handle interface link changes
  874. * @adapter: the adapter
  875. * @port_id: the port index that changed link state
  876. *
  877. * Called when a port's link settings change to propagate the new values
  878. * to the associated PHY and MAC. After performing the common tasks it
  879. * invokes an OS-specific handler.
  880. */
  881. void t3_link_changed(struct adapter *adapter, int port_id)
  882. {
  883. int link_ok, speed, duplex, fc;
  884. struct port_info *pi = adap2pinfo(adapter, port_id);
  885. struct cphy *phy = &pi->phy;
  886. struct cmac *mac = &pi->mac;
  887. struct link_config *lc = &pi->link_config;
  888. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  889. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  890. uses_xaui(adapter)) {
  891. if (link_ok)
  892. t3b_pcs_reset(mac);
  893. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  894. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  895. }
  896. lc->link_ok = link_ok;
  897. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  898. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  899. if (lc->requested_fc & PAUSE_AUTONEG)
  900. fc &= lc->requested_fc;
  901. else
  902. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  903. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  904. /* Set MAC speed, duplex, and flow control to match PHY. */
  905. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  906. lc->fc = fc;
  907. }
  908. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  909. }
  910. /**
  911. * t3_link_start - apply link configuration to MAC/PHY
  912. * @phy: the PHY to setup
  913. * @mac: the MAC to setup
  914. * @lc: the requested link configuration
  915. *
  916. * Set up a port's MAC and PHY according to a desired link configuration.
  917. * - If the PHY can auto-negotiate first decide what to advertise, then
  918. * enable/disable auto-negotiation as desired, and reset.
  919. * - If the PHY does not auto-negotiate just reset it.
  920. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  921. * otherwise do it later based on the outcome of auto-negotiation.
  922. */
  923. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  924. {
  925. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  926. lc->link_ok = 0;
  927. if (lc->supported & SUPPORTED_Autoneg) {
  928. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  929. if (fc) {
  930. lc->advertising |= ADVERTISED_Asym_Pause;
  931. if (fc & PAUSE_RX)
  932. lc->advertising |= ADVERTISED_Pause;
  933. }
  934. phy->ops->advertise(phy, lc->advertising);
  935. if (lc->autoneg == AUTONEG_DISABLE) {
  936. lc->speed = lc->requested_speed;
  937. lc->duplex = lc->requested_duplex;
  938. lc->fc = (unsigned char)fc;
  939. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  940. fc);
  941. /* Also disables autoneg */
  942. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  943. phy->ops->reset(phy, 0);
  944. } else
  945. phy->ops->autoneg_enable(phy);
  946. } else {
  947. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  948. lc->fc = (unsigned char)fc;
  949. phy->ops->reset(phy, 0);
  950. }
  951. return 0;
  952. }
  953. /**
  954. * t3_set_vlan_accel - control HW VLAN extraction
  955. * @adapter: the adapter
  956. * @ports: bitmap of adapter ports to operate on
  957. * @on: enable (1) or disable (0) HW VLAN extraction
  958. *
  959. * Enables or disables HW extraction of VLAN tags for the given port.
  960. */
  961. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  962. {
  963. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  964. ports << S_VLANEXTRACTIONENABLE,
  965. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  966. }
  967. struct intr_info {
  968. unsigned int mask; /* bits to check in interrupt status */
  969. const char *msg; /* message to print or NULL */
  970. short stat_idx; /* stat counter to increment or -1 */
  971. unsigned short fatal:1; /* whether the condition reported is fatal */
  972. };
  973. /**
  974. * t3_handle_intr_status - table driven interrupt handler
  975. * @adapter: the adapter that generated the interrupt
  976. * @reg: the interrupt status register to process
  977. * @mask: a mask to apply to the interrupt status
  978. * @acts: table of interrupt actions
  979. * @stats: statistics counters tracking interrupt occurences
  980. *
  981. * A table driven interrupt handler that applies a set of masks to an
  982. * interrupt status word and performs the corresponding actions if the
  983. * interrupts described by the mask have occured. The actions include
  984. * optionally printing a warning or alert message, and optionally
  985. * incrementing a stat counter. The table is terminated by an entry
  986. * specifying mask 0. Returns the number of fatal interrupt conditions.
  987. */
  988. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  989. unsigned int mask,
  990. const struct intr_info *acts,
  991. unsigned long *stats)
  992. {
  993. int fatal = 0;
  994. unsigned int status = t3_read_reg(adapter, reg) & mask;
  995. for (; acts->mask; ++acts) {
  996. if (!(status & acts->mask))
  997. continue;
  998. if (acts->fatal) {
  999. fatal++;
  1000. CH_ALERT(adapter, "%s (0x%x)\n",
  1001. acts->msg, status & acts->mask);
  1002. } else if (acts->msg)
  1003. CH_WARN(adapter, "%s (0x%x)\n",
  1004. acts->msg, status & acts->mask);
  1005. if (acts->stat_idx >= 0)
  1006. stats[acts->stat_idx]++;
  1007. }
  1008. if (status) /* clear processed interrupts */
  1009. t3_write_reg(adapter, reg, status);
  1010. return fatal;
  1011. }
  1012. #define SGE_INTR_MASK (F_RSPQDISABLED)
  1013. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1014. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1015. F_NFASRCHFAIL)
  1016. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1017. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1018. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1019. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1020. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1021. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1022. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1023. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1024. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1025. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1026. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1027. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1028. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1029. V_BISTERR(M_BISTERR) | F_PEXERR)
  1030. #define ULPRX_INTR_MASK F_PARERR
  1031. #define ULPTX_INTR_MASK 0
  1032. #define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
  1033. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1034. F_ZERO_SWITCH_ERROR)
  1035. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1036. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1037. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1038. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
  1039. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1040. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1041. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1042. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1043. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1044. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1045. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1046. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1047. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1048. V_MCAPARERRENB(M_MCAPARERRENB))
  1049. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1050. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1051. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1052. F_MPS0 | F_CPL_SWITCH)
  1053. /*
  1054. * Interrupt handler for the PCIX1 module.
  1055. */
  1056. static void pci_intr_handler(struct adapter *adapter)
  1057. {
  1058. static const struct intr_info pcix1_intr_info[] = {
  1059. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1060. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1061. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1062. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1063. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1064. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1065. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1066. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1067. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1068. 1},
  1069. {F_DETCORECCERR, "PCI correctable ECC error",
  1070. STAT_PCI_CORR_ECC, 0},
  1071. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1072. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1073. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1074. 1},
  1075. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1076. 1},
  1077. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1078. 1},
  1079. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1080. "error", -1, 1},
  1081. {0}
  1082. };
  1083. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1084. pcix1_intr_info, adapter->irq_stats))
  1085. t3_fatal_err(adapter);
  1086. }
  1087. /*
  1088. * Interrupt handler for the PCIE module.
  1089. */
  1090. static void pcie_intr_handler(struct adapter *adapter)
  1091. {
  1092. static const struct intr_info pcie_intr_info[] = {
  1093. {F_PEXERR, "PCI PEX error", -1, 1},
  1094. {F_UNXSPLCPLERRR,
  1095. "PCI unexpected split completion DMA read error", -1, 1},
  1096. {F_UNXSPLCPLERRC,
  1097. "PCI unexpected split completion DMA command error", -1, 1},
  1098. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1099. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1100. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1101. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1102. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1103. "PCI MSI-X table/PBA parity error", -1, 1},
  1104. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1105. {0}
  1106. };
  1107. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1108. pcie_intr_info, adapter->irq_stats))
  1109. t3_fatal_err(adapter);
  1110. }
  1111. /*
  1112. * TP interrupt handler.
  1113. */
  1114. static void tp_intr_handler(struct adapter *adapter)
  1115. {
  1116. static const struct intr_info tp_intr_info[] = {
  1117. {0xffffff, "TP parity error", -1, 1},
  1118. {0x1000000, "TP out of Rx pages", -1, 1},
  1119. {0x2000000, "TP out of Tx pages", -1, 1},
  1120. {0}
  1121. };
  1122. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1123. tp_intr_info, NULL))
  1124. t3_fatal_err(adapter);
  1125. }
  1126. /*
  1127. * CIM interrupt handler.
  1128. */
  1129. static void cim_intr_handler(struct adapter *adapter)
  1130. {
  1131. static const struct intr_info cim_intr_info[] = {
  1132. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1133. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1134. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1135. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1136. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1137. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1138. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1139. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1140. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1141. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1142. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1143. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1144. {0}
  1145. };
  1146. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1147. cim_intr_info, NULL))
  1148. t3_fatal_err(adapter);
  1149. }
  1150. /*
  1151. * ULP RX interrupt handler.
  1152. */
  1153. static void ulprx_intr_handler(struct adapter *adapter)
  1154. {
  1155. static const struct intr_info ulprx_intr_info[] = {
  1156. {F_PARERR, "ULP RX parity error", -1, 1},
  1157. {0}
  1158. };
  1159. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1160. ulprx_intr_info, NULL))
  1161. t3_fatal_err(adapter);
  1162. }
  1163. /*
  1164. * ULP TX interrupt handler.
  1165. */
  1166. static void ulptx_intr_handler(struct adapter *adapter)
  1167. {
  1168. static const struct intr_info ulptx_intr_info[] = {
  1169. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1170. STAT_ULP_CH0_PBL_OOB, 0},
  1171. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1172. STAT_ULP_CH1_PBL_OOB, 0},
  1173. {0}
  1174. };
  1175. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1176. ulptx_intr_info, adapter->irq_stats))
  1177. t3_fatal_err(adapter);
  1178. }
  1179. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1180. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1181. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1182. F_ICSPI1_TX_FRAMING_ERROR)
  1183. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1184. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1185. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1186. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1187. /*
  1188. * PM TX interrupt handler.
  1189. */
  1190. static void pmtx_intr_handler(struct adapter *adapter)
  1191. {
  1192. static const struct intr_info pmtx_intr_info[] = {
  1193. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1194. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1195. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1196. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1197. "PMTX ispi parity error", -1, 1},
  1198. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1199. "PMTX ospi parity error", -1, 1},
  1200. {0}
  1201. };
  1202. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1203. pmtx_intr_info, NULL))
  1204. t3_fatal_err(adapter);
  1205. }
  1206. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1207. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1208. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1209. F_IESPI1_TX_FRAMING_ERROR)
  1210. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1211. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1212. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1213. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1214. /*
  1215. * PM RX interrupt handler.
  1216. */
  1217. static void pmrx_intr_handler(struct adapter *adapter)
  1218. {
  1219. static const struct intr_info pmrx_intr_info[] = {
  1220. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1221. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1222. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1223. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1224. "PMRX ispi parity error", -1, 1},
  1225. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1226. "PMRX ospi parity error", -1, 1},
  1227. {0}
  1228. };
  1229. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1230. pmrx_intr_info, NULL))
  1231. t3_fatal_err(adapter);
  1232. }
  1233. /*
  1234. * CPL switch interrupt handler.
  1235. */
  1236. static void cplsw_intr_handler(struct adapter *adapter)
  1237. {
  1238. static const struct intr_info cplsw_intr_info[] = {
  1239. /* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
  1240. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1241. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1242. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1243. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1244. {0}
  1245. };
  1246. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1247. cplsw_intr_info, NULL))
  1248. t3_fatal_err(adapter);
  1249. }
  1250. /*
  1251. * MPS interrupt handler.
  1252. */
  1253. static void mps_intr_handler(struct adapter *adapter)
  1254. {
  1255. static const struct intr_info mps_intr_info[] = {
  1256. {0x1ff, "MPS parity error", -1, 1},
  1257. {0}
  1258. };
  1259. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1260. mps_intr_info, NULL))
  1261. t3_fatal_err(adapter);
  1262. }
  1263. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1264. /*
  1265. * MC7 interrupt handler.
  1266. */
  1267. static void mc7_intr_handler(struct mc7 *mc7)
  1268. {
  1269. struct adapter *adapter = mc7->adapter;
  1270. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1271. if (cause & F_CE) {
  1272. mc7->stats.corr_err++;
  1273. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1274. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1275. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1276. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1277. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1278. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1279. }
  1280. if (cause & F_UE) {
  1281. mc7->stats.uncorr_err++;
  1282. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1283. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1284. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1285. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1286. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1287. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1288. }
  1289. if (G_PE(cause)) {
  1290. mc7->stats.parity_err++;
  1291. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1292. mc7->name, G_PE(cause));
  1293. }
  1294. if (cause & F_AE) {
  1295. u32 addr = 0;
  1296. if (adapter->params.rev > 0)
  1297. addr = t3_read_reg(adapter,
  1298. mc7->offset + A_MC7_ERR_ADDR);
  1299. mc7->stats.addr_err++;
  1300. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1301. mc7->name, addr);
  1302. }
  1303. if (cause & MC7_INTR_FATAL)
  1304. t3_fatal_err(adapter);
  1305. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1306. }
  1307. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1308. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1309. /*
  1310. * XGMAC interrupt handler.
  1311. */
  1312. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1313. {
  1314. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1315. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1316. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1317. mac->stats.tx_fifo_parity_err++;
  1318. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1319. }
  1320. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1321. mac->stats.rx_fifo_parity_err++;
  1322. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1323. }
  1324. if (cause & F_TXFIFO_UNDERRUN)
  1325. mac->stats.tx_fifo_urun++;
  1326. if (cause & F_RXFIFO_OVERFLOW)
  1327. mac->stats.rx_fifo_ovfl++;
  1328. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1329. mac->stats.serdes_signal_loss++;
  1330. if (cause & F_XAUIPCSCTCERR)
  1331. mac->stats.xaui_pcs_ctc_err++;
  1332. if (cause & F_XAUIPCSALIGNCHANGE)
  1333. mac->stats.xaui_pcs_align_change++;
  1334. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1335. if (cause & XGM_INTR_FATAL)
  1336. t3_fatal_err(adap);
  1337. return cause != 0;
  1338. }
  1339. /*
  1340. * Interrupt handler for PHY events.
  1341. */
  1342. int t3_phy_intr_handler(struct adapter *adapter)
  1343. {
  1344. static const int intr_gpio_bits[] = { 8, 0x20 };
  1345. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1346. for_each_port(adapter, i) {
  1347. if (cause & intr_gpio_bits[i]) {
  1348. struct cphy *phy = &adap2pinfo(adapter, i)->phy;
  1349. int phy_cause = phy->ops->intr_handler(phy);
  1350. if (phy_cause & cphy_cause_link_change)
  1351. t3_link_changed(adapter, i);
  1352. if (phy_cause & cphy_cause_fifo_error)
  1353. phy->fifo_errors++;
  1354. }
  1355. }
  1356. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1357. return 0;
  1358. }
  1359. /*
  1360. * T3 slow path (non-data) interrupt handler.
  1361. */
  1362. int t3_slow_intr_handler(struct adapter *adapter)
  1363. {
  1364. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1365. cause &= adapter->slow_intr_mask;
  1366. if (!cause)
  1367. return 0;
  1368. if (cause & F_PCIM0) {
  1369. if (is_pcie(adapter))
  1370. pcie_intr_handler(adapter);
  1371. else
  1372. pci_intr_handler(adapter);
  1373. }
  1374. if (cause & F_SGE3)
  1375. t3_sge_err_intr_handler(adapter);
  1376. if (cause & F_MC7_PMRX)
  1377. mc7_intr_handler(&adapter->pmrx);
  1378. if (cause & F_MC7_PMTX)
  1379. mc7_intr_handler(&adapter->pmtx);
  1380. if (cause & F_MC7_CM)
  1381. mc7_intr_handler(&adapter->cm);
  1382. if (cause & F_CIM)
  1383. cim_intr_handler(adapter);
  1384. if (cause & F_TP1)
  1385. tp_intr_handler(adapter);
  1386. if (cause & F_ULP2_RX)
  1387. ulprx_intr_handler(adapter);
  1388. if (cause & F_ULP2_TX)
  1389. ulptx_intr_handler(adapter);
  1390. if (cause & F_PM1_RX)
  1391. pmrx_intr_handler(adapter);
  1392. if (cause & F_PM1_TX)
  1393. pmtx_intr_handler(adapter);
  1394. if (cause & F_CPL_SWITCH)
  1395. cplsw_intr_handler(adapter);
  1396. if (cause & F_MPS0)
  1397. mps_intr_handler(adapter);
  1398. if (cause & F_MC5A)
  1399. t3_mc5_intr_handler(&adapter->mc5);
  1400. if (cause & F_XGMAC0_0)
  1401. mac_intr_handler(adapter, 0);
  1402. if (cause & F_XGMAC0_1)
  1403. mac_intr_handler(adapter, 1);
  1404. if (cause & F_T3DBG)
  1405. t3_os_ext_intr_handler(adapter);
  1406. /* Clear the interrupts just processed. */
  1407. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1408. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1409. return 1;
  1410. }
  1411. /**
  1412. * t3_intr_enable - enable interrupts
  1413. * @adapter: the adapter whose interrupts should be enabled
  1414. *
  1415. * Enable interrupts by setting the interrupt enable registers of the
  1416. * various HW modules and then enabling the top-level interrupt
  1417. * concentrator.
  1418. */
  1419. void t3_intr_enable(struct adapter *adapter)
  1420. {
  1421. static const struct addr_val_pair intr_en_avp[] = {
  1422. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1423. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1424. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1425. MC7_INTR_MASK},
  1426. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1427. MC7_INTR_MASK},
  1428. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1429. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1430. {A_TP_INT_ENABLE, 0x3bfffff},
  1431. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1432. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1433. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1434. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1435. };
  1436. adapter->slow_intr_mask = PL_INTR_MASK;
  1437. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1438. if (adapter->params.rev > 0) {
  1439. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1440. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1441. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1442. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1443. F_PBL_BOUND_ERR_CH1);
  1444. } else {
  1445. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1446. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1447. }
  1448. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
  1449. adapter_info(adapter)->gpio_intr);
  1450. t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
  1451. adapter_info(adapter)->gpio_intr);
  1452. if (is_pcie(adapter))
  1453. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1454. else
  1455. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1456. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1457. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1458. }
  1459. /**
  1460. * t3_intr_disable - disable a card's interrupts
  1461. * @adapter: the adapter whose interrupts should be disabled
  1462. *
  1463. * Disable interrupts. We only disable the top-level interrupt
  1464. * concentrator and the SGE data interrupts.
  1465. */
  1466. void t3_intr_disable(struct adapter *adapter)
  1467. {
  1468. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1469. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1470. adapter->slow_intr_mask = 0;
  1471. }
  1472. /**
  1473. * t3_intr_clear - clear all interrupts
  1474. * @adapter: the adapter whose interrupts should be cleared
  1475. *
  1476. * Clears all interrupts.
  1477. */
  1478. void t3_intr_clear(struct adapter *adapter)
  1479. {
  1480. static const unsigned int cause_reg_addr[] = {
  1481. A_SG_INT_CAUSE,
  1482. A_SG_RSPQ_FL_STATUS,
  1483. A_PCIX_INT_CAUSE,
  1484. A_MC7_INT_CAUSE,
  1485. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1486. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1487. A_CIM_HOST_INT_CAUSE,
  1488. A_TP_INT_CAUSE,
  1489. A_MC5_DB_INT_CAUSE,
  1490. A_ULPRX_INT_CAUSE,
  1491. A_ULPTX_INT_CAUSE,
  1492. A_CPL_INTR_CAUSE,
  1493. A_PM1_TX_INT_CAUSE,
  1494. A_PM1_RX_INT_CAUSE,
  1495. A_MPS_INT_CAUSE,
  1496. A_T3DBG_INT_CAUSE,
  1497. };
  1498. unsigned int i;
  1499. /* Clear PHY and MAC interrupts for each port. */
  1500. for_each_port(adapter, i)
  1501. t3_port_intr_clear(adapter, i);
  1502. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1503. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1504. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1505. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1506. }
  1507. /**
  1508. * t3_port_intr_enable - enable port-specific interrupts
  1509. * @adapter: associated adapter
  1510. * @idx: index of port whose interrupts should be enabled
  1511. *
  1512. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1513. * adapter port.
  1514. */
  1515. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1516. {
  1517. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1518. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1519. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1520. phy->ops->intr_enable(phy);
  1521. }
  1522. /**
  1523. * t3_port_intr_disable - disable port-specific interrupts
  1524. * @adapter: associated adapter
  1525. * @idx: index of port whose interrupts should be disabled
  1526. *
  1527. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1528. * adapter port.
  1529. */
  1530. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1531. {
  1532. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1533. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1534. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1535. phy->ops->intr_disable(phy);
  1536. }
  1537. /**
  1538. * t3_port_intr_clear - clear port-specific interrupts
  1539. * @adapter: associated adapter
  1540. * @idx: index of port whose interrupts to clear
  1541. *
  1542. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1543. * adapter port.
  1544. */
  1545. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1546. {
  1547. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1548. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1549. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1550. phy->ops->intr_clear(phy);
  1551. }
  1552. /**
  1553. * t3_sge_write_context - write an SGE context
  1554. * @adapter: the adapter
  1555. * @id: the context id
  1556. * @type: the context type
  1557. *
  1558. * Program an SGE context with the values already loaded in the
  1559. * CONTEXT_DATA? registers.
  1560. */
  1561. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1562. unsigned int type)
  1563. {
  1564. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1565. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1566. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1567. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1568. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1569. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1570. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1571. 0, 5, 1);
  1572. }
  1573. /**
  1574. * t3_sge_init_ecntxt - initialize an SGE egress context
  1575. * @adapter: the adapter to configure
  1576. * @id: the context id
  1577. * @gts_enable: whether to enable GTS for the context
  1578. * @type: the egress context type
  1579. * @respq: associated response queue
  1580. * @base_addr: base address of queue
  1581. * @size: number of queue entries
  1582. * @token: uP token
  1583. * @gen: initial generation value for the context
  1584. * @cidx: consumer pointer
  1585. *
  1586. * Initialize an SGE egress context and make it ready for use. If the
  1587. * platform allows concurrent context operations, the caller is
  1588. * responsible for appropriate locking.
  1589. */
  1590. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1591. enum sge_context_type type, int respq, u64 base_addr,
  1592. unsigned int size, unsigned int token, int gen,
  1593. unsigned int cidx)
  1594. {
  1595. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1596. if (base_addr & 0xfff) /* must be 4K aligned */
  1597. return -EINVAL;
  1598. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1599. return -EBUSY;
  1600. base_addr >>= 12;
  1601. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1602. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1603. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1604. V_EC_BASE_LO(base_addr & 0xffff));
  1605. base_addr >>= 16;
  1606. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1607. base_addr >>= 32;
  1608. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1609. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1610. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1611. F_EC_VALID);
  1612. return t3_sge_write_context(adapter, id, F_EGRESS);
  1613. }
  1614. /**
  1615. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1616. * @adapter: the adapter to configure
  1617. * @id: the context id
  1618. * @gts_enable: whether to enable GTS for the context
  1619. * @base_addr: base address of queue
  1620. * @size: number of queue entries
  1621. * @bsize: size of each buffer for this queue
  1622. * @cong_thres: threshold to signal congestion to upstream producers
  1623. * @gen: initial generation value for the context
  1624. * @cidx: consumer pointer
  1625. *
  1626. * Initialize an SGE free list context and make it ready for use. The
  1627. * caller is responsible for ensuring only one context operation occurs
  1628. * at a time.
  1629. */
  1630. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1631. int gts_enable, u64 base_addr, unsigned int size,
  1632. unsigned int bsize, unsigned int cong_thres, int gen,
  1633. unsigned int cidx)
  1634. {
  1635. if (base_addr & 0xfff) /* must be 4K aligned */
  1636. return -EINVAL;
  1637. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1638. return -EBUSY;
  1639. base_addr >>= 12;
  1640. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1641. base_addr >>= 32;
  1642. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1643. V_FL_BASE_HI((u32) base_addr) |
  1644. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1645. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1646. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1647. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1648. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1649. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1650. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1651. return t3_sge_write_context(adapter, id, F_FREELIST);
  1652. }
  1653. /**
  1654. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1655. * @adapter: the adapter to configure
  1656. * @id: the context id
  1657. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1658. * @base_addr: base address of queue
  1659. * @size: number of queue entries
  1660. * @fl_thres: threshold for selecting the normal or jumbo free list
  1661. * @gen: initial generation value for the context
  1662. * @cidx: consumer pointer
  1663. *
  1664. * Initialize an SGE response queue context and make it ready for use.
  1665. * The caller is responsible for ensuring only one context operation
  1666. * occurs at a time.
  1667. */
  1668. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1669. int irq_vec_idx, u64 base_addr, unsigned int size,
  1670. unsigned int fl_thres, int gen, unsigned int cidx)
  1671. {
  1672. unsigned int intr = 0;
  1673. if (base_addr & 0xfff) /* must be 4K aligned */
  1674. return -EINVAL;
  1675. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1676. return -EBUSY;
  1677. base_addr >>= 12;
  1678. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1679. V_CQ_INDEX(cidx));
  1680. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1681. base_addr >>= 32;
  1682. if (irq_vec_idx >= 0)
  1683. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1684. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1685. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1686. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1687. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1688. }
  1689. /**
  1690. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1691. * @adapter: the adapter to configure
  1692. * @id: the context id
  1693. * @base_addr: base address of queue
  1694. * @size: number of queue entries
  1695. * @rspq: response queue for async notifications
  1696. * @ovfl_mode: CQ overflow mode
  1697. * @credits: completion queue credits
  1698. * @credit_thres: the credit threshold
  1699. *
  1700. * Initialize an SGE completion queue context and make it ready for use.
  1701. * The caller is responsible for ensuring only one context operation
  1702. * occurs at a time.
  1703. */
  1704. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1705. unsigned int size, int rspq, int ovfl_mode,
  1706. unsigned int credits, unsigned int credit_thres)
  1707. {
  1708. if (base_addr & 0xfff) /* must be 4K aligned */
  1709. return -EINVAL;
  1710. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1711. return -EBUSY;
  1712. base_addr >>= 12;
  1713. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1714. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1715. base_addr >>= 32;
  1716. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1717. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1718. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
  1719. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1720. V_CQ_CREDIT_THRES(credit_thres));
  1721. return t3_sge_write_context(adapter, id, F_CQ);
  1722. }
  1723. /**
  1724. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1725. * @adapter: the adapter
  1726. * @id: the egress context id
  1727. * @enable: enable (1) or disable (0) the context
  1728. *
  1729. * Enable or disable an SGE egress context. The caller is responsible for
  1730. * ensuring only one context operation occurs at a time.
  1731. */
  1732. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1733. {
  1734. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1735. return -EBUSY;
  1736. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1737. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1738. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1739. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1740. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1741. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1742. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1743. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1744. 0, 5, 1);
  1745. }
  1746. /**
  1747. * t3_sge_disable_fl - disable an SGE free-buffer list
  1748. * @adapter: the adapter
  1749. * @id: the free list context id
  1750. *
  1751. * Disable an SGE free-buffer list. The caller is responsible for
  1752. * ensuring only one context operation occurs at a time.
  1753. */
  1754. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1755. {
  1756. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1757. return -EBUSY;
  1758. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1759. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1760. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1761. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1762. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1763. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1764. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1765. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1766. 0, 5, 1);
  1767. }
  1768. /**
  1769. * t3_sge_disable_rspcntxt - disable an SGE response queue
  1770. * @adapter: the adapter
  1771. * @id: the response queue context id
  1772. *
  1773. * Disable an SGE response queue. The caller is responsible for
  1774. * ensuring only one context operation occurs at a time.
  1775. */
  1776. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  1777. {
  1778. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1779. return -EBUSY;
  1780. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1781. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1782. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1783. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1784. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1785. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1786. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  1787. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1788. 0, 5, 1);
  1789. }
  1790. /**
  1791. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  1792. * @adapter: the adapter
  1793. * @id: the completion queue context id
  1794. *
  1795. * Disable an SGE completion queue. The caller is responsible for
  1796. * ensuring only one context operation occurs at a time.
  1797. */
  1798. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  1799. {
  1800. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1801. return -EBUSY;
  1802. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1803. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1804. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1805. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1806. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1807. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1808. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  1809. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1810. 0, 5, 1);
  1811. }
  1812. /**
  1813. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  1814. * @adapter: the adapter
  1815. * @id: the context id
  1816. * @op: the operation to perform
  1817. *
  1818. * Perform the selected operation on an SGE completion queue context.
  1819. * The caller is responsible for ensuring only one context operation
  1820. * occurs at a time.
  1821. */
  1822. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  1823. unsigned int credits)
  1824. {
  1825. u32 val;
  1826. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1827. return -EBUSY;
  1828. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  1829. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  1830. V_CONTEXT(id) | F_CQ);
  1831. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1832. 0, 5, 1, &val))
  1833. return -EIO;
  1834. if (op >= 2 && op < 7) {
  1835. if (adapter->params.rev > 0)
  1836. return G_CQ_INDEX(val);
  1837. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1838. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  1839. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  1840. F_CONTEXT_CMD_BUSY, 0, 5, 1))
  1841. return -EIO;
  1842. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  1843. }
  1844. return 0;
  1845. }
  1846. /**
  1847. * t3_sge_read_context - read an SGE context
  1848. * @type: the context type
  1849. * @adapter: the adapter
  1850. * @id: the context id
  1851. * @data: holds the retrieved context
  1852. *
  1853. * Read an SGE egress context. The caller is responsible for ensuring
  1854. * only one context operation occurs at a time.
  1855. */
  1856. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  1857. unsigned int id, u32 data[4])
  1858. {
  1859. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1860. return -EBUSY;
  1861. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1862. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  1863. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  1864. 5, 1))
  1865. return -EIO;
  1866. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  1867. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  1868. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  1869. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  1870. return 0;
  1871. }
  1872. /**
  1873. * t3_sge_read_ecntxt - read an SGE egress context
  1874. * @adapter: the adapter
  1875. * @id: the context id
  1876. * @data: holds the retrieved context
  1877. *
  1878. * Read an SGE egress context. The caller is responsible for ensuring
  1879. * only one context operation occurs at a time.
  1880. */
  1881. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  1882. {
  1883. if (id >= 65536)
  1884. return -EINVAL;
  1885. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  1886. }
  1887. /**
  1888. * t3_sge_read_cq - read an SGE CQ context
  1889. * @adapter: the adapter
  1890. * @id: the context id
  1891. * @data: holds the retrieved context
  1892. *
  1893. * Read an SGE CQ context. The caller is responsible for ensuring
  1894. * only one context operation occurs at a time.
  1895. */
  1896. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  1897. {
  1898. if (id >= 65536)
  1899. return -EINVAL;
  1900. return t3_sge_read_context(F_CQ, adapter, id, data);
  1901. }
  1902. /**
  1903. * t3_sge_read_fl - read an SGE free-list context
  1904. * @adapter: the adapter
  1905. * @id: the context id
  1906. * @data: holds the retrieved context
  1907. *
  1908. * Read an SGE free-list context. The caller is responsible for ensuring
  1909. * only one context operation occurs at a time.
  1910. */
  1911. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  1912. {
  1913. if (id >= SGE_QSETS * 2)
  1914. return -EINVAL;
  1915. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  1916. }
  1917. /**
  1918. * t3_sge_read_rspq - read an SGE response queue context
  1919. * @adapter: the adapter
  1920. * @id: the context id
  1921. * @data: holds the retrieved context
  1922. *
  1923. * Read an SGE response queue context. The caller is responsible for
  1924. * ensuring only one context operation occurs at a time.
  1925. */
  1926. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  1927. {
  1928. if (id >= SGE_QSETS)
  1929. return -EINVAL;
  1930. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  1931. }
  1932. /**
  1933. * t3_config_rss - configure Rx packet steering
  1934. * @adapter: the adapter
  1935. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  1936. * @cpus: values for the CPU lookup table (0xff terminated)
  1937. * @rspq: values for the response queue lookup table (0xffff terminated)
  1938. *
  1939. * Programs the receive packet steering logic. @cpus and @rspq provide
  1940. * the values for the CPU and response queue lookup tables. If they
  1941. * provide fewer values than the size of the tables the supplied values
  1942. * are used repeatedly until the tables are fully populated.
  1943. */
  1944. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  1945. const u8 * cpus, const u16 *rspq)
  1946. {
  1947. int i, j, cpu_idx = 0, q_idx = 0;
  1948. if (cpus)
  1949. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1950. u32 val = i << 16;
  1951. for (j = 0; j < 2; ++j) {
  1952. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  1953. if (cpus[cpu_idx] == 0xff)
  1954. cpu_idx = 0;
  1955. }
  1956. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  1957. }
  1958. if (rspq)
  1959. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1960. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  1961. (i << 16) | rspq[q_idx++]);
  1962. if (rspq[q_idx] == 0xffff)
  1963. q_idx = 0;
  1964. }
  1965. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  1966. }
  1967. /**
  1968. * t3_read_rss - read the contents of the RSS tables
  1969. * @adapter: the adapter
  1970. * @lkup: holds the contents of the RSS lookup table
  1971. * @map: holds the contents of the RSS map table
  1972. *
  1973. * Reads the contents of the receive packet steering tables.
  1974. */
  1975. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  1976. {
  1977. int i;
  1978. u32 val;
  1979. if (lkup)
  1980. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1981. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  1982. 0xffff0000 | i);
  1983. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  1984. if (!(val & 0x80000000))
  1985. return -EAGAIN;
  1986. *lkup++ = val;
  1987. *lkup++ = (val >> 8);
  1988. }
  1989. if (map)
  1990. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  1991. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  1992. 0xffff0000 | i);
  1993. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  1994. if (!(val & 0x80000000))
  1995. return -EAGAIN;
  1996. *map++ = val;
  1997. }
  1998. return 0;
  1999. }
  2000. /**
  2001. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2002. * @adap: the adapter
  2003. * @enable: 1 to select offload mode, 0 for regular NIC
  2004. *
  2005. * Switches TP to NIC/offload mode.
  2006. */
  2007. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2008. {
  2009. if (is_offload(adap) || !enable)
  2010. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2011. V_NICMODE(!enable));
  2012. }
  2013. /**
  2014. * pm_num_pages - calculate the number of pages of the payload memory
  2015. * @mem_size: the size of the payload memory
  2016. * @pg_size: the size of each payload memory page
  2017. *
  2018. * Calculate the number of pages, each of the given size, that fit in a
  2019. * memory of the specified size, respecting the HW requirement that the
  2020. * number of pages must be a multiple of 24.
  2021. */
  2022. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2023. unsigned int pg_size)
  2024. {
  2025. unsigned int n = mem_size / pg_size;
  2026. return n - n % 24;
  2027. }
  2028. #define mem_region(adap, start, size, reg) \
  2029. t3_write_reg((adap), A_ ## reg, (start)); \
  2030. start += size
  2031. /*
  2032. * partition_mem - partition memory and configure TP memory settings
  2033. * @adap: the adapter
  2034. * @p: the TP parameters
  2035. *
  2036. * Partitions context and payload memory and configures TP's memory
  2037. * registers.
  2038. */
  2039. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2040. {
  2041. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2042. unsigned int timers = 0, timers_shift = 22;
  2043. if (adap->params.rev > 0) {
  2044. if (tids <= 16 * 1024) {
  2045. timers = 1;
  2046. timers_shift = 16;
  2047. } else if (tids <= 64 * 1024) {
  2048. timers = 2;
  2049. timers_shift = 18;
  2050. } else if (tids <= 256 * 1024) {
  2051. timers = 3;
  2052. timers_shift = 20;
  2053. }
  2054. }
  2055. t3_write_reg(adap, A_TP_PMM_SIZE,
  2056. p->chan_rx_size | (p->chan_tx_size >> 16));
  2057. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2058. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2059. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2060. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2061. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2062. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2063. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2064. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2065. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2066. /* Add a bit of headroom and make multiple of 24 */
  2067. pstructs += 48;
  2068. pstructs -= pstructs % 24;
  2069. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2070. m = tids * TCB_SIZE;
  2071. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2072. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2073. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2074. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2075. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2076. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2077. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2078. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2079. m = (m + 4095) & ~0xfff;
  2080. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2081. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2082. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2083. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2084. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2085. if (tids < m)
  2086. adap->params.mc5.nservers += m - tids;
  2087. }
  2088. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2089. u32 val)
  2090. {
  2091. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2092. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2093. }
  2094. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2095. {
  2096. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2097. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2098. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2099. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2100. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2101. V_TIMESTAMPSMODE(1) | V_SACKMODE(1) | V_SACKRX(1));
  2102. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2103. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2104. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2105. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2106. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
  2107. F_IPV6ENABLE | F_NICMODE);
  2108. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2109. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2110. t3_set_reg_field(adap, A_TP_PARA_REG6,
  2111. adap->params.rev > 0 ? F_ENABLEESND : F_T3A_ENABLEESND,
  2112. 0);
  2113. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2114. F_ENABLEEPCMDAFULL | F_ENABLEOCSPIFULL,
  2115. F_TXDEFERENABLE | F_HEARBEATDACK | F_TXCONGESTIONMODE |
  2116. F_RXCONGESTIONMODE);
  2117. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
  2118. if (adap->params.rev > 0) {
  2119. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2120. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2121. F_TXPACEAUTO);
  2122. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2123. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2124. } else
  2125. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2126. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0x12121212);
  2127. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0x12121212);
  2128. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0x1212);
  2129. }
  2130. /* Desired TP timer resolution in usec */
  2131. #define TP_TMR_RES 50
  2132. /* TCP timer values in ms */
  2133. #define TP_DACK_TIMER 50
  2134. #define TP_RTO_MIN 250
  2135. /**
  2136. * tp_set_timers - set TP timing parameters
  2137. * @adap: the adapter to set
  2138. * @core_clk: the core clock frequency in Hz
  2139. *
  2140. * Set TP's timing parameters, such as the various timer resolutions and
  2141. * the TCP timer values.
  2142. */
  2143. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2144. {
  2145. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2146. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2147. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2148. unsigned int tps = core_clk >> tre;
  2149. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2150. V_DELAYEDACKRESOLUTION(dack_re) |
  2151. V_TIMESTAMPRESOLUTION(tstamp_re));
  2152. t3_write_reg(adap, A_TP_DACK_TIMER,
  2153. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2154. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2155. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2156. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2157. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2158. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2159. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2160. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2161. V_KEEPALIVEMAX(9));
  2162. #define SECONDS * tps
  2163. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2164. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2165. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2166. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2167. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2168. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2169. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2170. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2171. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2172. #undef SECONDS
  2173. }
  2174. /**
  2175. * t3_tp_set_coalescing_size - set receive coalescing size
  2176. * @adap: the adapter
  2177. * @size: the receive coalescing size
  2178. * @psh: whether a set PSH bit should deliver coalesced data
  2179. *
  2180. * Set the receive coalescing size and PSH bit handling.
  2181. */
  2182. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2183. {
  2184. u32 val;
  2185. if (size > MAX_RX_COALESCING_LEN)
  2186. return -EINVAL;
  2187. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2188. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2189. if (size) {
  2190. val |= F_RXCOALESCEENABLE;
  2191. if (psh)
  2192. val |= F_RXCOALESCEPSHEN;
  2193. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2194. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2195. }
  2196. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2197. return 0;
  2198. }
  2199. /**
  2200. * t3_tp_set_max_rxsize - set the max receive size
  2201. * @adap: the adapter
  2202. * @size: the max receive size
  2203. *
  2204. * Set TP's max receive size. This is the limit that applies when
  2205. * receive coalescing is disabled.
  2206. */
  2207. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2208. {
  2209. t3_write_reg(adap, A_TP_PARA_REG7,
  2210. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2211. }
  2212. static void __devinit init_mtus(unsigned short mtus[])
  2213. {
  2214. /*
  2215. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2216. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2217. * are enabled and still have at least 8 bytes of payload.
  2218. */
  2219. mtus[0] = 88;
  2220. mtus[1] = 256;
  2221. mtus[2] = 512;
  2222. mtus[3] = 576;
  2223. mtus[4] = 808;
  2224. mtus[5] = 1024;
  2225. mtus[6] = 1280;
  2226. mtus[7] = 1492;
  2227. mtus[8] = 1500;
  2228. mtus[9] = 2002;
  2229. mtus[10] = 2048;
  2230. mtus[11] = 4096;
  2231. mtus[12] = 4352;
  2232. mtus[13] = 8192;
  2233. mtus[14] = 9000;
  2234. mtus[15] = 9600;
  2235. }
  2236. /*
  2237. * Initial congestion control parameters.
  2238. */
  2239. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  2240. {
  2241. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2242. a[9] = 2;
  2243. a[10] = 3;
  2244. a[11] = 4;
  2245. a[12] = 5;
  2246. a[13] = 6;
  2247. a[14] = 7;
  2248. a[15] = 8;
  2249. a[16] = 9;
  2250. a[17] = 10;
  2251. a[18] = 14;
  2252. a[19] = 17;
  2253. a[20] = 21;
  2254. a[21] = 25;
  2255. a[22] = 30;
  2256. a[23] = 35;
  2257. a[24] = 45;
  2258. a[25] = 60;
  2259. a[26] = 80;
  2260. a[27] = 100;
  2261. a[28] = 200;
  2262. a[29] = 300;
  2263. a[30] = 400;
  2264. a[31] = 500;
  2265. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2266. b[9] = b[10] = 1;
  2267. b[11] = b[12] = 2;
  2268. b[13] = b[14] = b[15] = b[16] = 3;
  2269. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2270. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2271. b[28] = b[29] = 6;
  2272. b[30] = b[31] = 7;
  2273. }
  2274. /* The minimum additive increment value for the congestion control table */
  2275. #define CC_MIN_INCR 2U
  2276. /**
  2277. * t3_load_mtus - write the MTU and congestion control HW tables
  2278. * @adap: the adapter
  2279. * @mtus: the unrestricted values for the MTU table
  2280. * @alphs: the values for the congestion control alpha parameter
  2281. * @beta: the values for the congestion control beta parameter
  2282. * @mtu_cap: the maximum permitted effective MTU
  2283. *
  2284. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2285. * Update the high-speed congestion control table with the supplied alpha,
  2286. * beta, and MTUs.
  2287. */
  2288. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2289. unsigned short alpha[NCCTRL_WIN],
  2290. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2291. {
  2292. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2293. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2294. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2295. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2296. };
  2297. unsigned int i, w;
  2298. for (i = 0; i < NMTUS; ++i) {
  2299. unsigned int mtu = min(mtus[i], mtu_cap);
  2300. unsigned int log2 = fls(mtu);
  2301. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2302. log2--;
  2303. t3_write_reg(adap, A_TP_MTU_TABLE,
  2304. (i << 24) | (log2 << 16) | mtu);
  2305. for (w = 0; w < NCCTRL_WIN; ++w) {
  2306. unsigned int inc;
  2307. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2308. CC_MIN_INCR);
  2309. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2310. (w << 16) | (beta[w] << 13) | inc);
  2311. }
  2312. }
  2313. }
  2314. /**
  2315. * t3_read_hw_mtus - returns the values in the HW MTU table
  2316. * @adap: the adapter
  2317. * @mtus: where to store the HW MTU values
  2318. *
  2319. * Reads the HW MTU table.
  2320. */
  2321. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2322. {
  2323. int i;
  2324. for (i = 0; i < NMTUS; ++i) {
  2325. unsigned int val;
  2326. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2327. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2328. mtus[i] = val & 0x3fff;
  2329. }
  2330. }
  2331. /**
  2332. * t3_get_cong_cntl_tab - reads the congestion control table
  2333. * @adap: the adapter
  2334. * @incr: where to store the alpha values
  2335. *
  2336. * Reads the additive increments programmed into the HW congestion
  2337. * control table.
  2338. */
  2339. void t3_get_cong_cntl_tab(struct adapter *adap,
  2340. unsigned short incr[NMTUS][NCCTRL_WIN])
  2341. {
  2342. unsigned int mtu, w;
  2343. for (mtu = 0; mtu < NMTUS; ++mtu)
  2344. for (w = 0; w < NCCTRL_WIN; ++w) {
  2345. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2346. 0xffff0000 | (mtu << 5) | w);
  2347. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2348. 0x1fff;
  2349. }
  2350. }
  2351. /**
  2352. * t3_tp_get_mib_stats - read TP's MIB counters
  2353. * @adap: the adapter
  2354. * @tps: holds the returned counter values
  2355. *
  2356. * Returns the values of TP's MIB counters.
  2357. */
  2358. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2359. {
  2360. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2361. sizeof(*tps) / sizeof(u32), 0);
  2362. }
  2363. #define ulp_region(adap, name, start, len) \
  2364. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2365. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2366. (start) + (len) - 1); \
  2367. start += len
  2368. #define ulptx_region(adap, name, start, len) \
  2369. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2370. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2371. (start) + (len) - 1)
  2372. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2373. {
  2374. unsigned int m = p->chan_rx_size;
  2375. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2376. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2377. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2378. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2379. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2380. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2381. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2382. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2383. }
  2384. void t3_config_trace_filter(struct adapter *adapter,
  2385. const struct trace_params *tp, int filter_index,
  2386. int invert, int enable)
  2387. {
  2388. u32 addr, key[4], mask[4];
  2389. key[0] = tp->sport | (tp->sip << 16);
  2390. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2391. key[2] = tp->dip;
  2392. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2393. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2394. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2395. mask[2] = tp->dip_mask;
  2396. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2397. if (invert)
  2398. key[3] |= (1 << 29);
  2399. if (enable)
  2400. key[3] |= (1 << 28);
  2401. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2402. tp_wr_indirect(adapter, addr++, key[0]);
  2403. tp_wr_indirect(adapter, addr++, mask[0]);
  2404. tp_wr_indirect(adapter, addr++, key[1]);
  2405. tp_wr_indirect(adapter, addr++, mask[1]);
  2406. tp_wr_indirect(adapter, addr++, key[2]);
  2407. tp_wr_indirect(adapter, addr++, mask[2]);
  2408. tp_wr_indirect(adapter, addr++, key[3]);
  2409. tp_wr_indirect(adapter, addr, mask[3]);
  2410. t3_read_reg(adapter, A_TP_PIO_DATA);
  2411. }
  2412. /**
  2413. * t3_config_sched - configure a HW traffic scheduler
  2414. * @adap: the adapter
  2415. * @kbps: target rate in Kbps
  2416. * @sched: the scheduler index
  2417. *
  2418. * Configure a HW scheduler for the target rate
  2419. */
  2420. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2421. {
  2422. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2423. unsigned int clk = adap->params.vpd.cclk * 1000;
  2424. unsigned int selected_cpt = 0, selected_bpt = 0;
  2425. if (kbps > 0) {
  2426. kbps *= 125; /* -> bytes */
  2427. for (cpt = 1; cpt <= 255; cpt++) {
  2428. tps = clk / cpt;
  2429. bpt = (kbps + tps / 2) / tps;
  2430. if (bpt > 0 && bpt <= 255) {
  2431. v = bpt * tps;
  2432. delta = v >= kbps ? v - kbps : kbps - v;
  2433. if (delta <= mindelta) {
  2434. mindelta = delta;
  2435. selected_cpt = cpt;
  2436. selected_bpt = bpt;
  2437. }
  2438. } else if (selected_cpt)
  2439. break;
  2440. }
  2441. if (!selected_cpt)
  2442. return -EINVAL;
  2443. }
  2444. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2445. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2446. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2447. if (sched & 1)
  2448. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2449. else
  2450. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2451. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2452. return 0;
  2453. }
  2454. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2455. {
  2456. int busy = 0;
  2457. tp_config(adap, p);
  2458. t3_set_vlan_accel(adap, 3, 0);
  2459. if (is_offload(adap)) {
  2460. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2461. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2462. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2463. 0, 1000, 5);
  2464. if (busy)
  2465. CH_ERR(adap, "TP initialization timed out\n");
  2466. }
  2467. if (!busy)
  2468. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2469. return busy;
  2470. }
  2471. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2472. {
  2473. if (port_mask & ~((1 << adap->params.nports) - 1))
  2474. return -EINVAL;
  2475. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2476. port_mask << S_PORT0ACTIVE);
  2477. return 0;
  2478. }
  2479. /*
  2480. * Perform the bits of HW initialization that are dependent on the number
  2481. * of available ports.
  2482. */
  2483. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2484. {
  2485. int i;
  2486. if (nports == 1) {
  2487. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2488. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2489. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2490. F_PORT0ACTIVE | F_ENFORCEPKT);
  2491. t3_write_reg(adap, A_PM1_TX_CFG, 0xc000c000);
  2492. } else {
  2493. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2494. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2495. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2496. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2497. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2498. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2499. F_ENFORCEPKT);
  2500. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2501. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2502. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2503. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2504. for (i = 0; i < 16; i++)
  2505. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2506. (i << 16) | 0x1010);
  2507. }
  2508. }
  2509. static int calibrate_xgm(struct adapter *adapter)
  2510. {
  2511. if (uses_xaui(adapter)) {
  2512. unsigned int v, i;
  2513. for (i = 0; i < 5; ++i) {
  2514. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2515. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2516. msleep(1);
  2517. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2518. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2519. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2520. V_XAUIIMP(G_CALIMP(v) >> 2));
  2521. return 0;
  2522. }
  2523. }
  2524. CH_ERR(adapter, "MAC calibration failed\n");
  2525. return -1;
  2526. } else {
  2527. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2528. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2529. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2530. F_XGM_IMPSETUPDATE);
  2531. }
  2532. return 0;
  2533. }
  2534. static void calibrate_xgm_t3b(struct adapter *adapter)
  2535. {
  2536. if (!uses_xaui(adapter)) {
  2537. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2538. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2539. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2540. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2541. F_XGM_IMPSETUPDATE);
  2542. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2543. 0);
  2544. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2545. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2546. }
  2547. }
  2548. struct mc7_timing_params {
  2549. unsigned char ActToPreDly;
  2550. unsigned char ActToRdWrDly;
  2551. unsigned char PreCyc;
  2552. unsigned char RefCyc[5];
  2553. unsigned char BkCyc;
  2554. unsigned char WrToRdDly;
  2555. unsigned char RdToWrDly;
  2556. };
  2557. /*
  2558. * Write a value to a register and check that the write completed. These
  2559. * writes normally complete in a cycle or two, so one read should suffice.
  2560. * The very first read exists to flush the posted write to the device.
  2561. */
  2562. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2563. {
  2564. t3_write_reg(adapter, addr, val);
  2565. t3_read_reg(adapter, addr); /* flush */
  2566. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2567. return 0;
  2568. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2569. return -EIO;
  2570. }
  2571. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2572. {
  2573. static const unsigned int mc7_mode[] = {
  2574. 0x632, 0x642, 0x652, 0x432, 0x442
  2575. };
  2576. static const struct mc7_timing_params mc7_timings[] = {
  2577. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2578. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2579. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2580. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2581. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2582. };
  2583. u32 val;
  2584. unsigned int width, density, slow, attempts;
  2585. struct adapter *adapter = mc7->adapter;
  2586. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2587. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2588. slow = val & F_SLOW;
  2589. width = G_WIDTH(val);
  2590. density = G_DEN(val);
  2591. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2592. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2593. msleep(1);
  2594. if (!slow) {
  2595. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2596. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2597. msleep(1);
  2598. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2599. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2600. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2601. mc7->name);
  2602. goto out_fail;
  2603. }
  2604. }
  2605. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2606. V_ACTTOPREDLY(p->ActToPreDly) |
  2607. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2608. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2609. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2610. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2611. val | F_CLKEN | F_TERM150);
  2612. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2613. if (!slow)
  2614. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2615. F_DLLENB);
  2616. udelay(1);
  2617. val = slow ? 3 : 6;
  2618. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2619. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2620. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2621. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2622. goto out_fail;
  2623. if (!slow) {
  2624. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2625. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2626. udelay(5);
  2627. }
  2628. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2629. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2630. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2631. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2632. mc7_mode[mem_type]) ||
  2633. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2634. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2635. goto out_fail;
  2636. /* clock value is in KHz */
  2637. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2638. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2639. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2640. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2641. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2642. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2643. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2644. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2645. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2646. (mc7->size << width) - 1);
  2647. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2648. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2649. attempts = 50;
  2650. do {
  2651. msleep(250);
  2652. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2653. } while ((val & F_BUSY) && --attempts);
  2654. if (val & F_BUSY) {
  2655. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2656. goto out_fail;
  2657. }
  2658. /* Enable normal memory accesses. */
  2659. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2660. return 0;
  2661. out_fail:
  2662. return -1;
  2663. }
  2664. static void config_pcie(struct adapter *adap)
  2665. {
  2666. static const u16 ack_lat[4][6] = {
  2667. {237, 416, 559, 1071, 2095, 4143},
  2668. {128, 217, 289, 545, 1057, 2081},
  2669. {73, 118, 154, 282, 538, 1050},
  2670. {67, 107, 86, 150, 278, 534}
  2671. };
  2672. static const u16 rpl_tmr[4][6] = {
  2673. {711, 1248, 1677, 3213, 6285, 12429},
  2674. {384, 651, 867, 1635, 3171, 6243},
  2675. {219, 354, 462, 846, 1614, 3150},
  2676. {201, 321, 258, 450, 834, 1602}
  2677. };
  2678. u16 val;
  2679. unsigned int log2_width, pldsize;
  2680. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2681. pci_read_config_word(adap->pdev,
  2682. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2683. &val);
  2684. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2685. pci_read_config_word(adap->pdev,
  2686. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2687. &val);
  2688. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2689. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2690. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2691. log2_width = fls(adap->params.pci.width) - 1;
  2692. acklat = ack_lat[log2_width][pldsize];
  2693. if (val & 1) /* check LOsEnable */
  2694. acklat += fst_trn_tx * 4;
  2695. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2696. if (adap->params.rev == 0)
  2697. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2698. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2699. V_T3A_ACKLAT(acklat));
  2700. else
  2701. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2702. V_ACKLAT(acklat));
  2703. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2704. V_REPLAYLMT(rpllmt));
  2705. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2706. t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
  2707. }
  2708. /*
  2709. * Initialize and configure T3 HW modules. This performs the
  2710. * initialization steps that need to be done once after a card is reset.
  2711. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2712. *
  2713. * fw_params are passed to FW and their value is platform dependent. Only the
  2714. * top 8 bits are available for use, the rest must be 0.
  2715. */
  2716. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2717. {
  2718. int err = -EIO, attempts = 100;
  2719. const struct vpd_params *vpd = &adapter->params.vpd;
  2720. if (adapter->params.rev > 0)
  2721. calibrate_xgm_t3b(adapter);
  2722. else if (calibrate_xgm(adapter))
  2723. goto out_err;
  2724. if (vpd->mclk) {
  2725. partition_mem(adapter, &adapter->params.tp);
  2726. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2727. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2728. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2729. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2730. adapter->params.mc5.nfilters,
  2731. adapter->params.mc5.nroutes))
  2732. goto out_err;
  2733. }
  2734. if (tp_init(adapter, &adapter->params.tp))
  2735. goto out_err;
  2736. t3_tp_set_coalescing_size(adapter,
  2737. min(adapter->params.sge.max_pkt_size,
  2738. MAX_RX_COALESCING_LEN), 1);
  2739. t3_tp_set_max_rxsize(adapter,
  2740. min(adapter->params.sge.max_pkt_size, 16384U));
  2741. ulp_config(adapter, &adapter->params.tp);
  2742. if (is_pcie(adapter))
  2743. config_pcie(adapter);
  2744. else
  2745. t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
  2746. t3_write_reg(adapter, A_PM1_RX_CFG, 0xf000f000);
  2747. init_hw_for_avail_ports(adapter, adapter->params.nports);
  2748. t3_sge_init(adapter, &adapter->params.sge);
  2749. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  2750. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  2751. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  2752. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  2753. do { /* wait for uP to initialize */
  2754. msleep(20);
  2755. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  2756. if (!attempts)
  2757. goto out_err;
  2758. err = 0;
  2759. out_err:
  2760. return err;
  2761. }
  2762. /**
  2763. * get_pci_mode - determine a card's PCI mode
  2764. * @adapter: the adapter
  2765. * @p: where to store the PCI settings
  2766. *
  2767. * Determines a card's PCI mode and associated parameters, such as speed
  2768. * and width.
  2769. */
  2770. static void __devinit get_pci_mode(struct adapter *adapter,
  2771. struct pci_params *p)
  2772. {
  2773. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  2774. u32 pci_mode, pcie_cap;
  2775. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  2776. if (pcie_cap) {
  2777. u16 val;
  2778. p->variant = PCI_VARIANT_PCIE;
  2779. p->pcie_cap_addr = pcie_cap;
  2780. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2781. &val);
  2782. p->width = (val >> 4) & 0x3f;
  2783. return;
  2784. }
  2785. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  2786. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  2787. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  2788. pci_mode = G_PCIXINITPAT(pci_mode);
  2789. if (pci_mode == 0)
  2790. p->variant = PCI_VARIANT_PCI;
  2791. else if (pci_mode < 4)
  2792. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  2793. else if (pci_mode < 8)
  2794. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  2795. else
  2796. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  2797. }
  2798. /**
  2799. * init_link_config - initialize a link's SW state
  2800. * @lc: structure holding the link state
  2801. * @ai: information about the current card
  2802. *
  2803. * Initializes the SW state maintained for each link, including the link's
  2804. * capabilities and default speed/duplex/flow-control/autonegotiation
  2805. * settings.
  2806. */
  2807. static void __devinit init_link_config(struct link_config *lc,
  2808. unsigned int caps)
  2809. {
  2810. lc->supported = caps;
  2811. lc->requested_speed = lc->speed = SPEED_INVALID;
  2812. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  2813. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2814. if (lc->supported & SUPPORTED_Autoneg) {
  2815. lc->advertising = lc->supported;
  2816. lc->autoneg = AUTONEG_ENABLE;
  2817. lc->requested_fc |= PAUSE_AUTONEG;
  2818. } else {
  2819. lc->advertising = 0;
  2820. lc->autoneg = AUTONEG_DISABLE;
  2821. }
  2822. }
  2823. /**
  2824. * mc7_calc_size - calculate MC7 memory size
  2825. * @cfg: the MC7 configuration
  2826. *
  2827. * Calculates the size of an MC7 memory in bytes from the value of its
  2828. * configuration register.
  2829. */
  2830. static unsigned int __devinit mc7_calc_size(u32 cfg)
  2831. {
  2832. unsigned int width = G_WIDTH(cfg);
  2833. unsigned int banks = !!(cfg & F_BKS) + 1;
  2834. unsigned int org = !!(cfg & F_ORG) + 1;
  2835. unsigned int density = G_DEN(cfg);
  2836. unsigned int MBs = ((256 << density) * banks) / (org << width);
  2837. return MBs << 20;
  2838. }
  2839. static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  2840. unsigned int base_addr, const char *name)
  2841. {
  2842. u32 cfg;
  2843. mc7->adapter = adapter;
  2844. mc7->name = name;
  2845. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  2846. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2847. mc7->size = mc7_calc_size(cfg);
  2848. mc7->width = G_WIDTH(cfg);
  2849. }
  2850. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  2851. {
  2852. mac->adapter = adapter;
  2853. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  2854. mac->nucast = 1;
  2855. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  2856. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  2857. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  2858. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  2859. F_ENRGMII, 0);
  2860. }
  2861. }
  2862. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  2863. {
  2864. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  2865. mi1_init(adapter, ai);
  2866. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  2867. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  2868. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  2869. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  2870. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  2871. val |= F_ENRGMII;
  2872. /* Enable MAC clocks so we can access the registers */
  2873. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  2874. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2875. val |= F_CLKDIVRESET_;
  2876. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  2877. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2878. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  2879. t3_read_reg(adapter, A_XGM_PORT_CFG);
  2880. }
  2881. /*
  2882. * Reset the adapter. PCIe cards lose their config space during reset, PCI-X
  2883. * ones don't.
  2884. */
  2885. int t3_reset_adapter(struct adapter *adapter)
  2886. {
  2887. int i;
  2888. uint16_t devid = 0;
  2889. if (is_pcie(adapter))
  2890. pci_save_state(adapter->pdev);
  2891. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  2892. /*
  2893. * Delay. Give Some time to device to reset fully.
  2894. * XXX The delay time should be modified.
  2895. */
  2896. for (i = 0; i < 10; i++) {
  2897. msleep(50);
  2898. pci_read_config_word(adapter->pdev, 0x00, &devid);
  2899. if (devid == 0x1425)
  2900. break;
  2901. }
  2902. if (devid != 0x1425)
  2903. return -1;
  2904. if (is_pcie(adapter))
  2905. pci_restore_state(adapter->pdev);
  2906. return 0;
  2907. }
  2908. /*
  2909. * Initialize adapter SW state for the various HW modules, set initial values
  2910. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  2911. * interface.
  2912. */
  2913. int __devinit t3_prep_adapter(struct adapter *adapter,
  2914. const struct adapter_info *ai, int reset)
  2915. {
  2916. int ret;
  2917. unsigned int i, j = 0;
  2918. get_pci_mode(adapter, &adapter->params.pci);
  2919. adapter->params.info = ai;
  2920. adapter->params.nports = ai->nports;
  2921. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  2922. adapter->params.linkpoll_period = 0;
  2923. adapter->params.stats_update_period = is_10G(adapter) ?
  2924. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  2925. adapter->params.pci.vpd_cap_addr =
  2926. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  2927. ret = get_vpd_params(adapter, &adapter->params.vpd);
  2928. if (ret < 0)
  2929. return ret;
  2930. if (reset && t3_reset_adapter(adapter))
  2931. return -1;
  2932. t3_sge_prep(adapter, &adapter->params.sge);
  2933. if (adapter->params.vpd.mclk) {
  2934. struct tp_params *p = &adapter->params.tp;
  2935. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  2936. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  2937. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  2938. p->nchan = ai->nports;
  2939. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  2940. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  2941. p->cm_size = t3_mc7_size(&adapter->cm);
  2942. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  2943. p->chan_tx_size = p->pmtx_size / p->nchan;
  2944. p->rx_pg_size = 64 * 1024;
  2945. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  2946. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  2947. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  2948. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  2949. adapter->params.rev > 0 ? 12 : 6;
  2950. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  2951. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  2952. DEFAULT_NFILTERS : 0;
  2953. adapter->params.mc5.nroutes = 0;
  2954. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  2955. init_mtus(adapter->params.mtus);
  2956. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  2957. }
  2958. early_hw_init(adapter, ai);
  2959. for_each_port(adapter, i) {
  2960. u8 hw_addr[6];
  2961. struct port_info *p = adap2pinfo(adapter, i);
  2962. while (!adapter->params.vpd.port_type[j])
  2963. ++j;
  2964. p->port_type = &port_types[adapter->params.vpd.port_type[j]];
  2965. p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  2966. ai->mdio_ops);
  2967. mac_prep(&p->mac, adapter, j);
  2968. ++j;
  2969. /*
  2970. * The VPD EEPROM stores the base Ethernet address for the
  2971. * card. A port's address is derived from the base by adding
  2972. * the port's index to the base's low octet.
  2973. */
  2974. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  2975. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  2976. memcpy(adapter->port[i]->dev_addr, hw_addr,
  2977. ETH_ALEN);
  2978. memcpy(adapter->port[i]->perm_addr, hw_addr,
  2979. ETH_ALEN);
  2980. init_link_config(&p->link_config, p->port_type->caps);
  2981. p->phy.ops->power_down(&p->phy, 1);
  2982. if (!(p->port_type->caps & SUPPORTED_IRQ))
  2983. adapter->params.linkpoll_period = 10;
  2984. }
  2985. return 0;
  2986. }
  2987. void t3_led_ready(struct adapter *adapter)
  2988. {
  2989. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  2990. F_GPIO0_OUT_VAL);
  2991. }