rt2800pci.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533
  1. /*
  2. Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2800pci
  19. Abstract: rt2800pci device specific routines.
  20. Supported chipsets: RT2800E & RT2800ED.
  21. */
  22. #include <linux/crc-ccitt.h>
  23. #include <linux/delay.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/pci.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/eeprom_93cx6.h>
  31. #include "rt2x00.h"
  32. #include "rt2x00pci.h"
  33. #include "rt2x00soc.h"
  34. #include "rt2800lib.h"
  35. #include "rt2800.h"
  36. #include "rt2800pci.h"
  37. #ifdef CONFIG_RT2800PCI_PCI_MODULE
  38. #define CONFIG_RT2800PCI_PCI
  39. #endif
  40. #ifdef CONFIG_RT2800PCI_WISOC_MODULE
  41. #define CONFIG_RT2800PCI_WISOC
  42. #endif
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 1;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. for (i = 0; i < 200; i++) {
  54. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  55. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  56. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  57. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  58. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  59. break;
  60. udelay(REGISTER_BUSY_DELAY);
  61. }
  62. if (i == 200)
  63. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  64. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  65. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  66. }
  67. #ifdef CONFIG_RT2800PCI_WISOC
  68. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  69. {
  70. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  71. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  72. }
  73. #else
  74. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  75. {
  76. }
  77. #endif /* CONFIG_RT2800PCI_WISOC */
  78. #ifdef CONFIG_RT2800PCI_PCI
  79. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  80. {
  81. struct rt2x00_dev *rt2x00dev = eeprom->data;
  82. u32 reg;
  83. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  84. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  85. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  86. eeprom->reg_data_clock =
  87. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  88. eeprom->reg_chip_select =
  89. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  90. }
  91. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  92. {
  93. struct rt2x00_dev *rt2x00dev = eeprom->data;
  94. u32 reg = 0;
  95. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  96. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  97. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  98. !!eeprom->reg_data_clock);
  99. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  100. !!eeprom->reg_chip_select);
  101. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  102. }
  103. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  104. {
  105. struct eeprom_93cx6 eeprom;
  106. u32 reg;
  107. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  108. eeprom.data = rt2x00dev;
  109. eeprom.register_read = rt2800pci_eepromregister_read;
  110. eeprom.register_write = rt2800pci_eepromregister_write;
  111. eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
  112. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  113. eeprom.reg_data_in = 0;
  114. eeprom.reg_data_out = 0;
  115. eeprom.reg_data_clock = 0;
  116. eeprom.reg_chip_select = 0;
  117. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  118. EEPROM_SIZE / sizeof(u16));
  119. }
  120. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  121. {
  122. u32 reg;
  123. rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
  124. return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
  125. }
  126. static void rt2800pci_efuse_read(struct rt2x00_dev *rt2x00dev,
  127. unsigned int i)
  128. {
  129. u32 reg;
  130. rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
  131. rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
  132. rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
  133. rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
  134. rt2800_register_write(rt2x00dev, EFUSE_CTRL, reg);
  135. /* Wait until the EEPROM has been loaded */
  136. rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
  137. /* Apparently the data is read from end to start */
  138. rt2800_register_read(rt2x00dev, EFUSE_DATA3,
  139. (u32 *)&rt2x00dev->eeprom[i]);
  140. rt2800_register_read(rt2x00dev, EFUSE_DATA2,
  141. (u32 *)&rt2x00dev->eeprom[i + 2]);
  142. rt2800_register_read(rt2x00dev, EFUSE_DATA1,
  143. (u32 *)&rt2x00dev->eeprom[i + 4]);
  144. rt2800_register_read(rt2x00dev, EFUSE_DATA0,
  145. (u32 *)&rt2x00dev->eeprom[i + 6]);
  146. }
  147. static void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  148. {
  149. unsigned int i;
  150. for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
  151. rt2800pci_efuse_read(rt2x00dev, i);
  152. }
  153. #else
  154. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  155. {
  156. }
  157. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  158. {
  159. return 0;
  160. }
  161. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  162. {
  163. }
  164. #endif /* CONFIG_RT2800PCI_PCI */
  165. /*
  166. * Firmware functions
  167. */
  168. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  169. {
  170. return FIRMWARE_RT2860;
  171. }
  172. static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
  173. const u8 *data, const size_t len)
  174. {
  175. u16 fw_crc;
  176. u16 crc;
  177. /*
  178. * Only support 8kb firmware files.
  179. */
  180. if (len != 8192)
  181. return FW_BAD_LENGTH;
  182. /*
  183. * The last 2 bytes in the firmware array are the crc checksum itself,
  184. * this means that we should never pass those 2 bytes to the crc
  185. * algorithm.
  186. */
  187. fw_crc = (data[len - 2] << 8 | data[len - 1]);
  188. /*
  189. * Use the crc ccitt algorithm.
  190. * This will return the same value as the legacy driver which
  191. * used bit ordering reversion on the both the firmware bytes
  192. * before input input as well as on the final output.
  193. * Obviously using crc ccitt directly is much more efficient.
  194. */
  195. crc = crc_ccitt(~0, data, len - 2);
  196. /*
  197. * There is a small difference between the crc-itu-t + bitrev and
  198. * the crc-ccitt crc calculation. In the latter method the 2 bytes
  199. * will be swapped, use swab16 to convert the crc to the correct
  200. * value.
  201. */
  202. crc = swab16(crc);
  203. return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
  204. }
  205. static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
  206. const u8 *data, const size_t len)
  207. {
  208. unsigned int i;
  209. u32 reg;
  210. /*
  211. * Wait for stable hardware.
  212. */
  213. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  214. rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
  215. if (reg && reg != ~0)
  216. break;
  217. msleep(1);
  218. }
  219. if (i == REGISTER_BUSY_COUNT) {
  220. ERROR(rt2x00dev, "Unstable hardware.\n");
  221. return -EBUSY;
  222. }
  223. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
  224. rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
  225. /*
  226. * Disable DMA, will be reenabled later when enabling
  227. * the radio.
  228. */
  229. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  230. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  231. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  232. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  233. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  234. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  235. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  236. /*
  237. * enable Host program ram write selection
  238. */
  239. reg = 0;
  240. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  241. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  242. /*
  243. * Write firmware to device.
  244. */
  245. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  246. data, len);
  247. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  248. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  249. /*
  250. * Wait for device to stabilize.
  251. */
  252. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  253. rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
  254. if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
  255. break;
  256. msleep(1);
  257. }
  258. if (i == REGISTER_BUSY_COUNT) {
  259. ERROR(rt2x00dev, "PBF system register not ready.\n");
  260. return -EBUSY;
  261. }
  262. /*
  263. * Disable interrupts
  264. */
  265. rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
  266. /*
  267. * Initialize BBP R/W access agent
  268. */
  269. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  270. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  271. return 0;
  272. }
  273. /*
  274. * Initialization functions.
  275. */
  276. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  277. {
  278. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  279. u32 word;
  280. if (entry->queue->qid == QID_RX) {
  281. rt2x00_desc_read(entry_priv->desc, 1, &word);
  282. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  283. } else {
  284. rt2x00_desc_read(entry_priv->desc, 1, &word);
  285. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  286. }
  287. }
  288. static void rt2800pci_clear_entry(struct queue_entry *entry)
  289. {
  290. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  291. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  292. u32 word;
  293. if (entry->queue->qid == QID_RX) {
  294. rt2x00_desc_read(entry_priv->desc, 0, &word);
  295. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  296. rt2x00_desc_write(entry_priv->desc, 0, word);
  297. rt2x00_desc_read(entry_priv->desc, 1, &word);
  298. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  299. rt2x00_desc_write(entry_priv->desc, 1, word);
  300. } else {
  301. rt2x00_desc_read(entry_priv->desc, 1, &word);
  302. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  303. rt2x00_desc_write(entry_priv->desc, 1, word);
  304. }
  305. }
  306. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  307. {
  308. struct queue_entry_priv_pci *entry_priv;
  309. u32 reg;
  310. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  311. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  312. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  313. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  314. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  315. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  316. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  317. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  318. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  319. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  320. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  321. /*
  322. * Initialize registers.
  323. */
  324. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  325. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  326. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  327. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  328. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  329. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  330. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  331. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  332. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  333. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  334. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  335. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  336. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  337. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  338. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  339. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  340. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  341. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  342. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  343. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  344. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  345. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  346. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  347. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  348. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  349. /*
  350. * Enable global DMA configuration
  351. */
  352. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  353. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  354. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  355. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  356. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  357. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  358. return 0;
  359. }
  360. /*
  361. * Device state switch handlers.
  362. */
  363. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  364. enum dev_state state)
  365. {
  366. u32 reg;
  367. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  368. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  369. (state == STATE_RADIO_RX_ON) ||
  370. (state == STATE_RADIO_RX_ON_LINK));
  371. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  372. }
  373. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  374. enum dev_state state)
  375. {
  376. int mask = (state == STATE_RADIO_IRQ_ON);
  377. u32 reg;
  378. /*
  379. * When interrupts are being enabled, the interrupt registers
  380. * should clear the register to assure a clean state.
  381. */
  382. if (state == STATE_RADIO_IRQ_ON) {
  383. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  384. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  385. }
  386. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  387. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
  388. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
  389. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  390. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
  391. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
  392. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
  393. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
  394. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
  395. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
  396. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
  397. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
  398. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  399. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  400. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  401. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  402. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
  403. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
  404. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
  405. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  406. }
  407. static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
  408. {
  409. unsigned int i;
  410. u32 reg;
  411. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  412. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  413. if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
  414. !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
  415. return 0;
  416. msleep(1);
  417. }
  418. ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
  419. return -EACCES;
  420. }
  421. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  422. {
  423. u32 reg;
  424. u16 word;
  425. /*
  426. * Initialize all registers.
  427. */
  428. if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  429. rt2800pci_init_queues(rt2x00dev) ||
  430. rt2800_init_registers(rt2x00dev) ||
  431. rt2800pci_wait_wpdma_ready(rt2x00dev) ||
  432. rt2800_init_bbp(rt2x00dev) ||
  433. rt2800_init_rfcsr(rt2x00dev)))
  434. return -EIO;
  435. /*
  436. * Send signal to firmware during boot time.
  437. */
  438. rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
  439. /*
  440. * Enable RX.
  441. */
  442. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  443. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  444. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  445. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  446. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  447. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
  448. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
  449. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
  450. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  451. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  452. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  453. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
  454. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  455. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  456. /*
  457. * Initialize LED control
  458. */
  459. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
  460. rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
  461. word & 0xff, (word >> 8) & 0xff);
  462. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
  463. rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
  464. word & 0xff, (word >> 8) & 0xff);
  465. rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
  466. rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
  467. word & 0xff, (word >> 8) & 0xff);
  468. return 0;
  469. }
  470. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  471. {
  472. u32 reg;
  473. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  474. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  475. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
  476. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  477. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
  478. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  479. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  480. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
  481. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  482. rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
  483. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  484. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  485. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  486. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  487. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  488. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  489. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  490. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  491. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  492. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  493. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  494. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  495. /* Wait for DMA, ignore error */
  496. rt2800pci_wait_wpdma_ready(rt2x00dev);
  497. }
  498. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  499. enum dev_state state)
  500. {
  501. /*
  502. * Always put the device to sleep (even when we intend to wakeup!)
  503. * if the device is booting and wasn't asleep it will return
  504. * failure when attempting to wakeup.
  505. */
  506. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  507. if (state == STATE_AWAKE) {
  508. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  509. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  510. }
  511. return 0;
  512. }
  513. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  514. enum dev_state state)
  515. {
  516. int retval = 0;
  517. switch (state) {
  518. case STATE_RADIO_ON:
  519. /*
  520. * Before the radio can be enabled, the device first has
  521. * to be woken up. After that it needs a bit of time
  522. * to be fully awake and then the radio can be enabled.
  523. */
  524. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  525. msleep(1);
  526. retval = rt2800pci_enable_radio(rt2x00dev);
  527. break;
  528. case STATE_RADIO_OFF:
  529. /*
  530. * After the radio has been disabled, the device should
  531. * be put to sleep for powersaving.
  532. */
  533. rt2800pci_disable_radio(rt2x00dev);
  534. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  535. break;
  536. case STATE_RADIO_RX_ON:
  537. case STATE_RADIO_RX_ON_LINK:
  538. case STATE_RADIO_RX_OFF:
  539. case STATE_RADIO_RX_OFF_LINK:
  540. rt2800pci_toggle_rx(rt2x00dev, state);
  541. break;
  542. case STATE_RADIO_IRQ_ON:
  543. case STATE_RADIO_IRQ_OFF:
  544. rt2800pci_toggle_irq(rt2x00dev, state);
  545. break;
  546. case STATE_DEEP_SLEEP:
  547. case STATE_SLEEP:
  548. case STATE_STANDBY:
  549. case STATE_AWAKE:
  550. retval = rt2800pci_set_state(rt2x00dev, state);
  551. break;
  552. default:
  553. retval = -ENOTSUPP;
  554. break;
  555. }
  556. if (unlikely(retval))
  557. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  558. state, retval);
  559. return retval;
  560. }
  561. /*
  562. * TX descriptor initialization
  563. */
  564. static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  565. struct sk_buff *skb,
  566. struct txentry_desc *txdesc)
  567. {
  568. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  569. __le32 *txd = skbdesc->desc;
  570. __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom);
  571. u32 word;
  572. /*
  573. * Initialize TX Info descriptor
  574. */
  575. rt2x00_desc_read(txwi, 0, &word);
  576. rt2x00_set_field32(&word, TXWI_W0_FRAG,
  577. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  578. rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
  579. rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
  580. rt2x00_set_field32(&word, TXWI_W0_TS,
  581. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  582. rt2x00_set_field32(&word, TXWI_W0_AMPDU,
  583. test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
  584. rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
  585. rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
  586. rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
  587. rt2x00_set_field32(&word, TXWI_W0_BW,
  588. test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
  589. rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
  590. test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
  591. rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
  592. rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
  593. rt2x00_desc_write(txwi, 0, word);
  594. rt2x00_desc_read(txwi, 1, &word);
  595. rt2x00_set_field32(&word, TXWI_W1_ACK,
  596. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  597. rt2x00_set_field32(&word, TXWI_W1_NSEQ,
  598. test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
  599. rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
  600. rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
  601. test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
  602. txdesc->key_idx : 0xff);
  603. rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
  604. skb->len - txdesc->l2pad);
  605. rt2x00_set_field32(&word, TXWI_W1_PACKETID,
  606. skbdesc->entry->queue->qid + 1);
  607. rt2x00_desc_write(txwi, 1, word);
  608. /*
  609. * Always write 0 to IV/EIV fields, hardware will insert the IV
  610. * from the IVEIV register when TXD_W3_WIV is set to 0.
  611. * When TXD_W3_WIV is set to 1 it will use the IV data
  612. * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
  613. * crypto entry in the registers should be used to encrypt the frame.
  614. */
  615. _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
  616. _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
  617. /*
  618. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  619. * must contains a TXWI structure + 802.11 header + padding + 802.11
  620. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  621. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  622. * data. It means that LAST_SEC0 is always 0.
  623. */
  624. /*
  625. * Initialize TX descriptor
  626. */
  627. rt2x00_desc_read(txd, 0, &word);
  628. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  629. rt2x00_desc_write(txd, 0, word);
  630. rt2x00_desc_read(txd, 1, &word);
  631. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
  632. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  633. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  634. rt2x00_set_field32(&word, TXD_W1_BURST,
  635. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  636. rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
  637. rt2x00dev->hw->extra_tx_headroom);
  638. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  639. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  640. rt2x00_desc_write(txd, 1, word);
  641. rt2x00_desc_read(txd, 2, &word);
  642. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  643. skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom);
  644. rt2x00_desc_write(txd, 2, word);
  645. rt2x00_desc_read(txd, 3, &word);
  646. rt2x00_set_field32(&word, TXD_W3_WIV,
  647. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  648. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  649. rt2x00_desc_write(txd, 3, word);
  650. }
  651. /*
  652. * TX data initialization
  653. */
  654. static void rt2800pci_write_beacon(struct queue_entry *entry)
  655. {
  656. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  657. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  658. unsigned int beacon_base;
  659. u32 reg;
  660. /*
  661. * Disable beaconing while we are reloading the beacon data,
  662. * otherwise we might be sending out invalid data.
  663. */
  664. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  665. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  666. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  667. /*
  668. * Write entire beacon with descriptor to register.
  669. */
  670. beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
  671. rt2800_register_multiwrite(rt2x00dev,
  672. beacon_base,
  673. skbdesc->desc, skbdesc->desc_len);
  674. rt2800_register_multiwrite(rt2x00dev,
  675. beacon_base + skbdesc->desc_len,
  676. entry->skb->data, entry->skb->len);
  677. /*
  678. * Clean up beacon skb.
  679. */
  680. dev_kfree_skb_any(entry->skb);
  681. entry->skb = NULL;
  682. }
  683. static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  684. const enum data_queue_qid queue_idx)
  685. {
  686. struct data_queue *queue;
  687. unsigned int idx, qidx = 0;
  688. u32 reg;
  689. if (queue_idx == QID_BEACON) {
  690. rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  691. if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
  692. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  693. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  694. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  695. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  696. }
  697. return;
  698. }
  699. if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
  700. return;
  701. queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  702. idx = queue->index[Q_INDEX];
  703. if (queue_idx == QID_MGMT)
  704. qidx = 5;
  705. else
  706. qidx = queue_idx;
  707. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
  708. }
  709. static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
  710. const enum data_queue_qid qid)
  711. {
  712. u32 reg;
  713. if (qid == QID_BEACON) {
  714. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  715. return;
  716. }
  717. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  718. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
  719. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
  720. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
  721. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
  722. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  723. }
  724. /*
  725. * RX control handlers
  726. */
  727. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  728. struct rxdone_entry_desc *rxdesc)
  729. {
  730. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  731. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  732. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  733. __le32 *rxd = entry_priv->desc;
  734. __le32 *rxwi = (__le32 *)entry->skb->data;
  735. u32 rxd3;
  736. u32 rxwi0;
  737. u32 rxwi1;
  738. u32 rxwi2;
  739. u32 rxwi3;
  740. rt2x00_desc_read(rxd, 3, &rxd3);
  741. rt2x00_desc_read(rxwi, 0, &rxwi0);
  742. rt2x00_desc_read(rxwi, 1, &rxwi1);
  743. rt2x00_desc_read(rxwi, 2, &rxwi2);
  744. rt2x00_desc_read(rxwi, 3, &rxwi3);
  745. if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
  746. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  747. if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
  748. /*
  749. * Unfortunately we don't know the cipher type used during
  750. * decryption. This prevents us from correct providing
  751. * correct statistics through debugfs.
  752. */
  753. rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
  754. rxdesc->cipher_status =
  755. rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
  756. }
  757. if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
  758. /*
  759. * Hardware has stripped IV/EIV data from 802.11 frame during
  760. * decryption. Unfortunately the descriptor doesn't contain
  761. * any fields with the EIV/IV data either, so they can't
  762. * be restored by rt2x00lib.
  763. */
  764. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  765. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  766. rxdesc->flags |= RX_FLAG_DECRYPTED;
  767. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  768. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  769. }
  770. if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
  771. rxdesc->dev_flags |= RXDONE_MY_BSS;
  772. if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) {
  773. rxdesc->dev_flags |= RXDONE_L2PAD;
  774. skbdesc->flags |= SKBDESC_L2_PADDED;
  775. }
  776. if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
  777. rxdesc->flags |= RX_FLAG_SHORT_GI;
  778. if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
  779. rxdesc->flags |= RX_FLAG_40MHZ;
  780. /*
  781. * Detect RX rate, always use MCS as signal type.
  782. */
  783. rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
  784. rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
  785. rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);
  786. /*
  787. * Mask of 0x8 bit to remove the short preamble flag.
  788. */
  789. if (rxdesc->rate_mode == RATE_MODE_CCK)
  790. rxdesc->signal &= ~0x8;
  791. rxdesc->rssi =
  792. (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
  793. rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;
  794. rxdesc->noise =
  795. (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
  796. rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;
  797. rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
  798. /*
  799. * Set RX IDX in register to inform hardware that we have handled
  800. * this entry and it is available for reuse again.
  801. */
  802. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  803. /*
  804. * Remove TXWI descriptor from start of buffer.
  805. */
  806. skb_pull(entry->skb, RXWI_DESC_SIZE);
  807. skb_trim(entry->skb, rxdesc->size);
  808. }
  809. /*
  810. * Interrupt functions.
  811. */
  812. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  813. {
  814. struct data_queue *queue;
  815. struct queue_entry *entry;
  816. struct queue_entry *entry_done;
  817. struct queue_entry_priv_pci *entry_priv;
  818. struct txdone_entry_desc txdesc;
  819. u32 word;
  820. u32 reg;
  821. u32 old_reg;
  822. unsigned int type;
  823. unsigned int index;
  824. u16 mcs, real_mcs;
  825. /*
  826. * During each loop we will compare the freshly read
  827. * TX_STA_FIFO register value with the value read from
  828. * the previous loop. If the 2 values are equal then
  829. * we should stop processing because the chance it
  830. * quite big that the device has been unplugged and
  831. * we risk going into an endless loop.
  832. */
  833. old_reg = 0;
  834. while (1) {
  835. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
  836. if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
  837. break;
  838. if (old_reg == reg)
  839. break;
  840. old_reg = reg;
  841. /*
  842. * Skip this entry when it contains an invalid
  843. * queue identication number.
  844. */
  845. type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1;
  846. if (type >= QID_RX)
  847. continue;
  848. queue = rt2x00queue_get_queue(rt2x00dev, type);
  849. if (unlikely(!queue))
  850. continue;
  851. /*
  852. * Skip this entry when it contains an invalid
  853. * index number.
  854. */
  855. index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1;
  856. if (unlikely(index >= queue->limit))
  857. continue;
  858. entry = &queue->entries[index];
  859. entry_priv = entry->priv_data;
  860. rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word);
  861. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  862. while (entry != entry_done) {
  863. /*
  864. * Catch up.
  865. * Just report any entries we missed as failed.
  866. */
  867. WARNING(rt2x00dev,
  868. "TX status report missed for entry %d\n",
  869. entry_done->entry_idx);
  870. txdesc.flags = 0;
  871. __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
  872. txdesc.retry = 0;
  873. rt2x00lib_txdone(entry_done, &txdesc);
  874. entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  875. }
  876. /*
  877. * Obtain the status about this packet.
  878. */
  879. txdesc.flags = 0;
  880. if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS))
  881. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  882. else
  883. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  884. /*
  885. * Ralink has a retry mechanism using a global fallback
  886. * table. We setup this fallback table to try immediate
  887. * lower rate for all rates. In the TX_STA_FIFO,
  888. * the MCS field contains the MCS used for the successfull
  889. * transmission. If the first transmission succeed,
  890. * we have mcs == tx_mcs. On the second transmission,
  891. * we have mcs = tx_mcs - 1. So the number of
  892. * retry is (tx_mcs - mcs).
  893. */
  894. mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
  895. real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
  896. __set_bit(TXDONE_FALLBACK, &txdesc.flags);
  897. txdesc.retry = mcs - min(mcs, real_mcs);
  898. rt2x00lib_txdone(entry, &txdesc);
  899. }
  900. }
  901. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  902. {
  903. struct rt2x00_dev *rt2x00dev = dev_instance;
  904. u32 reg;
  905. /* Read status and ACK all interrupts */
  906. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  907. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  908. if (!reg)
  909. return IRQ_NONE;
  910. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  911. return IRQ_HANDLED;
  912. /*
  913. * 1 - Rx ring done interrupt.
  914. */
  915. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  916. rt2x00pci_rxdone(rt2x00dev);
  917. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  918. rt2800pci_txdone(rt2x00dev);
  919. return IRQ_HANDLED;
  920. }
  921. /*
  922. * Device probe functions.
  923. */
  924. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  925. {
  926. /*
  927. * Read EEPROM into buffer
  928. */
  929. switch (rt2x00dev->chip.rt) {
  930. case RT2880:
  931. case RT3052:
  932. rt2800pci_read_eeprom_soc(rt2x00dev);
  933. break;
  934. default:
  935. if (rt2800pci_efuse_detect(rt2x00dev))
  936. rt2800pci_read_eeprom_efuse(rt2x00dev);
  937. else
  938. rt2800pci_read_eeprom_pci(rt2x00dev);
  939. break;
  940. }
  941. return rt2800_validate_eeprom(rt2x00dev);
  942. }
  943. /*
  944. * RF value list for rt2860
  945. * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
  946. */
  947. static const struct rf_channel rf_vals[] = {
  948. { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
  949. { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
  950. { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
  951. { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
  952. { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
  953. { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
  954. { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
  955. { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
  956. { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
  957. { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
  958. { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
  959. { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
  960. { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
  961. { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
  962. /* 802.11 UNI / HyperLan 2 */
  963. { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
  964. { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
  965. { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
  966. { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
  967. { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
  968. { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
  969. { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
  970. { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
  971. { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
  972. { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
  973. { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
  974. { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
  975. /* 802.11 HyperLan 2 */
  976. { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
  977. { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
  978. { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
  979. { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
  980. { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
  981. { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
  982. { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
  983. { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
  984. { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
  985. { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
  986. { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
  987. { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
  988. { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
  989. { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
  990. { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
  991. { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
  992. /* 802.11 UNII */
  993. { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
  994. { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
  995. { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
  996. { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
  997. { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
  998. { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
  999. { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
  1000. { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
  1001. { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
  1002. { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
  1003. { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
  1004. /* 802.11 Japan */
  1005. { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
  1006. { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
  1007. { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
  1008. { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
  1009. { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
  1010. { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
  1011. { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
  1012. };
  1013. static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1014. {
  1015. struct rt2x00_chip *chip = &rt2x00dev->chip;
  1016. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1017. struct channel_info *info;
  1018. char *tx_power1;
  1019. char *tx_power2;
  1020. unsigned int i;
  1021. u16 eeprom;
  1022. /*
  1023. * Initialize all hw fields.
  1024. */
  1025. rt2x00dev->hw->flags =
  1026. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1027. IEEE80211_HW_SIGNAL_DBM |
  1028. IEEE80211_HW_SUPPORTS_PS |
  1029. IEEE80211_HW_PS_NULLFUNC_STACK;
  1030. if (rt2x00_intf_is_pci(rt2x00dev))
  1031. rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE;
  1032. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1033. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1034. rt2x00_eeprom_addr(rt2x00dev,
  1035. EEPROM_MAC_ADDR_0));
  1036. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1037. /*
  1038. * Initialize hw_mode information.
  1039. */
  1040. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1041. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1042. if (rt2x00_rf(chip, RF2820) ||
  1043. rt2x00_rf(chip, RF2720) ||
  1044. (rt2x00_intf_is_pci(rt2x00dev) &&
  1045. (rt2x00_rf(chip, RF3020) ||
  1046. rt2x00_rf(chip, RF3021) ||
  1047. rt2x00_rf(chip, RF3022) ||
  1048. rt2x00_rf(chip, RF2020) ||
  1049. rt2x00_rf(chip, RF3052)))) {
  1050. spec->num_channels = 14;
  1051. spec->channels = rf_vals;
  1052. } else if (rt2x00_rf(chip, RF2850) ||
  1053. rt2x00_rf(chip, RF2750)) {
  1054. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1055. spec->num_channels = ARRAY_SIZE(rf_vals);
  1056. spec->channels = rf_vals;
  1057. }
  1058. /*
  1059. * Initialize HT information.
  1060. */
  1061. spec->ht.ht_supported = true;
  1062. spec->ht.cap =
  1063. IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  1064. IEEE80211_HT_CAP_GRN_FLD |
  1065. IEEE80211_HT_CAP_SGI_20 |
  1066. IEEE80211_HT_CAP_SGI_40 |
  1067. IEEE80211_HT_CAP_TX_STBC |
  1068. IEEE80211_HT_CAP_RX_STBC |
  1069. IEEE80211_HT_CAP_PSMP_SUPPORT;
  1070. spec->ht.ampdu_factor = 3;
  1071. spec->ht.ampdu_density = 4;
  1072. spec->ht.mcs.tx_params =
  1073. IEEE80211_HT_MCS_TX_DEFINED |
  1074. IEEE80211_HT_MCS_TX_RX_DIFF |
  1075. ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) <<
  1076. IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
  1077. switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) {
  1078. case 3:
  1079. spec->ht.mcs.rx_mask[2] = 0xff;
  1080. case 2:
  1081. spec->ht.mcs.rx_mask[1] = 0xff;
  1082. case 1:
  1083. spec->ht.mcs.rx_mask[0] = 0xff;
  1084. spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
  1085. break;
  1086. }
  1087. /*
  1088. * Create channel information array
  1089. */
  1090. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1091. if (!info)
  1092. return -ENOMEM;
  1093. spec->channels_info = info;
  1094. tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
  1095. tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
  1096. for (i = 0; i < 14; i++) {
  1097. info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]);
  1098. info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]);
  1099. }
  1100. if (spec->num_channels > 14) {
  1101. tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
  1102. tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
  1103. for (i = 14; i < spec->num_channels; i++) {
  1104. info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]);
  1105. info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]);
  1106. }
  1107. }
  1108. return 0;
  1109. }
  1110. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  1111. .register_read = rt2x00pci_register_read,
  1112. .register_write = rt2x00pci_register_write,
  1113. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  1114. .register_multiread = rt2x00pci_register_multiread,
  1115. .register_multiwrite = rt2x00pci_register_multiwrite,
  1116. .regbusy_read = rt2x00pci_regbusy_read,
  1117. };
  1118. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1119. {
  1120. int retval;
  1121. rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
  1122. /*
  1123. * Allocate eeprom data.
  1124. */
  1125. retval = rt2800pci_validate_eeprom(rt2x00dev);
  1126. if (retval)
  1127. return retval;
  1128. retval = rt2800_init_eeprom(rt2x00dev);
  1129. if (retval)
  1130. return retval;
  1131. /*
  1132. * Initialize hw specifications.
  1133. */
  1134. retval = rt2800pci_probe_hw_mode(rt2x00dev);
  1135. if (retval)
  1136. return retval;
  1137. /*
  1138. * This device has multiple filters for control frames
  1139. * and has a separate filter for PS Poll frames.
  1140. */
  1141. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  1142. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  1143. /*
  1144. * This device requires firmware.
  1145. */
  1146. if (!rt2x00_rt(&rt2x00dev->chip, RT2880) &&
  1147. !rt2x00_rt(&rt2x00dev->chip, RT3052))
  1148. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  1149. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1150. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  1151. if (!modparam_nohwcrypt)
  1152. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  1153. /*
  1154. * Set the rssi offset.
  1155. */
  1156. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1157. return 0;
  1158. }
  1159. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  1160. .irq_handler = rt2800pci_interrupt,
  1161. .probe_hw = rt2800pci_probe_hw,
  1162. .get_firmware_name = rt2800pci_get_firmware_name,
  1163. .check_firmware = rt2800pci_check_firmware,
  1164. .load_firmware = rt2800pci_load_firmware,
  1165. .initialize = rt2x00pci_initialize,
  1166. .uninitialize = rt2x00pci_uninitialize,
  1167. .get_entry_state = rt2800pci_get_entry_state,
  1168. .clear_entry = rt2800pci_clear_entry,
  1169. .set_device_state = rt2800pci_set_device_state,
  1170. .rfkill_poll = rt2800_rfkill_poll,
  1171. .link_stats = rt2800_link_stats,
  1172. .reset_tuner = rt2800_reset_tuner,
  1173. .link_tuner = rt2800_link_tuner,
  1174. .write_tx_desc = rt2800pci_write_tx_desc,
  1175. .write_tx_data = rt2x00pci_write_tx_data,
  1176. .write_beacon = rt2800pci_write_beacon,
  1177. .kick_tx_queue = rt2800pci_kick_tx_queue,
  1178. .kill_tx_queue = rt2800pci_kill_tx_queue,
  1179. .fill_rxdone = rt2800pci_fill_rxdone,
  1180. .config_shared_key = rt2800_config_shared_key,
  1181. .config_pairwise_key = rt2800_config_pairwise_key,
  1182. .config_filter = rt2800_config_filter,
  1183. .config_intf = rt2800_config_intf,
  1184. .config_erp = rt2800_config_erp,
  1185. .config_ant = rt2800_config_ant,
  1186. .config = rt2800_config,
  1187. };
  1188. static const struct data_queue_desc rt2800pci_queue_rx = {
  1189. .entry_num = RX_ENTRIES,
  1190. .data_size = AGGREGATION_SIZE,
  1191. .desc_size = RXD_DESC_SIZE,
  1192. .priv_size = sizeof(struct queue_entry_priv_pci),
  1193. };
  1194. static const struct data_queue_desc rt2800pci_queue_tx = {
  1195. .entry_num = TX_ENTRIES,
  1196. .data_size = AGGREGATION_SIZE,
  1197. .desc_size = TXD_DESC_SIZE,
  1198. .priv_size = sizeof(struct queue_entry_priv_pci),
  1199. };
  1200. static const struct data_queue_desc rt2800pci_queue_bcn = {
  1201. .entry_num = 8 * BEACON_ENTRIES,
  1202. .data_size = 0, /* No DMA required for beacons */
  1203. .desc_size = TXWI_DESC_SIZE,
  1204. .priv_size = sizeof(struct queue_entry_priv_pci),
  1205. };
  1206. static const struct rt2x00_ops rt2800pci_ops = {
  1207. .name = KBUILD_MODNAME,
  1208. .max_sta_intf = 1,
  1209. .max_ap_intf = 8,
  1210. .eeprom_size = EEPROM_SIZE,
  1211. .rf_size = RF_SIZE,
  1212. .tx_queues = NUM_TX_QUEUES,
  1213. .rx = &rt2800pci_queue_rx,
  1214. .tx = &rt2800pci_queue_tx,
  1215. .bcn = &rt2800pci_queue_bcn,
  1216. .lib = &rt2800pci_rt2x00_ops,
  1217. .hw = &rt2800_mac80211_ops,
  1218. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1219. .debugfs = &rt2800_rt2x00debug,
  1220. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1221. };
  1222. /*
  1223. * RT2800pci module information.
  1224. */
  1225. static struct pci_device_id rt2800pci_device_table[] = {
  1226. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1227. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1228. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1229. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1230. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1231. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1232. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1233. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1234. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1235. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1236. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1237. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1238. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1239. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1240. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1241. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1242. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1243. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1244. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1245. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  1246. { 0, }
  1247. };
  1248. MODULE_AUTHOR(DRV_PROJECT);
  1249. MODULE_VERSION(DRV_VERSION);
  1250. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1251. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1252. #ifdef CONFIG_RT2800PCI_PCI
  1253. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1254. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1255. #endif /* CONFIG_RT2800PCI_PCI */
  1256. MODULE_LICENSE("GPL");
  1257. #ifdef CONFIG_RT2800PCI_WISOC
  1258. #if defined(CONFIG_RALINK_RT288X)
  1259. __rt2x00soc_probe(RT2880, &rt2800pci_ops);
  1260. #elif defined(CONFIG_RALINK_RT305X)
  1261. __rt2x00soc_probe(RT3052, &rt2800pci_ops);
  1262. #endif
  1263. static struct platform_driver rt2800soc_driver = {
  1264. .driver = {
  1265. .name = "rt2800_wmac",
  1266. .owner = THIS_MODULE,
  1267. .mod_name = KBUILD_MODNAME,
  1268. },
  1269. .probe = __rt2x00soc_probe,
  1270. .remove = __devexit_p(rt2x00soc_remove),
  1271. .suspend = rt2x00soc_suspend,
  1272. .resume = rt2x00soc_resume,
  1273. };
  1274. #endif /* CONFIG_RT2800PCI_WISOC */
  1275. #ifdef CONFIG_RT2800PCI_PCI
  1276. static struct pci_driver rt2800pci_driver = {
  1277. .name = KBUILD_MODNAME,
  1278. .id_table = rt2800pci_device_table,
  1279. .probe = rt2x00pci_probe,
  1280. .remove = __devexit_p(rt2x00pci_remove),
  1281. .suspend = rt2x00pci_suspend,
  1282. .resume = rt2x00pci_resume,
  1283. };
  1284. #endif /* CONFIG_RT2800PCI_PCI */
  1285. static int __init rt2800pci_init(void)
  1286. {
  1287. int ret = 0;
  1288. #ifdef CONFIG_RT2800PCI_WISOC
  1289. ret = platform_driver_register(&rt2800soc_driver);
  1290. if (ret)
  1291. return ret;
  1292. #endif
  1293. #ifdef CONFIG_RT2800PCI_PCI
  1294. ret = pci_register_driver(&rt2800pci_driver);
  1295. if (ret) {
  1296. #ifdef CONFIG_RT2800PCI_WISOC
  1297. platform_driver_unregister(&rt2800soc_driver);
  1298. #endif
  1299. return ret;
  1300. }
  1301. #endif
  1302. return ret;
  1303. }
  1304. static void __exit rt2800pci_exit(void)
  1305. {
  1306. #ifdef CONFIG_RT2800PCI_PCI
  1307. pci_unregister_driver(&rt2800pci_driver);
  1308. #endif
  1309. #ifdef CONFIG_RT2800PCI_WISOC
  1310. platform_driver_unregister(&rt2800soc_driver);
  1311. #endif
  1312. }
  1313. module_init(rt2800pci_init);
  1314. module_exit(rt2800pci_exit);