disk-io.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <asm/unaligned.h>
  32. #include "compat.h"
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "transaction.h"
  36. #include "btrfs_inode.h"
  37. #include "volumes.h"
  38. #include "print-tree.h"
  39. #include "async-thread.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. static struct extent_io_ops btree_extent_io_ops;
  44. static void end_workqueue_fn(struct btrfs_work *work);
  45. static void free_fs_root(struct btrfs_root *root);
  46. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  47. int read_only);
  48. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  49. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  50. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  51. struct btrfs_root *root);
  52. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  53. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  54. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  55. struct extent_io_tree *dirty_pages,
  56. int mark);
  57. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  58. struct extent_io_tree *pinned_extents);
  59. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  60. /*
  61. * end_io_wq structs are used to do processing in task context when an IO is
  62. * complete. This is used during reads to verify checksums, and it is used
  63. * by writes to insert metadata for new file extents after IO is complete.
  64. */
  65. struct end_io_wq {
  66. struct bio *bio;
  67. bio_end_io_t *end_io;
  68. void *private;
  69. struct btrfs_fs_info *info;
  70. int error;
  71. int metadata;
  72. struct list_head list;
  73. struct btrfs_work work;
  74. };
  75. /*
  76. * async submit bios are used to offload expensive checksumming
  77. * onto the worker threads. They checksum file and metadata bios
  78. * just before they are sent down the IO stack.
  79. */
  80. struct async_submit_bio {
  81. struct inode *inode;
  82. struct bio *bio;
  83. struct list_head list;
  84. extent_submit_bio_hook_t *submit_bio_start;
  85. extent_submit_bio_hook_t *submit_bio_done;
  86. int rw;
  87. int mirror_num;
  88. unsigned long bio_flags;
  89. /*
  90. * bio_offset is optional, can be used if the pages in the bio
  91. * can't tell us where in the file the bio should go
  92. */
  93. u64 bio_offset;
  94. struct btrfs_work work;
  95. };
  96. /* These are used to set the lockdep class on the extent buffer locks.
  97. * The class is set by the readpage_end_io_hook after the buffer has
  98. * passed csum validation but before the pages are unlocked.
  99. *
  100. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  101. * allocated blocks.
  102. *
  103. * The class is based on the level in the tree block, which allows lockdep
  104. * to know that lower nodes nest inside the locks of higher nodes.
  105. *
  106. * We also add a check to make sure the highest level of the tree is
  107. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  108. * code needs update as well.
  109. */
  110. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  111. # if BTRFS_MAX_LEVEL != 8
  112. # error
  113. # endif
  114. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  115. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  116. /* leaf */
  117. "btrfs-extent-00",
  118. "btrfs-extent-01",
  119. "btrfs-extent-02",
  120. "btrfs-extent-03",
  121. "btrfs-extent-04",
  122. "btrfs-extent-05",
  123. "btrfs-extent-06",
  124. "btrfs-extent-07",
  125. /* highest possible level */
  126. "btrfs-extent-08",
  127. };
  128. #endif
  129. /*
  130. * extents on the btree inode are pretty simple, there's one extent
  131. * that covers the entire device
  132. */
  133. static struct extent_map *btree_get_extent(struct inode *inode,
  134. struct page *page, size_t pg_offset, u64 start, u64 len,
  135. int create)
  136. {
  137. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  138. struct extent_map *em;
  139. int ret;
  140. read_lock(&em_tree->lock);
  141. em = lookup_extent_mapping(em_tree, start, len);
  142. if (em) {
  143. em->bdev =
  144. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  145. read_unlock(&em_tree->lock);
  146. goto out;
  147. }
  148. read_unlock(&em_tree->lock);
  149. em = alloc_extent_map();
  150. if (!em) {
  151. em = ERR_PTR(-ENOMEM);
  152. goto out;
  153. }
  154. em->start = 0;
  155. em->len = (u64)-1;
  156. em->block_len = (u64)-1;
  157. em->block_start = 0;
  158. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  159. write_lock(&em_tree->lock);
  160. ret = add_extent_mapping(em_tree, em);
  161. if (ret == -EEXIST) {
  162. u64 failed_start = em->start;
  163. u64 failed_len = em->len;
  164. free_extent_map(em);
  165. em = lookup_extent_mapping(em_tree, start, len);
  166. if (em) {
  167. ret = 0;
  168. } else {
  169. em = lookup_extent_mapping(em_tree, failed_start,
  170. failed_len);
  171. ret = -EIO;
  172. }
  173. } else if (ret) {
  174. free_extent_map(em);
  175. em = NULL;
  176. }
  177. write_unlock(&em_tree->lock);
  178. if (ret)
  179. em = ERR_PTR(ret);
  180. out:
  181. return em;
  182. }
  183. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  184. {
  185. return crc32c(seed, data, len);
  186. }
  187. void btrfs_csum_final(u32 crc, char *result)
  188. {
  189. put_unaligned_le32(~crc, result);
  190. }
  191. /*
  192. * compute the csum for a btree block, and either verify it or write it
  193. * into the csum field of the block.
  194. */
  195. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  196. int verify)
  197. {
  198. u16 csum_size =
  199. btrfs_super_csum_size(&root->fs_info->super_copy);
  200. char *result = NULL;
  201. unsigned long len;
  202. unsigned long cur_len;
  203. unsigned long offset = BTRFS_CSUM_SIZE;
  204. char *map_token = NULL;
  205. char *kaddr;
  206. unsigned long map_start;
  207. unsigned long map_len;
  208. int err;
  209. u32 crc = ~(u32)0;
  210. unsigned long inline_result;
  211. len = buf->len - offset;
  212. while (len > 0) {
  213. err = map_private_extent_buffer(buf, offset, 32,
  214. &map_token, &kaddr,
  215. &map_start, &map_len, KM_USER0);
  216. if (err)
  217. return 1;
  218. cur_len = min(len, map_len - (offset - map_start));
  219. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  220. crc, cur_len);
  221. len -= cur_len;
  222. offset += cur_len;
  223. unmap_extent_buffer(buf, map_token, KM_USER0);
  224. }
  225. if (csum_size > sizeof(inline_result)) {
  226. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  227. if (!result)
  228. return 1;
  229. } else {
  230. result = (char *)&inline_result;
  231. }
  232. btrfs_csum_final(crc, result);
  233. if (verify) {
  234. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  235. u32 val;
  236. u32 found = 0;
  237. memcpy(&found, result, csum_size);
  238. read_extent_buffer(buf, &val, 0, csum_size);
  239. if (printk_ratelimit()) {
  240. printk(KERN_INFO "btrfs: %s checksum verify "
  241. "failed on %llu wanted %X found %X "
  242. "level %d\n",
  243. root->fs_info->sb->s_id,
  244. (unsigned long long)buf->start, val, found,
  245. btrfs_header_level(buf));
  246. }
  247. if (result != (char *)&inline_result)
  248. kfree(result);
  249. return 1;
  250. }
  251. } else {
  252. write_extent_buffer(buf, result, 0, csum_size);
  253. }
  254. if (result != (char *)&inline_result)
  255. kfree(result);
  256. return 0;
  257. }
  258. /*
  259. * we can't consider a given block up to date unless the transid of the
  260. * block matches the transid in the parent node's pointer. This is how we
  261. * detect blocks that either didn't get written at all or got written
  262. * in the wrong place.
  263. */
  264. static int verify_parent_transid(struct extent_io_tree *io_tree,
  265. struct extent_buffer *eb, u64 parent_transid)
  266. {
  267. struct extent_state *cached_state = NULL;
  268. int ret;
  269. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  270. return 0;
  271. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  272. 0, &cached_state, GFP_NOFS);
  273. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  274. btrfs_header_generation(eb) == parent_transid) {
  275. ret = 0;
  276. goto out;
  277. }
  278. if (printk_ratelimit()) {
  279. printk("parent transid verify failed on %llu wanted %llu "
  280. "found %llu\n",
  281. (unsigned long long)eb->start,
  282. (unsigned long long)parent_transid,
  283. (unsigned long long)btrfs_header_generation(eb));
  284. }
  285. ret = 1;
  286. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  287. out:
  288. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  289. &cached_state, GFP_NOFS);
  290. return ret;
  291. }
  292. /*
  293. * helper to read a given tree block, doing retries as required when
  294. * the checksums don't match and we have alternate mirrors to try.
  295. */
  296. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  297. struct extent_buffer *eb,
  298. u64 start, u64 parent_transid)
  299. {
  300. struct extent_io_tree *io_tree;
  301. int ret;
  302. int num_copies = 0;
  303. int mirror_num = 0;
  304. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  305. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  306. while (1) {
  307. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  308. btree_get_extent, mirror_num);
  309. if (!ret &&
  310. !verify_parent_transid(io_tree, eb, parent_transid))
  311. return ret;
  312. /*
  313. * This buffer's crc is fine, but its contents are corrupted, so
  314. * there is no reason to read the other copies, they won't be
  315. * any less wrong.
  316. */
  317. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  318. return ret;
  319. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  320. eb->start, eb->len);
  321. if (num_copies == 1)
  322. return ret;
  323. mirror_num++;
  324. if (mirror_num > num_copies)
  325. return ret;
  326. }
  327. return -EIO;
  328. }
  329. /*
  330. * checksum a dirty tree block before IO. This has extra checks to make sure
  331. * we only fill in the checksum field in the first page of a multi-page block
  332. */
  333. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  334. {
  335. struct extent_io_tree *tree;
  336. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  337. u64 found_start;
  338. unsigned long len;
  339. struct extent_buffer *eb;
  340. int ret;
  341. tree = &BTRFS_I(page->mapping->host)->io_tree;
  342. if (page->private == EXTENT_PAGE_PRIVATE) {
  343. WARN_ON(1);
  344. goto out;
  345. }
  346. if (!page->private) {
  347. WARN_ON(1);
  348. goto out;
  349. }
  350. len = page->private >> 2;
  351. WARN_ON(len == 0);
  352. eb = alloc_extent_buffer(tree, start, len, page);
  353. if (eb == NULL) {
  354. WARN_ON(1);
  355. goto out;
  356. }
  357. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  358. btrfs_header_generation(eb));
  359. BUG_ON(ret);
  360. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  361. found_start = btrfs_header_bytenr(eb);
  362. if (found_start != start) {
  363. WARN_ON(1);
  364. goto err;
  365. }
  366. if (eb->first_page != page) {
  367. WARN_ON(1);
  368. goto err;
  369. }
  370. if (!PageUptodate(page)) {
  371. WARN_ON(1);
  372. goto err;
  373. }
  374. csum_tree_block(root, eb, 0);
  375. err:
  376. free_extent_buffer(eb);
  377. out:
  378. return 0;
  379. }
  380. static int check_tree_block_fsid(struct btrfs_root *root,
  381. struct extent_buffer *eb)
  382. {
  383. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  384. u8 fsid[BTRFS_UUID_SIZE];
  385. int ret = 1;
  386. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  387. BTRFS_FSID_SIZE);
  388. while (fs_devices) {
  389. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  390. ret = 0;
  391. break;
  392. }
  393. fs_devices = fs_devices->seed;
  394. }
  395. return ret;
  396. }
  397. #define CORRUPT(reason, eb, root, slot) \
  398. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  399. "root=%llu, slot=%d\n", reason, \
  400. (unsigned long long)btrfs_header_bytenr(eb), \
  401. (unsigned long long)root->objectid, slot)
  402. static noinline int check_leaf(struct btrfs_root *root,
  403. struct extent_buffer *leaf)
  404. {
  405. struct btrfs_key key;
  406. struct btrfs_key leaf_key;
  407. u32 nritems = btrfs_header_nritems(leaf);
  408. int slot;
  409. if (nritems == 0)
  410. return 0;
  411. /* Check the 0 item */
  412. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  413. BTRFS_LEAF_DATA_SIZE(root)) {
  414. CORRUPT("invalid item offset size pair", leaf, root, 0);
  415. return -EIO;
  416. }
  417. /*
  418. * Check to make sure each items keys are in the correct order and their
  419. * offsets make sense. We only have to loop through nritems-1 because
  420. * we check the current slot against the next slot, which verifies the
  421. * next slot's offset+size makes sense and that the current's slot
  422. * offset is correct.
  423. */
  424. for (slot = 0; slot < nritems - 1; slot++) {
  425. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  426. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  427. /* Make sure the keys are in the right order */
  428. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  429. CORRUPT("bad key order", leaf, root, slot);
  430. return -EIO;
  431. }
  432. /*
  433. * Make sure the offset and ends are right, remember that the
  434. * item data starts at the end of the leaf and grows towards the
  435. * front.
  436. */
  437. if (btrfs_item_offset_nr(leaf, slot) !=
  438. btrfs_item_end_nr(leaf, slot + 1)) {
  439. CORRUPT("slot offset bad", leaf, root, slot);
  440. return -EIO;
  441. }
  442. /*
  443. * Check to make sure that we don't point outside of the leaf,
  444. * just incase all the items are consistent to eachother, but
  445. * all point outside of the leaf.
  446. */
  447. if (btrfs_item_end_nr(leaf, slot) >
  448. BTRFS_LEAF_DATA_SIZE(root)) {
  449. CORRUPT("slot end outside of leaf", leaf, root, slot);
  450. return -EIO;
  451. }
  452. }
  453. return 0;
  454. }
  455. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  456. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  457. {
  458. lockdep_set_class_and_name(&eb->lock,
  459. &btrfs_eb_class[level],
  460. btrfs_eb_name[level]);
  461. }
  462. #endif
  463. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  464. struct extent_state *state)
  465. {
  466. struct extent_io_tree *tree;
  467. u64 found_start;
  468. int found_level;
  469. unsigned long len;
  470. struct extent_buffer *eb;
  471. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  472. int ret = 0;
  473. tree = &BTRFS_I(page->mapping->host)->io_tree;
  474. if (page->private == EXTENT_PAGE_PRIVATE)
  475. goto out;
  476. if (!page->private)
  477. goto out;
  478. len = page->private >> 2;
  479. WARN_ON(len == 0);
  480. eb = alloc_extent_buffer(tree, start, len, page);
  481. if (eb == NULL) {
  482. ret = -EIO;
  483. goto out;
  484. }
  485. found_start = btrfs_header_bytenr(eb);
  486. if (found_start != start) {
  487. if (printk_ratelimit()) {
  488. printk(KERN_INFO "btrfs bad tree block start "
  489. "%llu %llu\n",
  490. (unsigned long long)found_start,
  491. (unsigned long long)eb->start);
  492. }
  493. ret = -EIO;
  494. goto err;
  495. }
  496. if (eb->first_page != page) {
  497. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  498. eb->first_page->index, page->index);
  499. WARN_ON(1);
  500. ret = -EIO;
  501. goto err;
  502. }
  503. if (check_tree_block_fsid(root, eb)) {
  504. if (printk_ratelimit()) {
  505. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  506. (unsigned long long)eb->start);
  507. }
  508. ret = -EIO;
  509. goto err;
  510. }
  511. found_level = btrfs_header_level(eb);
  512. btrfs_set_buffer_lockdep_class(eb, found_level);
  513. ret = csum_tree_block(root, eb, 1);
  514. if (ret) {
  515. ret = -EIO;
  516. goto err;
  517. }
  518. /*
  519. * If this is a leaf block and it is corrupt, set the corrupt bit so
  520. * that we don't try and read the other copies of this block, just
  521. * return -EIO.
  522. */
  523. if (found_level == 0 && check_leaf(root, eb)) {
  524. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  525. ret = -EIO;
  526. }
  527. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  528. end = eb->start + end - 1;
  529. err:
  530. free_extent_buffer(eb);
  531. out:
  532. return ret;
  533. }
  534. static void end_workqueue_bio(struct bio *bio, int err)
  535. {
  536. struct end_io_wq *end_io_wq = bio->bi_private;
  537. struct btrfs_fs_info *fs_info;
  538. fs_info = end_io_wq->info;
  539. end_io_wq->error = err;
  540. end_io_wq->work.func = end_workqueue_fn;
  541. end_io_wq->work.flags = 0;
  542. if (bio->bi_rw & REQ_WRITE) {
  543. if (end_io_wq->metadata == 1)
  544. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  545. &end_io_wq->work);
  546. else if (end_io_wq->metadata == 2)
  547. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  548. &end_io_wq->work);
  549. else
  550. btrfs_queue_worker(&fs_info->endio_write_workers,
  551. &end_io_wq->work);
  552. } else {
  553. if (end_io_wq->metadata)
  554. btrfs_queue_worker(&fs_info->endio_meta_workers,
  555. &end_io_wq->work);
  556. else
  557. btrfs_queue_worker(&fs_info->endio_workers,
  558. &end_io_wq->work);
  559. }
  560. }
  561. /*
  562. * For the metadata arg you want
  563. *
  564. * 0 - if data
  565. * 1 - if normal metadta
  566. * 2 - if writing to the free space cache area
  567. */
  568. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  569. int metadata)
  570. {
  571. struct end_io_wq *end_io_wq;
  572. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  573. if (!end_io_wq)
  574. return -ENOMEM;
  575. end_io_wq->private = bio->bi_private;
  576. end_io_wq->end_io = bio->bi_end_io;
  577. end_io_wq->info = info;
  578. end_io_wq->error = 0;
  579. end_io_wq->bio = bio;
  580. end_io_wq->metadata = metadata;
  581. bio->bi_private = end_io_wq;
  582. bio->bi_end_io = end_workqueue_bio;
  583. return 0;
  584. }
  585. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  586. {
  587. unsigned long limit = min_t(unsigned long,
  588. info->workers.max_workers,
  589. info->fs_devices->open_devices);
  590. return 256 * limit;
  591. }
  592. static void run_one_async_start(struct btrfs_work *work)
  593. {
  594. struct async_submit_bio *async;
  595. async = container_of(work, struct async_submit_bio, work);
  596. async->submit_bio_start(async->inode, async->rw, async->bio,
  597. async->mirror_num, async->bio_flags,
  598. async->bio_offset);
  599. }
  600. static void run_one_async_done(struct btrfs_work *work)
  601. {
  602. struct btrfs_fs_info *fs_info;
  603. struct async_submit_bio *async;
  604. int limit;
  605. async = container_of(work, struct async_submit_bio, work);
  606. fs_info = BTRFS_I(async->inode)->root->fs_info;
  607. limit = btrfs_async_submit_limit(fs_info);
  608. limit = limit * 2 / 3;
  609. atomic_dec(&fs_info->nr_async_submits);
  610. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  611. waitqueue_active(&fs_info->async_submit_wait))
  612. wake_up(&fs_info->async_submit_wait);
  613. async->submit_bio_done(async->inode, async->rw, async->bio,
  614. async->mirror_num, async->bio_flags,
  615. async->bio_offset);
  616. }
  617. static void run_one_async_free(struct btrfs_work *work)
  618. {
  619. struct async_submit_bio *async;
  620. async = container_of(work, struct async_submit_bio, work);
  621. kfree(async);
  622. }
  623. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  624. int rw, struct bio *bio, int mirror_num,
  625. unsigned long bio_flags,
  626. u64 bio_offset,
  627. extent_submit_bio_hook_t *submit_bio_start,
  628. extent_submit_bio_hook_t *submit_bio_done)
  629. {
  630. struct async_submit_bio *async;
  631. async = kmalloc(sizeof(*async), GFP_NOFS);
  632. if (!async)
  633. return -ENOMEM;
  634. async->inode = inode;
  635. async->rw = rw;
  636. async->bio = bio;
  637. async->mirror_num = mirror_num;
  638. async->submit_bio_start = submit_bio_start;
  639. async->submit_bio_done = submit_bio_done;
  640. async->work.func = run_one_async_start;
  641. async->work.ordered_func = run_one_async_done;
  642. async->work.ordered_free = run_one_async_free;
  643. async->work.flags = 0;
  644. async->bio_flags = bio_flags;
  645. async->bio_offset = bio_offset;
  646. atomic_inc(&fs_info->nr_async_submits);
  647. if (rw & REQ_SYNC)
  648. btrfs_set_work_high_prio(&async->work);
  649. btrfs_queue_worker(&fs_info->workers, &async->work);
  650. while (atomic_read(&fs_info->async_submit_draining) &&
  651. atomic_read(&fs_info->nr_async_submits)) {
  652. wait_event(fs_info->async_submit_wait,
  653. (atomic_read(&fs_info->nr_async_submits) == 0));
  654. }
  655. return 0;
  656. }
  657. static int btree_csum_one_bio(struct bio *bio)
  658. {
  659. struct bio_vec *bvec = bio->bi_io_vec;
  660. int bio_index = 0;
  661. struct btrfs_root *root;
  662. WARN_ON(bio->bi_vcnt <= 0);
  663. while (bio_index < bio->bi_vcnt) {
  664. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  665. csum_dirty_buffer(root, bvec->bv_page);
  666. bio_index++;
  667. bvec++;
  668. }
  669. return 0;
  670. }
  671. static int __btree_submit_bio_start(struct inode *inode, int rw,
  672. struct bio *bio, int mirror_num,
  673. unsigned long bio_flags,
  674. u64 bio_offset)
  675. {
  676. /*
  677. * when we're called for a write, we're already in the async
  678. * submission context. Just jump into btrfs_map_bio
  679. */
  680. btree_csum_one_bio(bio);
  681. return 0;
  682. }
  683. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  684. int mirror_num, unsigned long bio_flags,
  685. u64 bio_offset)
  686. {
  687. /*
  688. * when we're called for a write, we're already in the async
  689. * submission context. Just jump into btrfs_map_bio
  690. */
  691. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  692. }
  693. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  694. int mirror_num, unsigned long bio_flags,
  695. u64 bio_offset)
  696. {
  697. int ret;
  698. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  699. bio, 1);
  700. BUG_ON(ret);
  701. if (!(rw & REQ_WRITE)) {
  702. /*
  703. * called for a read, do the setup so that checksum validation
  704. * can happen in the async kernel threads
  705. */
  706. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  707. mirror_num, 0);
  708. }
  709. /*
  710. * kthread helpers are used to submit writes so that checksumming
  711. * can happen in parallel across all CPUs
  712. */
  713. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  714. inode, rw, bio, mirror_num, 0,
  715. bio_offset,
  716. __btree_submit_bio_start,
  717. __btree_submit_bio_done);
  718. }
  719. #ifdef CONFIG_MIGRATION
  720. static int btree_migratepage(struct address_space *mapping,
  721. struct page *newpage, struct page *page)
  722. {
  723. /*
  724. * we can't safely write a btree page from here,
  725. * we haven't done the locking hook
  726. */
  727. if (PageDirty(page))
  728. return -EAGAIN;
  729. /*
  730. * Buffers may be managed in a filesystem specific way.
  731. * We must have no buffers or drop them.
  732. */
  733. if (page_has_private(page) &&
  734. !try_to_release_page(page, GFP_KERNEL))
  735. return -EAGAIN;
  736. return migrate_page(mapping, newpage, page);
  737. }
  738. #endif
  739. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  740. {
  741. struct extent_io_tree *tree;
  742. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  743. struct extent_buffer *eb;
  744. int was_dirty;
  745. tree = &BTRFS_I(page->mapping->host)->io_tree;
  746. if (!(current->flags & PF_MEMALLOC)) {
  747. return extent_write_full_page(tree, page,
  748. btree_get_extent, wbc);
  749. }
  750. redirty_page_for_writepage(wbc, page);
  751. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  752. WARN_ON(!eb);
  753. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  754. if (!was_dirty) {
  755. spin_lock(&root->fs_info->delalloc_lock);
  756. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  757. spin_unlock(&root->fs_info->delalloc_lock);
  758. }
  759. free_extent_buffer(eb);
  760. unlock_page(page);
  761. return 0;
  762. }
  763. static int btree_writepages(struct address_space *mapping,
  764. struct writeback_control *wbc)
  765. {
  766. struct extent_io_tree *tree;
  767. tree = &BTRFS_I(mapping->host)->io_tree;
  768. if (wbc->sync_mode == WB_SYNC_NONE) {
  769. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  770. u64 num_dirty;
  771. unsigned long thresh = 32 * 1024 * 1024;
  772. if (wbc->for_kupdate)
  773. return 0;
  774. /* this is a bit racy, but that's ok */
  775. num_dirty = root->fs_info->dirty_metadata_bytes;
  776. if (num_dirty < thresh)
  777. return 0;
  778. }
  779. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  780. }
  781. static int btree_readpage(struct file *file, struct page *page)
  782. {
  783. struct extent_io_tree *tree;
  784. tree = &BTRFS_I(page->mapping->host)->io_tree;
  785. return extent_read_full_page(tree, page, btree_get_extent);
  786. }
  787. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  788. {
  789. struct extent_io_tree *tree;
  790. struct extent_map_tree *map;
  791. int ret;
  792. if (PageWriteback(page) || PageDirty(page))
  793. return 0;
  794. tree = &BTRFS_I(page->mapping->host)->io_tree;
  795. map = &BTRFS_I(page->mapping->host)->extent_tree;
  796. ret = try_release_extent_state(map, tree, page, gfp_flags);
  797. if (!ret)
  798. return 0;
  799. ret = try_release_extent_buffer(tree, page);
  800. if (ret == 1) {
  801. ClearPagePrivate(page);
  802. set_page_private(page, 0);
  803. page_cache_release(page);
  804. }
  805. return ret;
  806. }
  807. static void btree_invalidatepage(struct page *page, unsigned long offset)
  808. {
  809. struct extent_io_tree *tree;
  810. tree = &BTRFS_I(page->mapping->host)->io_tree;
  811. extent_invalidatepage(tree, page, offset);
  812. btree_releasepage(page, GFP_NOFS);
  813. if (PagePrivate(page)) {
  814. printk(KERN_WARNING "btrfs warning page private not zero "
  815. "on page %llu\n", (unsigned long long)page_offset(page));
  816. ClearPagePrivate(page);
  817. set_page_private(page, 0);
  818. page_cache_release(page);
  819. }
  820. }
  821. static const struct address_space_operations btree_aops = {
  822. .readpage = btree_readpage,
  823. .writepage = btree_writepage,
  824. .writepages = btree_writepages,
  825. .releasepage = btree_releasepage,
  826. .invalidatepage = btree_invalidatepage,
  827. #ifdef CONFIG_MIGRATION
  828. .migratepage = btree_migratepage,
  829. #endif
  830. };
  831. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  832. u64 parent_transid)
  833. {
  834. struct extent_buffer *buf = NULL;
  835. struct inode *btree_inode = root->fs_info->btree_inode;
  836. int ret = 0;
  837. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  838. if (!buf)
  839. return 0;
  840. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  841. buf, 0, 0, btree_get_extent, 0);
  842. free_extent_buffer(buf);
  843. return ret;
  844. }
  845. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  846. u64 bytenr, u32 blocksize)
  847. {
  848. struct inode *btree_inode = root->fs_info->btree_inode;
  849. struct extent_buffer *eb;
  850. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  851. bytenr, blocksize);
  852. return eb;
  853. }
  854. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  855. u64 bytenr, u32 blocksize)
  856. {
  857. struct inode *btree_inode = root->fs_info->btree_inode;
  858. struct extent_buffer *eb;
  859. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  860. bytenr, blocksize, NULL);
  861. return eb;
  862. }
  863. int btrfs_write_tree_block(struct extent_buffer *buf)
  864. {
  865. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  866. buf->start + buf->len - 1);
  867. }
  868. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  869. {
  870. return filemap_fdatawait_range(buf->first_page->mapping,
  871. buf->start, buf->start + buf->len - 1);
  872. }
  873. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  874. u32 blocksize, u64 parent_transid)
  875. {
  876. struct extent_buffer *buf = NULL;
  877. int ret;
  878. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  879. if (!buf)
  880. return NULL;
  881. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  882. if (ret == 0)
  883. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  884. return buf;
  885. }
  886. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  887. struct extent_buffer *buf)
  888. {
  889. struct inode *btree_inode = root->fs_info->btree_inode;
  890. if (btrfs_header_generation(buf) ==
  891. root->fs_info->running_transaction->transid) {
  892. btrfs_assert_tree_locked(buf);
  893. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  894. spin_lock(&root->fs_info->delalloc_lock);
  895. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  896. root->fs_info->dirty_metadata_bytes -= buf->len;
  897. else
  898. WARN_ON(1);
  899. spin_unlock(&root->fs_info->delalloc_lock);
  900. }
  901. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  902. btrfs_set_lock_blocking(buf);
  903. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  904. buf);
  905. }
  906. return 0;
  907. }
  908. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  909. u32 stripesize, struct btrfs_root *root,
  910. struct btrfs_fs_info *fs_info,
  911. u64 objectid)
  912. {
  913. root->node = NULL;
  914. root->commit_root = NULL;
  915. root->sectorsize = sectorsize;
  916. root->nodesize = nodesize;
  917. root->leafsize = leafsize;
  918. root->stripesize = stripesize;
  919. root->ref_cows = 0;
  920. root->track_dirty = 0;
  921. root->in_radix = 0;
  922. root->orphan_item_inserted = 0;
  923. root->orphan_cleanup_state = 0;
  924. root->fs_info = fs_info;
  925. root->objectid = objectid;
  926. root->last_trans = 0;
  927. root->highest_objectid = 0;
  928. root->name = NULL;
  929. root->in_sysfs = 0;
  930. root->inode_tree = RB_ROOT;
  931. root->block_rsv = NULL;
  932. root->orphan_block_rsv = NULL;
  933. INIT_LIST_HEAD(&root->dirty_list);
  934. INIT_LIST_HEAD(&root->orphan_list);
  935. INIT_LIST_HEAD(&root->root_list);
  936. spin_lock_init(&root->node_lock);
  937. spin_lock_init(&root->orphan_lock);
  938. spin_lock_init(&root->inode_lock);
  939. spin_lock_init(&root->accounting_lock);
  940. mutex_init(&root->objectid_mutex);
  941. mutex_init(&root->log_mutex);
  942. init_waitqueue_head(&root->log_writer_wait);
  943. init_waitqueue_head(&root->log_commit_wait[0]);
  944. init_waitqueue_head(&root->log_commit_wait[1]);
  945. atomic_set(&root->log_commit[0], 0);
  946. atomic_set(&root->log_commit[1], 0);
  947. atomic_set(&root->log_writers, 0);
  948. root->log_batch = 0;
  949. root->log_transid = 0;
  950. root->last_log_commit = 0;
  951. extent_io_tree_init(&root->dirty_log_pages,
  952. fs_info->btree_inode->i_mapping);
  953. memset(&root->root_key, 0, sizeof(root->root_key));
  954. memset(&root->root_item, 0, sizeof(root->root_item));
  955. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  956. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  957. root->defrag_trans_start = fs_info->generation;
  958. init_completion(&root->kobj_unregister);
  959. root->defrag_running = 0;
  960. root->root_key.objectid = objectid;
  961. root->anon_super.s_root = NULL;
  962. root->anon_super.s_dev = 0;
  963. INIT_LIST_HEAD(&root->anon_super.s_list);
  964. INIT_LIST_HEAD(&root->anon_super.s_instances);
  965. init_rwsem(&root->anon_super.s_umount);
  966. return 0;
  967. }
  968. static int find_and_setup_root(struct btrfs_root *tree_root,
  969. struct btrfs_fs_info *fs_info,
  970. u64 objectid,
  971. struct btrfs_root *root)
  972. {
  973. int ret;
  974. u32 blocksize;
  975. u64 generation;
  976. __setup_root(tree_root->nodesize, tree_root->leafsize,
  977. tree_root->sectorsize, tree_root->stripesize,
  978. root, fs_info, objectid);
  979. ret = btrfs_find_last_root(tree_root, objectid,
  980. &root->root_item, &root->root_key);
  981. if (ret > 0)
  982. return -ENOENT;
  983. BUG_ON(ret);
  984. generation = btrfs_root_generation(&root->root_item);
  985. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  986. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  987. blocksize, generation);
  988. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  989. free_extent_buffer(root->node);
  990. return -EIO;
  991. }
  992. root->commit_root = btrfs_root_node(root);
  993. return 0;
  994. }
  995. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  996. struct btrfs_fs_info *fs_info)
  997. {
  998. struct btrfs_root *root;
  999. struct btrfs_root *tree_root = fs_info->tree_root;
  1000. struct extent_buffer *leaf;
  1001. root = kzalloc(sizeof(*root), GFP_NOFS);
  1002. if (!root)
  1003. return ERR_PTR(-ENOMEM);
  1004. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1005. tree_root->sectorsize, tree_root->stripesize,
  1006. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1007. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1008. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1009. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1010. /*
  1011. * log trees do not get reference counted because they go away
  1012. * before a real commit is actually done. They do store pointers
  1013. * to file data extents, and those reference counts still get
  1014. * updated (along with back refs to the log tree).
  1015. */
  1016. root->ref_cows = 0;
  1017. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1018. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  1019. if (IS_ERR(leaf)) {
  1020. kfree(root);
  1021. return ERR_CAST(leaf);
  1022. }
  1023. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1024. btrfs_set_header_bytenr(leaf, leaf->start);
  1025. btrfs_set_header_generation(leaf, trans->transid);
  1026. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1027. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1028. root->node = leaf;
  1029. write_extent_buffer(root->node, root->fs_info->fsid,
  1030. (unsigned long)btrfs_header_fsid(root->node),
  1031. BTRFS_FSID_SIZE);
  1032. btrfs_mark_buffer_dirty(root->node);
  1033. btrfs_tree_unlock(root->node);
  1034. return root;
  1035. }
  1036. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1037. struct btrfs_fs_info *fs_info)
  1038. {
  1039. struct btrfs_root *log_root;
  1040. log_root = alloc_log_tree(trans, fs_info);
  1041. if (IS_ERR(log_root))
  1042. return PTR_ERR(log_root);
  1043. WARN_ON(fs_info->log_root_tree);
  1044. fs_info->log_root_tree = log_root;
  1045. return 0;
  1046. }
  1047. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1048. struct btrfs_root *root)
  1049. {
  1050. struct btrfs_root *log_root;
  1051. struct btrfs_inode_item *inode_item;
  1052. log_root = alloc_log_tree(trans, root->fs_info);
  1053. if (IS_ERR(log_root))
  1054. return PTR_ERR(log_root);
  1055. log_root->last_trans = trans->transid;
  1056. log_root->root_key.offset = root->root_key.objectid;
  1057. inode_item = &log_root->root_item.inode;
  1058. inode_item->generation = cpu_to_le64(1);
  1059. inode_item->size = cpu_to_le64(3);
  1060. inode_item->nlink = cpu_to_le32(1);
  1061. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1062. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1063. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1064. WARN_ON(root->log_root);
  1065. root->log_root = log_root;
  1066. root->log_transid = 0;
  1067. root->last_log_commit = 0;
  1068. return 0;
  1069. }
  1070. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1071. struct btrfs_key *location)
  1072. {
  1073. struct btrfs_root *root;
  1074. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1075. struct btrfs_path *path;
  1076. struct extent_buffer *l;
  1077. u64 generation;
  1078. u32 blocksize;
  1079. int ret = 0;
  1080. root = kzalloc(sizeof(*root), GFP_NOFS);
  1081. if (!root)
  1082. return ERR_PTR(-ENOMEM);
  1083. if (location->offset == (u64)-1) {
  1084. ret = find_and_setup_root(tree_root, fs_info,
  1085. location->objectid, root);
  1086. if (ret) {
  1087. kfree(root);
  1088. return ERR_PTR(ret);
  1089. }
  1090. goto out;
  1091. }
  1092. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1093. tree_root->sectorsize, tree_root->stripesize,
  1094. root, fs_info, location->objectid);
  1095. path = btrfs_alloc_path();
  1096. if (!path) {
  1097. kfree(root);
  1098. return ERR_PTR(-ENOMEM);
  1099. }
  1100. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1101. if (ret == 0) {
  1102. l = path->nodes[0];
  1103. read_extent_buffer(l, &root->root_item,
  1104. btrfs_item_ptr_offset(l, path->slots[0]),
  1105. sizeof(root->root_item));
  1106. memcpy(&root->root_key, location, sizeof(*location));
  1107. }
  1108. btrfs_free_path(path);
  1109. if (ret) {
  1110. kfree(root);
  1111. if (ret > 0)
  1112. ret = -ENOENT;
  1113. return ERR_PTR(ret);
  1114. }
  1115. generation = btrfs_root_generation(&root->root_item);
  1116. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1117. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1118. blocksize, generation);
  1119. root->commit_root = btrfs_root_node(root);
  1120. BUG_ON(!root->node);
  1121. out:
  1122. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1123. root->ref_cows = 1;
  1124. btrfs_check_and_init_root_item(&root->root_item);
  1125. }
  1126. return root;
  1127. }
  1128. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1129. struct btrfs_key *location)
  1130. {
  1131. struct btrfs_root *root;
  1132. int ret;
  1133. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1134. return fs_info->tree_root;
  1135. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1136. return fs_info->extent_root;
  1137. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1138. return fs_info->chunk_root;
  1139. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1140. return fs_info->dev_root;
  1141. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1142. return fs_info->csum_root;
  1143. again:
  1144. spin_lock(&fs_info->fs_roots_radix_lock);
  1145. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1146. (unsigned long)location->objectid);
  1147. spin_unlock(&fs_info->fs_roots_radix_lock);
  1148. if (root)
  1149. return root;
  1150. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1151. if (IS_ERR(root))
  1152. return root;
  1153. set_anon_super(&root->anon_super, NULL);
  1154. if (btrfs_root_refs(&root->root_item) == 0) {
  1155. ret = -ENOENT;
  1156. goto fail;
  1157. }
  1158. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1159. if (ret < 0)
  1160. goto fail;
  1161. if (ret == 0)
  1162. root->orphan_item_inserted = 1;
  1163. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1164. if (ret)
  1165. goto fail;
  1166. spin_lock(&fs_info->fs_roots_radix_lock);
  1167. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1168. (unsigned long)root->root_key.objectid,
  1169. root);
  1170. if (ret == 0)
  1171. root->in_radix = 1;
  1172. spin_unlock(&fs_info->fs_roots_radix_lock);
  1173. radix_tree_preload_end();
  1174. if (ret) {
  1175. if (ret == -EEXIST) {
  1176. free_fs_root(root);
  1177. goto again;
  1178. }
  1179. goto fail;
  1180. }
  1181. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1182. root->root_key.objectid);
  1183. WARN_ON(ret);
  1184. return root;
  1185. fail:
  1186. free_fs_root(root);
  1187. return ERR_PTR(ret);
  1188. }
  1189. #if 0
  1190. struct btrfs_root *root;
  1191. int ret;
  1192. root = btrfs_read_fs_root_no_name(fs_info, location);
  1193. if (!root)
  1194. return NULL;
  1195. if (root->in_sysfs)
  1196. return root;
  1197. ret = btrfs_set_root_name(root, name, namelen);
  1198. if (ret) {
  1199. free_extent_buffer(root->node);
  1200. kfree(root);
  1201. return ERR_PTR(ret);
  1202. }
  1203. ret = btrfs_sysfs_add_root(root);
  1204. if (ret) {
  1205. free_extent_buffer(root->node);
  1206. kfree(root->name);
  1207. kfree(root);
  1208. return ERR_PTR(ret);
  1209. }
  1210. root->in_sysfs = 1;
  1211. return root;
  1212. #endif
  1213. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1214. {
  1215. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1216. int ret = 0;
  1217. struct btrfs_device *device;
  1218. struct backing_dev_info *bdi;
  1219. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1220. if (!device->bdev)
  1221. continue;
  1222. bdi = blk_get_backing_dev_info(device->bdev);
  1223. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1224. ret = 1;
  1225. break;
  1226. }
  1227. }
  1228. return ret;
  1229. }
  1230. /*
  1231. * If this fails, caller must call bdi_destroy() to get rid of the
  1232. * bdi again.
  1233. */
  1234. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1235. {
  1236. int err;
  1237. bdi->capabilities = BDI_CAP_MAP_COPY;
  1238. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1239. if (err)
  1240. return err;
  1241. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1242. bdi->congested_fn = btrfs_congested_fn;
  1243. bdi->congested_data = info;
  1244. return 0;
  1245. }
  1246. static int bio_ready_for_csum(struct bio *bio)
  1247. {
  1248. u64 length = 0;
  1249. u64 buf_len = 0;
  1250. u64 start = 0;
  1251. struct page *page;
  1252. struct extent_io_tree *io_tree = NULL;
  1253. struct bio_vec *bvec;
  1254. int i;
  1255. int ret;
  1256. bio_for_each_segment(bvec, bio, i) {
  1257. page = bvec->bv_page;
  1258. if (page->private == EXTENT_PAGE_PRIVATE) {
  1259. length += bvec->bv_len;
  1260. continue;
  1261. }
  1262. if (!page->private) {
  1263. length += bvec->bv_len;
  1264. continue;
  1265. }
  1266. length = bvec->bv_len;
  1267. buf_len = page->private >> 2;
  1268. start = page_offset(page) + bvec->bv_offset;
  1269. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1270. }
  1271. /* are we fully contained in this bio? */
  1272. if (buf_len <= length)
  1273. return 1;
  1274. ret = extent_range_uptodate(io_tree, start + length,
  1275. start + buf_len - 1);
  1276. return ret;
  1277. }
  1278. /*
  1279. * called by the kthread helper functions to finally call the bio end_io
  1280. * functions. This is where read checksum verification actually happens
  1281. */
  1282. static void end_workqueue_fn(struct btrfs_work *work)
  1283. {
  1284. struct bio *bio;
  1285. struct end_io_wq *end_io_wq;
  1286. struct btrfs_fs_info *fs_info;
  1287. int error;
  1288. end_io_wq = container_of(work, struct end_io_wq, work);
  1289. bio = end_io_wq->bio;
  1290. fs_info = end_io_wq->info;
  1291. /* metadata bio reads are special because the whole tree block must
  1292. * be checksummed at once. This makes sure the entire block is in
  1293. * ram and up to date before trying to verify things. For
  1294. * blocksize <= pagesize, it is basically a noop
  1295. */
  1296. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1297. !bio_ready_for_csum(bio)) {
  1298. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1299. &end_io_wq->work);
  1300. return;
  1301. }
  1302. error = end_io_wq->error;
  1303. bio->bi_private = end_io_wq->private;
  1304. bio->bi_end_io = end_io_wq->end_io;
  1305. kfree(end_io_wq);
  1306. bio_endio(bio, error);
  1307. }
  1308. static int cleaner_kthread(void *arg)
  1309. {
  1310. struct btrfs_root *root = arg;
  1311. do {
  1312. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1313. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1314. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1315. btrfs_run_delayed_iputs(root);
  1316. btrfs_clean_old_snapshots(root);
  1317. mutex_unlock(&root->fs_info->cleaner_mutex);
  1318. }
  1319. if (freezing(current)) {
  1320. refrigerator();
  1321. } else {
  1322. set_current_state(TASK_INTERRUPTIBLE);
  1323. if (!kthread_should_stop())
  1324. schedule();
  1325. __set_current_state(TASK_RUNNING);
  1326. }
  1327. } while (!kthread_should_stop());
  1328. return 0;
  1329. }
  1330. static int transaction_kthread(void *arg)
  1331. {
  1332. struct btrfs_root *root = arg;
  1333. struct btrfs_trans_handle *trans;
  1334. struct btrfs_transaction *cur;
  1335. u64 transid;
  1336. unsigned long now;
  1337. unsigned long delay;
  1338. int ret;
  1339. do {
  1340. delay = HZ * 30;
  1341. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1342. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1343. spin_lock(&root->fs_info->new_trans_lock);
  1344. cur = root->fs_info->running_transaction;
  1345. if (!cur) {
  1346. spin_unlock(&root->fs_info->new_trans_lock);
  1347. goto sleep;
  1348. }
  1349. now = get_seconds();
  1350. if (!cur->blocked &&
  1351. (now < cur->start_time || now - cur->start_time < 30)) {
  1352. spin_unlock(&root->fs_info->new_trans_lock);
  1353. delay = HZ * 5;
  1354. goto sleep;
  1355. }
  1356. transid = cur->transid;
  1357. spin_unlock(&root->fs_info->new_trans_lock);
  1358. trans = btrfs_join_transaction(root, 1);
  1359. BUG_ON(IS_ERR(trans));
  1360. if (transid == trans->transid) {
  1361. ret = btrfs_commit_transaction(trans, root);
  1362. BUG_ON(ret);
  1363. } else {
  1364. btrfs_end_transaction(trans, root);
  1365. }
  1366. sleep:
  1367. wake_up_process(root->fs_info->cleaner_kthread);
  1368. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1369. if (freezing(current)) {
  1370. refrigerator();
  1371. } else {
  1372. set_current_state(TASK_INTERRUPTIBLE);
  1373. if (!kthread_should_stop() &&
  1374. !btrfs_transaction_blocked(root->fs_info))
  1375. schedule_timeout(delay);
  1376. __set_current_state(TASK_RUNNING);
  1377. }
  1378. } while (!kthread_should_stop());
  1379. return 0;
  1380. }
  1381. struct btrfs_root *open_ctree(struct super_block *sb,
  1382. struct btrfs_fs_devices *fs_devices,
  1383. char *options)
  1384. {
  1385. u32 sectorsize;
  1386. u32 nodesize;
  1387. u32 leafsize;
  1388. u32 blocksize;
  1389. u32 stripesize;
  1390. u64 generation;
  1391. u64 features;
  1392. struct btrfs_key location;
  1393. struct buffer_head *bh;
  1394. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1395. GFP_NOFS);
  1396. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1397. GFP_NOFS);
  1398. struct btrfs_root *tree_root = btrfs_sb(sb);
  1399. struct btrfs_fs_info *fs_info = NULL;
  1400. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1401. GFP_NOFS);
  1402. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1403. GFP_NOFS);
  1404. struct btrfs_root *log_tree_root;
  1405. int ret;
  1406. int err = -EINVAL;
  1407. struct btrfs_super_block *disk_super;
  1408. if (!extent_root || !tree_root || !tree_root->fs_info ||
  1409. !chunk_root || !dev_root || !csum_root) {
  1410. err = -ENOMEM;
  1411. goto fail;
  1412. }
  1413. fs_info = tree_root->fs_info;
  1414. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1415. if (ret) {
  1416. err = ret;
  1417. goto fail;
  1418. }
  1419. ret = setup_bdi(fs_info, &fs_info->bdi);
  1420. if (ret) {
  1421. err = ret;
  1422. goto fail_srcu;
  1423. }
  1424. fs_info->btree_inode = new_inode(sb);
  1425. if (!fs_info->btree_inode) {
  1426. err = -ENOMEM;
  1427. goto fail_bdi;
  1428. }
  1429. fs_info->btree_inode->i_mapping->flags &= ~__GFP_FS;
  1430. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1431. INIT_LIST_HEAD(&fs_info->trans_list);
  1432. INIT_LIST_HEAD(&fs_info->dead_roots);
  1433. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1434. INIT_LIST_HEAD(&fs_info->hashers);
  1435. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1436. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1437. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1438. spin_lock_init(&fs_info->delalloc_lock);
  1439. spin_lock_init(&fs_info->new_trans_lock);
  1440. spin_lock_init(&fs_info->ref_cache_lock);
  1441. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1442. spin_lock_init(&fs_info->delayed_iput_lock);
  1443. init_completion(&fs_info->kobj_unregister);
  1444. fs_info->tree_root = tree_root;
  1445. fs_info->extent_root = extent_root;
  1446. fs_info->csum_root = csum_root;
  1447. fs_info->chunk_root = chunk_root;
  1448. fs_info->dev_root = dev_root;
  1449. fs_info->fs_devices = fs_devices;
  1450. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1451. INIT_LIST_HEAD(&fs_info->space_info);
  1452. btrfs_mapping_init(&fs_info->mapping_tree);
  1453. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1454. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1455. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1456. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1457. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1458. INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
  1459. mutex_init(&fs_info->durable_block_rsv_mutex);
  1460. atomic_set(&fs_info->nr_async_submits, 0);
  1461. atomic_set(&fs_info->async_delalloc_pages, 0);
  1462. atomic_set(&fs_info->async_submit_draining, 0);
  1463. atomic_set(&fs_info->nr_async_bios, 0);
  1464. fs_info->sb = sb;
  1465. fs_info->max_inline = 8192 * 1024;
  1466. fs_info->metadata_ratio = 0;
  1467. fs_info->thread_pool_size = min_t(unsigned long,
  1468. num_online_cpus() + 2, 8);
  1469. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1470. spin_lock_init(&fs_info->ordered_extent_lock);
  1471. sb->s_blocksize = 4096;
  1472. sb->s_blocksize_bits = blksize_bits(4096);
  1473. sb->s_bdi = &fs_info->bdi;
  1474. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1475. fs_info->btree_inode->i_nlink = 1;
  1476. /*
  1477. * we set the i_size on the btree inode to the max possible int.
  1478. * the real end of the address space is determined by all of
  1479. * the devices in the system
  1480. */
  1481. fs_info->btree_inode->i_size = OFFSET_MAX;
  1482. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1483. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1484. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1485. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1486. fs_info->btree_inode->i_mapping);
  1487. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1488. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1489. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1490. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1491. sizeof(struct btrfs_key));
  1492. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1493. insert_inode_hash(fs_info->btree_inode);
  1494. spin_lock_init(&fs_info->block_group_cache_lock);
  1495. fs_info->block_group_cache_tree = RB_ROOT;
  1496. extent_io_tree_init(&fs_info->freed_extents[0],
  1497. fs_info->btree_inode->i_mapping);
  1498. extent_io_tree_init(&fs_info->freed_extents[1],
  1499. fs_info->btree_inode->i_mapping);
  1500. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1501. fs_info->do_barriers = 1;
  1502. mutex_init(&fs_info->trans_mutex);
  1503. mutex_init(&fs_info->ordered_operations_mutex);
  1504. mutex_init(&fs_info->tree_log_mutex);
  1505. mutex_init(&fs_info->chunk_mutex);
  1506. mutex_init(&fs_info->transaction_kthread_mutex);
  1507. mutex_init(&fs_info->cleaner_mutex);
  1508. mutex_init(&fs_info->volume_mutex);
  1509. init_rwsem(&fs_info->extent_commit_sem);
  1510. init_rwsem(&fs_info->cleanup_work_sem);
  1511. init_rwsem(&fs_info->subvol_sem);
  1512. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1513. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1514. init_waitqueue_head(&fs_info->transaction_throttle);
  1515. init_waitqueue_head(&fs_info->transaction_wait);
  1516. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1517. init_waitqueue_head(&fs_info->async_submit_wait);
  1518. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1519. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1520. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1521. if (!bh) {
  1522. err = -EINVAL;
  1523. goto fail_iput;
  1524. }
  1525. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1526. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1527. sizeof(fs_info->super_for_commit));
  1528. brelse(bh);
  1529. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1530. disk_super = &fs_info->super_copy;
  1531. if (!btrfs_super_root(disk_super))
  1532. goto fail_iput;
  1533. /* check FS state, whether FS is broken. */
  1534. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1535. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1536. /*
  1537. * In the long term, we'll store the compression type in the super
  1538. * block, and it'll be used for per file compression control.
  1539. */
  1540. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1541. ret = btrfs_parse_options(tree_root, options);
  1542. if (ret) {
  1543. err = ret;
  1544. goto fail_iput;
  1545. }
  1546. features = btrfs_super_incompat_flags(disk_super) &
  1547. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1548. if (features) {
  1549. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1550. "unsupported optional features (%Lx).\n",
  1551. (unsigned long long)features);
  1552. err = -EINVAL;
  1553. goto fail_iput;
  1554. }
  1555. features = btrfs_super_incompat_flags(disk_super);
  1556. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1557. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1558. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1559. btrfs_set_super_incompat_flags(disk_super, features);
  1560. features = btrfs_super_compat_ro_flags(disk_super) &
  1561. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1562. if (!(sb->s_flags & MS_RDONLY) && features) {
  1563. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1564. "unsupported option features (%Lx).\n",
  1565. (unsigned long long)features);
  1566. err = -EINVAL;
  1567. goto fail_iput;
  1568. }
  1569. btrfs_init_workers(&fs_info->generic_worker,
  1570. "genwork", 1, NULL);
  1571. btrfs_init_workers(&fs_info->workers, "worker",
  1572. fs_info->thread_pool_size,
  1573. &fs_info->generic_worker);
  1574. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1575. fs_info->thread_pool_size,
  1576. &fs_info->generic_worker);
  1577. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1578. min_t(u64, fs_devices->num_devices,
  1579. fs_info->thread_pool_size),
  1580. &fs_info->generic_worker);
  1581. /* a higher idle thresh on the submit workers makes it much more
  1582. * likely that bios will be send down in a sane order to the
  1583. * devices
  1584. */
  1585. fs_info->submit_workers.idle_thresh = 64;
  1586. fs_info->workers.idle_thresh = 16;
  1587. fs_info->workers.ordered = 1;
  1588. fs_info->delalloc_workers.idle_thresh = 2;
  1589. fs_info->delalloc_workers.ordered = 1;
  1590. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1591. &fs_info->generic_worker);
  1592. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1593. fs_info->thread_pool_size,
  1594. &fs_info->generic_worker);
  1595. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1596. fs_info->thread_pool_size,
  1597. &fs_info->generic_worker);
  1598. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1599. "endio-meta-write", fs_info->thread_pool_size,
  1600. &fs_info->generic_worker);
  1601. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1602. fs_info->thread_pool_size,
  1603. &fs_info->generic_worker);
  1604. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1605. 1, &fs_info->generic_worker);
  1606. /*
  1607. * endios are largely parallel and should have a very
  1608. * low idle thresh
  1609. */
  1610. fs_info->endio_workers.idle_thresh = 4;
  1611. fs_info->endio_meta_workers.idle_thresh = 4;
  1612. fs_info->endio_write_workers.idle_thresh = 2;
  1613. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1614. btrfs_start_workers(&fs_info->workers, 1);
  1615. btrfs_start_workers(&fs_info->generic_worker, 1);
  1616. btrfs_start_workers(&fs_info->submit_workers, 1);
  1617. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1618. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1619. btrfs_start_workers(&fs_info->endio_workers, 1);
  1620. btrfs_start_workers(&fs_info->endio_meta_workers, 1);
  1621. btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
  1622. btrfs_start_workers(&fs_info->endio_write_workers, 1);
  1623. btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
  1624. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1625. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1626. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1627. nodesize = btrfs_super_nodesize(disk_super);
  1628. leafsize = btrfs_super_leafsize(disk_super);
  1629. sectorsize = btrfs_super_sectorsize(disk_super);
  1630. stripesize = btrfs_super_stripesize(disk_super);
  1631. tree_root->nodesize = nodesize;
  1632. tree_root->leafsize = leafsize;
  1633. tree_root->sectorsize = sectorsize;
  1634. tree_root->stripesize = stripesize;
  1635. sb->s_blocksize = sectorsize;
  1636. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1637. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1638. sizeof(disk_super->magic))) {
  1639. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1640. goto fail_sb_buffer;
  1641. }
  1642. mutex_lock(&fs_info->chunk_mutex);
  1643. ret = btrfs_read_sys_array(tree_root);
  1644. mutex_unlock(&fs_info->chunk_mutex);
  1645. if (ret) {
  1646. printk(KERN_WARNING "btrfs: failed to read the system "
  1647. "array on %s\n", sb->s_id);
  1648. goto fail_sb_buffer;
  1649. }
  1650. blocksize = btrfs_level_size(tree_root,
  1651. btrfs_super_chunk_root_level(disk_super));
  1652. generation = btrfs_super_chunk_root_generation(disk_super);
  1653. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1654. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1655. chunk_root->node = read_tree_block(chunk_root,
  1656. btrfs_super_chunk_root(disk_super),
  1657. blocksize, generation);
  1658. BUG_ON(!chunk_root->node);
  1659. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1660. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1661. sb->s_id);
  1662. goto fail_chunk_root;
  1663. }
  1664. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1665. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1666. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1667. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1668. BTRFS_UUID_SIZE);
  1669. mutex_lock(&fs_info->chunk_mutex);
  1670. ret = btrfs_read_chunk_tree(chunk_root);
  1671. mutex_unlock(&fs_info->chunk_mutex);
  1672. if (ret) {
  1673. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1674. sb->s_id);
  1675. goto fail_chunk_root;
  1676. }
  1677. btrfs_close_extra_devices(fs_devices);
  1678. blocksize = btrfs_level_size(tree_root,
  1679. btrfs_super_root_level(disk_super));
  1680. generation = btrfs_super_generation(disk_super);
  1681. tree_root->node = read_tree_block(tree_root,
  1682. btrfs_super_root(disk_super),
  1683. blocksize, generation);
  1684. if (!tree_root->node)
  1685. goto fail_chunk_root;
  1686. if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  1687. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  1688. sb->s_id);
  1689. goto fail_tree_root;
  1690. }
  1691. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1692. tree_root->commit_root = btrfs_root_node(tree_root);
  1693. ret = find_and_setup_root(tree_root, fs_info,
  1694. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1695. if (ret)
  1696. goto fail_tree_root;
  1697. extent_root->track_dirty = 1;
  1698. ret = find_and_setup_root(tree_root, fs_info,
  1699. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1700. if (ret)
  1701. goto fail_extent_root;
  1702. dev_root->track_dirty = 1;
  1703. ret = find_and_setup_root(tree_root, fs_info,
  1704. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1705. if (ret)
  1706. goto fail_dev_root;
  1707. csum_root->track_dirty = 1;
  1708. fs_info->generation = generation;
  1709. fs_info->last_trans_committed = generation;
  1710. fs_info->data_alloc_profile = (u64)-1;
  1711. fs_info->metadata_alloc_profile = (u64)-1;
  1712. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1713. ret = btrfs_init_space_info(fs_info);
  1714. if (ret) {
  1715. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  1716. goto fail_block_groups;
  1717. }
  1718. ret = btrfs_read_block_groups(extent_root);
  1719. if (ret) {
  1720. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  1721. goto fail_block_groups;
  1722. }
  1723. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1724. "btrfs-cleaner");
  1725. if (IS_ERR(fs_info->cleaner_kthread))
  1726. goto fail_block_groups;
  1727. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1728. tree_root,
  1729. "btrfs-transaction");
  1730. if (IS_ERR(fs_info->transaction_kthread))
  1731. goto fail_cleaner;
  1732. if (!btrfs_test_opt(tree_root, SSD) &&
  1733. !btrfs_test_opt(tree_root, NOSSD) &&
  1734. !fs_info->fs_devices->rotating) {
  1735. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1736. "mode\n");
  1737. btrfs_set_opt(fs_info->mount_opt, SSD);
  1738. }
  1739. /* do not make disk changes in broken FS */
  1740. if (btrfs_super_log_root(disk_super) != 0 &&
  1741. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  1742. u64 bytenr = btrfs_super_log_root(disk_super);
  1743. if (fs_devices->rw_devices == 0) {
  1744. printk(KERN_WARNING "Btrfs log replay required "
  1745. "on RO media\n");
  1746. err = -EIO;
  1747. goto fail_trans_kthread;
  1748. }
  1749. blocksize =
  1750. btrfs_level_size(tree_root,
  1751. btrfs_super_log_root_level(disk_super));
  1752. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1753. if (!log_tree_root) {
  1754. err = -ENOMEM;
  1755. goto fail_trans_kthread;
  1756. }
  1757. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1758. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1759. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1760. blocksize,
  1761. generation + 1);
  1762. ret = btrfs_recover_log_trees(log_tree_root);
  1763. BUG_ON(ret);
  1764. if (sb->s_flags & MS_RDONLY) {
  1765. ret = btrfs_commit_super(tree_root);
  1766. BUG_ON(ret);
  1767. }
  1768. }
  1769. ret = btrfs_find_orphan_roots(tree_root);
  1770. BUG_ON(ret);
  1771. if (!(sb->s_flags & MS_RDONLY)) {
  1772. ret = btrfs_cleanup_fs_roots(fs_info);
  1773. BUG_ON(ret);
  1774. ret = btrfs_recover_relocation(tree_root);
  1775. if (ret < 0) {
  1776. printk(KERN_WARNING
  1777. "btrfs: failed to recover relocation\n");
  1778. err = -EINVAL;
  1779. goto fail_trans_kthread;
  1780. }
  1781. }
  1782. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1783. location.type = BTRFS_ROOT_ITEM_KEY;
  1784. location.offset = (u64)-1;
  1785. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1786. if (!fs_info->fs_root)
  1787. goto fail_trans_kthread;
  1788. if (IS_ERR(fs_info->fs_root)) {
  1789. err = PTR_ERR(fs_info->fs_root);
  1790. goto fail_trans_kthread;
  1791. }
  1792. if (!(sb->s_flags & MS_RDONLY)) {
  1793. down_read(&fs_info->cleanup_work_sem);
  1794. err = btrfs_orphan_cleanup(fs_info->fs_root);
  1795. if (!err)
  1796. err = btrfs_orphan_cleanup(fs_info->tree_root);
  1797. up_read(&fs_info->cleanup_work_sem);
  1798. if (err) {
  1799. close_ctree(tree_root);
  1800. return ERR_PTR(err);
  1801. }
  1802. }
  1803. return tree_root;
  1804. fail_trans_kthread:
  1805. kthread_stop(fs_info->transaction_kthread);
  1806. fail_cleaner:
  1807. kthread_stop(fs_info->cleaner_kthread);
  1808. /*
  1809. * make sure we're done with the btree inode before we stop our
  1810. * kthreads
  1811. */
  1812. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1813. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1814. fail_block_groups:
  1815. btrfs_free_block_groups(fs_info);
  1816. free_extent_buffer(csum_root->node);
  1817. free_extent_buffer(csum_root->commit_root);
  1818. fail_dev_root:
  1819. free_extent_buffer(dev_root->node);
  1820. free_extent_buffer(dev_root->commit_root);
  1821. fail_extent_root:
  1822. free_extent_buffer(extent_root->node);
  1823. free_extent_buffer(extent_root->commit_root);
  1824. fail_tree_root:
  1825. free_extent_buffer(tree_root->node);
  1826. free_extent_buffer(tree_root->commit_root);
  1827. fail_chunk_root:
  1828. free_extent_buffer(chunk_root->node);
  1829. free_extent_buffer(chunk_root->commit_root);
  1830. fail_sb_buffer:
  1831. btrfs_stop_workers(&fs_info->generic_worker);
  1832. btrfs_stop_workers(&fs_info->fixup_workers);
  1833. btrfs_stop_workers(&fs_info->delalloc_workers);
  1834. btrfs_stop_workers(&fs_info->workers);
  1835. btrfs_stop_workers(&fs_info->endio_workers);
  1836. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1837. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1838. btrfs_stop_workers(&fs_info->endio_write_workers);
  1839. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1840. btrfs_stop_workers(&fs_info->submit_workers);
  1841. fail_iput:
  1842. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1843. iput(fs_info->btree_inode);
  1844. btrfs_close_devices(fs_info->fs_devices);
  1845. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1846. fail_bdi:
  1847. bdi_destroy(&fs_info->bdi);
  1848. fail_srcu:
  1849. cleanup_srcu_struct(&fs_info->subvol_srcu);
  1850. fail:
  1851. kfree(extent_root);
  1852. kfree(tree_root);
  1853. kfree(fs_info);
  1854. kfree(chunk_root);
  1855. kfree(dev_root);
  1856. kfree(csum_root);
  1857. return ERR_PTR(err);
  1858. }
  1859. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1860. {
  1861. char b[BDEVNAME_SIZE];
  1862. if (uptodate) {
  1863. set_buffer_uptodate(bh);
  1864. } else {
  1865. if (printk_ratelimit()) {
  1866. printk(KERN_WARNING "lost page write due to "
  1867. "I/O error on %s\n",
  1868. bdevname(bh->b_bdev, b));
  1869. }
  1870. /* note, we dont' set_buffer_write_io_error because we have
  1871. * our own ways of dealing with the IO errors
  1872. */
  1873. clear_buffer_uptodate(bh);
  1874. }
  1875. unlock_buffer(bh);
  1876. put_bh(bh);
  1877. }
  1878. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1879. {
  1880. struct buffer_head *bh;
  1881. struct buffer_head *latest = NULL;
  1882. struct btrfs_super_block *super;
  1883. int i;
  1884. u64 transid = 0;
  1885. u64 bytenr;
  1886. /* we would like to check all the supers, but that would make
  1887. * a btrfs mount succeed after a mkfs from a different FS.
  1888. * So, we need to add a special mount option to scan for
  1889. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1890. */
  1891. for (i = 0; i < 1; i++) {
  1892. bytenr = btrfs_sb_offset(i);
  1893. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1894. break;
  1895. bh = __bread(bdev, bytenr / 4096, 4096);
  1896. if (!bh)
  1897. continue;
  1898. super = (struct btrfs_super_block *)bh->b_data;
  1899. if (btrfs_super_bytenr(super) != bytenr ||
  1900. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1901. sizeof(super->magic))) {
  1902. brelse(bh);
  1903. continue;
  1904. }
  1905. if (!latest || btrfs_super_generation(super) > transid) {
  1906. brelse(latest);
  1907. latest = bh;
  1908. transid = btrfs_super_generation(super);
  1909. } else {
  1910. brelse(bh);
  1911. }
  1912. }
  1913. return latest;
  1914. }
  1915. /*
  1916. * this should be called twice, once with wait == 0 and
  1917. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1918. * we write are pinned.
  1919. *
  1920. * They are released when wait == 1 is done.
  1921. * max_mirrors must be the same for both runs, and it indicates how
  1922. * many supers on this one device should be written.
  1923. *
  1924. * max_mirrors == 0 means to write them all.
  1925. */
  1926. static int write_dev_supers(struct btrfs_device *device,
  1927. struct btrfs_super_block *sb,
  1928. int do_barriers, int wait, int max_mirrors)
  1929. {
  1930. struct buffer_head *bh;
  1931. int i;
  1932. int ret;
  1933. int errors = 0;
  1934. u32 crc;
  1935. u64 bytenr;
  1936. int last_barrier = 0;
  1937. if (max_mirrors == 0)
  1938. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1939. /* make sure only the last submit_bh does a barrier */
  1940. if (do_barriers) {
  1941. for (i = 0; i < max_mirrors; i++) {
  1942. bytenr = btrfs_sb_offset(i);
  1943. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1944. device->total_bytes)
  1945. break;
  1946. last_barrier = i;
  1947. }
  1948. }
  1949. for (i = 0; i < max_mirrors; i++) {
  1950. bytenr = btrfs_sb_offset(i);
  1951. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1952. break;
  1953. if (wait) {
  1954. bh = __find_get_block(device->bdev, bytenr / 4096,
  1955. BTRFS_SUPER_INFO_SIZE);
  1956. BUG_ON(!bh);
  1957. wait_on_buffer(bh);
  1958. if (!buffer_uptodate(bh))
  1959. errors++;
  1960. /* drop our reference */
  1961. brelse(bh);
  1962. /* drop the reference from the wait == 0 run */
  1963. brelse(bh);
  1964. continue;
  1965. } else {
  1966. btrfs_set_super_bytenr(sb, bytenr);
  1967. crc = ~(u32)0;
  1968. crc = btrfs_csum_data(NULL, (char *)sb +
  1969. BTRFS_CSUM_SIZE, crc,
  1970. BTRFS_SUPER_INFO_SIZE -
  1971. BTRFS_CSUM_SIZE);
  1972. btrfs_csum_final(crc, sb->csum);
  1973. /*
  1974. * one reference for us, and we leave it for the
  1975. * caller
  1976. */
  1977. bh = __getblk(device->bdev, bytenr / 4096,
  1978. BTRFS_SUPER_INFO_SIZE);
  1979. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1980. /* one reference for submit_bh */
  1981. get_bh(bh);
  1982. set_buffer_uptodate(bh);
  1983. lock_buffer(bh);
  1984. bh->b_end_io = btrfs_end_buffer_write_sync;
  1985. }
  1986. if (i == last_barrier && do_barriers)
  1987. ret = submit_bh(WRITE_FLUSH_FUA, bh);
  1988. else
  1989. ret = submit_bh(WRITE_SYNC, bh);
  1990. if (ret)
  1991. errors++;
  1992. }
  1993. return errors < i ? 0 : -1;
  1994. }
  1995. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1996. {
  1997. struct list_head *head;
  1998. struct btrfs_device *dev;
  1999. struct btrfs_super_block *sb;
  2000. struct btrfs_dev_item *dev_item;
  2001. int ret;
  2002. int do_barriers;
  2003. int max_errors;
  2004. int total_errors = 0;
  2005. u64 flags;
  2006. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  2007. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2008. sb = &root->fs_info->super_for_commit;
  2009. dev_item = &sb->dev_item;
  2010. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2011. head = &root->fs_info->fs_devices->devices;
  2012. list_for_each_entry(dev, head, dev_list) {
  2013. if (!dev->bdev) {
  2014. total_errors++;
  2015. continue;
  2016. }
  2017. if (!dev->in_fs_metadata || !dev->writeable)
  2018. continue;
  2019. btrfs_set_stack_device_generation(dev_item, 0);
  2020. btrfs_set_stack_device_type(dev_item, dev->type);
  2021. btrfs_set_stack_device_id(dev_item, dev->devid);
  2022. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2023. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2024. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2025. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2026. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2027. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2028. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2029. flags = btrfs_super_flags(sb);
  2030. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2031. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2032. if (ret)
  2033. total_errors++;
  2034. }
  2035. if (total_errors > max_errors) {
  2036. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2037. total_errors);
  2038. BUG();
  2039. }
  2040. total_errors = 0;
  2041. list_for_each_entry(dev, head, dev_list) {
  2042. if (!dev->bdev)
  2043. continue;
  2044. if (!dev->in_fs_metadata || !dev->writeable)
  2045. continue;
  2046. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2047. if (ret)
  2048. total_errors++;
  2049. }
  2050. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2051. if (total_errors > max_errors) {
  2052. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2053. total_errors);
  2054. BUG();
  2055. }
  2056. return 0;
  2057. }
  2058. int write_ctree_super(struct btrfs_trans_handle *trans,
  2059. struct btrfs_root *root, int max_mirrors)
  2060. {
  2061. int ret;
  2062. ret = write_all_supers(root, max_mirrors);
  2063. return ret;
  2064. }
  2065. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2066. {
  2067. spin_lock(&fs_info->fs_roots_radix_lock);
  2068. radix_tree_delete(&fs_info->fs_roots_radix,
  2069. (unsigned long)root->root_key.objectid);
  2070. spin_unlock(&fs_info->fs_roots_radix_lock);
  2071. if (btrfs_root_refs(&root->root_item) == 0)
  2072. synchronize_srcu(&fs_info->subvol_srcu);
  2073. free_fs_root(root);
  2074. return 0;
  2075. }
  2076. static void free_fs_root(struct btrfs_root *root)
  2077. {
  2078. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2079. if (root->anon_super.s_dev) {
  2080. down_write(&root->anon_super.s_umount);
  2081. kill_anon_super(&root->anon_super);
  2082. }
  2083. free_extent_buffer(root->node);
  2084. free_extent_buffer(root->commit_root);
  2085. kfree(root->name);
  2086. kfree(root);
  2087. }
  2088. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2089. {
  2090. int ret;
  2091. struct btrfs_root *gang[8];
  2092. int i;
  2093. while (!list_empty(&fs_info->dead_roots)) {
  2094. gang[0] = list_entry(fs_info->dead_roots.next,
  2095. struct btrfs_root, root_list);
  2096. list_del(&gang[0]->root_list);
  2097. if (gang[0]->in_radix) {
  2098. btrfs_free_fs_root(fs_info, gang[0]);
  2099. } else {
  2100. free_extent_buffer(gang[0]->node);
  2101. free_extent_buffer(gang[0]->commit_root);
  2102. kfree(gang[0]);
  2103. }
  2104. }
  2105. while (1) {
  2106. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2107. (void **)gang, 0,
  2108. ARRAY_SIZE(gang));
  2109. if (!ret)
  2110. break;
  2111. for (i = 0; i < ret; i++)
  2112. btrfs_free_fs_root(fs_info, gang[i]);
  2113. }
  2114. return 0;
  2115. }
  2116. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2117. {
  2118. u64 root_objectid = 0;
  2119. struct btrfs_root *gang[8];
  2120. int i;
  2121. int ret;
  2122. while (1) {
  2123. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2124. (void **)gang, root_objectid,
  2125. ARRAY_SIZE(gang));
  2126. if (!ret)
  2127. break;
  2128. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2129. for (i = 0; i < ret; i++) {
  2130. int err;
  2131. root_objectid = gang[i]->root_key.objectid;
  2132. err = btrfs_orphan_cleanup(gang[i]);
  2133. if (err)
  2134. return err;
  2135. }
  2136. root_objectid++;
  2137. }
  2138. return 0;
  2139. }
  2140. int btrfs_commit_super(struct btrfs_root *root)
  2141. {
  2142. struct btrfs_trans_handle *trans;
  2143. int ret;
  2144. mutex_lock(&root->fs_info->cleaner_mutex);
  2145. btrfs_run_delayed_iputs(root);
  2146. btrfs_clean_old_snapshots(root);
  2147. mutex_unlock(&root->fs_info->cleaner_mutex);
  2148. /* wait until ongoing cleanup work done */
  2149. down_write(&root->fs_info->cleanup_work_sem);
  2150. up_write(&root->fs_info->cleanup_work_sem);
  2151. trans = btrfs_join_transaction(root, 1);
  2152. if (IS_ERR(trans))
  2153. return PTR_ERR(trans);
  2154. ret = btrfs_commit_transaction(trans, root);
  2155. BUG_ON(ret);
  2156. /* run commit again to drop the original snapshot */
  2157. trans = btrfs_join_transaction(root, 1);
  2158. if (IS_ERR(trans))
  2159. return PTR_ERR(trans);
  2160. btrfs_commit_transaction(trans, root);
  2161. ret = btrfs_write_and_wait_transaction(NULL, root);
  2162. BUG_ON(ret);
  2163. ret = write_ctree_super(NULL, root, 0);
  2164. return ret;
  2165. }
  2166. int close_ctree(struct btrfs_root *root)
  2167. {
  2168. struct btrfs_fs_info *fs_info = root->fs_info;
  2169. int ret;
  2170. fs_info->closing = 1;
  2171. smp_mb();
  2172. btrfs_put_block_group_cache(fs_info);
  2173. /*
  2174. * Here come 2 situations when btrfs is broken to flip readonly:
  2175. *
  2176. * 1. when btrfs flips readonly somewhere else before
  2177. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2178. * and btrfs will skip to write sb directly to keep
  2179. * ERROR state on disk.
  2180. *
  2181. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2182. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2183. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2184. * btrfs will cleanup all FS resources first and write sb then.
  2185. */
  2186. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2187. ret = btrfs_commit_super(root);
  2188. if (ret)
  2189. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2190. }
  2191. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2192. ret = btrfs_error_commit_super(root);
  2193. if (ret)
  2194. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2195. }
  2196. kthread_stop(root->fs_info->transaction_kthread);
  2197. kthread_stop(root->fs_info->cleaner_kthread);
  2198. fs_info->closing = 2;
  2199. smp_mb();
  2200. if (fs_info->delalloc_bytes) {
  2201. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2202. (unsigned long long)fs_info->delalloc_bytes);
  2203. }
  2204. if (fs_info->total_ref_cache_size) {
  2205. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2206. (unsigned long long)fs_info->total_ref_cache_size);
  2207. }
  2208. free_extent_buffer(fs_info->extent_root->node);
  2209. free_extent_buffer(fs_info->extent_root->commit_root);
  2210. free_extent_buffer(fs_info->tree_root->node);
  2211. free_extent_buffer(fs_info->tree_root->commit_root);
  2212. free_extent_buffer(root->fs_info->chunk_root->node);
  2213. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2214. free_extent_buffer(root->fs_info->dev_root->node);
  2215. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2216. free_extent_buffer(root->fs_info->csum_root->node);
  2217. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2218. btrfs_free_block_groups(root->fs_info);
  2219. del_fs_roots(fs_info);
  2220. iput(fs_info->btree_inode);
  2221. btrfs_stop_workers(&fs_info->generic_worker);
  2222. btrfs_stop_workers(&fs_info->fixup_workers);
  2223. btrfs_stop_workers(&fs_info->delalloc_workers);
  2224. btrfs_stop_workers(&fs_info->workers);
  2225. btrfs_stop_workers(&fs_info->endio_workers);
  2226. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2227. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2228. btrfs_stop_workers(&fs_info->endio_write_workers);
  2229. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2230. btrfs_stop_workers(&fs_info->submit_workers);
  2231. btrfs_close_devices(fs_info->fs_devices);
  2232. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2233. bdi_destroy(&fs_info->bdi);
  2234. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2235. kfree(fs_info->extent_root);
  2236. kfree(fs_info->tree_root);
  2237. kfree(fs_info->chunk_root);
  2238. kfree(fs_info->dev_root);
  2239. kfree(fs_info->csum_root);
  2240. kfree(fs_info);
  2241. return 0;
  2242. }
  2243. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2244. {
  2245. int ret;
  2246. struct inode *btree_inode = buf->first_page->mapping->host;
  2247. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2248. NULL);
  2249. if (!ret)
  2250. return ret;
  2251. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2252. parent_transid);
  2253. return !ret;
  2254. }
  2255. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2256. {
  2257. struct inode *btree_inode = buf->first_page->mapping->host;
  2258. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2259. buf);
  2260. }
  2261. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2262. {
  2263. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2264. u64 transid = btrfs_header_generation(buf);
  2265. struct inode *btree_inode = root->fs_info->btree_inode;
  2266. int was_dirty;
  2267. btrfs_assert_tree_locked(buf);
  2268. if (transid != root->fs_info->generation) {
  2269. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2270. "found %llu running %llu\n",
  2271. (unsigned long long)buf->start,
  2272. (unsigned long long)transid,
  2273. (unsigned long long)root->fs_info->generation);
  2274. WARN_ON(1);
  2275. }
  2276. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2277. buf);
  2278. if (!was_dirty) {
  2279. spin_lock(&root->fs_info->delalloc_lock);
  2280. root->fs_info->dirty_metadata_bytes += buf->len;
  2281. spin_unlock(&root->fs_info->delalloc_lock);
  2282. }
  2283. }
  2284. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2285. {
  2286. /*
  2287. * looks as though older kernels can get into trouble with
  2288. * this code, they end up stuck in balance_dirty_pages forever
  2289. */
  2290. u64 num_dirty;
  2291. unsigned long thresh = 32 * 1024 * 1024;
  2292. if (current->flags & PF_MEMALLOC)
  2293. return;
  2294. num_dirty = root->fs_info->dirty_metadata_bytes;
  2295. if (num_dirty > thresh) {
  2296. balance_dirty_pages_ratelimited_nr(
  2297. root->fs_info->btree_inode->i_mapping, 1);
  2298. }
  2299. return;
  2300. }
  2301. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2302. {
  2303. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2304. int ret;
  2305. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2306. if (ret == 0)
  2307. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2308. return ret;
  2309. }
  2310. int btree_lock_page_hook(struct page *page)
  2311. {
  2312. struct inode *inode = page->mapping->host;
  2313. struct btrfs_root *root = BTRFS_I(inode)->root;
  2314. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2315. struct extent_buffer *eb;
  2316. unsigned long len;
  2317. u64 bytenr = page_offset(page);
  2318. if (page->private == EXTENT_PAGE_PRIVATE)
  2319. goto out;
  2320. len = page->private >> 2;
  2321. eb = find_extent_buffer(io_tree, bytenr, len);
  2322. if (!eb)
  2323. goto out;
  2324. btrfs_tree_lock(eb);
  2325. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2326. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2327. spin_lock(&root->fs_info->delalloc_lock);
  2328. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2329. root->fs_info->dirty_metadata_bytes -= eb->len;
  2330. else
  2331. WARN_ON(1);
  2332. spin_unlock(&root->fs_info->delalloc_lock);
  2333. }
  2334. btrfs_tree_unlock(eb);
  2335. free_extent_buffer(eb);
  2336. out:
  2337. lock_page(page);
  2338. return 0;
  2339. }
  2340. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2341. int read_only)
  2342. {
  2343. if (read_only)
  2344. return;
  2345. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2346. printk(KERN_WARNING "warning: mount fs with errors, "
  2347. "running btrfsck is recommended\n");
  2348. }
  2349. int btrfs_error_commit_super(struct btrfs_root *root)
  2350. {
  2351. int ret;
  2352. mutex_lock(&root->fs_info->cleaner_mutex);
  2353. btrfs_run_delayed_iputs(root);
  2354. mutex_unlock(&root->fs_info->cleaner_mutex);
  2355. down_write(&root->fs_info->cleanup_work_sem);
  2356. up_write(&root->fs_info->cleanup_work_sem);
  2357. /* cleanup FS via transaction */
  2358. btrfs_cleanup_transaction(root);
  2359. ret = write_ctree_super(NULL, root, 0);
  2360. return ret;
  2361. }
  2362. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2363. {
  2364. struct btrfs_inode *btrfs_inode;
  2365. struct list_head splice;
  2366. INIT_LIST_HEAD(&splice);
  2367. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2368. spin_lock(&root->fs_info->ordered_extent_lock);
  2369. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2370. while (!list_empty(&splice)) {
  2371. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2372. ordered_operations);
  2373. list_del_init(&btrfs_inode->ordered_operations);
  2374. btrfs_invalidate_inodes(btrfs_inode->root);
  2375. }
  2376. spin_unlock(&root->fs_info->ordered_extent_lock);
  2377. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2378. return 0;
  2379. }
  2380. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2381. {
  2382. struct list_head splice;
  2383. struct btrfs_ordered_extent *ordered;
  2384. struct inode *inode;
  2385. INIT_LIST_HEAD(&splice);
  2386. spin_lock(&root->fs_info->ordered_extent_lock);
  2387. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2388. while (!list_empty(&splice)) {
  2389. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2390. root_extent_list);
  2391. list_del_init(&ordered->root_extent_list);
  2392. atomic_inc(&ordered->refs);
  2393. /* the inode may be getting freed (in sys_unlink path). */
  2394. inode = igrab(ordered->inode);
  2395. spin_unlock(&root->fs_info->ordered_extent_lock);
  2396. if (inode)
  2397. iput(inode);
  2398. atomic_set(&ordered->refs, 1);
  2399. btrfs_put_ordered_extent(ordered);
  2400. spin_lock(&root->fs_info->ordered_extent_lock);
  2401. }
  2402. spin_unlock(&root->fs_info->ordered_extent_lock);
  2403. return 0;
  2404. }
  2405. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2406. struct btrfs_root *root)
  2407. {
  2408. struct rb_node *node;
  2409. struct btrfs_delayed_ref_root *delayed_refs;
  2410. struct btrfs_delayed_ref_node *ref;
  2411. int ret = 0;
  2412. delayed_refs = &trans->delayed_refs;
  2413. spin_lock(&delayed_refs->lock);
  2414. if (delayed_refs->num_entries == 0) {
  2415. spin_unlock(&delayed_refs->lock);
  2416. printk(KERN_INFO "delayed_refs has NO entry\n");
  2417. return ret;
  2418. }
  2419. node = rb_first(&delayed_refs->root);
  2420. while (node) {
  2421. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2422. node = rb_next(node);
  2423. ref->in_tree = 0;
  2424. rb_erase(&ref->rb_node, &delayed_refs->root);
  2425. delayed_refs->num_entries--;
  2426. atomic_set(&ref->refs, 1);
  2427. if (btrfs_delayed_ref_is_head(ref)) {
  2428. struct btrfs_delayed_ref_head *head;
  2429. head = btrfs_delayed_node_to_head(ref);
  2430. mutex_lock(&head->mutex);
  2431. kfree(head->extent_op);
  2432. delayed_refs->num_heads--;
  2433. if (list_empty(&head->cluster))
  2434. delayed_refs->num_heads_ready--;
  2435. list_del_init(&head->cluster);
  2436. mutex_unlock(&head->mutex);
  2437. }
  2438. spin_unlock(&delayed_refs->lock);
  2439. btrfs_put_delayed_ref(ref);
  2440. cond_resched();
  2441. spin_lock(&delayed_refs->lock);
  2442. }
  2443. spin_unlock(&delayed_refs->lock);
  2444. return ret;
  2445. }
  2446. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2447. {
  2448. struct btrfs_pending_snapshot *snapshot;
  2449. struct list_head splice;
  2450. INIT_LIST_HEAD(&splice);
  2451. list_splice_init(&t->pending_snapshots, &splice);
  2452. while (!list_empty(&splice)) {
  2453. snapshot = list_entry(splice.next,
  2454. struct btrfs_pending_snapshot,
  2455. list);
  2456. list_del_init(&snapshot->list);
  2457. kfree(snapshot);
  2458. }
  2459. return 0;
  2460. }
  2461. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2462. {
  2463. struct btrfs_inode *btrfs_inode;
  2464. struct list_head splice;
  2465. INIT_LIST_HEAD(&splice);
  2466. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2467. spin_lock(&root->fs_info->delalloc_lock);
  2468. while (!list_empty(&splice)) {
  2469. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2470. delalloc_inodes);
  2471. list_del_init(&btrfs_inode->delalloc_inodes);
  2472. btrfs_invalidate_inodes(btrfs_inode->root);
  2473. }
  2474. spin_unlock(&root->fs_info->delalloc_lock);
  2475. return 0;
  2476. }
  2477. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2478. struct extent_io_tree *dirty_pages,
  2479. int mark)
  2480. {
  2481. int ret;
  2482. struct page *page;
  2483. struct inode *btree_inode = root->fs_info->btree_inode;
  2484. struct extent_buffer *eb;
  2485. u64 start = 0;
  2486. u64 end;
  2487. u64 offset;
  2488. unsigned long index;
  2489. while (1) {
  2490. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2491. mark);
  2492. if (ret)
  2493. break;
  2494. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2495. while (start <= end) {
  2496. index = start >> PAGE_CACHE_SHIFT;
  2497. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2498. page = find_get_page(btree_inode->i_mapping, index);
  2499. if (!page)
  2500. continue;
  2501. offset = page_offset(page);
  2502. spin_lock(&dirty_pages->buffer_lock);
  2503. eb = radix_tree_lookup(
  2504. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2505. offset >> PAGE_CACHE_SHIFT);
  2506. spin_unlock(&dirty_pages->buffer_lock);
  2507. if (eb) {
  2508. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2509. &eb->bflags);
  2510. atomic_set(&eb->refs, 1);
  2511. }
  2512. if (PageWriteback(page))
  2513. end_page_writeback(page);
  2514. lock_page(page);
  2515. if (PageDirty(page)) {
  2516. clear_page_dirty_for_io(page);
  2517. spin_lock_irq(&page->mapping->tree_lock);
  2518. radix_tree_tag_clear(&page->mapping->page_tree,
  2519. page_index(page),
  2520. PAGECACHE_TAG_DIRTY);
  2521. spin_unlock_irq(&page->mapping->tree_lock);
  2522. }
  2523. page->mapping->a_ops->invalidatepage(page, 0);
  2524. unlock_page(page);
  2525. }
  2526. }
  2527. return ret;
  2528. }
  2529. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2530. struct extent_io_tree *pinned_extents)
  2531. {
  2532. struct extent_io_tree *unpin;
  2533. u64 start;
  2534. u64 end;
  2535. int ret;
  2536. unpin = pinned_extents;
  2537. while (1) {
  2538. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2539. EXTENT_DIRTY);
  2540. if (ret)
  2541. break;
  2542. /* opt_discard */
  2543. if (btrfs_test_opt(root, DISCARD))
  2544. ret = btrfs_error_discard_extent(root, start,
  2545. end + 1 - start,
  2546. NULL);
  2547. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2548. btrfs_error_unpin_extent_range(root, start, end);
  2549. cond_resched();
  2550. }
  2551. return 0;
  2552. }
  2553. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2554. {
  2555. struct btrfs_transaction *t;
  2556. LIST_HEAD(list);
  2557. WARN_ON(1);
  2558. mutex_lock(&root->fs_info->trans_mutex);
  2559. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  2560. list_splice_init(&root->fs_info->trans_list, &list);
  2561. while (!list_empty(&list)) {
  2562. t = list_entry(list.next, struct btrfs_transaction, list);
  2563. if (!t)
  2564. break;
  2565. btrfs_destroy_ordered_operations(root);
  2566. btrfs_destroy_ordered_extents(root);
  2567. btrfs_destroy_delayed_refs(t, root);
  2568. btrfs_block_rsv_release(root,
  2569. &root->fs_info->trans_block_rsv,
  2570. t->dirty_pages.dirty_bytes);
  2571. /* FIXME: cleanup wait for commit */
  2572. t->in_commit = 1;
  2573. t->blocked = 1;
  2574. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  2575. wake_up(&root->fs_info->transaction_blocked_wait);
  2576. t->blocked = 0;
  2577. if (waitqueue_active(&root->fs_info->transaction_wait))
  2578. wake_up(&root->fs_info->transaction_wait);
  2579. mutex_unlock(&root->fs_info->trans_mutex);
  2580. mutex_lock(&root->fs_info->trans_mutex);
  2581. t->commit_done = 1;
  2582. if (waitqueue_active(&t->commit_wait))
  2583. wake_up(&t->commit_wait);
  2584. mutex_unlock(&root->fs_info->trans_mutex);
  2585. mutex_lock(&root->fs_info->trans_mutex);
  2586. btrfs_destroy_pending_snapshots(t);
  2587. btrfs_destroy_delalloc_inodes(root);
  2588. spin_lock(&root->fs_info->new_trans_lock);
  2589. root->fs_info->running_transaction = NULL;
  2590. spin_unlock(&root->fs_info->new_trans_lock);
  2591. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  2592. EXTENT_DIRTY);
  2593. btrfs_destroy_pinned_extent(root,
  2594. root->fs_info->pinned_extents);
  2595. atomic_set(&t->use_count, 0);
  2596. list_del_init(&t->list);
  2597. memset(t, 0, sizeof(*t));
  2598. kmem_cache_free(btrfs_transaction_cachep, t);
  2599. }
  2600. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  2601. mutex_unlock(&root->fs_info->trans_mutex);
  2602. return 0;
  2603. }
  2604. static struct extent_io_ops btree_extent_io_ops = {
  2605. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2606. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2607. .submit_bio_hook = btree_submit_bio_hook,
  2608. /* note we're sharing with inode.c for the merge bio hook */
  2609. .merge_bio_hook = btrfs_merge_bio_hook,
  2610. };