pch_dma.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005
  1. /*
  2. * Topcliff PCH DMA controller driver
  3. * Copyright (c) 2010 Intel Corporation
  4. * Copyright (C) 2011 OKI SEMICONDUCTOR CO., LTD.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/dmaengine.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/module.h>
  25. #include <linux/pch_dma.h>
  26. #define DRV_NAME "pch-dma"
  27. #define DMA_CTL0_DISABLE 0x0
  28. #define DMA_CTL0_SG 0x1
  29. #define DMA_CTL0_ONESHOT 0x2
  30. #define DMA_CTL0_MODE_MASK_BITS 0x3
  31. #define DMA_CTL0_DIR_SHIFT_BITS 2
  32. #define DMA_CTL0_BITS_PER_CH 4
  33. #define DMA_CTL2_START_SHIFT_BITS 8
  34. #define DMA_CTL2_IRQ_ENABLE_MASK ((1UL << DMA_CTL2_START_SHIFT_BITS) - 1)
  35. #define DMA_STATUS_IDLE 0x0
  36. #define DMA_STATUS_DESC_READ 0x1
  37. #define DMA_STATUS_WAIT 0x2
  38. #define DMA_STATUS_ACCESS 0x3
  39. #define DMA_STATUS_BITS_PER_CH 2
  40. #define DMA_STATUS_MASK_BITS 0x3
  41. #define DMA_STATUS_SHIFT_BITS 16
  42. #define DMA_STATUS_IRQ(x) (0x1 << (x))
  43. #define DMA_STATUS_ERR(x) (0x1 << ((x) + 8))
  44. #define DMA_DESC_WIDTH_SHIFT_BITS 12
  45. #define DMA_DESC_WIDTH_1_BYTE (0x3 << DMA_DESC_WIDTH_SHIFT_BITS)
  46. #define DMA_DESC_WIDTH_2_BYTES (0x2 << DMA_DESC_WIDTH_SHIFT_BITS)
  47. #define DMA_DESC_WIDTH_4_BYTES (0x0 << DMA_DESC_WIDTH_SHIFT_BITS)
  48. #define DMA_DESC_MAX_COUNT_1_BYTE 0x3FF
  49. #define DMA_DESC_MAX_COUNT_2_BYTES 0x3FF
  50. #define DMA_DESC_MAX_COUNT_4_BYTES 0x7FF
  51. #define DMA_DESC_END_WITHOUT_IRQ 0x0
  52. #define DMA_DESC_END_WITH_IRQ 0x1
  53. #define DMA_DESC_FOLLOW_WITHOUT_IRQ 0x2
  54. #define DMA_DESC_FOLLOW_WITH_IRQ 0x3
  55. #define MAX_CHAN_NR 8
  56. static unsigned int init_nr_desc_per_channel = 64;
  57. module_param(init_nr_desc_per_channel, uint, 0644);
  58. MODULE_PARM_DESC(init_nr_desc_per_channel,
  59. "initial descriptors per channel (default: 64)");
  60. struct pch_dma_desc_regs {
  61. u32 dev_addr;
  62. u32 mem_addr;
  63. u32 size;
  64. u32 next;
  65. };
  66. struct pch_dma_regs {
  67. u32 dma_ctl0;
  68. u32 dma_ctl1;
  69. u32 dma_ctl2;
  70. u32 dma_ctl3;
  71. u32 dma_sts0;
  72. u32 dma_sts1;
  73. u32 dma_sts2;
  74. u32 reserved3;
  75. struct pch_dma_desc_regs desc[MAX_CHAN_NR];
  76. };
  77. struct pch_dma_desc {
  78. struct pch_dma_desc_regs regs;
  79. struct dma_async_tx_descriptor txd;
  80. struct list_head desc_node;
  81. struct list_head tx_list;
  82. };
  83. struct pch_dma_chan {
  84. struct dma_chan chan;
  85. void __iomem *membase;
  86. enum dma_data_direction dir;
  87. struct tasklet_struct tasklet;
  88. unsigned long err_status;
  89. spinlock_t lock;
  90. dma_cookie_t completed_cookie;
  91. struct list_head active_list;
  92. struct list_head queue;
  93. struct list_head free_list;
  94. unsigned int descs_allocated;
  95. };
  96. #define PDC_DEV_ADDR 0x00
  97. #define PDC_MEM_ADDR 0x04
  98. #define PDC_SIZE 0x08
  99. #define PDC_NEXT 0x0C
  100. #define channel_readl(pdc, name) \
  101. readl((pdc)->membase + PDC_##name)
  102. #define channel_writel(pdc, name, val) \
  103. writel((val), (pdc)->membase + PDC_##name)
  104. struct pch_dma {
  105. struct dma_device dma;
  106. void __iomem *membase;
  107. struct pci_pool *pool;
  108. struct pch_dma_regs regs;
  109. struct pch_dma_desc_regs ch_regs[MAX_CHAN_NR];
  110. struct pch_dma_chan channels[MAX_CHAN_NR];
  111. };
  112. #define PCH_DMA_CTL0 0x00
  113. #define PCH_DMA_CTL1 0x04
  114. #define PCH_DMA_CTL2 0x08
  115. #define PCH_DMA_CTL3 0x0C
  116. #define PCH_DMA_STS0 0x10
  117. #define PCH_DMA_STS1 0x14
  118. #define dma_readl(pd, name) \
  119. readl((pd)->membase + PCH_DMA_##name)
  120. #define dma_writel(pd, name, val) \
  121. writel((val), (pd)->membase + PCH_DMA_##name)
  122. static inline
  123. struct pch_dma_desc *to_pd_desc(struct dma_async_tx_descriptor *txd)
  124. {
  125. return container_of(txd, struct pch_dma_desc, txd);
  126. }
  127. static inline struct pch_dma_chan *to_pd_chan(struct dma_chan *chan)
  128. {
  129. return container_of(chan, struct pch_dma_chan, chan);
  130. }
  131. static inline struct pch_dma *to_pd(struct dma_device *ddev)
  132. {
  133. return container_of(ddev, struct pch_dma, dma);
  134. }
  135. static inline struct device *chan2dev(struct dma_chan *chan)
  136. {
  137. return &chan->dev->device;
  138. }
  139. static inline struct device *chan2parent(struct dma_chan *chan)
  140. {
  141. return chan->dev->device.parent;
  142. }
  143. static inline
  144. struct pch_dma_desc *pdc_first_active(struct pch_dma_chan *pd_chan)
  145. {
  146. return list_first_entry(&pd_chan->active_list,
  147. struct pch_dma_desc, desc_node);
  148. }
  149. static inline
  150. struct pch_dma_desc *pdc_first_queued(struct pch_dma_chan *pd_chan)
  151. {
  152. return list_first_entry(&pd_chan->queue,
  153. struct pch_dma_desc, desc_node);
  154. }
  155. static void pdc_enable_irq(struct dma_chan *chan, int enable)
  156. {
  157. struct pch_dma *pd = to_pd(chan->device);
  158. u32 val;
  159. val = dma_readl(pd, CTL2);
  160. if (enable)
  161. val |= 0x1 << chan->chan_id;
  162. else
  163. val &= ~(0x1 << chan->chan_id);
  164. dma_writel(pd, CTL2, val);
  165. dev_dbg(chan2dev(chan), "pdc_enable_irq: chan %d -> %x\n",
  166. chan->chan_id, val);
  167. }
  168. static void pdc_set_dir(struct dma_chan *chan)
  169. {
  170. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  171. struct pch_dma *pd = to_pd(chan->device);
  172. u32 val;
  173. if (chan->chan_id < 8) {
  174. val = dma_readl(pd, CTL0);
  175. if (pd_chan->dir == DMA_TO_DEVICE)
  176. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  177. DMA_CTL0_DIR_SHIFT_BITS);
  178. else
  179. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * chan->chan_id +
  180. DMA_CTL0_DIR_SHIFT_BITS));
  181. dma_writel(pd, CTL0, val);
  182. } else {
  183. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  184. val = dma_readl(pd, CTL3);
  185. if (pd_chan->dir == DMA_TO_DEVICE)
  186. val |= 0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  187. DMA_CTL0_DIR_SHIFT_BITS);
  188. else
  189. val &= ~(0x1 << (DMA_CTL0_BITS_PER_CH * ch +
  190. DMA_CTL0_DIR_SHIFT_BITS));
  191. dma_writel(pd, CTL3, val);
  192. }
  193. dev_dbg(chan2dev(chan), "pdc_set_dir: chan %d -> %x\n",
  194. chan->chan_id, val);
  195. }
  196. static void pdc_set_mode(struct dma_chan *chan, u32 mode)
  197. {
  198. struct pch_dma *pd = to_pd(chan->device);
  199. u32 val;
  200. if (chan->chan_id < 8) {
  201. val = dma_readl(pd, CTL0);
  202. val &= ~(DMA_CTL0_MODE_MASK_BITS <<
  203. (DMA_CTL0_BITS_PER_CH * chan->chan_id));
  204. val |= mode << (DMA_CTL0_BITS_PER_CH * chan->chan_id);
  205. dma_writel(pd, CTL0, val);
  206. } else {
  207. int ch = chan->chan_id - 8; /* ch8-->0 ch9-->1 ... ch11->3 */
  208. val = dma_readl(pd, CTL3);
  209. val &= ~(DMA_CTL0_MODE_MASK_BITS <<
  210. (DMA_CTL0_BITS_PER_CH * ch));
  211. val |= mode << (DMA_CTL0_BITS_PER_CH * ch);
  212. dma_writel(pd, CTL3, val);
  213. }
  214. dev_dbg(chan2dev(chan), "pdc_set_mode: chan %d -> %x\n",
  215. chan->chan_id, val);
  216. }
  217. static u32 pdc_get_status(struct pch_dma_chan *pd_chan)
  218. {
  219. struct pch_dma *pd = to_pd(pd_chan->chan.device);
  220. u32 val;
  221. val = dma_readl(pd, STS0);
  222. return DMA_STATUS_MASK_BITS & (val >> (DMA_STATUS_SHIFT_BITS +
  223. DMA_STATUS_BITS_PER_CH * pd_chan->chan.chan_id));
  224. }
  225. static bool pdc_is_idle(struct pch_dma_chan *pd_chan)
  226. {
  227. if (pdc_get_status(pd_chan) == DMA_STATUS_IDLE)
  228. return true;
  229. else
  230. return false;
  231. }
  232. static void pdc_dostart(struct pch_dma_chan *pd_chan, struct pch_dma_desc* desc)
  233. {
  234. if (!pdc_is_idle(pd_chan)) {
  235. dev_err(chan2dev(&pd_chan->chan),
  236. "BUG: Attempt to start non-idle channel\n");
  237. return;
  238. }
  239. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> dev_addr: %x\n",
  240. pd_chan->chan.chan_id, desc->regs.dev_addr);
  241. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> mem_addr: %x\n",
  242. pd_chan->chan.chan_id, desc->regs.mem_addr);
  243. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> size: %x\n",
  244. pd_chan->chan.chan_id, desc->regs.size);
  245. dev_dbg(chan2dev(&pd_chan->chan), "chan %d -> next: %x\n",
  246. pd_chan->chan.chan_id, desc->regs.next);
  247. if (list_empty(&desc->tx_list)) {
  248. channel_writel(pd_chan, DEV_ADDR, desc->regs.dev_addr);
  249. channel_writel(pd_chan, MEM_ADDR, desc->regs.mem_addr);
  250. channel_writel(pd_chan, SIZE, desc->regs.size);
  251. channel_writel(pd_chan, NEXT, desc->regs.next);
  252. pdc_set_mode(&pd_chan->chan, DMA_CTL0_ONESHOT);
  253. } else {
  254. channel_writel(pd_chan, NEXT, desc->txd.phys);
  255. pdc_set_mode(&pd_chan->chan, DMA_CTL0_SG);
  256. }
  257. }
  258. static void pdc_chain_complete(struct pch_dma_chan *pd_chan,
  259. struct pch_dma_desc *desc)
  260. {
  261. struct dma_async_tx_descriptor *txd = &desc->txd;
  262. dma_async_tx_callback callback = txd->callback;
  263. void *param = txd->callback_param;
  264. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  265. list_move(&desc->desc_node, &pd_chan->free_list);
  266. if (callback)
  267. callback(param);
  268. }
  269. static void pdc_complete_all(struct pch_dma_chan *pd_chan)
  270. {
  271. struct pch_dma_desc *desc, *_d;
  272. LIST_HEAD(list);
  273. BUG_ON(!pdc_is_idle(pd_chan));
  274. if (!list_empty(&pd_chan->queue))
  275. pdc_dostart(pd_chan, pdc_first_queued(pd_chan));
  276. list_splice_init(&pd_chan->active_list, &list);
  277. list_splice_init(&pd_chan->queue, &pd_chan->active_list);
  278. list_for_each_entry_safe(desc, _d, &list, desc_node)
  279. pdc_chain_complete(pd_chan, desc);
  280. }
  281. static void pdc_handle_error(struct pch_dma_chan *pd_chan)
  282. {
  283. struct pch_dma_desc *bad_desc;
  284. bad_desc = pdc_first_active(pd_chan);
  285. list_del(&bad_desc->desc_node);
  286. list_splice_init(&pd_chan->queue, pd_chan->active_list.prev);
  287. if (!list_empty(&pd_chan->active_list))
  288. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  289. dev_crit(chan2dev(&pd_chan->chan), "Bad descriptor submitted\n");
  290. dev_crit(chan2dev(&pd_chan->chan), "descriptor cookie: %d\n",
  291. bad_desc->txd.cookie);
  292. pdc_chain_complete(pd_chan, bad_desc);
  293. }
  294. static void pdc_advance_work(struct pch_dma_chan *pd_chan)
  295. {
  296. if (list_empty(&pd_chan->active_list) ||
  297. list_is_singular(&pd_chan->active_list)) {
  298. pdc_complete_all(pd_chan);
  299. } else {
  300. pdc_chain_complete(pd_chan, pdc_first_active(pd_chan));
  301. pdc_dostart(pd_chan, pdc_first_active(pd_chan));
  302. }
  303. }
  304. static dma_cookie_t pdc_assign_cookie(struct pch_dma_chan *pd_chan,
  305. struct pch_dma_desc *desc)
  306. {
  307. dma_cookie_t cookie = pd_chan->chan.cookie;
  308. if (++cookie < 0)
  309. cookie = 1;
  310. pd_chan->chan.cookie = cookie;
  311. desc->txd.cookie = cookie;
  312. return cookie;
  313. }
  314. static dma_cookie_t pd_tx_submit(struct dma_async_tx_descriptor *txd)
  315. {
  316. struct pch_dma_desc *desc = to_pd_desc(txd);
  317. struct pch_dma_chan *pd_chan = to_pd_chan(txd->chan);
  318. dma_cookie_t cookie;
  319. spin_lock(&pd_chan->lock);
  320. cookie = pdc_assign_cookie(pd_chan, desc);
  321. if (list_empty(&pd_chan->active_list)) {
  322. list_add_tail(&desc->desc_node, &pd_chan->active_list);
  323. pdc_dostart(pd_chan, desc);
  324. } else {
  325. list_add_tail(&desc->desc_node, &pd_chan->queue);
  326. }
  327. spin_unlock(&pd_chan->lock);
  328. return 0;
  329. }
  330. static struct pch_dma_desc *pdc_alloc_desc(struct dma_chan *chan, gfp_t flags)
  331. {
  332. struct pch_dma_desc *desc = NULL;
  333. struct pch_dma *pd = to_pd(chan->device);
  334. dma_addr_t addr;
  335. desc = pci_pool_alloc(pd->pool, flags, &addr);
  336. if (desc) {
  337. memset(desc, 0, sizeof(struct pch_dma_desc));
  338. INIT_LIST_HEAD(&desc->tx_list);
  339. dma_async_tx_descriptor_init(&desc->txd, chan);
  340. desc->txd.tx_submit = pd_tx_submit;
  341. desc->txd.flags = DMA_CTRL_ACK;
  342. desc->txd.phys = addr;
  343. }
  344. return desc;
  345. }
  346. static struct pch_dma_desc *pdc_desc_get(struct pch_dma_chan *pd_chan)
  347. {
  348. struct pch_dma_desc *desc, *_d;
  349. struct pch_dma_desc *ret = NULL;
  350. int i = 0;
  351. spin_lock(&pd_chan->lock);
  352. list_for_each_entry_safe(desc, _d, &pd_chan->free_list, desc_node) {
  353. i++;
  354. if (async_tx_test_ack(&desc->txd)) {
  355. list_del(&desc->desc_node);
  356. ret = desc;
  357. break;
  358. }
  359. dev_dbg(chan2dev(&pd_chan->chan), "desc %p not ACKed\n", desc);
  360. }
  361. spin_unlock(&pd_chan->lock);
  362. dev_dbg(chan2dev(&pd_chan->chan), "scanned %d descriptors\n", i);
  363. if (!ret) {
  364. ret = pdc_alloc_desc(&pd_chan->chan, GFP_NOIO);
  365. if (ret) {
  366. spin_lock(&pd_chan->lock);
  367. pd_chan->descs_allocated++;
  368. spin_unlock(&pd_chan->lock);
  369. } else {
  370. dev_err(chan2dev(&pd_chan->chan),
  371. "failed to alloc desc\n");
  372. }
  373. }
  374. return ret;
  375. }
  376. static void pdc_desc_put(struct pch_dma_chan *pd_chan,
  377. struct pch_dma_desc *desc)
  378. {
  379. if (desc) {
  380. spin_lock(&pd_chan->lock);
  381. list_splice_init(&desc->tx_list, &pd_chan->free_list);
  382. list_add(&desc->desc_node, &pd_chan->free_list);
  383. spin_unlock(&pd_chan->lock);
  384. }
  385. }
  386. static int pd_alloc_chan_resources(struct dma_chan *chan)
  387. {
  388. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  389. struct pch_dma_desc *desc;
  390. LIST_HEAD(tmp_list);
  391. int i;
  392. if (!pdc_is_idle(pd_chan)) {
  393. dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
  394. return -EIO;
  395. }
  396. if (!list_empty(&pd_chan->free_list))
  397. return pd_chan->descs_allocated;
  398. for (i = 0; i < init_nr_desc_per_channel; i++) {
  399. desc = pdc_alloc_desc(chan, GFP_KERNEL);
  400. if (!desc) {
  401. dev_warn(chan2dev(chan),
  402. "Only allocated %d initial descriptors\n", i);
  403. break;
  404. }
  405. list_add_tail(&desc->desc_node, &tmp_list);
  406. }
  407. spin_lock_bh(&pd_chan->lock);
  408. list_splice(&tmp_list, &pd_chan->free_list);
  409. pd_chan->descs_allocated = i;
  410. pd_chan->completed_cookie = chan->cookie = 1;
  411. spin_unlock_bh(&pd_chan->lock);
  412. pdc_enable_irq(chan, 1);
  413. return pd_chan->descs_allocated;
  414. }
  415. static void pd_free_chan_resources(struct dma_chan *chan)
  416. {
  417. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  418. struct pch_dma *pd = to_pd(chan->device);
  419. struct pch_dma_desc *desc, *_d;
  420. LIST_HEAD(tmp_list);
  421. BUG_ON(!pdc_is_idle(pd_chan));
  422. BUG_ON(!list_empty(&pd_chan->active_list));
  423. BUG_ON(!list_empty(&pd_chan->queue));
  424. spin_lock_bh(&pd_chan->lock);
  425. list_splice_init(&pd_chan->free_list, &tmp_list);
  426. pd_chan->descs_allocated = 0;
  427. spin_unlock_bh(&pd_chan->lock);
  428. list_for_each_entry_safe(desc, _d, &tmp_list, desc_node)
  429. pci_pool_free(pd->pool, desc, desc->txd.phys);
  430. pdc_enable_irq(chan, 0);
  431. }
  432. static enum dma_status pd_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
  433. struct dma_tx_state *txstate)
  434. {
  435. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  436. dma_cookie_t last_used;
  437. dma_cookie_t last_completed;
  438. int ret;
  439. spin_lock_bh(&pd_chan->lock);
  440. last_completed = pd_chan->completed_cookie;
  441. last_used = chan->cookie;
  442. spin_unlock_bh(&pd_chan->lock);
  443. ret = dma_async_is_complete(cookie, last_completed, last_used);
  444. dma_set_tx_state(txstate, last_completed, last_used, 0);
  445. return ret;
  446. }
  447. static void pd_issue_pending(struct dma_chan *chan)
  448. {
  449. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  450. if (pdc_is_idle(pd_chan)) {
  451. spin_lock(&pd_chan->lock);
  452. pdc_advance_work(pd_chan);
  453. spin_unlock(&pd_chan->lock);
  454. }
  455. }
  456. static struct dma_async_tx_descriptor *pd_prep_slave_sg(struct dma_chan *chan,
  457. struct scatterlist *sgl, unsigned int sg_len,
  458. enum dma_data_direction direction, unsigned long flags)
  459. {
  460. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  461. struct pch_dma_slave *pd_slave = chan->private;
  462. struct pch_dma_desc *first = NULL;
  463. struct pch_dma_desc *prev = NULL;
  464. struct pch_dma_desc *desc = NULL;
  465. struct scatterlist *sg;
  466. dma_addr_t reg;
  467. int i;
  468. if (unlikely(!sg_len)) {
  469. dev_info(chan2dev(chan), "prep_slave_sg: length is zero!\n");
  470. return NULL;
  471. }
  472. if (direction == DMA_FROM_DEVICE)
  473. reg = pd_slave->rx_reg;
  474. else if (direction == DMA_TO_DEVICE)
  475. reg = pd_slave->tx_reg;
  476. else
  477. return NULL;
  478. pd_chan->dir = direction;
  479. pdc_set_dir(chan);
  480. for_each_sg(sgl, sg, sg_len, i) {
  481. desc = pdc_desc_get(pd_chan);
  482. if (!desc)
  483. goto err_desc_get;
  484. desc->regs.dev_addr = reg;
  485. desc->regs.mem_addr = sg_phys(sg);
  486. desc->regs.size = sg_dma_len(sg);
  487. desc->regs.next = DMA_DESC_FOLLOW_WITHOUT_IRQ;
  488. switch (pd_slave->width) {
  489. case PCH_DMA_WIDTH_1_BYTE:
  490. if (desc->regs.size > DMA_DESC_MAX_COUNT_1_BYTE)
  491. goto err_desc_get;
  492. desc->regs.size |= DMA_DESC_WIDTH_1_BYTE;
  493. break;
  494. case PCH_DMA_WIDTH_2_BYTES:
  495. if (desc->regs.size > DMA_DESC_MAX_COUNT_2_BYTES)
  496. goto err_desc_get;
  497. desc->regs.size |= DMA_DESC_WIDTH_2_BYTES;
  498. break;
  499. case PCH_DMA_WIDTH_4_BYTES:
  500. if (desc->regs.size > DMA_DESC_MAX_COUNT_4_BYTES)
  501. goto err_desc_get;
  502. desc->regs.size |= DMA_DESC_WIDTH_4_BYTES;
  503. break;
  504. default:
  505. goto err_desc_get;
  506. }
  507. if (!first) {
  508. first = desc;
  509. } else {
  510. prev->regs.next |= desc->txd.phys;
  511. list_add_tail(&desc->desc_node, &first->tx_list);
  512. }
  513. prev = desc;
  514. }
  515. if (flags & DMA_PREP_INTERRUPT)
  516. desc->regs.next = DMA_DESC_END_WITH_IRQ;
  517. else
  518. desc->regs.next = DMA_DESC_END_WITHOUT_IRQ;
  519. first->txd.cookie = -EBUSY;
  520. desc->txd.flags = flags;
  521. return &first->txd;
  522. err_desc_get:
  523. dev_err(chan2dev(chan), "failed to get desc or wrong parameters\n");
  524. pdc_desc_put(pd_chan, first);
  525. return NULL;
  526. }
  527. static int pd_device_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  528. unsigned long arg)
  529. {
  530. struct pch_dma_chan *pd_chan = to_pd_chan(chan);
  531. struct pch_dma_desc *desc, *_d;
  532. LIST_HEAD(list);
  533. if (cmd != DMA_TERMINATE_ALL)
  534. return -ENXIO;
  535. spin_lock_bh(&pd_chan->lock);
  536. pdc_set_mode(&pd_chan->chan, DMA_CTL0_DISABLE);
  537. list_splice_init(&pd_chan->active_list, &list);
  538. list_splice_init(&pd_chan->queue, &list);
  539. list_for_each_entry_safe(desc, _d, &list, desc_node)
  540. pdc_chain_complete(pd_chan, desc);
  541. spin_unlock_bh(&pd_chan->lock);
  542. return 0;
  543. }
  544. static void pdc_tasklet(unsigned long data)
  545. {
  546. struct pch_dma_chan *pd_chan = (struct pch_dma_chan *)data;
  547. unsigned long flags;
  548. if (!pdc_is_idle(pd_chan)) {
  549. dev_err(chan2dev(&pd_chan->chan),
  550. "BUG: handle non-idle channel in tasklet\n");
  551. return;
  552. }
  553. spin_lock_irqsave(&pd_chan->lock, flags);
  554. if (test_and_clear_bit(0, &pd_chan->err_status))
  555. pdc_handle_error(pd_chan);
  556. else
  557. pdc_advance_work(pd_chan);
  558. spin_unlock_irqrestore(&pd_chan->lock, flags);
  559. }
  560. static irqreturn_t pd_irq(int irq, void *devid)
  561. {
  562. struct pch_dma *pd = (struct pch_dma *)devid;
  563. struct pch_dma_chan *pd_chan;
  564. u32 sts0;
  565. int i;
  566. int ret = IRQ_NONE;
  567. sts0 = dma_readl(pd, STS0);
  568. dev_dbg(pd->dma.dev, "pd_irq sts0: %x\n", sts0);
  569. for (i = 0; i < pd->dma.chancnt; i++) {
  570. pd_chan = &pd->channels[i];
  571. if (sts0 & DMA_STATUS_IRQ(i)) {
  572. if (sts0 & DMA_STATUS_ERR(i))
  573. set_bit(0, &pd_chan->err_status);
  574. tasklet_schedule(&pd_chan->tasklet);
  575. ret = IRQ_HANDLED;
  576. }
  577. }
  578. /* clear interrupt bits in status register */
  579. dma_writel(pd, STS0, sts0);
  580. return ret;
  581. }
  582. #ifdef CONFIG_PM
  583. static void pch_dma_save_regs(struct pch_dma *pd)
  584. {
  585. struct pch_dma_chan *pd_chan;
  586. struct dma_chan *chan, *_c;
  587. int i = 0;
  588. pd->regs.dma_ctl0 = dma_readl(pd, CTL0);
  589. pd->regs.dma_ctl1 = dma_readl(pd, CTL1);
  590. pd->regs.dma_ctl2 = dma_readl(pd, CTL2);
  591. pd->regs.dma_ctl3 = dma_readl(pd, CTL3);
  592. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  593. pd_chan = to_pd_chan(chan);
  594. pd->ch_regs[i].dev_addr = channel_readl(pd_chan, DEV_ADDR);
  595. pd->ch_regs[i].mem_addr = channel_readl(pd_chan, MEM_ADDR);
  596. pd->ch_regs[i].size = channel_readl(pd_chan, SIZE);
  597. pd->ch_regs[i].next = channel_readl(pd_chan, NEXT);
  598. i++;
  599. }
  600. }
  601. static void pch_dma_restore_regs(struct pch_dma *pd)
  602. {
  603. struct pch_dma_chan *pd_chan;
  604. struct dma_chan *chan, *_c;
  605. int i = 0;
  606. dma_writel(pd, CTL0, pd->regs.dma_ctl0);
  607. dma_writel(pd, CTL1, pd->regs.dma_ctl1);
  608. dma_writel(pd, CTL2, pd->regs.dma_ctl2);
  609. dma_writel(pd, CTL3, pd->regs.dma_ctl3);
  610. list_for_each_entry_safe(chan, _c, &pd->dma.channels, device_node) {
  611. pd_chan = to_pd_chan(chan);
  612. channel_writel(pd_chan, DEV_ADDR, pd->ch_regs[i].dev_addr);
  613. channel_writel(pd_chan, MEM_ADDR, pd->ch_regs[i].mem_addr);
  614. channel_writel(pd_chan, SIZE, pd->ch_regs[i].size);
  615. channel_writel(pd_chan, NEXT, pd->ch_regs[i].next);
  616. i++;
  617. }
  618. }
  619. static int pch_dma_suspend(struct pci_dev *pdev, pm_message_t state)
  620. {
  621. struct pch_dma *pd = pci_get_drvdata(pdev);
  622. if (pd)
  623. pch_dma_save_regs(pd);
  624. pci_save_state(pdev);
  625. pci_disable_device(pdev);
  626. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  627. return 0;
  628. }
  629. static int pch_dma_resume(struct pci_dev *pdev)
  630. {
  631. struct pch_dma *pd = pci_get_drvdata(pdev);
  632. int err;
  633. pci_set_power_state(pdev, PCI_D0);
  634. pci_restore_state(pdev);
  635. err = pci_enable_device(pdev);
  636. if (err) {
  637. dev_dbg(&pdev->dev, "failed to enable device\n");
  638. return err;
  639. }
  640. if (pd)
  641. pch_dma_restore_regs(pd);
  642. return 0;
  643. }
  644. #endif
  645. static int __devinit pch_dma_probe(struct pci_dev *pdev,
  646. const struct pci_device_id *id)
  647. {
  648. struct pch_dma *pd;
  649. struct pch_dma_regs *regs;
  650. unsigned int nr_channels;
  651. int err;
  652. int i;
  653. nr_channels = id->driver_data;
  654. pd = kzalloc(sizeof(struct pch_dma)+
  655. sizeof(struct pch_dma_chan) * nr_channels, GFP_KERNEL);
  656. if (!pd)
  657. return -ENOMEM;
  658. pci_set_drvdata(pdev, pd);
  659. err = pci_enable_device(pdev);
  660. if (err) {
  661. dev_err(&pdev->dev, "Cannot enable PCI device\n");
  662. goto err_free_mem;
  663. }
  664. if (!(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
  665. dev_err(&pdev->dev, "Cannot find proper base address\n");
  666. goto err_disable_pdev;
  667. }
  668. err = pci_request_regions(pdev, DRV_NAME);
  669. if (err) {
  670. dev_err(&pdev->dev, "Cannot obtain PCI resources\n");
  671. goto err_disable_pdev;
  672. }
  673. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  674. if (err) {
  675. dev_err(&pdev->dev, "Cannot set proper DMA config\n");
  676. goto err_free_res;
  677. }
  678. regs = pd->membase = pci_iomap(pdev, 1, 0);
  679. if (!pd->membase) {
  680. dev_err(&pdev->dev, "Cannot map MMIO registers\n");
  681. err = -ENOMEM;
  682. goto err_free_res;
  683. }
  684. pci_set_master(pdev);
  685. err = request_irq(pdev->irq, pd_irq, IRQF_SHARED, DRV_NAME, pd);
  686. if (err) {
  687. dev_err(&pdev->dev, "Failed to request IRQ\n");
  688. goto err_iounmap;
  689. }
  690. pd->pool = pci_pool_create("pch_dma_desc_pool", pdev,
  691. sizeof(struct pch_dma_desc), 4, 0);
  692. if (!pd->pool) {
  693. dev_err(&pdev->dev, "Failed to alloc DMA descriptors\n");
  694. err = -ENOMEM;
  695. goto err_free_irq;
  696. }
  697. pd->dma.dev = &pdev->dev;
  698. pd->dma.chancnt = nr_channels;
  699. INIT_LIST_HEAD(&pd->dma.channels);
  700. for (i = 0; i < nr_channels; i++) {
  701. struct pch_dma_chan *pd_chan = &pd->channels[i];
  702. pd_chan->chan.device = &pd->dma;
  703. pd_chan->chan.cookie = 1;
  704. pd_chan->chan.chan_id = i;
  705. pd_chan->membase = &regs->desc[i];
  706. spin_lock_init(&pd_chan->lock);
  707. INIT_LIST_HEAD(&pd_chan->active_list);
  708. INIT_LIST_HEAD(&pd_chan->queue);
  709. INIT_LIST_HEAD(&pd_chan->free_list);
  710. tasklet_init(&pd_chan->tasklet, pdc_tasklet,
  711. (unsigned long)pd_chan);
  712. list_add_tail(&pd_chan->chan.device_node, &pd->dma.channels);
  713. }
  714. dma_cap_zero(pd->dma.cap_mask);
  715. dma_cap_set(DMA_PRIVATE, pd->dma.cap_mask);
  716. dma_cap_set(DMA_SLAVE, pd->dma.cap_mask);
  717. pd->dma.device_alloc_chan_resources = pd_alloc_chan_resources;
  718. pd->dma.device_free_chan_resources = pd_free_chan_resources;
  719. pd->dma.device_tx_status = pd_tx_status;
  720. pd->dma.device_issue_pending = pd_issue_pending;
  721. pd->dma.device_prep_slave_sg = pd_prep_slave_sg;
  722. pd->dma.device_control = pd_device_control;
  723. err = dma_async_device_register(&pd->dma);
  724. if (err) {
  725. dev_err(&pdev->dev, "Failed to register DMA device\n");
  726. goto err_free_pool;
  727. }
  728. return 0;
  729. err_free_pool:
  730. pci_pool_destroy(pd->pool);
  731. err_free_irq:
  732. free_irq(pdev->irq, pd);
  733. err_iounmap:
  734. pci_iounmap(pdev, pd->membase);
  735. err_free_res:
  736. pci_release_regions(pdev);
  737. err_disable_pdev:
  738. pci_disable_device(pdev);
  739. err_free_mem:
  740. return err;
  741. }
  742. static void __devexit pch_dma_remove(struct pci_dev *pdev)
  743. {
  744. struct pch_dma *pd = pci_get_drvdata(pdev);
  745. struct pch_dma_chan *pd_chan;
  746. struct dma_chan *chan, *_c;
  747. if (pd) {
  748. dma_async_device_unregister(&pd->dma);
  749. list_for_each_entry_safe(chan, _c, &pd->dma.channels,
  750. device_node) {
  751. pd_chan = to_pd_chan(chan);
  752. tasklet_disable(&pd_chan->tasklet);
  753. tasklet_kill(&pd_chan->tasklet);
  754. }
  755. pci_pool_destroy(pd->pool);
  756. free_irq(pdev->irq, pd);
  757. pci_iounmap(pdev, pd->membase);
  758. pci_release_regions(pdev);
  759. pci_disable_device(pdev);
  760. kfree(pd);
  761. }
  762. }
  763. /* PCI Device ID of DMA device */
  764. #define PCI_VENDOR_ID_ROHM 0x10DB
  765. #define PCI_DEVICE_ID_EG20T_PCH_DMA_8CH 0x8810
  766. #define PCI_DEVICE_ID_EG20T_PCH_DMA_4CH 0x8815
  767. #define PCI_DEVICE_ID_ML7213_DMA1_8CH 0x8026
  768. #define PCI_DEVICE_ID_ML7213_DMA2_8CH 0x802B
  769. #define PCI_DEVICE_ID_ML7213_DMA3_4CH 0x8034
  770. #define PCI_DEVICE_ID_ML7213_DMA4_12CH 0x8032
  771. #define PCI_DEVICE_ID_ML7223_DMA1_4CH 0x800B
  772. #define PCI_DEVICE_ID_ML7223_DMA2_4CH 0x800E
  773. #define PCI_DEVICE_ID_ML7223_DMA3_4CH 0x8017
  774. #define PCI_DEVICE_ID_ML7223_DMA4_4CH 0x803B
  775. DEFINE_PCI_DEVICE_TABLE(pch_dma_id_table) = {
  776. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_8CH), 8 },
  777. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_EG20T_PCH_DMA_4CH), 4 },
  778. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA1_8CH), 8}, /* UART Video */
  779. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA2_8CH), 8}, /* PCMIF SPI */
  780. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA3_4CH), 4}, /* FPGA */
  781. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_DMA4_12CH), 12}, /* I2S */
  782. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA1_4CH), 4}, /* UART */
  783. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA2_4CH), 4}, /* Video SPI */
  784. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA3_4CH), 4}, /* Security */
  785. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_DMA4_4CH), 4}, /* FPGA */
  786. { 0, },
  787. };
  788. static struct pci_driver pch_dma_driver = {
  789. .name = DRV_NAME,
  790. .id_table = pch_dma_id_table,
  791. .probe = pch_dma_probe,
  792. .remove = __devexit_p(pch_dma_remove),
  793. #ifdef CONFIG_PM
  794. .suspend = pch_dma_suspend,
  795. .resume = pch_dma_resume,
  796. #endif
  797. };
  798. static int __init pch_dma_init(void)
  799. {
  800. return pci_register_driver(&pch_dma_driver);
  801. }
  802. static void __exit pch_dma_exit(void)
  803. {
  804. pci_unregister_driver(&pch_dma_driver);
  805. }
  806. module_init(pch_dma_init);
  807. module_exit(pch_dma_exit);
  808. MODULE_DESCRIPTION("Intel EG20T PCH / OKI SEMICONDUCTOR ML7213 IOH "
  809. "DMA controller driver");
  810. MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
  811. MODULE_LICENSE("GPL v2");