af_key.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/xfrm.h>
  29. #include <net/sock.h>
  30. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  31. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  32. /* List of all pfkey sockets. */
  33. static HLIST_HEAD(pfkey_table);
  34. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  35. static DEFINE_RWLOCK(pfkey_table_lock);
  36. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  37. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  38. struct pfkey_sock {
  39. /* struct sock must be the first member of struct pfkey_sock */
  40. struct sock sk;
  41. int registered;
  42. int promisc;
  43. };
  44. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  45. {
  46. return (struct pfkey_sock *)sk;
  47. }
  48. static void pfkey_sock_destruct(struct sock *sk)
  49. {
  50. skb_queue_purge(&sk->sk_receive_queue);
  51. if (!sock_flag(sk, SOCK_DEAD)) {
  52. printk("Attempt to release alive pfkey socket: %p\n", sk);
  53. return;
  54. }
  55. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  56. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  57. atomic_dec(&pfkey_socks_nr);
  58. }
  59. static void pfkey_table_grab(void)
  60. {
  61. write_lock_bh(&pfkey_table_lock);
  62. if (atomic_read(&pfkey_table_users)) {
  63. DECLARE_WAITQUEUE(wait, current);
  64. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  65. for(;;) {
  66. set_current_state(TASK_UNINTERRUPTIBLE);
  67. if (atomic_read(&pfkey_table_users) == 0)
  68. break;
  69. write_unlock_bh(&pfkey_table_lock);
  70. schedule();
  71. write_lock_bh(&pfkey_table_lock);
  72. }
  73. __set_current_state(TASK_RUNNING);
  74. remove_wait_queue(&pfkey_table_wait, &wait);
  75. }
  76. }
  77. static __inline__ void pfkey_table_ungrab(void)
  78. {
  79. write_unlock_bh(&pfkey_table_lock);
  80. wake_up(&pfkey_table_wait);
  81. }
  82. static __inline__ void pfkey_lock_table(void)
  83. {
  84. /* read_lock() synchronizes us to pfkey_table_grab */
  85. read_lock(&pfkey_table_lock);
  86. atomic_inc(&pfkey_table_users);
  87. read_unlock(&pfkey_table_lock);
  88. }
  89. static __inline__ void pfkey_unlock_table(void)
  90. {
  91. if (atomic_dec_and_test(&pfkey_table_users))
  92. wake_up(&pfkey_table_wait);
  93. }
  94. static const struct proto_ops pfkey_ops;
  95. static void pfkey_insert(struct sock *sk)
  96. {
  97. pfkey_table_grab();
  98. sk_add_node(sk, &pfkey_table);
  99. pfkey_table_ungrab();
  100. }
  101. static void pfkey_remove(struct sock *sk)
  102. {
  103. pfkey_table_grab();
  104. sk_del_node_init(sk);
  105. pfkey_table_ungrab();
  106. }
  107. static struct proto key_proto = {
  108. .name = "KEY",
  109. .owner = THIS_MODULE,
  110. .obj_size = sizeof(struct pfkey_sock),
  111. };
  112. static int pfkey_create(struct socket *sock, int protocol)
  113. {
  114. struct sock *sk;
  115. int err;
  116. if (!capable(CAP_NET_ADMIN))
  117. return -EPERM;
  118. if (sock->type != SOCK_RAW)
  119. return -ESOCKTNOSUPPORT;
  120. if (protocol != PF_KEY_V2)
  121. return -EPROTONOSUPPORT;
  122. err = -ENOMEM;
  123. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  124. if (sk == NULL)
  125. goto out;
  126. sock->ops = &pfkey_ops;
  127. sock_init_data(sock, sk);
  128. sk->sk_family = PF_KEY;
  129. sk->sk_destruct = pfkey_sock_destruct;
  130. atomic_inc(&pfkey_socks_nr);
  131. pfkey_insert(sk);
  132. return 0;
  133. out:
  134. return err;
  135. }
  136. static int pfkey_release(struct socket *sock)
  137. {
  138. struct sock *sk = sock->sk;
  139. if (!sk)
  140. return 0;
  141. pfkey_remove(sk);
  142. sock_orphan(sk);
  143. sock->sk = NULL;
  144. skb_queue_purge(&sk->sk_write_queue);
  145. sock_put(sk);
  146. return 0;
  147. }
  148. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  149. gfp_t allocation, struct sock *sk)
  150. {
  151. int err = -ENOBUFS;
  152. sock_hold(sk);
  153. if (*skb2 == NULL) {
  154. if (atomic_read(&skb->users) != 1) {
  155. *skb2 = skb_clone(skb, allocation);
  156. } else {
  157. *skb2 = skb;
  158. atomic_inc(&skb->users);
  159. }
  160. }
  161. if (*skb2 != NULL) {
  162. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  163. skb_orphan(*skb2);
  164. skb_set_owner_r(*skb2, sk);
  165. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  166. sk->sk_data_ready(sk, (*skb2)->len);
  167. *skb2 = NULL;
  168. err = 0;
  169. }
  170. }
  171. sock_put(sk);
  172. return err;
  173. }
  174. /* Send SKB to all pfkey sockets matching selected criteria. */
  175. #define BROADCAST_ALL 0
  176. #define BROADCAST_ONE 1
  177. #define BROADCAST_REGISTERED 2
  178. #define BROADCAST_PROMISC_ONLY 4
  179. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  180. int broadcast_flags, struct sock *one_sk)
  181. {
  182. struct sock *sk;
  183. struct hlist_node *node;
  184. struct sk_buff *skb2 = NULL;
  185. int err = -ESRCH;
  186. /* XXX Do we need something like netlink_overrun? I think
  187. * XXX PF_KEY socket apps will not mind current behavior.
  188. */
  189. if (!skb)
  190. return -ENOMEM;
  191. pfkey_lock_table();
  192. sk_for_each(sk, node, &pfkey_table) {
  193. struct pfkey_sock *pfk = pfkey_sk(sk);
  194. int err2;
  195. /* Yes, it means that if you are meant to receive this
  196. * pfkey message you receive it twice as promiscuous
  197. * socket.
  198. */
  199. if (pfk->promisc)
  200. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  201. /* the exact target will be processed later */
  202. if (sk == one_sk)
  203. continue;
  204. if (broadcast_flags != BROADCAST_ALL) {
  205. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  206. continue;
  207. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  208. !pfk->registered)
  209. continue;
  210. if (broadcast_flags & BROADCAST_ONE)
  211. continue;
  212. }
  213. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  214. /* Error is cleare after succecful sending to at least one
  215. * registered KM */
  216. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  217. err = err2;
  218. }
  219. pfkey_unlock_table();
  220. if (one_sk != NULL)
  221. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  222. if (skb2)
  223. kfree_skb(skb2);
  224. kfree_skb(skb);
  225. return err;
  226. }
  227. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  228. {
  229. *new = *orig;
  230. }
  231. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  232. {
  233. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  234. struct sadb_msg *hdr;
  235. if (!skb)
  236. return -ENOBUFS;
  237. /* Woe be to the platform trying to support PFKEY yet
  238. * having normal errnos outside the 1-255 range, inclusive.
  239. */
  240. err = -err;
  241. if (err == ERESTARTSYS ||
  242. err == ERESTARTNOHAND ||
  243. err == ERESTARTNOINTR)
  244. err = EINTR;
  245. if (err >= 512)
  246. err = EINVAL;
  247. BUG_ON(err <= 0 || err >= 256);
  248. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  249. pfkey_hdr_dup(hdr, orig);
  250. hdr->sadb_msg_errno = (uint8_t) err;
  251. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  252. sizeof(uint64_t));
  253. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  254. return 0;
  255. }
  256. static u8 sadb_ext_min_len[] = {
  257. [SADB_EXT_RESERVED] = (u8) 0,
  258. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  259. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  260. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  263. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  266. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  268. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  270. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  271. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  272. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  274. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  275. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  276. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  277. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  278. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  279. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  281. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  282. };
  283. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  284. static int verify_address_len(void *p)
  285. {
  286. struct sadb_address *sp = p;
  287. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  288. struct sockaddr_in *sin;
  289. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  290. struct sockaddr_in6 *sin6;
  291. #endif
  292. int len;
  293. switch (addr->sa_family) {
  294. case AF_INET:
  295. len = sizeof(*sp) + sizeof(*sin) + (sizeof(uint64_t) - 1);
  296. len /= sizeof(uint64_t);
  297. if (sp->sadb_address_len != len ||
  298. sp->sadb_address_prefixlen > 32)
  299. return -EINVAL;
  300. break;
  301. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  302. case AF_INET6:
  303. len = sizeof(*sp) + sizeof(*sin6) + (sizeof(uint64_t) - 1);
  304. len /= sizeof(uint64_t);
  305. if (sp->sadb_address_len != len ||
  306. sp->sadb_address_prefixlen > 128)
  307. return -EINVAL;
  308. break;
  309. #endif
  310. default:
  311. /* It is user using kernel to keep track of security
  312. * associations for another protocol, such as
  313. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  314. * lengths.
  315. *
  316. * XXX Actually, association/policy database is not yet
  317. * XXX able to cope with arbitrary sockaddr families.
  318. * XXX When it can, remove this -EINVAL. -DaveM
  319. */
  320. return -EINVAL;
  321. break;
  322. };
  323. return 0;
  324. }
  325. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  326. {
  327. int len = 0;
  328. len += sizeof(struct sadb_x_sec_ctx);
  329. len += sec_ctx->sadb_x_ctx_len;
  330. len += sizeof(uint64_t) - 1;
  331. len /= sizeof(uint64_t);
  332. return len;
  333. }
  334. static inline int verify_sec_ctx_len(void *p)
  335. {
  336. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  337. int len;
  338. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  339. return -EINVAL;
  340. len = pfkey_sec_ctx_len(sec_ctx);
  341. if (sec_ctx->sadb_x_sec_len != len)
  342. return -EINVAL;
  343. return 0;
  344. }
  345. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  346. {
  347. struct xfrm_user_sec_ctx *uctx = NULL;
  348. int ctx_size = sec_ctx->sadb_x_ctx_len;
  349. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  350. if (!uctx)
  351. return NULL;
  352. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  353. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  354. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  355. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  356. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  357. memcpy(uctx + 1, sec_ctx + 1,
  358. uctx->ctx_len);
  359. return uctx;
  360. }
  361. static int present_and_same_family(struct sadb_address *src,
  362. struct sadb_address *dst)
  363. {
  364. struct sockaddr *s_addr, *d_addr;
  365. if (!src || !dst)
  366. return 0;
  367. s_addr = (struct sockaddr *)(src + 1);
  368. d_addr = (struct sockaddr *)(dst + 1);
  369. if (s_addr->sa_family != d_addr->sa_family)
  370. return 0;
  371. if (s_addr->sa_family != AF_INET
  372. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  373. && s_addr->sa_family != AF_INET6
  374. #endif
  375. )
  376. return 0;
  377. return 1;
  378. }
  379. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  380. {
  381. char *p = (char *) hdr;
  382. int len = skb->len;
  383. len -= sizeof(*hdr);
  384. p += sizeof(*hdr);
  385. while (len > 0) {
  386. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  387. uint16_t ext_type;
  388. int ext_len;
  389. ext_len = ehdr->sadb_ext_len;
  390. ext_len *= sizeof(uint64_t);
  391. ext_type = ehdr->sadb_ext_type;
  392. if (ext_len < sizeof(uint64_t) ||
  393. ext_len > len ||
  394. ext_type == SADB_EXT_RESERVED)
  395. return -EINVAL;
  396. if (ext_type <= SADB_EXT_MAX) {
  397. int min = (int) sadb_ext_min_len[ext_type];
  398. if (ext_len < min)
  399. return -EINVAL;
  400. if (ext_hdrs[ext_type-1] != NULL)
  401. return -EINVAL;
  402. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  403. ext_type == SADB_EXT_ADDRESS_DST ||
  404. ext_type == SADB_EXT_ADDRESS_PROXY ||
  405. ext_type == SADB_X_EXT_NAT_T_OA) {
  406. if (verify_address_len(p))
  407. return -EINVAL;
  408. }
  409. if (ext_type == SADB_X_EXT_SEC_CTX) {
  410. if (verify_sec_ctx_len(p))
  411. return -EINVAL;
  412. }
  413. ext_hdrs[ext_type-1] = p;
  414. }
  415. p += ext_len;
  416. len -= ext_len;
  417. }
  418. return 0;
  419. }
  420. static uint16_t
  421. pfkey_satype2proto(uint8_t satype)
  422. {
  423. switch (satype) {
  424. case SADB_SATYPE_UNSPEC:
  425. return IPSEC_PROTO_ANY;
  426. case SADB_SATYPE_AH:
  427. return IPPROTO_AH;
  428. case SADB_SATYPE_ESP:
  429. return IPPROTO_ESP;
  430. case SADB_X_SATYPE_IPCOMP:
  431. return IPPROTO_COMP;
  432. break;
  433. default:
  434. return 0;
  435. }
  436. /* NOTREACHED */
  437. }
  438. static uint8_t
  439. pfkey_proto2satype(uint16_t proto)
  440. {
  441. switch (proto) {
  442. case IPPROTO_AH:
  443. return SADB_SATYPE_AH;
  444. case IPPROTO_ESP:
  445. return SADB_SATYPE_ESP;
  446. case IPPROTO_COMP:
  447. return SADB_X_SATYPE_IPCOMP;
  448. break;
  449. default:
  450. return 0;
  451. }
  452. /* NOTREACHED */
  453. }
  454. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  455. * say specifically 'just raw sockets' as we encode them as 255.
  456. */
  457. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  458. {
  459. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  460. }
  461. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  462. {
  463. return (proto ? proto : IPSEC_PROTO_ANY);
  464. }
  465. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  466. xfrm_address_t *xaddr)
  467. {
  468. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  469. case AF_INET:
  470. xaddr->a4 =
  471. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  472. return AF_INET;
  473. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  474. case AF_INET6:
  475. memcpy(xaddr->a6,
  476. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  477. sizeof(struct in6_addr));
  478. return AF_INET6;
  479. #endif
  480. default:
  481. return 0;
  482. }
  483. /* NOTREACHED */
  484. }
  485. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  486. {
  487. struct sadb_sa *sa;
  488. struct sadb_address *addr;
  489. uint16_t proto;
  490. unsigned short family;
  491. xfrm_address_t *xaddr;
  492. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  493. if (sa == NULL)
  494. return NULL;
  495. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  496. if (proto == 0)
  497. return NULL;
  498. /* sadb_address_len should be checked by caller */
  499. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  500. if (addr == NULL)
  501. return NULL;
  502. family = ((struct sockaddr *)(addr + 1))->sa_family;
  503. switch (family) {
  504. case AF_INET:
  505. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  506. break;
  507. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  508. case AF_INET6:
  509. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  510. break;
  511. #endif
  512. default:
  513. xaddr = NULL;
  514. }
  515. if (!xaddr)
  516. return NULL;
  517. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  518. }
  519. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  520. static int
  521. pfkey_sockaddr_size(sa_family_t family)
  522. {
  523. switch (family) {
  524. case AF_INET:
  525. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  526. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  527. case AF_INET6:
  528. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  529. #endif
  530. default:
  531. return 0;
  532. }
  533. /* NOTREACHED */
  534. }
  535. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  536. {
  537. struct sk_buff *skb;
  538. struct sadb_msg *hdr;
  539. struct sadb_sa *sa;
  540. struct sadb_lifetime *lifetime;
  541. struct sadb_address *addr;
  542. struct sadb_key *key;
  543. struct sadb_x_sa2 *sa2;
  544. struct sockaddr_in *sin;
  545. struct sadb_x_sec_ctx *sec_ctx;
  546. struct xfrm_sec_ctx *xfrm_ctx;
  547. int ctx_size = 0;
  548. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  549. struct sockaddr_in6 *sin6;
  550. #endif
  551. int size;
  552. int auth_key_size = 0;
  553. int encrypt_key_size = 0;
  554. int sockaddr_size;
  555. struct xfrm_encap_tmpl *natt = NULL;
  556. /* address family check */
  557. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  558. if (!sockaddr_size)
  559. return ERR_PTR(-EINVAL);
  560. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  561. key(AE), (identity(SD),) (sensitivity)> */
  562. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  563. sizeof(struct sadb_lifetime) +
  564. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  565. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  566. sizeof(struct sadb_address)*2 +
  567. sockaddr_size*2 +
  568. sizeof(struct sadb_x_sa2);
  569. if ((xfrm_ctx = x->security)) {
  570. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  571. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  572. }
  573. /* identity & sensitivity */
  574. if ((x->props.family == AF_INET &&
  575. x->sel.saddr.a4 != x->props.saddr.a4)
  576. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  577. || (x->props.family == AF_INET6 &&
  578. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  579. #endif
  580. )
  581. size += sizeof(struct sadb_address) + sockaddr_size;
  582. if (add_keys) {
  583. if (x->aalg && x->aalg->alg_key_len) {
  584. auth_key_size =
  585. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  586. size += sizeof(struct sadb_key) + auth_key_size;
  587. }
  588. if (x->ealg && x->ealg->alg_key_len) {
  589. encrypt_key_size =
  590. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  591. size += sizeof(struct sadb_key) + encrypt_key_size;
  592. }
  593. }
  594. if (x->encap)
  595. natt = x->encap;
  596. if (natt && natt->encap_type) {
  597. size += sizeof(struct sadb_x_nat_t_type);
  598. size += sizeof(struct sadb_x_nat_t_port);
  599. size += sizeof(struct sadb_x_nat_t_port);
  600. }
  601. skb = alloc_skb(size + 16, GFP_ATOMIC);
  602. if (skb == NULL)
  603. return ERR_PTR(-ENOBUFS);
  604. /* call should fill header later */
  605. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  606. memset(hdr, 0, size); /* XXX do we need this ? */
  607. hdr->sadb_msg_len = size / sizeof(uint64_t);
  608. /* sa */
  609. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  610. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  611. sa->sadb_sa_exttype = SADB_EXT_SA;
  612. sa->sadb_sa_spi = x->id.spi;
  613. sa->sadb_sa_replay = x->props.replay_window;
  614. switch (x->km.state) {
  615. case XFRM_STATE_VALID:
  616. sa->sadb_sa_state = x->km.dying ?
  617. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  618. break;
  619. case XFRM_STATE_ACQ:
  620. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  621. break;
  622. default:
  623. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  624. break;
  625. }
  626. sa->sadb_sa_auth = 0;
  627. if (x->aalg) {
  628. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  629. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  630. }
  631. sa->sadb_sa_encrypt = 0;
  632. BUG_ON(x->ealg && x->calg);
  633. if (x->ealg) {
  634. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  635. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  636. }
  637. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  638. if (x->calg) {
  639. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  640. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  641. }
  642. sa->sadb_sa_flags = 0;
  643. if (x->props.flags & XFRM_STATE_NOECN)
  644. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  645. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  646. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  647. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  648. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  649. /* hard time */
  650. if (hsc & 2) {
  651. lifetime = (struct sadb_lifetime *) skb_put(skb,
  652. sizeof(struct sadb_lifetime));
  653. lifetime->sadb_lifetime_len =
  654. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  655. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  656. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  657. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  658. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  659. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  660. }
  661. /* soft time */
  662. if (hsc & 1) {
  663. lifetime = (struct sadb_lifetime *) skb_put(skb,
  664. sizeof(struct sadb_lifetime));
  665. lifetime->sadb_lifetime_len =
  666. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  667. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  668. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  669. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  670. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  671. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  672. }
  673. /* current time */
  674. lifetime = (struct sadb_lifetime *) skb_put(skb,
  675. sizeof(struct sadb_lifetime));
  676. lifetime->sadb_lifetime_len =
  677. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  678. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  679. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  680. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  681. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  682. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  683. /* src address */
  684. addr = (struct sadb_address*) skb_put(skb,
  685. sizeof(struct sadb_address)+sockaddr_size);
  686. addr->sadb_address_len =
  687. (sizeof(struct sadb_address)+sockaddr_size)/
  688. sizeof(uint64_t);
  689. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  690. /* "if the ports are non-zero, then the sadb_address_proto field,
  691. normally zero, MUST be filled in with the transport
  692. protocol's number." - RFC2367 */
  693. addr->sadb_address_proto = 0;
  694. addr->sadb_address_reserved = 0;
  695. if (x->props.family == AF_INET) {
  696. addr->sadb_address_prefixlen = 32;
  697. sin = (struct sockaddr_in *) (addr + 1);
  698. sin->sin_family = AF_INET;
  699. sin->sin_addr.s_addr = x->props.saddr.a4;
  700. sin->sin_port = 0;
  701. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  702. }
  703. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  704. else if (x->props.family == AF_INET6) {
  705. addr->sadb_address_prefixlen = 128;
  706. sin6 = (struct sockaddr_in6 *) (addr + 1);
  707. sin6->sin6_family = AF_INET6;
  708. sin6->sin6_port = 0;
  709. sin6->sin6_flowinfo = 0;
  710. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  711. sizeof(struct in6_addr));
  712. sin6->sin6_scope_id = 0;
  713. }
  714. #endif
  715. else
  716. BUG();
  717. /* dst address */
  718. addr = (struct sadb_address*) skb_put(skb,
  719. sizeof(struct sadb_address)+sockaddr_size);
  720. addr->sadb_address_len =
  721. (sizeof(struct sadb_address)+sockaddr_size)/
  722. sizeof(uint64_t);
  723. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  724. addr->sadb_address_proto = 0;
  725. addr->sadb_address_prefixlen = 32; /* XXX */
  726. addr->sadb_address_reserved = 0;
  727. if (x->props.family == AF_INET) {
  728. sin = (struct sockaddr_in *) (addr + 1);
  729. sin->sin_family = AF_INET;
  730. sin->sin_addr.s_addr = x->id.daddr.a4;
  731. sin->sin_port = 0;
  732. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  733. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  734. addr = (struct sadb_address*) skb_put(skb,
  735. sizeof(struct sadb_address)+sockaddr_size);
  736. addr->sadb_address_len =
  737. (sizeof(struct sadb_address)+sockaddr_size)/
  738. sizeof(uint64_t);
  739. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  740. addr->sadb_address_proto =
  741. pfkey_proto_from_xfrm(x->sel.proto);
  742. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  743. addr->sadb_address_reserved = 0;
  744. sin = (struct sockaddr_in *) (addr + 1);
  745. sin->sin_family = AF_INET;
  746. sin->sin_addr.s_addr = x->sel.saddr.a4;
  747. sin->sin_port = x->sel.sport;
  748. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  749. }
  750. }
  751. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  752. else if (x->props.family == AF_INET6) {
  753. addr->sadb_address_prefixlen = 128;
  754. sin6 = (struct sockaddr_in6 *) (addr + 1);
  755. sin6->sin6_family = AF_INET6;
  756. sin6->sin6_port = 0;
  757. sin6->sin6_flowinfo = 0;
  758. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  759. sin6->sin6_scope_id = 0;
  760. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  761. sizeof(struct in6_addr))) {
  762. addr = (struct sadb_address *) skb_put(skb,
  763. sizeof(struct sadb_address)+sockaddr_size);
  764. addr->sadb_address_len =
  765. (sizeof(struct sadb_address)+sockaddr_size)/
  766. sizeof(uint64_t);
  767. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  768. addr->sadb_address_proto =
  769. pfkey_proto_from_xfrm(x->sel.proto);
  770. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  771. addr->sadb_address_reserved = 0;
  772. sin6 = (struct sockaddr_in6 *) (addr + 1);
  773. sin6->sin6_family = AF_INET6;
  774. sin6->sin6_port = x->sel.sport;
  775. sin6->sin6_flowinfo = 0;
  776. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  777. sizeof(struct in6_addr));
  778. sin6->sin6_scope_id = 0;
  779. }
  780. }
  781. #endif
  782. else
  783. BUG();
  784. /* auth key */
  785. if (add_keys && auth_key_size) {
  786. key = (struct sadb_key *) skb_put(skb,
  787. sizeof(struct sadb_key)+auth_key_size);
  788. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  789. sizeof(uint64_t);
  790. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  791. key->sadb_key_bits = x->aalg->alg_key_len;
  792. key->sadb_key_reserved = 0;
  793. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  794. }
  795. /* encrypt key */
  796. if (add_keys && encrypt_key_size) {
  797. key = (struct sadb_key *) skb_put(skb,
  798. sizeof(struct sadb_key)+encrypt_key_size);
  799. key->sadb_key_len = (sizeof(struct sadb_key) +
  800. encrypt_key_size) / sizeof(uint64_t);
  801. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  802. key->sadb_key_bits = x->ealg->alg_key_len;
  803. key->sadb_key_reserved = 0;
  804. memcpy(key + 1, x->ealg->alg_key,
  805. (x->ealg->alg_key_len+7)/8);
  806. }
  807. /* sa */
  808. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  809. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  810. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  811. sa2->sadb_x_sa2_mode = x->props.mode + 1;
  812. sa2->sadb_x_sa2_reserved1 = 0;
  813. sa2->sadb_x_sa2_reserved2 = 0;
  814. sa2->sadb_x_sa2_sequence = 0;
  815. sa2->sadb_x_sa2_reqid = x->props.reqid;
  816. if (natt && natt->encap_type) {
  817. struct sadb_x_nat_t_type *n_type;
  818. struct sadb_x_nat_t_port *n_port;
  819. /* type */
  820. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  821. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  822. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  823. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  824. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  825. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  826. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  827. /* source port */
  828. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  829. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  830. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  831. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  832. n_port->sadb_x_nat_t_port_reserved = 0;
  833. /* dest port */
  834. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  835. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  836. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  837. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  838. n_port->sadb_x_nat_t_port_reserved = 0;
  839. }
  840. /* security context */
  841. if (xfrm_ctx) {
  842. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  843. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  844. sec_ctx->sadb_x_sec_len =
  845. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  846. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  847. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  848. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  849. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  850. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  851. xfrm_ctx->ctx_len);
  852. }
  853. return skb;
  854. }
  855. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  856. void **ext_hdrs)
  857. {
  858. struct xfrm_state *x;
  859. struct sadb_lifetime *lifetime;
  860. struct sadb_sa *sa;
  861. struct sadb_key *key;
  862. struct sadb_x_sec_ctx *sec_ctx;
  863. uint16_t proto;
  864. int err;
  865. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  866. if (!sa ||
  867. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  868. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  869. return ERR_PTR(-EINVAL);
  870. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  871. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  872. return ERR_PTR(-EINVAL);
  873. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  874. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  875. return ERR_PTR(-EINVAL);
  876. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  877. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  878. return ERR_PTR(-EINVAL);
  879. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  880. if (proto == 0)
  881. return ERR_PTR(-EINVAL);
  882. /* default error is no buffer space */
  883. err = -ENOBUFS;
  884. /* RFC2367:
  885. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  886. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  887. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  888. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  889. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  890. not true.
  891. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  892. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  893. */
  894. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  895. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  896. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  897. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  898. return ERR_PTR(-EINVAL);
  899. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  900. if (key != NULL &&
  901. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  902. ((key->sadb_key_bits+7) / 8 == 0 ||
  903. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  904. return ERR_PTR(-EINVAL);
  905. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  906. if (key != NULL &&
  907. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  908. ((key->sadb_key_bits+7) / 8 == 0 ||
  909. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  910. return ERR_PTR(-EINVAL);
  911. x = xfrm_state_alloc();
  912. if (x == NULL)
  913. return ERR_PTR(-ENOBUFS);
  914. x->id.proto = proto;
  915. x->id.spi = sa->sadb_sa_spi;
  916. x->props.replay_window = sa->sadb_sa_replay;
  917. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  918. x->props.flags |= XFRM_STATE_NOECN;
  919. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  920. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  921. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  922. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  923. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  924. if (lifetime != NULL) {
  925. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  926. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  927. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  928. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  929. }
  930. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  931. if (lifetime != NULL) {
  932. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  933. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  934. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  935. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  936. }
  937. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  938. if (sec_ctx != NULL) {
  939. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  940. if (!uctx)
  941. goto out;
  942. err = security_xfrm_state_alloc(x, uctx);
  943. kfree(uctx);
  944. if (err)
  945. goto out;
  946. }
  947. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  948. if (sa->sadb_sa_auth) {
  949. int keysize = 0;
  950. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  951. if (!a) {
  952. err = -ENOSYS;
  953. goto out;
  954. }
  955. if (key)
  956. keysize = (key->sadb_key_bits + 7) / 8;
  957. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  958. if (!x->aalg)
  959. goto out;
  960. strcpy(x->aalg->alg_name, a->name);
  961. x->aalg->alg_key_len = 0;
  962. if (key) {
  963. x->aalg->alg_key_len = key->sadb_key_bits;
  964. memcpy(x->aalg->alg_key, key+1, keysize);
  965. }
  966. x->props.aalgo = sa->sadb_sa_auth;
  967. /* x->algo.flags = sa->sadb_sa_flags; */
  968. }
  969. if (sa->sadb_sa_encrypt) {
  970. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  971. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  972. if (!a) {
  973. err = -ENOSYS;
  974. goto out;
  975. }
  976. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  977. if (!x->calg)
  978. goto out;
  979. strcpy(x->calg->alg_name, a->name);
  980. x->props.calgo = sa->sadb_sa_encrypt;
  981. } else {
  982. int keysize = 0;
  983. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  984. if (!a) {
  985. err = -ENOSYS;
  986. goto out;
  987. }
  988. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  989. if (key)
  990. keysize = (key->sadb_key_bits + 7) / 8;
  991. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  992. if (!x->ealg)
  993. goto out;
  994. strcpy(x->ealg->alg_name, a->name);
  995. x->ealg->alg_key_len = 0;
  996. if (key) {
  997. x->ealg->alg_key_len = key->sadb_key_bits;
  998. memcpy(x->ealg->alg_key, key+1, keysize);
  999. }
  1000. x->props.ealgo = sa->sadb_sa_encrypt;
  1001. }
  1002. }
  1003. /* x->algo.flags = sa->sadb_sa_flags; */
  1004. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1005. &x->props.saddr);
  1006. if (!x->props.family) {
  1007. err = -EAFNOSUPPORT;
  1008. goto out;
  1009. }
  1010. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1011. &x->id.daddr);
  1012. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1013. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1014. x->props.mode = sa2->sadb_x_sa2_mode;
  1015. if (x->props.mode)
  1016. x->props.mode--;
  1017. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1018. }
  1019. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1020. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1021. /* Nobody uses this, but we try. */
  1022. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1023. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1024. }
  1025. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1026. struct sadb_x_nat_t_type* n_type;
  1027. struct xfrm_encap_tmpl *natt;
  1028. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1029. if (!x->encap)
  1030. goto out;
  1031. natt = x->encap;
  1032. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1033. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1034. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1035. struct sadb_x_nat_t_port* n_port =
  1036. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1037. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1038. }
  1039. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1040. struct sadb_x_nat_t_port* n_port =
  1041. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1042. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1043. }
  1044. }
  1045. err = xfrm_init_state(x);
  1046. if (err)
  1047. goto out;
  1048. x->km.seq = hdr->sadb_msg_seq;
  1049. return x;
  1050. out:
  1051. x->km.state = XFRM_STATE_DEAD;
  1052. xfrm_state_put(x);
  1053. return ERR_PTR(err);
  1054. }
  1055. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1056. {
  1057. return -EOPNOTSUPP;
  1058. }
  1059. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1060. {
  1061. struct sk_buff *resp_skb;
  1062. struct sadb_x_sa2 *sa2;
  1063. struct sadb_address *saddr, *daddr;
  1064. struct sadb_msg *out_hdr;
  1065. struct xfrm_state *x = NULL;
  1066. u8 mode;
  1067. u32 reqid;
  1068. u8 proto;
  1069. unsigned short family;
  1070. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1071. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1072. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1073. return -EINVAL;
  1074. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1075. if (proto == 0)
  1076. return -EINVAL;
  1077. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1078. mode = sa2->sadb_x_sa2_mode - 1;
  1079. reqid = sa2->sadb_x_sa2_reqid;
  1080. } else {
  1081. mode = 0;
  1082. reqid = 0;
  1083. }
  1084. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1085. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1086. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1087. switch (family) {
  1088. case AF_INET:
  1089. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1090. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1091. break;
  1092. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1093. case AF_INET6:
  1094. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1095. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1096. break;
  1097. #endif
  1098. }
  1099. if (hdr->sadb_msg_seq) {
  1100. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1101. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1102. xfrm_state_put(x);
  1103. x = NULL;
  1104. }
  1105. }
  1106. if (!x)
  1107. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1108. if (x == NULL)
  1109. return -ENOENT;
  1110. resp_skb = ERR_PTR(-ENOENT);
  1111. spin_lock_bh(&x->lock);
  1112. if (x->km.state != XFRM_STATE_DEAD) {
  1113. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1114. u32 min_spi, max_spi;
  1115. if (range != NULL) {
  1116. min_spi = range->sadb_spirange_min;
  1117. max_spi = range->sadb_spirange_max;
  1118. } else {
  1119. min_spi = 0x100;
  1120. max_spi = 0x0fffffff;
  1121. }
  1122. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1123. if (x->id.spi)
  1124. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1125. }
  1126. spin_unlock_bh(&x->lock);
  1127. if (IS_ERR(resp_skb)) {
  1128. xfrm_state_put(x);
  1129. return PTR_ERR(resp_skb);
  1130. }
  1131. out_hdr = (struct sadb_msg *) resp_skb->data;
  1132. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1133. out_hdr->sadb_msg_type = SADB_GETSPI;
  1134. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1135. out_hdr->sadb_msg_errno = 0;
  1136. out_hdr->sadb_msg_reserved = 0;
  1137. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1138. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1139. xfrm_state_put(x);
  1140. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1141. return 0;
  1142. }
  1143. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1144. {
  1145. struct xfrm_state *x;
  1146. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1147. return -EOPNOTSUPP;
  1148. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1149. return 0;
  1150. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1151. if (x == NULL)
  1152. return 0;
  1153. spin_lock_bh(&x->lock);
  1154. if (x->km.state == XFRM_STATE_ACQ) {
  1155. x->km.state = XFRM_STATE_ERROR;
  1156. wake_up(&km_waitq);
  1157. }
  1158. spin_unlock_bh(&x->lock);
  1159. xfrm_state_put(x);
  1160. return 0;
  1161. }
  1162. static inline int event2poltype(int event)
  1163. {
  1164. switch (event) {
  1165. case XFRM_MSG_DELPOLICY:
  1166. return SADB_X_SPDDELETE;
  1167. case XFRM_MSG_NEWPOLICY:
  1168. return SADB_X_SPDADD;
  1169. case XFRM_MSG_UPDPOLICY:
  1170. return SADB_X_SPDUPDATE;
  1171. case XFRM_MSG_POLEXPIRE:
  1172. // return SADB_X_SPDEXPIRE;
  1173. default:
  1174. printk("pfkey: Unknown policy event %d\n", event);
  1175. break;
  1176. }
  1177. return 0;
  1178. }
  1179. static inline int event2keytype(int event)
  1180. {
  1181. switch (event) {
  1182. case XFRM_MSG_DELSA:
  1183. return SADB_DELETE;
  1184. case XFRM_MSG_NEWSA:
  1185. return SADB_ADD;
  1186. case XFRM_MSG_UPDSA:
  1187. return SADB_UPDATE;
  1188. case XFRM_MSG_EXPIRE:
  1189. return SADB_EXPIRE;
  1190. default:
  1191. printk("pfkey: Unknown SA event %d\n", event);
  1192. break;
  1193. }
  1194. return 0;
  1195. }
  1196. /* ADD/UPD/DEL */
  1197. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1198. {
  1199. struct sk_buff *skb;
  1200. struct sadb_msg *hdr;
  1201. int hsc = 3;
  1202. if (c->event == XFRM_MSG_DELSA)
  1203. hsc = 0;
  1204. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1205. if (IS_ERR(skb))
  1206. return PTR_ERR(skb);
  1207. hdr = (struct sadb_msg *) skb->data;
  1208. hdr->sadb_msg_version = PF_KEY_V2;
  1209. hdr->sadb_msg_type = event2keytype(c->event);
  1210. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1211. hdr->sadb_msg_errno = 0;
  1212. hdr->sadb_msg_reserved = 0;
  1213. hdr->sadb_msg_seq = c->seq;
  1214. hdr->sadb_msg_pid = c->pid;
  1215. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1216. return 0;
  1217. }
  1218. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1219. {
  1220. struct xfrm_state *x;
  1221. int err;
  1222. struct km_event c;
  1223. xfrm_probe_algs();
  1224. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1225. if (IS_ERR(x))
  1226. return PTR_ERR(x);
  1227. xfrm_state_hold(x);
  1228. if (hdr->sadb_msg_type == SADB_ADD)
  1229. err = xfrm_state_add(x);
  1230. else
  1231. err = xfrm_state_update(x);
  1232. if (err < 0) {
  1233. x->km.state = XFRM_STATE_DEAD;
  1234. __xfrm_state_put(x);
  1235. goto out;
  1236. }
  1237. if (hdr->sadb_msg_type == SADB_ADD)
  1238. c.event = XFRM_MSG_NEWSA;
  1239. else
  1240. c.event = XFRM_MSG_UPDSA;
  1241. c.seq = hdr->sadb_msg_seq;
  1242. c.pid = hdr->sadb_msg_pid;
  1243. km_state_notify(x, &c);
  1244. out:
  1245. xfrm_state_put(x);
  1246. return err;
  1247. }
  1248. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1249. {
  1250. struct xfrm_state *x;
  1251. struct km_event c;
  1252. int err;
  1253. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1254. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1255. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1256. return -EINVAL;
  1257. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1258. if (x == NULL)
  1259. return -ESRCH;
  1260. if ((err = security_xfrm_state_delete(x)))
  1261. goto out;
  1262. if (xfrm_state_kern(x)) {
  1263. err = -EPERM;
  1264. goto out;
  1265. }
  1266. err = xfrm_state_delete(x);
  1267. if (err < 0)
  1268. goto out;
  1269. c.seq = hdr->sadb_msg_seq;
  1270. c.pid = hdr->sadb_msg_pid;
  1271. c.event = XFRM_MSG_DELSA;
  1272. km_state_notify(x, &c);
  1273. out:
  1274. xfrm_state_put(x);
  1275. return err;
  1276. }
  1277. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1278. {
  1279. __u8 proto;
  1280. struct sk_buff *out_skb;
  1281. struct sadb_msg *out_hdr;
  1282. struct xfrm_state *x;
  1283. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1284. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1285. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1286. return -EINVAL;
  1287. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1288. if (x == NULL)
  1289. return -ESRCH;
  1290. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1291. proto = x->id.proto;
  1292. xfrm_state_put(x);
  1293. if (IS_ERR(out_skb))
  1294. return PTR_ERR(out_skb);
  1295. out_hdr = (struct sadb_msg *) out_skb->data;
  1296. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1297. out_hdr->sadb_msg_type = SADB_DUMP;
  1298. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1299. out_hdr->sadb_msg_errno = 0;
  1300. out_hdr->sadb_msg_reserved = 0;
  1301. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1302. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1303. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1304. return 0;
  1305. }
  1306. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1307. gfp_t allocation)
  1308. {
  1309. struct sk_buff *skb;
  1310. struct sadb_msg *hdr;
  1311. int len, auth_len, enc_len, i;
  1312. auth_len = xfrm_count_auth_supported();
  1313. if (auth_len) {
  1314. auth_len *= sizeof(struct sadb_alg);
  1315. auth_len += sizeof(struct sadb_supported);
  1316. }
  1317. enc_len = xfrm_count_enc_supported();
  1318. if (enc_len) {
  1319. enc_len *= sizeof(struct sadb_alg);
  1320. enc_len += sizeof(struct sadb_supported);
  1321. }
  1322. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1323. skb = alloc_skb(len + 16, allocation);
  1324. if (!skb)
  1325. goto out_put_algs;
  1326. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1327. pfkey_hdr_dup(hdr, orig);
  1328. hdr->sadb_msg_errno = 0;
  1329. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1330. if (auth_len) {
  1331. struct sadb_supported *sp;
  1332. struct sadb_alg *ap;
  1333. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1334. ap = (struct sadb_alg *) (sp + 1);
  1335. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1336. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1337. for (i = 0; ; i++) {
  1338. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1339. if (!aalg)
  1340. break;
  1341. if (aalg->available)
  1342. *ap++ = aalg->desc;
  1343. }
  1344. }
  1345. if (enc_len) {
  1346. struct sadb_supported *sp;
  1347. struct sadb_alg *ap;
  1348. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1349. ap = (struct sadb_alg *) (sp + 1);
  1350. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1351. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1352. for (i = 0; ; i++) {
  1353. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1354. if (!ealg)
  1355. break;
  1356. if (ealg->available)
  1357. *ap++ = ealg->desc;
  1358. }
  1359. }
  1360. out_put_algs:
  1361. return skb;
  1362. }
  1363. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1364. {
  1365. struct pfkey_sock *pfk = pfkey_sk(sk);
  1366. struct sk_buff *supp_skb;
  1367. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1368. return -EINVAL;
  1369. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1370. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1371. return -EEXIST;
  1372. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1373. }
  1374. xfrm_probe_algs();
  1375. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1376. if (!supp_skb) {
  1377. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1378. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1379. return -ENOBUFS;
  1380. }
  1381. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1382. return 0;
  1383. }
  1384. static int key_notify_sa_flush(struct km_event *c)
  1385. {
  1386. struct sk_buff *skb;
  1387. struct sadb_msg *hdr;
  1388. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1389. if (!skb)
  1390. return -ENOBUFS;
  1391. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1392. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1393. hdr->sadb_msg_type = SADB_FLUSH;
  1394. hdr->sadb_msg_seq = c->seq;
  1395. hdr->sadb_msg_pid = c->pid;
  1396. hdr->sadb_msg_version = PF_KEY_V2;
  1397. hdr->sadb_msg_errno = (uint8_t) 0;
  1398. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1399. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1400. return 0;
  1401. }
  1402. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1403. {
  1404. unsigned proto;
  1405. struct km_event c;
  1406. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1407. if (proto == 0)
  1408. return -EINVAL;
  1409. xfrm_state_flush(proto);
  1410. c.data.proto = proto;
  1411. c.seq = hdr->sadb_msg_seq;
  1412. c.pid = hdr->sadb_msg_pid;
  1413. c.event = XFRM_MSG_FLUSHSA;
  1414. km_state_notify(NULL, &c);
  1415. return 0;
  1416. }
  1417. struct pfkey_dump_data
  1418. {
  1419. struct sk_buff *skb;
  1420. struct sadb_msg *hdr;
  1421. struct sock *sk;
  1422. };
  1423. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1424. {
  1425. struct pfkey_dump_data *data = ptr;
  1426. struct sk_buff *out_skb;
  1427. struct sadb_msg *out_hdr;
  1428. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1429. if (IS_ERR(out_skb))
  1430. return PTR_ERR(out_skb);
  1431. out_hdr = (struct sadb_msg *) out_skb->data;
  1432. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1433. out_hdr->sadb_msg_type = SADB_DUMP;
  1434. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1435. out_hdr->sadb_msg_errno = 0;
  1436. out_hdr->sadb_msg_reserved = 0;
  1437. out_hdr->sadb_msg_seq = count;
  1438. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1439. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1440. return 0;
  1441. }
  1442. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1443. {
  1444. u8 proto;
  1445. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1446. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1447. if (proto == 0)
  1448. return -EINVAL;
  1449. return xfrm_state_walk(proto, dump_sa, &data);
  1450. }
  1451. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1452. {
  1453. struct pfkey_sock *pfk = pfkey_sk(sk);
  1454. int satype = hdr->sadb_msg_satype;
  1455. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1456. /* XXX we mangle packet... */
  1457. hdr->sadb_msg_errno = 0;
  1458. if (satype != 0 && satype != 1)
  1459. return -EINVAL;
  1460. pfk->promisc = satype;
  1461. }
  1462. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1463. return 0;
  1464. }
  1465. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1466. {
  1467. int i;
  1468. u32 reqid = *(u32*)ptr;
  1469. for (i=0; i<xp->xfrm_nr; i++) {
  1470. if (xp->xfrm_vec[i].reqid == reqid)
  1471. return -EEXIST;
  1472. }
  1473. return 0;
  1474. }
  1475. static u32 gen_reqid(void)
  1476. {
  1477. u32 start;
  1478. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1479. start = reqid;
  1480. do {
  1481. ++reqid;
  1482. if (reqid == 0)
  1483. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1484. if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid,
  1485. (void*)&reqid) != -EEXIST)
  1486. return reqid;
  1487. } while (reqid != start);
  1488. return 0;
  1489. }
  1490. static int
  1491. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1492. {
  1493. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1494. struct sockaddr_in *sin;
  1495. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1496. struct sockaddr_in6 *sin6;
  1497. #endif
  1498. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1499. return -ELOOP;
  1500. if (rq->sadb_x_ipsecrequest_mode == 0)
  1501. return -EINVAL;
  1502. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1503. t->mode = rq->sadb_x_ipsecrequest_mode-1;
  1504. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1505. t->optional = 1;
  1506. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1507. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1508. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1509. t->reqid = 0;
  1510. if (!t->reqid && !(t->reqid = gen_reqid()))
  1511. return -ENOBUFS;
  1512. }
  1513. /* addresses present only in tunnel mode */
  1514. if (t->mode == XFRM_MODE_TUNNEL) {
  1515. switch (xp->family) {
  1516. case AF_INET:
  1517. sin = (void*)(rq+1);
  1518. if (sin->sin_family != AF_INET)
  1519. return -EINVAL;
  1520. t->saddr.a4 = sin->sin_addr.s_addr;
  1521. sin++;
  1522. if (sin->sin_family != AF_INET)
  1523. return -EINVAL;
  1524. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1525. break;
  1526. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1527. case AF_INET6:
  1528. sin6 = (void *)(rq+1);
  1529. if (sin6->sin6_family != AF_INET6)
  1530. return -EINVAL;
  1531. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1532. sin6++;
  1533. if (sin6->sin6_family != AF_INET6)
  1534. return -EINVAL;
  1535. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1536. break;
  1537. #endif
  1538. default:
  1539. return -EINVAL;
  1540. }
  1541. }
  1542. /* No way to set this via kame pfkey */
  1543. t->aalgos = t->ealgos = t->calgos = ~0;
  1544. xp->xfrm_nr++;
  1545. return 0;
  1546. }
  1547. static int
  1548. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1549. {
  1550. int err;
  1551. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1552. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1553. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1554. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1555. return err;
  1556. len -= rq->sadb_x_ipsecrequest_len;
  1557. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1558. }
  1559. return 0;
  1560. }
  1561. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1562. {
  1563. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1564. if (xfrm_ctx) {
  1565. int len = sizeof(struct sadb_x_sec_ctx);
  1566. len += xfrm_ctx->ctx_len;
  1567. return PFKEY_ALIGN8(len);
  1568. }
  1569. return 0;
  1570. }
  1571. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1572. {
  1573. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1574. int socklen = (xp->family == AF_INET ?
  1575. sizeof(struct sockaddr_in) :
  1576. sizeof(struct sockaddr_in6));
  1577. return sizeof(struct sadb_msg) +
  1578. (sizeof(struct sadb_lifetime) * 3) +
  1579. (sizeof(struct sadb_address) * 2) +
  1580. (sockaddr_size * 2) +
  1581. sizeof(struct sadb_x_policy) +
  1582. (xp->xfrm_nr * (sizeof(struct sadb_x_ipsecrequest) +
  1583. (socklen * 2))) +
  1584. pfkey_xfrm_policy2sec_ctx_size(xp);
  1585. }
  1586. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1587. {
  1588. struct sk_buff *skb;
  1589. int size;
  1590. size = pfkey_xfrm_policy2msg_size(xp);
  1591. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1592. if (skb == NULL)
  1593. return ERR_PTR(-ENOBUFS);
  1594. return skb;
  1595. }
  1596. static void pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1597. {
  1598. struct sadb_msg *hdr;
  1599. struct sadb_address *addr;
  1600. struct sadb_lifetime *lifetime;
  1601. struct sadb_x_policy *pol;
  1602. struct sockaddr_in *sin;
  1603. struct sadb_x_sec_ctx *sec_ctx;
  1604. struct xfrm_sec_ctx *xfrm_ctx;
  1605. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1606. struct sockaddr_in6 *sin6;
  1607. #endif
  1608. int i;
  1609. int size;
  1610. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1611. int socklen = (xp->family == AF_INET ?
  1612. sizeof(struct sockaddr_in) :
  1613. sizeof(struct sockaddr_in6));
  1614. size = pfkey_xfrm_policy2msg_size(xp);
  1615. /* call should fill header later */
  1616. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1617. memset(hdr, 0, size); /* XXX do we need this ? */
  1618. /* src address */
  1619. addr = (struct sadb_address*) skb_put(skb,
  1620. sizeof(struct sadb_address)+sockaddr_size);
  1621. addr->sadb_address_len =
  1622. (sizeof(struct sadb_address)+sockaddr_size)/
  1623. sizeof(uint64_t);
  1624. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1625. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1626. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1627. addr->sadb_address_reserved = 0;
  1628. /* src address */
  1629. if (xp->family == AF_INET) {
  1630. sin = (struct sockaddr_in *) (addr + 1);
  1631. sin->sin_family = AF_INET;
  1632. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1633. sin->sin_port = xp->selector.sport;
  1634. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1635. }
  1636. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1637. else if (xp->family == AF_INET6) {
  1638. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1639. sin6->sin6_family = AF_INET6;
  1640. sin6->sin6_port = xp->selector.sport;
  1641. sin6->sin6_flowinfo = 0;
  1642. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1643. sizeof(struct in6_addr));
  1644. sin6->sin6_scope_id = 0;
  1645. }
  1646. #endif
  1647. else
  1648. BUG();
  1649. /* dst address */
  1650. addr = (struct sadb_address*) skb_put(skb,
  1651. sizeof(struct sadb_address)+sockaddr_size);
  1652. addr->sadb_address_len =
  1653. (sizeof(struct sadb_address)+sockaddr_size)/
  1654. sizeof(uint64_t);
  1655. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1656. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1657. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1658. addr->sadb_address_reserved = 0;
  1659. if (xp->family == AF_INET) {
  1660. sin = (struct sockaddr_in *) (addr + 1);
  1661. sin->sin_family = AF_INET;
  1662. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1663. sin->sin_port = xp->selector.dport;
  1664. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1665. }
  1666. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1667. else if (xp->family == AF_INET6) {
  1668. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1669. sin6->sin6_family = AF_INET6;
  1670. sin6->sin6_port = xp->selector.dport;
  1671. sin6->sin6_flowinfo = 0;
  1672. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1673. sizeof(struct in6_addr));
  1674. sin6->sin6_scope_id = 0;
  1675. }
  1676. #endif
  1677. else
  1678. BUG();
  1679. /* hard time */
  1680. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1681. sizeof(struct sadb_lifetime));
  1682. lifetime->sadb_lifetime_len =
  1683. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1684. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1685. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1686. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1687. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1688. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1689. /* soft time */
  1690. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1691. sizeof(struct sadb_lifetime));
  1692. lifetime->sadb_lifetime_len =
  1693. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1694. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1695. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1696. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1697. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1698. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1699. /* current time */
  1700. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1701. sizeof(struct sadb_lifetime));
  1702. lifetime->sadb_lifetime_len =
  1703. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1704. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1705. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1706. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1707. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1708. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1709. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1710. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1711. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1712. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1713. if (xp->action == XFRM_POLICY_ALLOW) {
  1714. if (xp->xfrm_nr)
  1715. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1716. else
  1717. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1718. }
  1719. pol->sadb_x_policy_dir = dir+1;
  1720. pol->sadb_x_policy_id = xp->index;
  1721. pol->sadb_x_policy_priority = xp->priority;
  1722. for (i=0; i<xp->xfrm_nr; i++) {
  1723. struct sadb_x_ipsecrequest *rq;
  1724. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1725. int req_size;
  1726. req_size = sizeof(struct sadb_x_ipsecrequest);
  1727. if (t->mode == XFRM_MODE_TUNNEL)
  1728. req_size += 2*socklen;
  1729. else
  1730. size -= 2*socklen;
  1731. rq = (void*)skb_put(skb, req_size);
  1732. pol->sadb_x_policy_len += req_size/8;
  1733. memset(rq, 0, sizeof(*rq));
  1734. rq->sadb_x_ipsecrequest_len = req_size;
  1735. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1736. rq->sadb_x_ipsecrequest_mode = t->mode+1;
  1737. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1738. if (t->reqid)
  1739. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1740. if (t->optional)
  1741. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1742. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1743. if (t->mode == XFRM_MODE_TUNNEL) {
  1744. switch (xp->family) {
  1745. case AF_INET:
  1746. sin = (void*)(rq+1);
  1747. sin->sin_family = AF_INET;
  1748. sin->sin_addr.s_addr = t->saddr.a4;
  1749. sin->sin_port = 0;
  1750. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1751. sin++;
  1752. sin->sin_family = AF_INET;
  1753. sin->sin_addr.s_addr = t->id.daddr.a4;
  1754. sin->sin_port = 0;
  1755. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1756. break;
  1757. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1758. case AF_INET6:
  1759. sin6 = (void*)(rq+1);
  1760. sin6->sin6_family = AF_INET6;
  1761. sin6->sin6_port = 0;
  1762. sin6->sin6_flowinfo = 0;
  1763. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1764. sizeof(struct in6_addr));
  1765. sin6->sin6_scope_id = 0;
  1766. sin6++;
  1767. sin6->sin6_family = AF_INET6;
  1768. sin6->sin6_port = 0;
  1769. sin6->sin6_flowinfo = 0;
  1770. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1771. sizeof(struct in6_addr));
  1772. sin6->sin6_scope_id = 0;
  1773. break;
  1774. #endif
  1775. default:
  1776. break;
  1777. }
  1778. }
  1779. }
  1780. /* security context */
  1781. if ((xfrm_ctx = xp->security)) {
  1782. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1783. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1784. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1785. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1786. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1787. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1788. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1789. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1790. xfrm_ctx->ctx_len);
  1791. }
  1792. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1793. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1794. }
  1795. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1796. {
  1797. struct sk_buff *out_skb;
  1798. struct sadb_msg *out_hdr;
  1799. int err;
  1800. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1801. if (IS_ERR(out_skb)) {
  1802. err = PTR_ERR(out_skb);
  1803. goto out;
  1804. }
  1805. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1806. out_hdr = (struct sadb_msg *) out_skb->data;
  1807. out_hdr->sadb_msg_version = PF_KEY_V2;
  1808. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1809. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1810. else
  1811. out_hdr->sadb_msg_type = event2poltype(c->event);
  1812. out_hdr->sadb_msg_errno = 0;
  1813. out_hdr->sadb_msg_seq = c->seq;
  1814. out_hdr->sadb_msg_pid = c->pid;
  1815. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1816. out:
  1817. return 0;
  1818. }
  1819. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1820. {
  1821. int err = 0;
  1822. struct sadb_lifetime *lifetime;
  1823. struct sadb_address *sa;
  1824. struct sadb_x_policy *pol;
  1825. struct xfrm_policy *xp;
  1826. struct km_event c;
  1827. struct sadb_x_sec_ctx *sec_ctx;
  1828. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1829. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1830. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1831. return -EINVAL;
  1832. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1833. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1834. return -EINVAL;
  1835. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1836. return -EINVAL;
  1837. xp = xfrm_policy_alloc(GFP_KERNEL);
  1838. if (xp == NULL)
  1839. return -ENOBUFS;
  1840. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1841. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1842. xp->priority = pol->sadb_x_policy_priority;
  1843. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1844. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1845. if (!xp->family) {
  1846. err = -EINVAL;
  1847. goto out;
  1848. }
  1849. xp->selector.family = xp->family;
  1850. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1851. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1852. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1853. if (xp->selector.sport)
  1854. xp->selector.sport_mask = ~0;
  1855. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1856. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1857. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1858. /* Amusing, we set this twice. KAME apps appear to set same value
  1859. * in both addresses.
  1860. */
  1861. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1862. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1863. if (xp->selector.dport)
  1864. xp->selector.dport_mask = ~0;
  1865. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1866. if (sec_ctx != NULL) {
  1867. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1868. if (!uctx) {
  1869. err = -ENOBUFS;
  1870. goto out;
  1871. }
  1872. err = security_xfrm_policy_alloc(xp, uctx);
  1873. kfree(uctx);
  1874. if (err)
  1875. goto out;
  1876. }
  1877. xp->lft.soft_byte_limit = XFRM_INF;
  1878. xp->lft.hard_byte_limit = XFRM_INF;
  1879. xp->lft.soft_packet_limit = XFRM_INF;
  1880. xp->lft.hard_packet_limit = XFRM_INF;
  1881. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1882. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1883. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1884. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1885. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1886. }
  1887. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1888. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1889. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1890. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1891. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1892. }
  1893. xp->xfrm_nr = 0;
  1894. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1895. (err = parse_ipsecrequests(xp, pol)) < 0)
  1896. goto out;
  1897. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1898. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1899. if (err)
  1900. goto out;
  1901. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1902. c.event = XFRM_MSG_UPDPOLICY;
  1903. else
  1904. c.event = XFRM_MSG_NEWPOLICY;
  1905. c.seq = hdr->sadb_msg_seq;
  1906. c.pid = hdr->sadb_msg_pid;
  1907. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1908. xfrm_pol_put(xp);
  1909. return 0;
  1910. out:
  1911. security_xfrm_policy_free(xp);
  1912. kfree(xp);
  1913. return err;
  1914. }
  1915. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1916. {
  1917. int err;
  1918. struct sadb_address *sa;
  1919. struct sadb_x_policy *pol;
  1920. struct xfrm_policy *xp, tmp;
  1921. struct xfrm_selector sel;
  1922. struct km_event c;
  1923. struct sadb_x_sec_ctx *sec_ctx;
  1924. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1925. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1926. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1927. return -EINVAL;
  1928. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1929. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1930. return -EINVAL;
  1931. memset(&sel, 0, sizeof(sel));
  1932. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1933. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1934. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1935. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1936. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1937. if (sel.sport)
  1938. sel.sport_mask = ~0;
  1939. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1940. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1941. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1942. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1943. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1944. if (sel.dport)
  1945. sel.dport_mask = ~0;
  1946. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1947. memset(&tmp, 0, sizeof(struct xfrm_policy));
  1948. if (sec_ctx != NULL) {
  1949. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1950. if (!uctx)
  1951. return -ENOMEM;
  1952. err = security_xfrm_policy_alloc(&tmp, uctx);
  1953. kfree(uctx);
  1954. if (err)
  1955. return err;
  1956. }
  1957. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  1958. &sel, tmp.security, 1);
  1959. security_xfrm_policy_free(&tmp);
  1960. if (xp == NULL)
  1961. return -ENOENT;
  1962. err = 0;
  1963. if ((err = security_xfrm_policy_delete(xp)))
  1964. goto out;
  1965. c.seq = hdr->sadb_msg_seq;
  1966. c.pid = hdr->sadb_msg_pid;
  1967. c.event = XFRM_MSG_DELPOLICY;
  1968. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1969. out:
  1970. xfrm_pol_put(xp);
  1971. return err;
  1972. }
  1973. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  1974. {
  1975. int err;
  1976. struct sk_buff *out_skb;
  1977. struct sadb_msg *out_hdr;
  1978. err = 0;
  1979. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1980. if (IS_ERR(out_skb)) {
  1981. err = PTR_ERR(out_skb);
  1982. goto out;
  1983. }
  1984. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1985. out_hdr = (struct sadb_msg *) out_skb->data;
  1986. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1987. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  1988. out_hdr->sadb_msg_satype = 0;
  1989. out_hdr->sadb_msg_errno = 0;
  1990. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1991. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1992. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1993. err = 0;
  1994. out:
  1995. return err;
  1996. }
  1997. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1998. {
  1999. unsigned int dir;
  2000. int err;
  2001. struct sadb_x_policy *pol;
  2002. struct xfrm_policy *xp;
  2003. struct km_event c;
  2004. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2005. return -EINVAL;
  2006. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2007. if (dir >= XFRM_POLICY_MAX)
  2008. return -EINVAL;
  2009. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2010. hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2011. if (xp == NULL)
  2012. return -ENOENT;
  2013. err = 0;
  2014. c.seq = hdr->sadb_msg_seq;
  2015. c.pid = hdr->sadb_msg_pid;
  2016. if (hdr->sadb_msg_type == SADB_X_SPDDELETE2) {
  2017. c.data.byid = 1;
  2018. c.event = XFRM_MSG_DELPOLICY;
  2019. km_policy_notify(xp, dir, &c);
  2020. } else {
  2021. err = key_pol_get_resp(sk, xp, hdr, dir);
  2022. }
  2023. xfrm_pol_put(xp);
  2024. return err;
  2025. }
  2026. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2027. {
  2028. struct pfkey_dump_data *data = ptr;
  2029. struct sk_buff *out_skb;
  2030. struct sadb_msg *out_hdr;
  2031. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2032. if (IS_ERR(out_skb))
  2033. return PTR_ERR(out_skb);
  2034. pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2035. out_hdr = (struct sadb_msg *) out_skb->data;
  2036. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2037. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2038. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2039. out_hdr->sadb_msg_errno = 0;
  2040. out_hdr->sadb_msg_seq = count;
  2041. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2042. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2043. return 0;
  2044. }
  2045. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2046. {
  2047. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2048. return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data);
  2049. }
  2050. static int key_notify_policy_flush(struct km_event *c)
  2051. {
  2052. struct sk_buff *skb_out;
  2053. struct sadb_msg *hdr;
  2054. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2055. if (!skb_out)
  2056. return -ENOBUFS;
  2057. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2058. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2059. hdr->sadb_msg_seq = c->seq;
  2060. hdr->sadb_msg_pid = c->pid;
  2061. hdr->sadb_msg_version = PF_KEY_V2;
  2062. hdr->sadb_msg_errno = (uint8_t) 0;
  2063. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2064. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2065. return 0;
  2066. }
  2067. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2068. {
  2069. struct km_event c;
  2070. xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN);
  2071. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2072. c.event = XFRM_MSG_FLUSHPOLICY;
  2073. c.pid = hdr->sadb_msg_pid;
  2074. c.seq = hdr->sadb_msg_seq;
  2075. km_policy_notify(NULL, 0, &c);
  2076. return 0;
  2077. }
  2078. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2079. struct sadb_msg *hdr, void **ext_hdrs);
  2080. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2081. [SADB_RESERVED] = pfkey_reserved,
  2082. [SADB_GETSPI] = pfkey_getspi,
  2083. [SADB_UPDATE] = pfkey_add,
  2084. [SADB_ADD] = pfkey_add,
  2085. [SADB_DELETE] = pfkey_delete,
  2086. [SADB_GET] = pfkey_get,
  2087. [SADB_ACQUIRE] = pfkey_acquire,
  2088. [SADB_REGISTER] = pfkey_register,
  2089. [SADB_EXPIRE] = NULL,
  2090. [SADB_FLUSH] = pfkey_flush,
  2091. [SADB_DUMP] = pfkey_dump,
  2092. [SADB_X_PROMISC] = pfkey_promisc,
  2093. [SADB_X_PCHANGE] = NULL,
  2094. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2095. [SADB_X_SPDADD] = pfkey_spdadd,
  2096. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2097. [SADB_X_SPDGET] = pfkey_spdget,
  2098. [SADB_X_SPDACQUIRE] = NULL,
  2099. [SADB_X_SPDDUMP] = pfkey_spddump,
  2100. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2101. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2102. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2103. };
  2104. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2105. {
  2106. void *ext_hdrs[SADB_EXT_MAX];
  2107. int err;
  2108. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2109. BROADCAST_PROMISC_ONLY, NULL);
  2110. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2111. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2112. if (!err) {
  2113. err = -EOPNOTSUPP;
  2114. if (pfkey_funcs[hdr->sadb_msg_type])
  2115. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2116. }
  2117. return err;
  2118. }
  2119. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2120. {
  2121. struct sadb_msg *hdr = NULL;
  2122. if (skb->len < sizeof(*hdr)) {
  2123. *errp = -EMSGSIZE;
  2124. } else {
  2125. hdr = (struct sadb_msg *) skb->data;
  2126. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2127. hdr->sadb_msg_reserved != 0 ||
  2128. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2129. hdr->sadb_msg_type > SADB_MAX)) {
  2130. hdr = NULL;
  2131. *errp = -EINVAL;
  2132. } else if (hdr->sadb_msg_len != (skb->len /
  2133. sizeof(uint64_t)) ||
  2134. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2135. sizeof(uint64_t))) {
  2136. hdr = NULL;
  2137. *errp = -EMSGSIZE;
  2138. } else {
  2139. *errp = 0;
  2140. }
  2141. }
  2142. return hdr;
  2143. }
  2144. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2145. {
  2146. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2147. }
  2148. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2149. {
  2150. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2151. }
  2152. static int count_ah_combs(struct xfrm_tmpl *t)
  2153. {
  2154. int i, sz = 0;
  2155. for (i = 0; ; i++) {
  2156. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2157. if (!aalg)
  2158. break;
  2159. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2160. sz += sizeof(struct sadb_comb);
  2161. }
  2162. return sz + sizeof(struct sadb_prop);
  2163. }
  2164. static int count_esp_combs(struct xfrm_tmpl *t)
  2165. {
  2166. int i, k, sz = 0;
  2167. for (i = 0; ; i++) {
  2168. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2169. if (!ealg)
  2170. break;
  2171. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2172. continue;
  2173. for (k = 1; ; k++) {
  2174. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2175. if (!aalg)
  2176. break;
  2177. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2178. sz += sizeof(struct sadb_comb);
  2179. }
  2180. }
  2181. return sz + sizeof(struct sadb_prop);
  2182. }
  2183. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2184. {
  2185. struct sadb_prop *p;
  2186. int i;
  2187. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2188. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2189. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2190. p->sadb_prop_replay = 32;
  2191. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2192. for (i = 0; ; i++) {
  2193. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2194. if (!aalg)
  2195. break;
  2196. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2197. struct sadb_comb *c;
  2198. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2199. memset(c, 0, sizeof(*c));
  2200. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2201. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2202. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2203. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2204. c->sadb_comb_hard_addtime = 24*60*60;
  2205. c->sadb_comb_soft_addtime = 20*60*60;
  2206. c->sadb_comb_hard_usetime = 8*60*60;
  2207. c->sadb_comb_soft_usetime = 7*60*60;
  2208. }
  2209. }
  2210. }
  2211. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2212. {
  2213. struct sadb_prop *p;
  2214. int i, k;
  2215. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2216. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2217. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2218. p->sadb_prop_replay = 32;
  2219. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2220. for (i=0; ; i++) {
  2221. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2222. if (!ealg)
  2223. break;
  2224. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2225. continue;
  2226. for (k = 1; ; k++) {
  2227. struct sadb_comb *c;
  2228. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2229. if (!aalg)
  2230. break;
  2231. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2232. continue;
  2233. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2234. memset(c, 0, sizeof(*c));
  2235. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2236. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2237. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2238. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2239. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2240. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2241. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2242. c->sadb_comb_hard_addtime = 24*60*60;
  2243. c->sadb_comb_soft_addtime = 20*60*60;
  2244. c->sadb_comb_hard_usetime = 8*60*60;
  2245. c->sadb_comb_soft_usetime = 7*60*60;
  2246. }
  2247. }
  2248. }
  2249. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2250. {
  2251. return 0;
  2252. }
  2253. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2254. {
  2255. struct sk_buff *out_skb;
  2256. struct sadb_msg *out_hdr;
  2257. int hard;
  2258. int hsc;
  2259. hard = c->data.hard;
  2260. if (hard)
  2261. hsc = 2;
  2262. else
  2263. hsc = 1;
  2264. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2265. if (IS_ERR(out_skb))
  2266. return PTR_ERR(out_skb);
  2267. out_hdr = (struct sadb_msg *) out_skb->data;
  2268. out_hdr->sadb_msg_version = PF_KEY_V2;
  2269. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2270. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2271. out_hdr->sadb_msg_errno = 0;
  2272. out_hdr->sadb_msg_reserved = 0;
  2273. out_hdr->sadb_msg_seq = 0;
  2274. out_hdr->sadb_msg_pid = 0;
  2275. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2276. return 0;
  2277. }
  2278. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2279. {
  2280. switch (c->event) {
  2281. case XFRM_MSG_EXPIRE:
  2282. return key_notify_sa_expire(x, c);
  2283. case XFRM_MSG_DELSA:
  2284. case XFRM_MSG_NEWSA:
  2285. case XFRM_MSG_UPDSA:
  2286. return key_notify_sa(x, c);
  2287. case XFRM_MSG_FLUSHSA:
  2288. return key_notify_sa_flush(c);
  2289. case XFRM_MSG_NEWAE: /* not yet supported */
  2290. break;
  2291. default:
  2292. printk("pfkey: Unknown SA event %d\n", c->event);
  2293. break;
  2294. }
  2295. return 0;
  2296. }
  2297. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2298. {
  2299. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2300. return 0;
  2301. switch (c->event) {
  2302. case XFRM_MSG_POLEXPIRE:
  2303. return key_notify_policy_expire(xp, c);
  2304. case XFRM_MSG_DELPOLICY:
  2305. case XFRM_MSG_NEWPOLICY:
  2306. case XFRM_MSG_UPDPOLICY:
  2307. return key_notify_policy(xp, dir, c);
  2308. case XFRM_MSG_FLUSHPOLICY:
  2309. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2310. break;
  2311. return key_notify_policy_flush(c);
  2312. default:
  2313. printk("pfkey: Unknown policy event %d\n", c->event);
  2314. break;
  2315. }
  2316. return 0;
  2317. }
  2318. static u32 get_acqseq(void)
  2319. {
  2320. u32 res;
  2321. static u32 acqseq;
  2322. static DEFINE_SPINLOCK(acqseq_lock);
  2323. spin_lock_bh(&acqseq_lock);
  2324. res = (++acqseq ? : ++acqseq);
  2325. spin_unlock_bh(&acqseq_lock);
  2326. return res;
  2327. }
  2328. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2329. {
  2330. struct sk_buff *skb;
  2331. struct sadb_msg *hdr;
  2332. struct sadb_address *addr;
  2333. struct sadb_x_policy *pol;
  2334. struct sockaddr_in *sin;
  2335. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2336. struct sockaddr_in6 *sin6;
  2337. #endif
  2338. int sockaddr_size;
  2339. int size;
  2340. struct sadb_x_sec_ctx *sec_ctx;
  2341. struct xfrm_sec_ctx *xfrm_ctx;
  2342. int ctx_size = 0;
  2343. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2344. if (!sockaddr_size)
  2345. return -EINVAL;
  2346. size = sizeof(struct sadb_msg) +
  2347. (sizeof(struct sadb_address) * 2) +
  2348. (sockaddr_size * 2) +
  2349. sizeof(struct sadb_x_policy);
  2350. if (x->id.proto == IPPROTO_AH)
  2351. size += count_ah_combs(t);
  2352. else if (x->id.proto == IPPROTO_ESP)
  2353. size += count_esp_combs(t);
  2354. if ((xfrm_ctx = x->security)) {
  2355. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2356. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2357. }
  2358. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2359. if (skb == NULL)
  2360. return -ENOMEM;
  2361. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2362. hdr->sadb_msg_version = PF_KEY_V2;
  2363. hdr->sadb_msg_type = SADB_ACQUIRE;
  2364. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2365. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2366. hdr->sadb_msg_errno = 0;
  2367. hdr->sadb_msg_reserved = 0;
  2368. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2369. hdr->sadb_msg_pid = 0;
  2370. /* src address */
  2371. addr = (struct sadb_address*) skb_put(skb,
  2372. sizeof(struct sadb_address)+sockaddr_size);
  2373. addr->sadb_address_len =
  2374. (sizeof(struct sadb_address)+sockaddr_size)/
  2375. sizeof(uint64_t);
  2376. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2377. addr->sadb_address_proto = 0;
  2378. addr->sadb_address_reserved = 0;
  2379. if (x->props.family == AF_INET) {
  2380. addr->sadb_address_prefixlen = 32;
  2381. sin = (struct sockaddr_in *) (addr + 1);
  2382. sin->sin_family = AF_INET;
  2383. sin->sin_addr.s_addr = x->props.saddr.a4;
  2384. sin->sin_port = 0;
  2385. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2386. }
  2387. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2388. else if (x->props.family == AF_INET6) {
  2389. addr->sadb_address_prefixlen = 128;
  2390. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2391. sin6->sin6_family = AF_INET6;
  2392. sin6->sin6_port = 0;
  2393. sin6->sin6_flowinfo = 0;
  2394. memcpy(&sin6->sin6_addr,
  2395. x->props.saddr.a6, sizeof(struct in6_addr));
  2396. sin6->sin6_scope_id = 0;
  2397. }
  2398. #endif
  2399. else
  2400. BUG();
  2401. /* dst address */
  2402. addr = (struct sadb_address*) skb_put(skb,
  2403. sizeof(struct sadb_address)+sockaddr_size);
  2404. addr->sadb_address_len =
  2405. (sizeof(struct sadb_address)+sockaddr_size)/
  2406. sizeof(uint64_t);
  2407. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2408. addr->sadb_address_proto = 0;
  2409. addr->sadb_address_reserved = 0;
  2410. if (x->props.family == AF_INET) {
  2411. addr->sadb_address_prefixlen = 32;
  2412. sin = (struct sockaddr_in *) (addr + 1);
  2413. sin->sin_family = AF_INET;
  2414. sin->sin_addr.s_addr = x->id.daddr.a4;
  2415. sin->sin_port = 0;
  2416. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2417. }
  2418. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2419. else if (x->props.family == AF_INET6) {
  2420. addr->sadb_address_prefixlen = 128;
  2421. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2422. sin6->sin6_family = AF_INET6;
  2423. sin6->sin6_port = 0;
  2424. sin6->sin6_flowinfo = 0;
  2425. memcpy(&sin6->sin6_addr,
  2426. x->id.daddr.a6, sizeof(struct in6_addr));
  2427. sin6->sin6_scope_id = 0;
  2428. }
  2429. #endif
  2430. else
  2431. BUG();
  2432. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2433. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2434. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2435. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2436. pol->sadb_x_policy_dir = dir+1;
  2437. pol->sadb_x_policy_id = xp->index;
  2438. /* Set sadb_comb's. */
  2439. if (x->id.proto == IPPROTO_AH)
  2440. dump_ah_combs(skb, t);
  2441. else if (x->id.proto == IPPROTO_ESP)
  2442. dump_esp_combs(skb, t);
  2443. /* security context */
  2444. if (xfrm_ctx) {
  2445. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2446. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2447. sec_ctx->sadb_x_sec_len =
  2448. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2449. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2450. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2451. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2452. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2453. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2454. xfrm_ctx->ctx_len);
  2455. }
  2456. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2457. }
  2458. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2459. u8 *data, int len, int *dir)
  2460. {
  2461. struct xfrm_policy *xp;
  2462. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2463. struct sadb_x_sec_ctx *sec_ctx;
  2464. switch (sk->sk_family) {
  2465. case AF_INET:
  2466. if (opt != IP_IPSEC_POLICY) {
  2467. *dir = -EOPNOTSUPP;
  2468. return NULL;
  2469. }
  2470. break;
  2471. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2472. case AF_INET6:
  2473. if (opt != IPV6_IPSEC_POLICY) {
  2474. *dir = -EOPNOTSUPP;
  2475. return NULL;
  2476. }
  2477. break;
  2478. #endif
  2479. default:
  2480. *dir = -EINVAL;
  2481. return NULL;
  2482. }
  2483. *dir = -EINVAL;
  2484. if (len < sizeof(struct sadb_x_policy) ||
  2485. pol->sadb_x_policy_len*8 > len ||
  2486. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2487. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2488. return NULL;
  2489. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2490. if (xp == NULL) {
  2491. *dir = -ENOBUFS;
  2492. return NULL;
  2493. }
  2494. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2495. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2496. xp->lft.soft_byte_limit = XFRM_INF;
  2497. xp->lft.hard_byte_limit = XFRM_INF;
  2498. xp->lft.soft_packet_limit = XFRM_INF;
  2499. xp->lft.hard_packet_limit = XFRM_INF;
  2500. xp->family = sk->sk_family;
  2501. xp->xfrm_nr = 0;
  2502. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2503. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2504. goto out;
  2505. /* security context too */
  2506. if (len >= (pol->sadb_x_policy_len*8 +
  2507. sizeof(struct sadb_x_sec_ctx))) {
  2508. char *p = (char *)pol;
  2509. struct xfrm_user_sec_ctx *uctx;
  2510. p += pol->sadb_x_policy_len*8;
  2511. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2512. if (len < pol->sadb_x_policy_len*8 +
  2513. sec_ctx->sadb_x_sec_len) {
  2514. *dir = -EINVAL;
  2515. goto out;
  2516. }
  2517. if ((*dir = verify_sec_ctx_len(p)))
  2518. goto out;
  2519. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2520. *dir = security_xfrm_policy_alloc(xp, uctx);
  2521. kfree(uctx);
  2522. if (*dir)
  2523. goto out;
  2524. }
  2525. else {
  2526. *dir = security_xfrm_sock_policy_alloc(xp, sk);
  2527. if (*dir)
  2528. goto out;
  2529. }
  2530. *dir = pol->sadb_x_policy_dir-1;
  2531. return xp;
  2532. out:
  2533. security_xfrm_policy_free(xp);
  2534. kfree(xp);
  2535. return NULL;
  2536. }
  2537. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, u16 sport)
  2538. {
  2539. struct sk_buff *skb;
  2540. struct sadb_msg *hdr;
  2541. struct sadb_sa *sa;
  2542. struct sadb_address *addr;
  2543. struct sadb_x_nat_t_port *n_port;
  2544. struct sockaddr_in *sin;
  2545. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2546. struct sockaddr_in6 *sin6;
  2547. #endif
  2548. int sockaddr_size;
  2549. int size;
  2550. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2551. struct xfrm_encap_tmpl *natt = NULL;
  2552. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2553. if (!sockaddr_size)
  2554. return -EINVAL;
  2555. if (!satype)
  2556. return -EINVAL;
  2557. if (!x->encap)
  2558. return -EINVAL;
  2559. natt = x->encap;
  2560. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2561. *
  2562. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2563. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2564. */
  2565. size = sizeof(struct sadb_msg) +
  2566. sizeof(struct sadb_sa) +
  2567. (sizeof(struct sadb_address) * 2) +
  2568. (sockaddr_size * 2) +
  2569. (sizeof(struct sadb_x_nat_t_port) * 2);
  2570. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2571. if (skb == NULL)
  2572. return -ENOMEM;
  2573. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2574. hdr->sadb_msg_version = PF_KEY_V2;
  2575. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2576. hdr->sadb_msg_satype = satype;
  2577. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2578. hdr->sadb_msg_errno = 0;
  2579. hdr->sadb_msg_reserved = 0;
  2580. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2581. hdr->sadb_msg_pid = 0;
  2582. /* SA */
  2583. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2584. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2585. sa->sadb_sa_exttype = SADB_EXT_SA;
  2586. sa->sadb_sa_spi = x->id.spi;
  2587. sa->sadb_sa_replay = 0;
  2588. sa->sadb_sa_state = 0;
  2589. sa->sadb_sa_auth = 0;
  2590. sa->sadb_sa_encrypt = 0;
  2591. sa->sadb_sa_flags = 0;
  2592. /* ADDRESS_SRC (old addr) */
  2593. addr = (struct sadb_address*)
  2594. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2595. addr->sadb_address_len =
  2596. (sizeof(struct sadb_address)+sockaddr_size)/
  2597. sizeof(uint64_t);
  2598. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2599. addr->sadb_address_proto = 0;
  2600. addr->sadb_address_reserved = 0;
  2601. if (x->props.family == AF_INET) {
  2602. addr->sadb_address_prefixlen = 32;
  2603. sin = (struct sockaddr_in *) (addr + 1);
  2604. sin->sin_family = AF_INET;
  2605. sin->sin_addr.s_addr = x->props.saddr.a4;
  2606. sin->sin_port = 0;
  2607. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2608. }
  2609. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2610. else if (x->props.family == AF_INET6) {
  2611. addr->sadb_address_prefixlen = 128;
  2612. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2613. sin6->sin6_family = AF_INET6;
  2614. sin6->sin6_port = 0;
  2615. sin6->sin6_flowinfo = 0;
  2616. memcpy(&sin6->sin6_addr,
  2617. x->props.saddr.a6, sizeof(struct in6_addr));
  2618. sin6->sin6_scope_id = 0;
  2619. }
  2620. #endif
  2621. else
  2622. BUG();
  2623. /* NAT_T_SPORT (old port) */
  2624. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2625. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2626. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2627. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2628. n_port->sadb_x_nat_t_port_reserved = 0;
  2629. /* ADDRESS_DST (new addr) */
  2630. addr = (struct sadb_address*)
  2631. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2632. addr->sadb_address_len =
  2633. (sizeof(struct sadb_address)+sockaddr_size)/
  2634. sizeof(uint64_t);
  2635. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2636. addr->sadb_address_proto = 0;
  2637. addr->sadb_address_reserved = 0;
  2638. if (x->props.family == AF_INET) {
  2639. addr->sadb_address_prefixlen = 32;
  2640. sin = (struct sockaddr_in *) (addr + 1);
  2641. sin->sin_family = AF_INET;
  2642. sin->sin_addr.s_addr = ipaddr->a4;
  2643. sin->sin_port = 0;
  2644. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2645. }
  2646. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2647. else if (x->props.family == AF_INET6) {
  2648. addr->sadb_address_prefixlen = 128;
  2649. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2650. sin6->sin6_family = AF_INET6;
  2651. sin6->sin6_port = 0;
  2652. sin6->sin6_flowinfo = 0;
  2653. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2654. sin6->sin6_scope_id = 0;
  2655. }
  2656. #endif
  2657. else
  2658. BUG();
  2659. /* NAT_T_DPORT (new port) */
  2660. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2661. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2662. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2663. n_port->sadb_x_nat_t_port_port = sport;
  2664. n_port->sadb_x_nat_t_port_reserved = 0;
  2665. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2666. }
  2667. static int pfkey_sendmsg(struct kiocb *kiocb,
  2668. struct socket *sock, struct msghdr *msg, size_t len)
  2669. {
  2670. struct sock *sk = sock->sk;
  2671. struct sk_buff *skb = NULL;
  2672. struct sadb_msg *hdr = NULL;
  2673. int err;
  2674. err = -EOPNOTSUPP;
  2675. if (msg->msg_flags & MSG_OOB)
  2676. goto out;
  2677. err = -EMSGSIZE;
  2678. if ((unsigned)len > sk->sk_sndbuf - 32)
  2679. goto out;
  2680. err = -ENOBUFS;
  2681. skb = alloc_skb(len, GFP_KERNEL);
  2682. if (skb == NULL)
  2683. goto out;
  2684. err = -EFAULT;
  2685. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  2686. goto out;
  2687. hdr = pfkey_get_base_msg(skb, &err);
  2688. if (!hdr)
  2689. goto out;
  2690. mutex_lock(&xfrm_cfg_mutex);
  2691. err = pfkey_process(sk, skb, hdr);
  2692. mutex_unlock(&xfrm_cfg_mutex);
  2693. out:
  2694. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  2695. err = 0;
  2696. if (skb)
  2697. kfree_skb(skb);
  2698. return err ? : len;
  2699. }
  2700. static int pfkey_recvmsg(struct kiocb *kiocb,
  2701. struct socket *sock, struct msghdr *msg, size_t len,
  2702. int flags)
  2703. {
  2704. struct sock *sk = sock->sk;
  2705. struct sk_buff *skb;
  2706. int copied, err;
  2707. err = -EINVAL;
  2708. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  2709. goto out;
  2710. msg->msg_namelen = 0;
  2711. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  2712. if (skb == NULL)
  2713. goto out;
  2714. copied = skb->len;
  2715. if (copied > len) {
  2716. msg->msg_flags |= MSG_TRUNC;
  2717. copied = len;
  2718. }
  2719. skb->h.raw = skb->data;
  2720. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2721. if (err)
  2722. goto out_free;
  2723. sock_recv_timestamp(msg, sk, skb);
  2724. err = (flags & MSG_TRUNC) ? skb->len : copied;
  2725. out_free:
  2726. skb_free_datagram(sk, skb);
  2727. out:
  2728. return err;
  2729. }
  2730. static const struct proto_ops pfkey_ops = {
  2731. .family = PF_KEY,
  2732. .owner = THIS_MODULE,
  2733. /* Operations that make no sense on pfkey sockets. */
  2734. .bind = sock_no_bind,
  2735. .connect = sock_no_connect,
  2736. .socketpair = sock_no_socketpair,
  2737. .accept = sock_no_accept,
  2738. .getname = sock_no_getname,
  2739. .ioctl = sock_no_ioctl,
  2740. .listen = sock_no_listen,
  2741. .shutdown = sock_no_shutdown,
  2742. .setsockopt = sock_no_setsockopt,
  2743. .getsockopt = sock_no_getsockopt,
  2744. .mmap = sock_no_mmap,
  2745. .sendpage = sock_no_sendpage,
  2746. /* Now the operations that really occur. */
  2747. .release = pfkey_release,
  2748. .poll = datagram_poll,
  2749. .sendmsg = pfkey_sendmsg,
  2750. .recvmsg = pfkey_recvmsg,
  2751. };
  2752. static struct net_proto_family pfkey_family_ops = {
  2753. .family = PF_KEY,
  2754. .create = pfkey_create,
  2755. .owner = THIS_MODULE,
  2756. };
  2757. #ifdef CONFIG_PROC_FS
  2758. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  2759. int length, int *eof, void *data)
  2760. {
  2761. off_t pos = 0;
  2762. off_t begin = 0;
  2763. int len = 0;
  2764. struct sock *s;
  2765. struct hlist_node *node;
  2766. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  2767. read_lock(&pfkey_table_lock);
  2768. sk_for_each(s, node, &pfkey_table) {
  2769. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  2770. s,
  2771. atomic_read(&s->sk_refcnt),
  2772. atomic_read(&s->sk_rmem_alloc),
  2773. atomic_read(&s->sk_wmem_alloc),
  2774. sock_i_uid(s),
  2775. sock_i_ino(s)
  2776. );
  2777. buffer[len++] = '\n';
  2778. pos = begin + len;
  2779. if (pos < offset) {
  2780. len = 0;
  2781. begin = pos;
  2782. }
  2783. if(pos > offset + length)
  2784. goto done;
  2785. }
  2786. *eof = 1;
  2787. done:
  2788. read_unlock(&pfkey_table_lock);
  2789. *start = buffer + (offset - begin);
  2790. len -= (offset - begin);
  2791. if (len > length)
  2792. len = length;
  2793. if (len < 0)
  2794. len = 0;
  2795. return len;
  2796. }
  2797. #endif
  2798. static struct xfrm_mgr pfkeyv2_mgr =
  2799. {
  2800. .id = "pfkeyv2",
  2801. .notify = pfkey_send_notify,
  2802. .acquire = pfkey_send_acquire,
  2803. .compile_policy = pfkey_compile_policy,
  2804. .new_mapping = pfkey_send_new_mapping,
  2805. .notify_policy = pfkey_send_policy_notify,
  2806. };
  2807. static void __exit ipsec_pfkey_exit(void)
  2808. {
  2809. xfrm_unregister_km(&pfkeyv2_mgr);
  2810. remove_proc_entry("net/pfkey", NULL);
  2811. sock_unregister(PF_KEY);
  2812. proto_unregister(&key_proto);
  2813. }
  2814. static int __init ipsec_pfkey_init(void)
  2815. {
  2816. int err = proto_register(&key_proto, 0);
  2817. if (err != 0)
  2818. goto out;
  2819. err = sock_register(&pfkey_family_ops);
  2820. if (err != 0)
  2821. goto out_unregister_key_proto;
  2822. #ifdef CONFIG_PROC_FS
  2823. err = -ENOMEM;
  2824. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  2825. goto out_sock_unregister;
  2826. #endif
  2827. err = xfrm_register_km(&pfkeyv2_mgr);
  2828. if (err != 0)
  2829. goto out_remove_proc_entry;
  2830. out:
  2831. return err;
  2832. out_remove_proc_entry:
  2833. #ifdef CONFIG_PROC_FS
  2834. remove_proc_entry("net/pfkey", NULL);
  2835. out_sock_unregister:
  2836. #endif
  2837. sock_unregister(PF_KEY);
  2838. out_unregister_key_proto:
  2839. proto_unregister(&key_proto);
  2840. goto out;
  2841. }
  2842. module_init(ipsec_pfkey_init);
  2843. module_exit(ipsec_pfkey_exit);
  2844. MODULE_LICENSE("GPL");
  2845. MODULE_ALIAS_NETPROTO(PF_KEY);