kprobes.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /*
  2. * Kernel Probes (KProbes)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2002, 2006
  19. *
  20. * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  21. */
  22. #include <linux/config.h>
  23. #include <linux/kprobes.h>
  24. #include <linux/ptrace.h>
  25. #include <linux/preempt.h>
  26. #include <linux/stop_machine.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/kdebug.h>
  29. #include <asm/sections.h>
  30. #include <asm/uaccess.h>
  31. #include <linux/module.h>
  32. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  33. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  34. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  35. {
  36. /* Make sure the probe isn't going on a difficult instruction */
  37. if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
  38. return -EINVAL;
  39. if ((unsigned long)p->addr & 0x01) {
  40. printk("Attempt to register kprobe at an unaligned address\n");
  41. return -EINVAL;
  42. }
  43. /* Use the get_insn_slot() facility for correctness */
  44. if (!(p->ainsn.insn = get_insn_slot()))
  45. return -ENOMEM;
  46. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  47. get_instruction_type(&p->ainsn);
  48. p->opcode = *p->addr;
  49. return 0;
  50. }
  51. int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
  52. {
  53. switch (*(__u8 *) instruction) {
  54. case 0x0c: /* bassm */
  55. case 0x0b: /* bsm */
  56. case 0x83: /* diag */
  57. case 0x44: /* ex */
  58. return -EINVAL;
  59. }
  60. switch (*(__u16 *) instruction) {
  61. case 0x0101: /* pr */
  62. case 0xb25a: /* bsa */
  63. case 0xb240: /* bakr */
  64. case 0xb258: /* bsg */
  65. case 0xb218: /* pc */
  66. case 0xb228: /* pt */
  67. return -EINVAL;
  68. }
  69. return 0;
  70. }
  71. void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
  72. {
  73. /* default fixup method */
  74. ainsn->fixup = FIXUP_PSW_NORMAL;
  75. /* save r1 operand */
  76. ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
  77. /* save the instruction length (pop 5-5) in bytes */
  78. switch (*(__u8 *) (ainsn->insn) >> 4) {
  79. case 0:
  80. ainsn->ilen = 2;
  81. break;
  82. case 1:
  83. case 2:
  84. ainsn->ilen = 4;
  85. break;
  86. case 3:
  87. ainsn->ilen = 6;
  88. break;
  89. }
  90. switch (*(__u8 *) ainsn->insn) {
  91. case 0x05: /* balr */
  92. case 0x0d: /* basr */
  93. ainsn->fixup = FIXUP_RETURN_REGISTER;
  94. /* if r2 = 0, no branch will be taken */
  95. if ((*ainsn->insn & 0x0f) == 0)
  96. ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
  97. break;
  98. case 0x06: /* bctr */
  99. case 0x07: /* bcr */
  100. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  101. break;
  102. case 0x45: /* bal */
  103. case 0x4d: /* bas */
  104. ainsn->fixup = FIXUP_RETURN_REGISTER;
  105. break;
  106. case 0x47: /* bc */
  107. case 0x46: /* bct */
  108. case 0x86: /* bxh */
  109. case 0x87: /* bxle */
  110. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  111. break;
  112. case 0x82: /* lpsw */
  113. ainsn->fixup = FIXUP_NOT_REQUIRED;
  114. break;
  115. case 0xb2: /* lpswe */
  116. if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
  117. ainsn->fixup = FIXUP_NOT_REQUIRED;
  118. }
  119. break;
  120. case 0xa7: /* bras */
  121. if ((*ainsn->insn & 0x0f) == 0x05) {
  122. ainsn->fixup |= FIXUP_RETURN_REGISTER;
  123. }
  124. break;
  125. case 0xc0:
  126. if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
  127. || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
  128. ainsn->fixup |= FIXUP_RETURN_REGISTER;
  129. break;
  130. case 0xeb:
  131. if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
  132. *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
  133. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  134. }
  135. break;
  136. case 0xe3: /* bctg */
  137. if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
  138. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  139. }
  140. break;
  141. }
  142. }
  143. static int __kprobes swap_instruction(void *aref)
  144. {
  145. struct ins_replace_args *args = aref;
  146. int err = -EFAULT;
  147. asm volatile(
  148. "0: mvc 0(2,%2),0(%3)\n"
  149. "1: la %0,0\n"
  150. "2:\n"
  151. EX_TABLE(0b,2b)
  152. : "+d" (err), "=m" (*args->ptr)
  153. : "a" (args->ptr), "a" (&args->new), "m" (args->new));
  154. return err;
  155. }
  156. void __kprobes arch_arm_kprobe(struct kprobe *p)
  157. {
  158. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  159. unsigned long status = kcb->kprobe_status;
  160. struct ins_replace_args args;
  161. args.ptr = p->addr;
  162. args.old = p->opcode;
  163. args.new = BREAKPOINT_INSTRUCTION;
  164. kcb->kprobe_status = KPROBE_SWAP_INST;
  165. stop_machine_run(swap_instruction, &args, NR_CPUS);
  166. kcb->kprobe_status = status;
  167. }
  168. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  169. {
  170. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  171. unsigned long status = kcb->kprobe_status;
  172. struct ins_replace_args args;
  173. args.ptr = p->addr;
  174. args.old = BREAKPOINT_INSTRUCTION;
  175. args.new = p->opcode;
  176. kcb->kprobe_status = KPROBE_SWAP_INST;
  177. stop_machine_run(swap_instruction, &args, NR_CPUS);
  178. kcb->kprobe_status = status;
  179. }
  180. void __kprobes arch_remove_kprobe(struct kprobe *p)
  181. {
  182. mutex_lock(&kprobe_mutex);
  183. free_insn_slot(p->ainsn.insn);
  184. mutex_unlock(&kprobe_mutex);
  185. }
  186. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  187. {
  188. per_cr_bits kprobe_per_regs[1];
  189. memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
  190. regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
  191. /* Set up the per control reg info, will pass to lctl */
  192. kprobe_per_regs[0].em_instruction_fetch = 1;
  193. kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
  194. kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
  195. /* Set the PER control regs, turns on single step for this address */
  196. __ctl_load(kprobe_per_regs, 9, 11);
  197. regs->psw.mask |= PSW_MASK_PER;
  198. regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
  199. }
  200. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  201. {
  202. kcb->prev_kprobe.kp = kprobe_running();
  203. kcb->prev_kprobe.status = kcb->kprobe_status;
  204. kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
  205. memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
  206. sizeof(kcb->kprobe_saved_ctl));
  207. }
  208. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  209. {
  210. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  211. kcb->kprobe_status = kcb->prev_kprobe.status;
  212. kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
  213. memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
  214. sizeof(kcb->kprobe_saved_ctl));
  215. }
  216. static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  217. struct kprobe_ctlblk *kcb)
  218. {
  219. __get_cpu_var(current_kprobe) = p;
  220. /* Save the interrupt and per flags */
  221. kcb->kprobe_saved_imask = regs->psw.mask &
  222. (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
  223. /* Save the control regs that govern PER */
  224. __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
  225. }
  226. /* Called with kretprobe_lock held */
  227. void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
  228. struct pt_regs *regs)
  229. {
  230. struct kretprobe_instance *ri;
  231. if ((ri = get_free_rp_inst(rp)) != NULL) {
  232. ri->rp = rp;
  233. ri->task = current;
  234. ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
  235. /* Replace the return addr with trampoline addr */
  236. regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
  237. add_rp_inst(ri);
  238. } else {
  239. rp->nmissed++;
  240. }
  241. }
  242. static int __kprobes kprobe_handler(struct pt_regs *regs)
  243. {
  244. struct kprobe *p;
  245. int ret = 0;
  246. unsigned long *addr = (unsigned long *)
  247. ((regs->psw.addr & PSW_ADDR_INSN) - 2);
  248. struct kprobe_ctlblk *kcb;
  249. /*
  250. * We don't want to be preempted for the entire
  251. * duration of kprobe processing
  252. */
  253. preempt_disable();
  254. kcb = get_kprobe_ctlblk();
  255. /* Check we're not actually recursing */
  256. if (kprobe_running()) {
  257. p = get_kprobe(addr);
  258. if (p) {
  259. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  260. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  261. regs->psw.mask &= ~PSW_MASK_PER;
  262. regs->psw.mask |= kcb->kprobe_saved_imask;
  263. goto no_kprobe;
  264. }
  265. /* We have reentered the kprobe_handler(), since
  266. * another probe was hit while within the handler.
  267. * We here save the original kprobes variables and
  268. * just single step on the instruction of the new probe
  269. * without calling any user handlers.
  270. */
  271. save_previous_kprobe(kcb);
  272. set_current_kprobe(p, regs, kcb);
  273. kprobes_inc_nmissed_count(p);
  274. prepare_singlestep(p, regs);
  275. kcb->kprobe_status = KPROBE_REENTER;
  276. return 1;
  277. } else {
  278. p = __get_cpu_var(current_kprobe);
  279. if (p->break_handler && p->break_handler(p, regs)) {
  280. goto ss_probe;
  281. }
  282. }
  283. goto no_kprobe;
  284. }
  285. p = get_kprobe(addr);
  286. if (!p) {
  287. if (*addr != BREAKPOINT_INSTRUCTION) {
  288. /*
  289. * The breakpoint instruction was removed right
  290. * after we hit it. Another cpu has removed
  291. * either a probepoint or a debugger breakpoint
  292. * at this address. In either case, no further
  293. * handling of this interrupt is appropriate.
  294. *
  295. */
  296. ret = 1;
  297. }
  298. /* Not one of ours: let kernel handle it */
  299. goto no_kprobe;
  300. }
  301. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  302. set_current_kprobe(p, regs, kcb);
  303. if (p->pre_handler && p->pre_handler(p, regs))
  304. /* handler has already set things up, so skip ss setup */
  305. return 1;
  306. ss_probe:
  307. prepare_singlestep(p, regs);
  308. kcb->kprobe_status = KPROBE_HIT_SS;
  309. return 1;
  310. no_kprobe:
  311. preempt_enable_no_resched();
  312. return ret;
  313. }
  314. /*
  315. * Function return probe trampoline:
  316. * - init_kprobes() establishes a probepoint here
  317. * - When the probed function returns, this probe
  318. * causes the handlers to fire
  319. */
  320. void __kprobes kretprobe_trampoline_holder(void)
  321. {
  322. asm volatile(".global kretprobe_trampoline\n"
  323. "kretprobe_trampoline: bcr 0,0\n");
  324. }
  325. /*
  326. * Called when the probe at kretprobe trampoline is hit
  327. */
  328. int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
  329. {
  330. struct kretprobe_instance *ri = NULL;
  331. struct hlist_head *head;
  332. struct hlist_node *node, *tmp;
  333. unsigned long flags, orig_ret_address = 0;
  334. unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
  335. spin_lock_irqsave(&kretprobe_lock, flags);
  336. head = kretprobe_inst_table_head(current);
  337. /*
  338. * It is possible to have multiple instances associated with a given
  339. * task either because an multiple functions in the call path
  340. * have a return probe installed on them, and/or more then one return
  341. * return probe was registered for a target function.
  342. *
  343. * We can handle this because:
  344. * - instances are always inserted at the head of the list
  345. * - when multiple return probes are registered for the same
  346. * function, the first instance's ret_addr will point to the
  347. * real return address, and all the rest will point to
  348. * kretprobe_trampoline
  349. */
  350. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  351. if (ri->task != current)
  352. /* another task is sharing our hash bucket */
  353. continue;
  354. if (ri->rp && ri->rp->handler)
  355. ri->rp->handler(ri, regs);
  356. orig_ret_address = (unsigned long)ri->ret_addr;
  357. recycle_rp_inst(ri);
  358. if (orig_ret_address != trampoline_address) {
  359. /*
  360. * This is the real return address. Any other
  361. * instances associated with this task are for
  362. * other calls deeper on the call stack
  363. */
  364. break;
  365. }
  366. }
  367. BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
  368. regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
  369. reset_current_kprobe();
  370. spin_unlock_irqrestore(&kretprobe_lock, flags);
  371. preempt_enable_no_resched();
  372. /*
  373. * By returning a non-zero value, we are telling
  374. * kprobe_handler() that we don't want the post_handler
  375. * to run (and have re-enabled preemption)
  376. */
  377. return 1;
  378. }
  379. /*
  380. * Called after single-stepping. p->addr is the address of the
  381. * instruction whose first byte has been replaced by the "breakpoint"
  382. * instruction. To avoid the SMP problems that can occur when we
  383. * temporarily put back the original opcode to single-step, we
  384. * single-stepped a copy of the instruction. The address of this
  385. * copy is p->ainsn.insn.
  386. */
  387. static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
  388. {
  389. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  390. regs->psw.addr &= PSW_ADDR_INSN;
  391. if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
  392. regs->psw.addr = (unsigned long)p->addr +
  393. ((unsigned long)regs->psw.addr -
  394. (unsigned long)p->ainsn.insn);
  395. if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
  396. if ((unsigned long)regs->psw.addr -
  397. (unsigned long)p->ainsn.insn == p->ainsn.ilen)
  398. regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
  399. if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
  400. regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
  401. (regs->gprs[p->ainsn.reg] -
  402. (unsigned long)p->ainsn.insn))
  403. | PSW_ADDR_AMODE;
  404. regs->psw.addr |= PSW_ADDR_AMODE;
  405. /* turn off PER mode */
  406. regs->psw.mask &= ~PSW_MASK_PER;
  407. /* Restore the original per control regs */
  408. __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
  409. regs->psw.mask |= kcb->kprobe_saved_imask;
  410. }
  411. static int __kprobes post_kprobe_handler(struct pt_regs *regs)
  412. {
  413. struct kprobe *cur = kprobe_running();
  414. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  415. if (!cur)
  416. return 0;
  417. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  418. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  419. cur->post_handler(cur, regs, 0);
  420. }
  421. resume_execution(cur, regs);
  422. /*Restore back the original saved kprobes variables and continue. */
  423. if (kcb->kprobe_status == KPROBE_REENTER) {
  424. restore_previous_kprobe(kcb);
  425. goto out;
  426. }
  427. reset_current_kprobe();
  428. out:
  429. preempt_enable_no_resched();
  430. /*
  431. * if somebody else is singlestepping across a probe point, psw mask
  432. * will have PER set, in which case, continue the remaining processing
  433. * of do_single_step, as if this is not a probe hit.
  434. */
  435. if (regs->psw.mask & PSW_MASK_PER) {
  436. return 0;
  437. }
  438. return 1;
  439. }
  440. static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  441. {
  442. struct kprobe *cur = kprobe_running();
  443. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  444. const struct exception_table_entry *entry;
  445. switch(kcb->kprobe_status) {
  446. case KPROBE_SWAP_INST:
  447. /* We are here because the instruction replacement failed */
  448. return 0;
  449. case KPROBE_HIT_SS:
  450. case KPROBE_REENTER:
  451. /*
  452. * We are here because the instruction being single
  453. * stepped caused a page fault. We reset the current
  454. * kprobe and the nip points back to the probe address
  455. * and allow the page fault handler to continue as a
  456. * normal page fault.
  457. */
  458. regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
  459. regs->psw.mask &= ~PSW_MASK_PER;
  460. regs->psw.mask |= kcb->kprobe_saved_imask;
  461. if (kcb->kprobe_status == KPROBE_REENTER)
  462. restore_previous_kprobe(kcb);
  463. else
  464. reset_current_kprobe();
  465. preempt_enable_no_resched();
  466. break;
  467. case KPROBE_HIT_ACTIVE:
  468. case KPROBE_HIT_SSDONE:
  469. /*
  470. * We increment the nmissed count for accounting,
  471. * we can also use npre/npostfault count for accouting
  472. * these specific fault cases.
  473. */
  474. kprobes_inc_nmissed_count(cur);
  475. /*
  476. * We come here because instructions in the pre/post
  477. * handler caused the page_fault, this could happen
  478. * if handler tries to access user space by
  479. * copy_from_user(), get_user() etc. Let the
  480. * user-specified handler try to fix it first.
  481. */
  482. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  483. return 1;
  484. /*
  485. * In case the user-specified fault handler returned
  486. * zero, try to fix up.
  487. */
  488. entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
  489. if (entry) {
  490. regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
  491. return 1;
  492. }
  493. /*
  494. * fixup_exception() could not handle it,
  495. * Let do_page_fault() fix it.
  496. */
  497. break;
  498. default:
  499. break;
  500. }
  501. return 0;
  502. }
  503. /*
  504. * Wrapper routine to for handling exceptions.
  505. */
  506. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  507. unsigned long val, void *data)
  508. {
  509. struct die_args *args = (struct die_args *)data;
  510. int ret = NOTIFY_DONE;
  511. switch (val) {
  512. case DIE_BPT:
  513. if (kprobe_handler(args->regs))
  514. ret = NOTIFY_STOP;
  515. break;
  516. case DIE_SSTEP:
  517. if (post_kprobe_handler(args->regs))
  518. ret = NOTIFY_STOP;
  519. break;
  520. case DIE_TRAP:
  521. case DIE_PAGE_FAULT:
  522. /* kprobe_running() needs smp_processor_id() */
  523. preempt_disable();
  524. if (kprobe_running() &&
  525. kprobe_fault_handler(args->regs, args->trapnr))
  526. ret = NOTIFY_STOP;
  527. preempt_enable();
  528. break;
  529. default:
  530. break;
  531. }
  532. return ret;
  533. }
  534. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  535. {
  536. struct jprobe *jp = container_of(p, struct jprobe, kp);
  537. unsigned long addr;
  538. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  539. memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
  540. /* setup return addr to the jprobe handler routine */
  541. regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
  542. /* r14 is the function return address */
  543. kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
  544. /* r15 is the stack pointer */
  545. kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
  546. addr = (unsigned long)kcb->jprobe_saved_r15;
  547. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
  548. MIN_STACK_SIZE(addr));
  549. return 1;
  550. }
  551. void __kprobes jprobe_return(void)
  552. {
  553. asm volatile(".word 0x0002");
  554. }
  555. void __kprobes jprobe_return_end(void)
  556. {
  557. asm volatile("bcr 0,0");
  558. }
  559. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  560. {
  561. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  562. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
  563. /* Put the regs back */
  564. memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
  565. /* put the stack back */
  566. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  567. MIN_STACK_SIZE(stack_addr));
  568. preempt_enable_no_resched();
  569. return 1;
  570. }
  571. static struct kprobe trampoline_p = {
  572. .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
  573. .pre_handler = trampoline_probe_handler
  574. };
  575. int __init arch_init_kprobes(void)
  576. {
  577. return register_kprobe(&trampoline_p);
  578. }