eeh.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079
  1. /*
  2. * eeh.c
  3. * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/list.h>
  22. #include <linux/pci.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/rbtree.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/spinlock.h>
  27. #include <asm/atomic.h>
  28. #include <asm/eeh.h>
  29. #include <asm/eeh_event.h>
  30. #include <asm/io.h>
  31. #include <asm/machdep.h>
  32. #include <asm/ppc-pci.h>
  33. #include <asm/rtas.h>
  34. #undef DEBUG
  35. /** Overview:
  36. * EEH, or "Extended Error Handling" is a PCI bridge technology for
  37. * dealing with PCI bus errors that can't be dealt with within the
  38. * usual PCI framework, except by check-stopping the CPU. Systems
  39. * that are designed for high-availability/reliability cannot afford
  40. * to crash due to a "mere" PCI error, thus the need for EEH.
  41. * An EEH-capable bridge operates by converting a detected error
  42. * into a "slot freeze", taking the PCI adapter off-line, making
  43. * the slot behave, from the OS'es point of view, as if the slot
  44. * were "empty": all reads return 0xff's and all writes are silently
  45. * ignored. EEH slot isolation events can be triggered by parity
  46. * errors on the address or data busses (e.g. during posted writes),
  47. * which in turn might be caused by low voltage on the bus, dust,
  48. * vibration, humidity, radioactivity or plain-old failed hardware.
  49. *
  50. * Note, however, that one of the leading causes of EEH slot
  51. * freeze events are buggy device drivers, buggy device microcode,
  52. * or buggy device hardware. This is because any attempt by the
  53. * device to bus-master data to a memory address that is not
  54. * assigned to the device will trigger a slot freeze. (The idea
  55. * is to prevent devices-gone-wild from corrupting system memory).
  56. * Buggy hardware/drivers will have a miserable time co-existing
  57. * with EEH.
  58. *
  59. * Ideally, a PCI device driver, when suspecting that an isolation
  60. * event has occured (e.g. by reading 0xff's), will then ask EEH
  61. * whether this is the case, and then take appropriate steps to
  62. * reset the PCI slot, the PCI device, and then resume operations.
  63. * However, until that day, the checking is done here, with the
  64. * eeh_check_failure() routine embedded in the MMIO macros. If
  65. * the slot is found to be isolated, an "EEH Event" is synthesized
  66. * and sent out for processing.
  67. */
  68. /* If a device driver keeps reading an MMIO register in an interrupt
  69. * handler after a slot isolation event has occurred, we assume it
  70. * is broken and panic. This sets the threshold for how many read
  71. * attempts we allow before panicking.
  72. */
  73. #define EEH_MAX_FAILS 100000
  74. /* RTAS tokens */
  75. static int ibm_set_eeh_option;
  76. static int ibm_set_slot_reset;
  77. static int ibm_read_slot_reset_state;
  78. static int ibm_read_slot_reset_state2;
  79. static int ibm_slot_error_detail;
  80. static int ibm_get_config_addr_info;
  81. static int ibm_configure_bridge;
  82. int eeh_subsystem_enabled;
  83. EXPORT_SYMBOL(eeh_subsystem_enabled);
  84. /* Lock to avoid races due to multiple reports of an error */
  85. static DEFINE_SPINLOCK(confirm_error_lock);
  86. /* Buffer for reporting slot-error-detail rtas calls */
  87. static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
  88. static DEFINE_SPINLOCK(slot_errbuf_lock);
  89. static int eeh_error_buf_size;
  90. /* System monitoring statistics */
  91. static unsigned long no_device;
  92. static unsigned long no_dn;
  93. static unsigned long no_cfg_addr;
  94. static unsigned long ignored_check;
  95. static unsigned long total_mmio_ffs;
  96. static unsigned long false_positives;
  97. static unsigned long ignored_failures;
  98. static unsigned long slot_resets;
  99. #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
  100. /* --------------------------------------------------------------- */
  101. /* Below lies the EEH event infrastructure */
  102. void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
  103. {
  104. int config_addr;
  105. unsigned long flags;
  106. int rc;
  107. /* Log the error with the rtas logger */
  108. spin_lock_irqsave(&slot_errbuf_lock, flags);
  109. memset(slot_errbuf, 0, eeh_error_buf_size);
  110. /* Use PE configuration address, if present */
  111. config_addr = pdn->eeh_config_addr;
  112. if (pdn->eeh_pe_config_addr)
  113. config_addr = pdn->eeh_pe_config_addr;
  114. rc = rtas_call(ibm_slot_error_detail,
  115. 8, 1, NULL, config_addr,
  116. BUID_HI(pdn->phb->buid),
  117. BUID_LO(pdn->phb->buid), NULL, 0,
  118. virt_to_phys(slot_errbuf),
  119. eeh_error_buf_size,
  120. severity);
  121. if (rc == 0)
  122. log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
  123. spin_unlock_irqrestore(&slot_errbuf_lock, flags);
  124. }
  125. /**
  126. * read_slot_reset_state - Read the reset state of a device node's slot
  127. * @dn: device node to read
  128. * @rets: array to return results in
  129. */
  130. static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
  131. {
  132. int token, outputs;
  133. int config_addr;
  134. if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
  135. token = ibm_read_slot_reset_state2;
  136. outputs = 4;
  137. } else {
  138. token = ibm_read_slot_reset_state;
  139. rets[2] = 0; /* fake PE Unavailable info */
  140. outputs = 3;
  141. }
  142. /* Use PE configuration address, if present */
  143. config_addr = pdn->eeh_config_addr;
  144. if (pdn->eeh_pe_config_addr)
  145. config_addr = pdn->eeh_pe_config_addr;
  146. return rtas_call(token, 3, outputs, rets, config_addr,
  147. BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
  148. }
  149. /**
  150. * eeh_token_to_phys - convert EEH address token to phys address
  151. * @token i/o token, should be address in the form 0xA....
  152. */
  153. static inline unsigned long eeh_token_to_phys(unsigned long token)
  154. {
  155. pte_t *ptep;
  156. unsigned long pa;
  157. ptep = find_linux_pte(init_mm.pgd, token);
  158. if (!ptep)
  159. return token;
  160. pa = pte_pfn(*ptep) << PAGE_SHIFT;
  161. return pa | (token & (PAGE_SIZE-1));
  162. }
  163. /**
  164. * Return the "partitionable endpoint" (pe) under which this device lies
  165. */
  166. struct device_node * find_device_pe(struct device_node *dn)
  167. {
  168. while ((dn->parent) && PCI_DN(dn->parent) &&
  169. (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
  170. dn = dn->parent;
  171. }
  172. return dn;
  173. }
  174. /** Mark all devices that are peers of this device as failed.
  175. * Mark the device driver too, so that it can see the failure
  176. * immediately; this is critical, since some drivers poll
  177. * status registers in interrupts ... If a driver is polling,
  178. * and the slot is frozen, then the driver can deadlock in
  179. * an interrupt context, which is bad.
  180. */
  181. static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
  182. {
  183. while (dn) {
  184. if (PCI_DN(dn)) {
  185. /* Mark the pci device driver too */
  186. struct pci_dev *dev = PCI_DN(dn)->pcidev;
  187. PCI_DN(dn)->eeh_mode |= mode_flag;
  188. if (dev && dev->driver)
  189. dev->error_state = pci_channel_io_frozen;
  190. if (dn->child)
  191. __eeh_mark_slot (dn->child, mode_flag);
  192. }
  193. dn = dn->sibling;
  194. }
  195. }
  196. void eeh_mark_slot (struct device_node *dn, int mode_flag)
  197. {
  198. dn = find_device_pe (dn);
  199. /* Back up one, since config addrs might be shared */
  200. if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
  201. dn = dn->parent;
  202. PCI_DN(dn)->eeh_mode |= mode_flag;
  203. __eeh_mark_slot (dn->child, mode_flag);
  204. }
  205. static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
  206. {
  207. while (dn) {
  208. if (PCI_DN(dn)) {
  209. PCI_DN(dn)->eeh_mode &= ~mode_flag;
  210. PCI_DN(dn)->eeh_check_count = 0;
  211. if (dn->child)
  212. __eeh_clear_slot (dn->child, mode_flag);
  213. }
  214. dn = dn->sibling;
  215. }
  216. }
  217. void eeh_clear_slot (struct device_node *dn, int mode_flag)
  218. {
  219. unsigned long flags;
  220. spin_lock_irqsave(&confirm_error_lock, flags);
  221. dn = find_device_pe (dn);
  222. /* Back up one, since config addrs might be shared */
  223. if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
  224. dn = dn->parent;
  225. PCI_DN(dn)->eeh_mode &= ~mode_flag;
  226. PCI_DN(dn)->eeh_check_count = 0;
  227. __eeh_clear_slot (dn->child, mode_flag);
  228. spin_unlock_irqrestore(&confirm_error_lock, flags);
  229. }
  230. /**
  231. * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
  232. * @dn device node
  233. * @dev pci device, if known
  234. *
  235. * Check for an EEH failure for the given device node. Call this
  236. * routine if the result of a read was all 0xff's and you want to
  237. * find out if this is due to an EEH slot freeze. This routine
  238. * will query firmware for the EEH status.
  239. *
  240. * Returns 0 if there has not been an EEH error; otherwise returns
  241. * a non-zero value and queues up a slot isolation event notification.
  242. *
  243. * It is safe to call this routine in an interrupt context.
  244. */
  245. int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
  246. {
  247. int ret;
  248. int rets[3];
  249. unsigned long flags;
  250. struct pci_dn *pdn;
  251. enum pci_channel_state state;
  252. int rc = 0;
  253. total_mmio_ffs++;
  254. if (!eeh_subsystem_enabled)
  255. return 0;
  256. if (!dn) {
  257. no_dn++;
  258. return 0;
  259. }
  260. pdn = PCI_DN(dn);
  261. /* Access to IO BARs might get this far and still not want checking. */
  262. if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
  263. pdn->eeh_mode & EEH_MODE_NOCHECK) {
  264. ignored_check++;
  265. #ifdef DEBUG
  266. printk ("EEH:ignored check (%x) for %s %s\n",
  267. pdn->eeh_mode, pci_name (dev), dn->full_name);
  268. #endif
  269. return 0;
  270. }
  271. if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
  272. no_cfg_addr++;
  273. return 0;
  274. }
  275. /* If we already have a pending isolation event for this
  276. * slot, we know it's bad already, we don't need to check.
  277. * Do this checking under a lock; as multiple PCI devices
  278. * in one slot might report errors simultaneously, and we
  279. * only want one error recovery routine running.
  280. */
  281. spin_lock_irqsave(&confirm_error_lock, flags);
  282. rc = 1;
  283. if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
  284. pdn->eeh_check_count ++;
  285. if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
  286. printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
  287. pdn->eeh_check_count);
  288. dump_stack();
  289. /* re-read the slot reset state */
  290. if (read_slot_reset_state(pdn, rets) != 0)
  291. rets[0] = -1; /* reset state unknown */
  292. /* If we are here, then we hit an infinite loop. Stop. */
  293. panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
  294. }
  295. goto dn_unlock;
  296. }
  297. /*
  298. * Now test for an EEH failure. This is VERY expensive.
  299. * Note that the eeh_config_addr may be a parent device
  300. * in the case of a device behind a bridge, or it may be
  301. * function zero of a multi-function device.
  302. * In any case they must share a common PHB.
  303. */
  304. ret = read_slot_reset_state(pdn, rets);
  305. /* If the call to firmware failed, punt */
  306. if (ret != 0) {
  307. printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
  308. ret, dn->full_name);
  309. false_positives++;
  310. rc = 0;
  311. goto dn_unlock;
  312. }
  313. /* If EEH is not supported on this device, punt. */
  314. if (rets[1] != 1) {
  315. printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
  316. ret, dn->full_name);
  317. false_positives++;
  318. rc = 0;
  319. goto dn_unlock;
  320. }
  321. /* If not the kind of error we know about, punt. */
  322. if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
  323. false_positives++;
  324. rc = 0;
  325. goto dn_unlock;
  326. }
  327. /* Note that config-io to empty slots may fail;
  328. * we recognize empty because they don't have children. */
  329. if ((rets[0] == 5) && (dn->child == NULL)) {
  330. false_positives++;
  331. rc = 0;
  332. goto dn_unlock;
  333. }
  334. slot_resets++;
  335. /* Avoid repeated reports of this failure, including problems
  336. * with other functions on this device, and functions under
  337. * bridges. */
  338. eeh_mark_slot (dn, EEH_MODE_ISOLATED);
  339. spin_unlock_irqrestore(&confirm_error_lock, flags);
  340. state = pci_channel_io_normal;
  341. if ((rets[0] == 2) || (rets[0] == 4))
  342. state = pci_channel_io_frozen;
  343. if (rets[0] == 5)
  344. state = pci_channel_io_perm_failure;
  345. eeh_send_failure_event (dn, dev, state, rets[2]);
  346. /* Most EEH events are due to device driver bugs. Having
  347. * a stack trace will help the device-driver authors figure
  348. * out what happened. So print that out. */
  349. if (rets[0] != 5) dump_stack();
  350. return 1;
  351. dn_unlock:
  352. spin_unlock_irqrestore(&confirm_error_lock, flags);
  353. return rc;
  354. }
  355. EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
  356. /**
  357. * eeh_check_failure - check if all 1's data is due to EEH slot freeze
  358. * @token i/o token, should be address in the form 0xA....
  359. * @val value, should be all 1's (XXX why do we need this arg??)
  360. *
  361. * Check for an EEH failure at the given token address. Call this
  362. * routine if the result of a read was all 0xff's and you want to
  363. * find out if this is due to an EEH slot freeze event. This routine
  364. * will query firmware for the EEH status.
  365. *
  366. * Note this routine is safe to call in an interrupt context.
  367. */
  368. unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
  369. {
  370. unsigned long addr;
  371. struct pci_dev *dev;
  372. struct device_node *dn;
  373. /* Finding the phys addr + pci device; this is pretty quick. */
  374. addr = eeh_token_to_phys((unsigned long __force) token);
  375. dev = pci_get_device_by_addr(addr);
  376. if (!dev) {
  377. no_device++;
  378. return val;
  379. }
  380. dn = pci_device_to_OF_node(dev);
  381. eeh_dn_check_failure (dn, dev);
  382. pci_dev_put(dev);
  383. return val;
  384. }
  385. EXPORT_SYMBOL(eeh_check_failure);
  386. /* ------------------------------------------------------------- */
  387. /* The code below deals with error recovery */
  388. /**
  389. * eeh_slot_availability - returns error status of slot
  390. * @pdn pci device node
  391. *
  392. * Return negative value if a permanent error, else return
  393. * a number of milliseconds to wait until the PCI slot is
  394. * ready to be used.
  395. */
  396. static int
  397. eeh_slot_availability(struct pci_dn *pdn)
  398. {
  399. int rc;
  400. int rets[3];
  401. rc = read_slot_reset_state(pdn, rets);
  402. if (rc) return rc;
  403. if (rets[1] == 0) return -1; /* EEH is not supported */
  404. if (rets[0] == 0) return 0; /* Oll Korrect */
  405. if (rets[0] == 5) {
  406. if (rets[2] == 0) return -1; /* permanently unavailable */
  407. return rets[2]; /* number of millisecs to wait */
  408. }
  409. if (rets[0] == 1)
  410. return 250;
  411. printk (KERN_ERR "EEH: Slot unavailable: rc=%d, rets=%d %d %d\n",
  412. rc, rets[0], rets[1], rets[2]);
  413. return -2;
  414. }
  415. /**
  416. * rtas_pci_enable - enable MMIO or DMA transfers for this slot
  417. * @pdn pci device node
  418. */
  419. int
  420. rtas_pci_enable(struct pci_dn *pdn, int function)
  421. {
  422. int config_addr;
  423. int rc;
  424. /* Use PE configuration address, if present */
  425. config_addr = pdn->eeh_config_addr;
  426. if (pdn->eeh_pe_config_addr)
  427. config_addr = pdn->eeh_pe_config_addr;
  428. rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
  429. config_addr,
  430. BUID_HI(pdn->phb->buid),
  431. BUID_LO(pdn->phb->buid),
  432. function);
  433. if (rc)
  434. printk(KERN_WARNING "EEH: Cannot enable function %d, err=%d dn=%s\n",
  435. function, rc, pdn->node->full_name);
  436. return rc;
  437. }
  438. /**
  439. * rtas_pci_slot_reset - raises/lowers the pci #RST line
  440. * @pdn pci device node
  441. * @state: 1/0 to raise/lower the #RST
  442. *
  443. * Clear the EEH-frozen condition on a slot. This routine
  444. * asserts the PCI #RST line if the 'state' argument is '1',
  445. * and drops the #RST line if 'state is '0'. This routine is
  446. * safe to call in an interrupt context.
  447. *
  448. */
  449. static void
  450. rtas_pci_slot_reset(struct pci_dn *pdn, int state)
  451. {
  452. int config_addr;
  453. int rc;
  454. BUG_ON (pdn==NULL);
  455. if (!pdn->phb) {
  456. printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
  457. pdn->node->full_name);
  458. return;
  459. }
  460. /* Use PE configuration address, if present */
  461. config_addr = pdn->eeh_config_addr;
  462. if (pdn->eeh_pe_config_addr)
  463. config_addr = pdn->eeh_pe_config_addr;
  464. rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
  465. config_addr,
  466. BUID_HI(pdn->phb->buid),
  467. BUID_LO(pdn->phb->buid),
  468. state);
  469. if (rc)
  470. printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
  471. " (%d) #RST=%d dn=%s\n",
  472. rc, state, pdn->node->full_name);
  473. }
  474. /**
  475. * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
  476. * @pdn: pci device node to be reset.
  477. *
  478. * Return 0 if success, else a non-zero value.
  479. */
  480. static void __rtas_set_slot_reset(struct pci_dn *pdn)
  481. {
  482. rtas_pci_slot_reset (pdn, 1);
  483. /* The PCI bus requires that the reset be held high for at least
  484. * a 100 milliseconds. We wait a bit longer 'just in case'. */
  485. #define PCI_BUS_RST_HOLD_TIME_MSEC 250
  486. msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
  487. /* We might get hit with another EEH freeze as soon as the
  488. * pci slot reset line is dropped. Make sure we don't miss
  489. * these, and clear the flag now. */
  490. eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
  491. rtas_pci_slot_reset (pdn, 0);
  492. /* After a PCI slot has been reset, the PCI Express spec requires
  493. * a 1.5 second idle time for the bus to stabilize, before starting
  494. * up traffic. */
  495. #define PCI_BUS_SETTLE_TIME_MSEC 1800
  496. msleep (PCI_BUS_SETTLE_TIME_MSEC);
  497. }
  498. int rtas_set_slot_reset(struct pci_dn *pdn)
  499. {
  500. int i, rc;
  501. __rtas_set_slot_reset(pdn);
  502. /* Now double check with the firmware to make sure the device is
  503. * ready to be used; if not, wait for recovery. */
  504. for (i=0; i<10; i++) {
  505. rc = eeh_slot_availability (pdn);
  506. if (rc == 0)
  507. return 0;
  508. if (rc == -2) {
  509. printk (KERN_ERR "EEH: failed (%d) to reset slot %s\n",
  510. i, pdn->node->full_name);
  511. __rtas_set_slot_reset(pdn);
  512. continue;
  513. }
  514. if (rc < 0) {
  515. printk (KERN_ERR "EEH: unrecoverable slot failure %s\n",
  516. pdn->node->full_name);
  517. return -1;
  518. }
  519. msleep (rc+100);
  520. }
  521. rc = eeh_slot_availability (pdn);
  522. if (rc)
  523. printk (KERN_ERR "EEH: timeout resetting slot %s\n", pdn->node->full_name);
  524. return rc;
  525. }
  526. /* ------------------------------------------------------- */
  527. /** Save and restore of PCI BARs
  528. *
  529. * Although firmware will set up BARs during boot, it doesn't
  530. * set up device BAR's after a device reset, although it will,
  531. * if requested, set up bridge configuration. Thus, we need to
  532. * configure the PCI devices ourselves.
  533. */
  534. /**
  535. * __restore_bars - Restore the Base Address Registers
  536. * @pdn: pci device node
  537. *
  538. * Loads the PCI configuration space base address registers,
  539. * the expansion ROM base address, the latency timer, and etc.
  540. * from the saved values in the device node.
  541. */
  542. static inline void __restore_bars (struct pci_dn *pdn)
  543. {
  544. int i;
  545. if (NULL==pdn->phb) return;
  546. for (i=4; i<10; i++) {
  547. rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
  548. }
  549. /* 12 == Expansion ROM Address */
  550. rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
  551. #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
  552. #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
  553. rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
  554. SAVED_BYTE(PCI_CACHE_LINE_SIZE));
  555. rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
  556. SAVED_BYTE(PCI_LATENCY_TIMER));
  557. /* max latency, min grant, interrupt pin and line */
  558. rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
  559. }
  560. /**
  561. * eeh_restore_bars - restore the PCI config space info
  562. *
  563. * This routine performs a recursive walk to the children
  564. * of this device as well.
  565. */
  566. void eeh_restore_bars(struct pci_dn *pdn)
  567. {
  568. struct device_node *dn;
  569. if (!pdn)
  570. return;
  571. if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
  572. __restore_bars (pdn);
  573. dn = pdn->node->child;
  574. while (dn) {
  575. eeh_restore_bars (PCI_DN(dn));
  576. dn = dn->sibling;
  577. }
  578. }
  579. /**
  580. * eeh_save_bars - save device bars
  581. *
  582. * Save the values of the device bars. Unlike the restore
  583. * routine, this routine is *not* recursive. This is because
  584. * PCI devices are added individuallly; but, for the restore,
  585. * an entire slot is reset at a time.
  586. */
  587. static void eeh_save_bars(struct pci_dn *pdn)
  588. {
  589. int i;
  590. if (!pdn )
  591. return;
  592. for (i = 0; i < 16; i++)
  593. rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
  594. }
  595. void
  596. rtas_configure_bridge(struct pci_dn *pdn)
  597. {
  598. int config_addr;
  599. int rc;
  600. /* Use PE configuration address, if present */
  601. config_addr = pdn->eeh_config_addr;
  602. if (pdn->eeh_pe_config_addr)
  603. config_addr = pdn->eeh_pe_config_addr;
  604. rc = rtas_call(ibm_configure_bridge,3,1, NULL,
  605. config_addr,
  606. BUID_HI(pdn->phb->buid),
  607. BUID_LO(pdn->phb->buid));
  608. if (rc) {
  609. printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
  610. rc, pdn->node->full_name);
  611. }
  612. }
  613. /* ------------------------------------------------------------- */
  614. /* The code below deals with enabling EEH for devices during the
  615. * early boot sequence. EEH must be enabled before any PCI probing
  616. * can be done.
  617. */
  618. #define EEH_ENABLE 1
  619. struct eeh_early_enable_info {
  620. unsigned int buid_hi;
  621. unsigned int buid_lo;
  622. };
  623. /* Enable eeh for the given device node. */
  624. static void *early_enable_eeh(struct device_node *dn, void *data)
  625. {
  626. struct eeh_early_enable_info *info = data;
  627. int ret;
  628. const char *status = get_property(dn, "status", NULL);
  629. const u32 *class_code = get_property(dn, "class-code", NULL);
  630. const u32 *vendor_id = get_property(dn, "vendor-id", NULL);
  631. const u32 *device_id = get_property(dn, "device-id", NULL);
  632. const u32 *regs;
  633. int enable;
  634. struct pci_dn *pdn = PCI_DN(dn);
  635. pdn->class_code = 0;
  636. pdn->eeh_mode = 0;
  637. pdn->eeh_check_count = 0;
  638. pdn->eeh_freeze_count = 0;
  639. if (status && strcmp(status, "ok") != 0)
  640. return NULL; /* ignore devices with bad status */
  641. /* Ignore bad nodes. */
  642. if (!class_code || !vendor_id || !device_id)
  643. return NULL;
  644. /* There is nothing to check on PCI to ISA bridges */
  645. if (dn->type && !strcmp(dn->type, "isa")) {
  646. pdn->eeh_mode |= EEH_MODE_NOCHECK;
  647. return NULL;
  648. }
  649. pdn->class_code = *class_code;
  650. /*
  651. * Now decide if we are going to "Disable" EEH checking
  652. * for this device. We still run with the EEH hardware active,
  653. * but we won't be checking for ff's. This means a driver
  654. * could return bad data (very bad!), an interrupt handler could
  655. * hang waiting on status bits that won't change, etc.
  656. * But there are a few cases like display devices that make sense.
  657. */
  658. enable = 1; /* i.e. we will do checking */
  659. #if 0
  660. if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
  661. enable = 0;
  662. #endif
  663. if (!enable)
  664. pdn->eeh_mode |= EEH_MODE_NOCHECK;
  665. /* Ok... see if this device supports EEH. Some do, some don't,
  666. * and the only way to find out is to check each and every one. */
  667. regs = get_property(dn, "reg", NULL);
  668. if (regs) {
  669. /* First register entry is addr (00BBSS00) */
  670. /* Try to enable eeh */
  671. ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
  672. regs[0], info->buid_hi, info->buid_lo,
  673. EEH_ENABLE);
  674. if (ret == 0) {
  675. eeh_subsystem_enabled = 1;
  676. pdn->eeh_mode |= EEH_MODE_SUPPORTED;
  677. pdn->eeh_config_addr = regs[0];
  678. /* If the newer, better, ibm,get-config-addr-info is supported,
  679. * then use that instead. */
  680. pdn->eeh_pe_config_addr = 0;
  681. if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
  682. unsigned int rets[2];
  683. ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
  684. pdn->eeh_config_addr,
  685. info->buid_hi, info->buid_lo,
  686. 0);
  687. if (ret == 0)
  688. pdn->eeh_pe_config_addr = rets[0];
  689. }
  690. #ifdef DEBUG
  691. printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
  692. dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
  693. #endif
  694. } else {
  695. /* This device doesn't support EEH, but it may have an
  696. * EEH parent, in which case we mark it as supported. */
  697. if (dn->parent && PCI_DN(dn->parent)
  698. && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
  699. /* Parent supports EEH. */
  700. pdn->eeh_mode |= EEH_MODE_SUPPORTED;
  701. pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
  702. return NULL;
  703. }
  704. }
  705. } else {
  706. printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
  707. dn->full_name);
  708. }
  709. eeh_save_bars(pdn);
  710. return NULL;
  711. }
  712. /*
  713. * Initialize EEH by trying to enable it for all of the adapters in the system.
  714. * As a side effect we can determine here if eeh is supported at all.
  715. * Note that we leave EEH on so failed config cycles won't cause a machine
  716. * check. If a user turns off EEH for a particular adapter they are really
  717. * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
  718. * grant access to a slot if EEH isn't enabled, and so we always enable
  719. * EEH for all slots/all devices.
  720. *
  721. * The eeh-force-off option disables EEH checking globally, for all slots.
  722. * Even if force-off is set, the EEH hardware is still enabled, so that
  723. * newer systems can boot.
  724. */
  725. void __init eeh_init(void)
  726. {
  727. struct device_node *phb, *np;
  728. struct eeh_early_enable_info info;
  729. spin_lock_init(&confirm_error_lock);
  730. spin_lock_init(&slot_errbuf_lock);
  731. np = of_find_node_by_path("/rtas");
  732. if (np == NULL)
  733. return;
  734. ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
  735. ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
  736. ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
  737. ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
  738. ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
  739. ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
  740. ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
  741. if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
  742. return;
  743. eeh_error_buf_size = rtas_token("rtas-error-log-max");
  744. if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
  745. eeh_error_buf_size = 1024;
  746. }
  747. if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
  748. printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
  749. "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
  750. eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
  751. }
  752. /* Enable EEH for all adapters. Note that eeh requires buid's */
  753. for (phb = of_find_node_by_name(NULL, "pci"); phb;
  754. phb = of_find_node_by_name(phb, "pci")) {
  755. unsigned long buid;
  756. buid = get_phb_buid(phb);
  757. if (buid == 0 || PCI_DN(phb) == NULL)
  758. continue;
  759. info.buid_lo = BUID_LO(buid);
  760. info.buid_hi = BUID_HI(buid);
  761. traverse_pci_devices(phb, early_enable_eeh, &info);
  762. }
  763. if (eeh_subsystem_enabled)
  764. printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
  765. else
  766. printk(KERN_WARNING "EEH: No capable adapters found\n");
  767. }
  768. /**
  769. * eeh_add_device_early - enable EEH for the indicated device_node
  770. * @dn: device node for which to set up EEH
  771. *
  772. * This routine must be used to perform EEH initialization for PCI
  773. * devices that were added after system boot (e.g. hotplug, dlpar).
  774. * This routine must be called before any i/o is performed to the
  775. * adapter (inluding any config-space i/o).
  776. * Whether this actually enables EEH or not for this device depends
  777. * on the CEC architecture, type of the device, on earlier boot
  778. * command-line arguments & etc.
  779. */
  780. static void eeh_add_device_early(struct device_node *dn)
  781. {
  782. struct pci_controller *phb;
  783. struct eeh_early_enable_info info;
  784. if (!dn || !PCI_DN(dn))
  785. return;
  786. phb = PCI_DN(dn)->phb;
  787. /* USB Bus children of PCI devices will not have BUID's */
  788. if (NULL == phb || 0 == phb->buid)
  789. return;
  790. info.buid_hi = BUID_HI(phb->buid);
  791. info.buid_lo = BUID_LO(phb->buid);
  792. early_enable_eeh(dn, &info);
  793. }
  794. void eeh_add_device_tree_early(struct device_node *dn)
  795. {
  796. struct device_node *sib;
  797. for (sib = dn->child; sib; sib = sib->sibling)
  798. eeh_add_device_tree_early(sib);
  799. eeh_add_device_early(dn);
  800. }
  801. EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
  802. /**
  803. * eeh_add_device_late - perform EEH initialization for the indicated pci device
  804. * @dev: pci device for which to set up EEH
  805. *
  806. * This routine must be used to complete EEH initialization for PCI
  807. * devices that were added after system boot (e.g. hotplug, dlpar).
  808. */
  809. static void eeh_add_device_late(struct pci_dev *dev)
  810. {
  811. struct device_node *dn;
  812. struct pci_dn *pdn;
  813. if (!dev || !eeh_subsystem_enabled)
  814. return;
  815. #ifdef DEBUG
  816. printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
  817. #endif
  818. pci_dev_get (dev);
  819. dn = pci_device_to_OF_node(dev);
  820. pdn = PCI_DN(dn);
  821. pdn->pcidev = dev;
  822. pci_addr_cache_insert_device (dev);
  823. }
  824. void eeh_add_device_tree_late(struct pci_bus *bus)
  825. {
  826. struct pci_dev *dev;
  827. list_for_each_entry(dev, &bus->devices, bus_list) {
  828. eeh_add_device_late(dev);
  829. if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
  830. struct pci_bus *subbus = dev->subordinate;
  831. if (subbus)
  832. eeh_add_device_tree_late(subbus);
  833. }
  834. }
  835. }
  836. EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
  837. /**
  838. * eeh_remove_device - undo EEH setup for the indicated pci device
  839. * @dev: pci device to be removed
  840. *
  841. * This routine should be called when a device is removed from
  842. * a running system (e.g. by hotplug or dlpar). It unregisters
  843. * the PCI device from the EEH subsystem. I/O errors affecting
  844. * this device will no longer be detected after this call; thus,
  845. * i/o errors affecting this slot may leave this device unusable.
  846. */
  847. static void eeh_remove_device(struct pci_dev *dev)
  848. {
  849. struct device_node *dn;
  850. if (!dev || !eeh_subsystem_enabled)
  851. return;
  852. /* Unregister the device with the EEH/PCI address search system */
  853. #ifdef DEBUG
  854. printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
  855. #endif
  856. pci_addr_cache_remove_device(dev);
  857. dn = pci_device_to_OF_node(dev);
  858. if (PCI_DN(dn)->pcidev) {
  859. PCI_DN(dn)->pcidev = NULL;
  860. pci_dev_put (dev);
  861. }
  862. }
  863. void eeh_remove_bus_device(struct pci_dev *dev)
  864. {
  865. struct pci_bus *bus = dev->subordinate;
  866. struct pci_dev *child, *tmp;
  867. eeh_remove_device(dev);
  868. if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
  869. list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
  870. eeh_remove_bus_device(child);
  871. }
  872. }
  873. EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
  874. static int proc_eeh_show(struct seq_file *m, void *v)
  875. {
  876. if (0 == eeh_subsystem_enabled) {
  877. seq_printf(m, "EEH Subsystem is globally disabled\n");
  878. seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
  879. } else {
  880. seq_printf(m, "EEH Subsystem is enabled\n");
  881. seq_printf(m,
  882. "no device=%ld\n"
  883. "no device node=%ld\n"
  884. "no config address=%ld\n"
  885. "check not wanted=%ld\n"
  886. "eeh_total_mmio_ffs=%ld\n"
  887. "eeh_false_positives=%ld\n"
  888. "eeh_ignored_failures=%ld\n"
  889. "eeh_slot_resets=%ld\n",
  890. no_device, no_dn, no_cfg_addr,
  891. ignored_check, total_mmio_ffs,
  892. false_positives, ignored_failures,
  893. slot_resets);
  894. }
  895. return 0;
  896. }
  897. static int proc_eeh_open(struct inode *inode, struct file *file)
  898. {
  899. return single_open(file, proc_eeh_show, NULL);
  900. }
  901. static struct file_operations proc_eeh_operations = {
  902. .open = proc_eeh_open,
  903. .read = seq_read,
  904. .llseek = seq_lseek,
  905. .release = single_release,
  906. };
  907. static int __init eeh_init_proc(void)
  908. {
  909. struct proc_dir_entry *e;
  910. if (machine_is(pseries)) {
  911. e = create_proc_entry("ppc64/eeh", 0, NULL);
  912. if (e)
  913. e->proc_fops = &proc_eeh_operations;
  914. }
  915. return 0;
  916. }
  917. __initcall(eeh_init_proc);