time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778
  1. /*
  2. * Copyright 2001 MontaVista Software Inc.
  3. * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
  4. * Copyright (c) 2003, 2004 Maciej W. Rozycki
  5. *
  6. * Common time service routines for MIPS machines. See
  7. * Documentation/mips/time.README.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2 of the License, or (at your
  12. * option) any later version.
  13. */
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/init.h>
  17. #include <linux/sched.h>
  18. #include <linux/param.h>
  19. #include <linux/time.h>
  20. #include <linux/timex.h>
  21. #include <linux/smp.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/module.h>
  26. #include <asm/bootinfo.h>
  27. #include <asm/cache.h>
  28. #include <asm/compiler.h>
  29. #include <asm/cpu.h>
  30. #include <asm/cpu-features.h>
  31. #include <asm/div64.h>
  32. #include <asm/sections.h>
  33. #include <asm/time.h>
  34. /*
  35. * The integer part of the number of usecs per jiffy is taken from tick,
  36. * but the fractional part is not recorded, so we calculate it using the
  37. * initial value of HZ. This aids systems where tick isn't really an
  38. * integer (e.g. for HZ = 128).
  39. */
  40. #define USECS_PER_JIFFY TICK_SIZE
  41. #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
  42. #define TICK_SIZE (tick_nsec / 1000)
  43. /*
  44. * forward reference
  45. */
  46. extern volatile unsigned long wall_jiffies;
  47. DEFINE_SPINLOCK(rtc_lock);
  48. /*
  49. * By default we provide the null RTC ops
  50. */
  51. static unsigned long null_rtc_get_time(void)
  52. {
  53. return mktime(2000, 1, 1, 0, 0, 0);
  54. }
  55. static int null_rtc_set_time(unsigned long sec)
  56. {
  57. return 0;
  58. }
  59. unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
  60. int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
  61. int (*rtc_mips_set_mmss)(unsigned long);
  62. /* usecs per counter cycle, shifted to left by 32 bits */
  63. static unsigned int sll32_usecs_per_cycle;
  64. /* how many counter cycles in a jiffy */
  65. static unsigned long cycles_per_jiffy __read_mostly;
  66. /* Cycle counter value at the previous timer interrupt.. */
  67. static unsigned int timerhi, timerlo;
  68. /* expirelo is the count value for next CPU timer interrupt */
  69. static unsigned int expirelo;
  70. /*
  71. * Null timer ack for systems not needing one (e.g. i8254).
  72. */
  73. static void null_timer_ack(void) { /* nothing */ }
  74. /*
  75. * Null high precision timer functions for systems lacking one.
  76. */
  77. static unsigned int null_hpt_read(void)
  78. {
  79. return 0;
  80. }
  81. static void null_hpt_init(unsigned int count)
  82. {
  83. /* nothing */
  84. }
  85. /*
  86. * Timer ack for an R4k-compatible timer of a known frequency.
  87. */
  88. static void c0_timer_ack(void)
  89. {
  90. unsigned int count;
  91. #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */
  92. /* Ack this timer interrupt and set the next one. */
  93. expirelo += cycles_per_jiffy;
  94. #endif
  95. write_c0_compare(expirelo);
  96. /* Check to see if we have missed any timer interrupts. */
  97. while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
  98. /* missed_timer_count++; */
  99. expirelo = count + cycles_per_jiffy;
  100. write_c0_compare(expirelo);
  101. }
  102. }
  103. /*
  104. * High precision timer functions for a R4k-compatible timer.
  105. */
  106. static unsigned int c0_hpt_read(void)
  107. {
  108. return read_c0_count();
  109. }
  110. /* For use solely as a high precision timer. */
  111. static void c0_hpt_init(unsigned int count)
  112. {
  113. write_c0_count(read_c0_count() - count);
  114. }
  115. /* For use both as a high precision timer and an interrupt source. */
  116. static void c0_hpt_timer_init(unsigned int count)
  117. {
  118. count = read_c0_count() - count;
  119. expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
  120. write_c0_count(expirelo - cycles_per_jiffy);
  121. write_c0_compare(expirelo);
  122. write_c0_count(count);
  123. }
  124. int (*mips_timer_state)(void);
  125. void (*mips_timer_ack)(void);
  126. unsigned int (*mips_hpt_read)(void);
  127. void (*mips_hpt_init)(unsigned int);
  128. /*
  129. * This version of gettimeofday has microsecond resolution and better than
  130. * microsecond precision on fast machines with cycle counter.
  131. */
  132. void do_gettimeofday(struct timeval *tv)
  133. {
  134. unsigned long seq;
  135. unsigned long lost;
  136. unsigned long usec, sec;
  137. unsigned long max_ntp_tick;
  138. do {
  139. seq = read_seqbegin(&xtime_lock);
  140. usec = do_gettimeoffset();
  141. lost = jiffies - wall_jiffies;
  142. /*
  143. * If time_adjust is negative then NTP is slowing the clock
  144. * so make sure not to go into next possible interval.
  145. * Better to lose some accuracy than have time go backwards..
  146. */
  147. if (unlikely(time_adjust < 0)) {
  148. max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
  149. usec = min(usec, max_ntp_tick);
  150. if (lost)
  151. usec += lost * max_ntp_tick;
  152. } else if (unlikely(lost))
  153. usec += lost * (USEC_PER_SEC / HZ);
  154. sec = xtime.tv_sec;
  155. usec += (xtime.tv_nsec / 1000);
  156. } while (read_seqretry(&xtime_lock, seq));
  157. while (usec >= 1000000) {
  158. usec -= 1000000;
  159. sec++;
  160. }
  161. tv->tv_sec = sec;
  162. tv->tv_usec = usec;
  163. }
  164. EXPORT_SYMBOL(do_gettimeofday);
  165. int do_settimeofday(struct timespec *tv)
  166. {
  167. time_t wtm_sec, sec = tv->tv_sec;
  168. long wtm_nsec, nsec = tv->tv_nsec;
  169. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  170. return -EINVAL;
  171. write_seqlock_irq(&xtime_lock);
  172. /*
  173. * This is revolting. We need to set "xtime" correctly. However,
  174. * the value in this location is the value at the most recent update
  175. * of wall time. Discover what correction gettimeofday() would have
  176. * made, and then undo it!
  177. */
  178. nsec -= do_gettimeoffset() * NSEC_PER_USEC;
  179. nsec -= (jiffies - wall_jiffies) * tick_nsec;
  180. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  181. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  182. set_normalized_timespec(&xtime, sec, nsec);
  183. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  184. ntp_clear();
  185. write_sequnlock_irq(&xtime_lock);
  186. clock_was_set();
  187. return 0;
  188. }
  189. EXPORT_SYMBOL(do_settimeofday);
  190. /*
  191. * Gettimeoffset routines. These routines returns the time duration
  192. * since last timer interrupt in usecs.
  193. *
  194. * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
  195. * Otherwise use calibrate_gettimeoffset()
  196. *
  197. * If the CPU does not have the counter register, you can either supply
  198. * your own gettimeoffset() routine, or use null_gettimeoffset(), which
  199. * gives the same resolution as HZ.
  200. */
  201. static unsigned long null_gettimeoffset(void)
  202. {
  203. return 0;
  204. }
  205. /* The function pointer to one of the gettimeoffset funcs. */
  206. unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
  207. static unsigned long fixed_rate_gettimeoffset(void)
  208. {
  209. u32 count;
  210. unsigned long res;
  211. /* Get last timer tick in absolute kernel time */
  212. count = mips_hpt_read();
  213. /* .. relative to previous jiffy (32 bits is enough) */
  214. count -= timerlo;
  215. __asm__("multu %1,%2"
  216. : "=h" (res)
  217. : "r" (count), "r" (sll32_usecs_per_cycle)
  218. : "lo", GCC_REG_ACCUM);
  219. /*
  220. * Due to possible jiffies inconsistencies, we need to check
  221. * the result so that we'll get a timer that is monotonic.
  222. */
  223. if (res >= USECS_PER_JIFFY)
  224. res = USECS_PER_JIFFY - 1;
  225. return res;
  226. }
  227. /*
  228. * Cached "1/(clocks per usec) * 2^32" value.
  229. * It has to be recalculated once each jiffy.
  230. */
  231. static unsigned long cached_quotient;
  232. /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
  233. static unsigned long last_jiffies;
  234. /*
  235. * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
  236. */
  237. static unsigned long calibrate_div32_gettimeoffset(void)
  238. {
  239. u32 count;
  240. unsigned long res, tmp;
  241. unsigned long quotient;
  242. tmp = jiffies;
  243. quotient = cached_quotient;
  244. if (last_jiffies != tmp) {
  245. last_jiffies = tmp;
  246. if (last_jiffies != 0) {
  247. unsigned long r0;
  248. do_div64_32(r0, timerhi, timerlo, tmp);
  249. do_div64_32(quotient, USECS_PER_JIFFY,
  250. USECS_PER_JIFFY_FRAC, r0);
  251. cached_quotient = quotient;
  252. }
  253. }
  254. /* Get last timer tick in absolute kernel time */
  255. count = mips_hpt_read();
  256. /* .. relative to previous jiffy (32 bits is enough) */
  257. count -= timerlo;
  258. __asm__("multu %1,%2"
  259. : "=h" (res)
  260. : "r" (count), "r" (quotient)
  261. : "lo", GCC_REG_ACCUM);
  262. /*
  263. * Due to possible jiffies inconsistencies, we need to check
  264. * the result so that we'll get a timer that is monotonic.
  265. */
  266. if (res >= USECS_PER_JIFFY)
  267. res = USECS_PER_JIFFY - 1;
  268. return res;
  269. }
  270. static unsigned long calibrate_div64_gettimeoffset(void)
  271. {
  272. u32 count;
  273. unsigned long res, tmp;
  274. unsigned long quotient;
  275. tmp = jiffies;
  276. quotient = cached_quotient;
  277. if (last_jiffies != tmp) {
  278. last_jiffies = tmp;
  279. if (last_jiffies) {
  280. unsigned long r0;
  281. __asm__(".set push\n\t"
  282. ".set mips3\n\t"
  283. "lwu %0,%3\n\t"
  284. "dsll32 %1,%2,0\n\t"
  285. "or %1,%1,%0\n\t"
  286. "ddivu $0,%1,%4\n\t"
  287. "mflo %1\n\t"
  288. "dsll32 %0,%5,0\n\t"
  289. "or %0,%0,%6\n\t"
  290. "ddivu $0,%0,%1\n\t"
  291. "mflo %0\n\t"
  292. ".set pop"
  293. : "=&r" (quotient), "=&r" (r0)
  294. : "r" (timerhi), "m" (timerlo),
  295. "r" (tmp), "r" (USECS_PER_JIFFY),
  296. "r" (USECS_PER_JIFFY_FRAC)
  297. : "hi", "lo", GCC_REG_ACCUM);
  298. cached_quotient = quotient;
  299. }
  300. }
  301. /* Get last timer tick in absolute kernel time */
  302. count = mips_hpt_read();
  303. /* .. relative to previous jiffy (32 bits is enough) */
  304. count -= timerlo;
  305. __asm__("multu %1,%2"
  306. : "=h" (res)
  307. : "r" (count), "r" (quotient)
  308. : "lo", GCC_REG_ACCUM);
  309. /*
  310. * Due to possible jiffies inconsistencies, we need to check
  311. * the result so that we'll get a timer that is monotonic.
  312. */
  313. if (res >= USECS_PER_JIFFY)
  314. res = USECS_PER_JIFFY - 1;
  315. return res;
  316. }
  317. /* last time when xtime and rtc are sync'ed up */
  318. static long last_rtc_update;
  319. /*
  320. * local_timer_interrupt() does profiling and process accounting
  321. * on a per-CPU basis.
  322. *
  323. * In UP mode, it is invoked from the (global) timer_interrupt.
  324. *
  325. * In SMP mode, it might invoked by per-CPU timer interrupt, or
  326. * a broadcasted inter-processor interrupt which itself is triggered
  327. * by the global timer interrupt.
  328. */
  329. void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  330. {
  331. if (current->pid)
  332. profile_tick(CPU_PROFILING, regs);
  333. update_process_times(user_mode(regs));
  334. }
  335. /*
  336. * High-level timer interrupt service routines. This function
  337. * is set as irqaction->handler and is invoked through do_IRQ.
  338. */
  339. irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  340. {
  341. unsigned long j;
  342. unsigned int count;
  343. write_seqlock(&xtime_lock);
  344. count = mips_hpt_read();
  345. mips_timer_ack();
  346. /* Update timerhi/timerlo for intra-jiffy calibration. */
  347. timerhi += count < timerlo; /* Wrap around */
  348. timerlo = count;
  349. /*
  350. * call the generic timer interrupt handling
  351. */
  352. do_timer(regs);
  353. /*
  354. * If we have an externally synchronized Linux clock, then update
  355. * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
  356. * called as close as possible to 500 ms before the new second starts.
  357. */
  358. if (ntp_synced() &&
  359. xtime.tv_sec > last_rtc_update + 660 &&
  360. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  361. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  362. if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
  363. last_rtc_update = xtime.tv_sec;
  364. } else {
  365. /* do it again in 60 s */
  366. last_rtc_update = xtime.tv_sec - 600;
  367. }
  368. }
  369. /*
  370. * If jiffies has overflown in this timer_interrupt, we must
  371. * update the timer[hi]/[lo] to make fast gettimeoffset funcs
  372. * quotient calc still valid. -arca
  373. *
  374. * The first timer interrupt comes late as interrupts are
  375. * enabled long after timers are initialized. Therefore the
  376. * high precision timer is fast, leading to wrong gettimeoffset()
  377. * calculations. We deal with it by setting it based on the
  378. * number of its ticks between the second and the third interrupt.
  379. * That is still somewhat imprecise, but it's a good estimate.
  380. * --macro
  381. */
  382. j = jiffies;
  383. if (j < 4) {
  384. static unsigned int prev_count;
  385. static int hpt_initialized;
  386. switch (j) {
  387. case 0:
  388. timerhi = timerlo = 0;
  389. mips_hpt_init(count);
  390. break;
  391. case 2:
  392. prev_count = count;
  393. break;
  394. case 3:
  395. if (!hpt_initialized) {
  396. unsigned int c3 = 3 * (count - prev_count);
  397. timerhi = 0;
  398. timerlo = c3;
  399. mips_hpt_init(count - c3);
  400. hpt_initialized = 1;
  401. }
  402. break;
  403. default:
  404. break;
  405. }
  406. }
  407. write_sequnlock(&xtime_lock);
  408. /*
  409. * In UP mode, we call local_timer_interrupt() to do profiling
  410. * and process accouting.
  411. *
  412. * In SMP mode, local_timer_interrupt() is invoked by appropriate
  413. * low-level local timer interrupt handler.
  414. */
  415. local_timer_interrupt(irq, dev_id, regs);
  416. return IRQ_HANDLED;
  417. }
  418. int null_perf_irq(struct pt_regs *regs)
  419. {
  420. return 0;
  421. }
  422. int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
  423. EXPORT_SYMBOL(null_perf_irq);
  424. EXPORT_SYMBOL(perf_irq);
  425. asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
  426. {
  427. int r2 = cpu_has_mips_r2;
  428. irq_enter();
  429. kstat_this_cpu.irqs[irq]++;
  430. /*
  431. * Suckage alert:
  432. * Before R2 of the architecture there was no way to see if a
  433. * performance counter interrupt was pending, so we have to run the
  434. * performance counter interrupt handler anyway.
  435. */
  436. if (!r2 || (read_c0_cause() & (1 << 26)))
  437. if (perf_irq(regs))
  438. goto out;
  439. /* we keep interrupt disabled all the time */
  440. if (!r2 || (read_c0_cause() & (1 << 30)))
  441. timer_interrupt(irq, NULL, regs);
  442. out:
  443. irq_exit();
  444. }
  445. asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
  446. {
  447. irq_enter();
  448. if (smp_processor_id() != 0)
  449. kstat_this_cpu.irqs[irq]++;
  450. /* we keep interrupt disabled all the time */
  451. local_timer_interrupt(irq, NULL, regs);
  452. irq_exit();
  453. }
  454. /*
  455. * time_init() - it does the following things.
  456. *
  457. * 1) board_time_init() -
  458. * a) (optional) set up RTC routines,
  459. * b) (optional) calibrate and set the mips_hpt_frequency
  460. * (only needed if you intended to use fixed_rate_gettimeoffset
  461. * or use cpu counter as timer interrupt source)
  462. * 2) setup xtime based on rtc_mips_get_time().
  463. * 3) choose a appropriate gettimeoffset routine.
  464. * 4) calculate a couple of cached variables for later usage
  465. * 5) plat_timer_setup() -
  466. * a) (optional) over-write any choices made above by time_init().
  467. * b) machine specific code should setup the timer irqaction.
  468. * c) enable the timer interrupt
  469. */
  470. void (*board_time_init)(void);
  471. unsigned int mips_hpt_frequency;
  472. static struct irqaction timer_irqaction = {
  473. .handler = timer_interrupt,
  474. .flags = IRQF_DISABLED,
  475. .name = "timer",
  476. };
  477. static unsigned int __init calibrate_hpt(void)
  478. {
  479. u64 frequency;
  480. u32 hpt_start, hpt_end, hpt_count, hz;
  481. const int loops = HZ / 10;
  482. int log_2_loops = 0;
  483. int i;
  484. /*
  485. * We want to calibrate for 0.1s, but to avoid a 64-bit
  486. * division we round the number of loops up to the nearest
  487. * power of 2.
  488. */
  489. while (loops > 1 << log_2_loops)
  490. log_2_loops++;
  491. i = 1 << log_2_loops;
  492. /*
  493. * Wait for a rising edge of the timer interrupt.
  494. */
  495. while (mips_timer_state());
  496. while (!mips_timer_state());
  497. /*
  498. * Now see how many high precision timer ticks happen
  499. * during the calculated number of periods between timer
  500. * interrupts.
  501. */
  502. hpt_start = mips_hpt_read();
  503. do {
  504. while (mips_timer_state());
  505. while (!mips_timer_state());
  506. } while (--i);
  507. hpt_end = mips_hpt_read();
  508. hpt_count = hpt_end - hpt_start;
  509. hz = HZ;
  510. frequency = (u64)hpt_count * (u64)hz;
  511. return frequency >> log_2_loops;
  512. }
  513. void __init time_init(void)
  514. {
  515. if (board_time_init)
  516. board_time_init();
  517. if (!rtc_mips_set_mmss)
  518. rtc_mips_set_mmss = rtc_mips_set_time;
  519. xtime.tv_sec = rtc_mips_get_time();
  520. xtime.tv_nsec = 0;
  521. set_normalized_timespec(&wall_to_monotonic,
  522. -xtime.tv_sec, -xtime.tv_nsec);
  523. /* Choose appropriate high precision timer routines. */
  524. if (!cpu_has_counter && !mips_hpt_read) {
  525. /* No high precision timer -- sorry. */
  526. mips_hpt_read = null_hpt_read;
  527. mips_hpt_init = null_hpt_init;
  528. } else if (!mips_hpt_frequency && !mips_timer_state) {
  529. /* A high precision timer of unknown frequency. */
  530. if (!mips_hpt_read) {
  531. /* No external high precision timer -- use R4k. */
  532. mips_hpt_read = c0_hpt_read;
  533. mips_hpt_init = c0_hpt_init;
  534. }
  535. if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
  536. (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
  537. (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
  538. /*
  539. * We need to calibrate the counter but we don't have
  540. * 64-bit division.
  541. */
  542. do_gettimeoffset = calibrate_div32_gettimeoffset;
  543. else
  544. /*
  545. * We need to calibrate the counter but we *do* have
  546. * 64-bit division.
  547. */
  548. do_gettimeoffset = calibrate_div64_gettimeoffset;
  549. } else {
  550. /* We know counter frequency. Or we can get it. */
  551. if (!mips_hpt_read) {
  552. /* No external high precision timer -- use R4k. */
  553. mips_hpt_read = c0_hpt_read;
  554. if (mips_timer_state)
  555. mips_hpt_init = c0_hpt_init;
  556. else {
  557. /* No external timer interrupt -- use R4k. */
  558. mips_hpt_init = c0_hpt_timer_init;
  559. mips_timer_ack = c0_timer_ack;
  560. }
  561. }
  562. if (!mips_hpt_frequency)
  563. mips_hpt_frequency = calibrate_hpt();
  564. do_gettimeoffset = fixed_rate_gettimeoffset;
  565. /* Calculate cache parameters. */
  566. cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
  567. /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
  568. do_div64_32(sll32_usecs_per_cycle,
  569. 1000000, mips_hpt_frequency / 2,
  570. mips_hpt_frequency);
  571. /* Report the high precision timer rate for a reference. */
  572. printk("Using %u.%03u MHz high precision timer.\n",
  573. ((mips_hpt_frequency + 500) / 1000) / 1000,
  574. ((mips_hpt_frequency + 500) / 1000) % 1000);
  575. }
  576. if (!mips_timer_ack)
  577. /* No timer interrupt ack (e.g. i8254). */
  578. mips_timer_ack = null_timer_ack;
  579. /* This sets up the high precision timer for the first interrupt. */
  580. mips_hpt_init(mips_hpt_read());
  581. /*
  582. * Call board specific timer interrupt setup.
  583. *
  584. * this pointer must be setup in machine setup routine.
  585. *
  586. * Even if a machine chooses to use a low-level timer interrupt,
  587. * it still needs to setup the timer_irqaction.
  588. * In that case, it might be better to set timer_irqaction.handler
  589. * to be NULL function so that we are sure the high-level code
  590. * is not invoked accidentally.
  591. */
  592. plat_timer_setup(&timer_irqaction);
  593. }
  594. #define FEBRUARY 2
  595. #define STARTOFTIME 1970
  596. #define SECDAY 86400L
  597. #define SECYR (SECDAY * 365)
  598. #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
  599. #define days_in_year(y) (leapyear(y) ? 366 : 365)
  600. #define days_in_month(m) (month_days[(m) - 1])
  601. static int month_days[12] = {
  602. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  603. };
  604. void to_tm(unsigned long tim, struct rtc_time *tm)
  605. {
  606. long hms, day, gday;
  607. int i;
  608. gday = day = tim / SECDAY;
  609. hms = tim % SECDAY;
  610. /* Hours, minutes, seconds are easy */
  611. tm->tm_hour = hms / 3600;
  612. tm->tm_min = (hms % 3600) / 60;
  613. tm->tm_sec = (hms % 3600) % 60;
  614. /* Number of years in days */
  615. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  616. day -= days_in_year(i);
  617. tm->tm_year = i;
  618. /* Number of months in days left */
  619. if (leapyear(tm->tm_year))
  620. days_in_month(FEBRUARY) = 29;
  621. for (i = 1; day >= days_in_month(i); i++)
  622. day -= days_in_month(i);
  623. days_in_month(FEBRUARY) = 28;
  624. tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
  625. /* Days are what is left over (+1) from all that. */
  626. tm->tm_mday = day + 1;
  627. /*
  628. * Determine the day of week
  629. */
  630. tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
  631. }
  632. EXPORT_SYMBOL(rtc_lock);
  633. EXPORT_SYMBOL(to_tm);
  634. EXPORT_SYMBOL(rtc_mips_set_time);
  635. EXPORT_SYMBOL(rtc_mips_get_time);
  636. unsigned long long sched_clock(void)
  637. {
  638. return (unsigned long long)jiffies*(1000000000/HZ);
  639. }