time.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306
  1. /*
  2. * linux/arch/ia64/kernel/time.c
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * Stephane Eranian <eranian@hpl.hp.com>
  6. * David Mosberger <davidm@hpl.hp.com>
  7. * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8. * Copyright (C) 1999-2000 VA Linux Systems
  9. * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/profile.h>
  16. #include <linux/sched.h>
  17. #include <linux/time.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/efi.h>
  20. #include <linux/profile.h>
  21. #include <linux/timex.h>
  22. #include <asm/machvec.h>
  23. #include <asm/delay.h>
  24. #include <asm/hw_irq.h>
  25. #include <asm/ptrace.h>
  26. #include <asm/sal.h>
  27. #include <asm/sections.h>
  28. #include <asm/system.h>
  29. extern unsigned long wall_jiffies;
  30. volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  31. #ifdef CONFIG_IA64_DEBUG_IRQ
  32. unsigned long last_cli_ip;
  33. EXPORT_SYMBOL(last_cli_ip);
  34. #endif
  35. static struct time_interpolator itc_interpolator = {
  36. .shift = 16,
  37. .mask = 0xffffffffffffffffLL,
  38. .source = TIME_SOURCE_CPU
  39. };
  40. static irqreturn_t
  41. timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
  42. {
  43. unsigned long new_itm;
  44. if (unlikely(cpu_is_offline(smp_processor_id()))) {
  45. return IRQ_HANDLED;
  46. }
  47. platform_timer_interrupt(irq, dev_id, regs);
  48. new_itm = local_cpu_data->itm_next;
  49. if (!time_after(ia64_get_itc(), new_itm))
  50. printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
  51. ia64_get_itc(), new_itm);
  52. profile_tick(CPU_PROFILING, regs);
  53. while (1) {
  54. update_process_times(user_mode(regs));
  55. new_itm += local_cpu_data->itm_delta;
  56. if (smp_processor_id() == time_keeper_id) {
  57. /*
  58. * Here we are in the timer irq handler. We have irqs locally
  59. * disabled, but we don't know if the timer_bh is running on
  60. * another CPU. We need to avoid to SMP race by acquiring the
  61. * xtime_lock.
  62. */
  63. write_seqlock(&xtime_lock);
  64. do_timer(regs);
  65. local_cpu_data->itm_next = new_itm;
  66. write_sequnlock(&xtime_lock);
  67. } else
  68. local_cpu_data->itm_next = new_itm;
  69. if (time_after(new_itm, ia64_get_itc()))
  70. break;
  71. }
  72. do {
  73. /*
  74. * If we're too close to the next clock tick for
  75. * comfort, we increase the safety margin by
  76. * intentionally dropping the next tick(s). We do NOT
  77. * update itm.next because that would force us to call
  78. * do_timer() which in turn would let our clock run
  79. * too fast (with the potentially devastating effect
  80. * of losing monotony of time).
  81. */
  82. while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
  83. new_itm += local_cpu_data->itm_delta;
  84. ia64_set_itm(new_itm);
  85. /* double check, in case we got hit by a (slow) PMI: */
  86. } while (time_after_eq(ia64_get_itc(), new_itm));
  87. return IRQ_HANDLED;
  88. }
  89. /*
  90. * Encapsulate access to the itm structure for SMP.
  91. */
  92. void
  93. ia64_cpu_local_tick (void)
  94. {
  95. int cpu = smp_processor_id();
  96. unsigned long shift = 0, delta;
  97. /* arrange for the cycle counter to generate a timer interrupt: */
  98. ia64_set_itv(IA64_TIMER_VECTOR);
  99. delta = local_cpu_data->itm_delta;
  100. /*
  101. * Stagger the timer tick for each CPU so they don't occur all at (almost) the
  102. * same time:
  103. */
  104. if (cpu) {
  105. unsigned long hi = 1UL << ia64_fls(cpu);
  106. shift = (2*(cpu - hi) + 1) * delta/hi/2;
  107. }
  108. local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
  109. ia64_set_itm(local_cpu_data->itm_next);
  110. }
  111. static int nojitter;
  112. static int __init nojitter_setup(char *str)
  113. {
  114. nojitter = 1;
  115. printk("Jitter checking for ITC timers disabled\n");
  116. return 1;
  117. }
  118. __setup("nojitter", nojitter_setup);
  119. void __devinit
  120. ia64_init_itm (void)
  121. {
  122. unsigned long platform_base_freq, itc_freq;
  123. struct pal_freq_ratio itc_ratio, proc_ratio;
  124. long status, platform_base_drift, itc_drift;
  125. /*
  126. * According to SAL v2.6, we need to use a SAL call to determine the platform base
  127. * frequency and then a PAL call to determine the frequency ratio between the ITC
  128. * and the base frequency.
  129. */
  130. status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
  131. &platform_base_freq, &platform_base_drift);
  132. if (status != 0) {
  133. printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
  134. } else {
  135. status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
  136. if (status != 0)
  137. printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
  138. }
  139. if (status != 0) {
  140. /* invent "random" values */
  141. printk(KERN_ERR
  142. "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
  143. platform_base_freq = 100000000;
  144. platform_base_drift = -1; /* no drift info */
  145. itc_ratio.num = 3;
  146. itc_ratio.den = 1;
  147. }
  148. if (platform_base_freq < 40000000) {
  149. printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
  150. platform_base_freq);
  151. platform_base_freq = 75000000;
  152. platform_base_drift = -1;
  153. }
  154. if (!proc_ratio.den)
  155. proc_ratio.den = 1; /* avoid division by zero */
  156. if (!itc_ratio.den)
  157. itc_ratio.den = 1; /* avoid division by zero */
  158. itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
  159. local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
  160. printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
  161. "ITC freq=%lu.%03luMHz", smp_processor_id(),
  162. platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
  163. itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
  164. if (platform_base_drift != -1) {
  165. itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
  166. printk("+/-%ldppm\n", itc_drift);
  167. } else {
  168. itc_drift = -1;
  169. printk("\n");
  170. }
  171. local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
  172. local_cpu_data->itc_freq = itc_freq;
  173. local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
  174. local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
  175. + itc_freq/2)/itc_freq;
  176. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  177. itc_interpolator.frequency = local_cpu_data->itc_freq;
  178. itc_interpolator.drift = itc_drift;
  179. #ifdef CONFIG_SMP
  180. /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
  181. * Jitter compensation requires a cmpxchg which may limit
  182. * the scalability of the syscalls for retrieving time.
  183. * The ITC synchronization is usually successful to within a few
  184. * ITC ticks but this is not a sure thing. If you need to improve
  185. * timer performance in SMP situations then boot the kernel with the
  186. * "nojitter" option. However, doing so may result in time fluctuating (maybe
  187. * even going backward) if the ITC offsets between the individual CPUs
  188. * are too large.
  189. */
  190. if (!nojitter) itc_interpolator.jitter = 1;
  191. #endif
  192. register_time_interpolator(&itc_interpolator);
  193. }
  194. /* Setup the CPU local timer tick */
  195. ia64_cpu_local_tick();
  196. }
  197. static struct irqaction timer_irqaction = {
  198. .handler = timer_interrupt,
  199. .flags = IRQF_DISABLED,
  200. .name = "timer"
  201. };
  202. void __devinit ia64_disable_timer(void)
  203. {
  204. ia64_set_itv(1 << 16);
  205. }
  206. void __init
  207. time_init (void)
  208. {
  209. register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
  210. efi_gettimeofday(&xtime);
  211. ia64_init_itm();
  212. /*
  213. * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
  214. * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
  215. */
  216. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  217. }
  218. /*
  219. * Generic udelay assumes that if preemption is allowed and the thread
  220. * migrates to another CPU, that the ITC values are synchronized across
  221. * all CPUs.
  222. */
  223. static void
  224. ia64_itc_udelay (unsigned long usecs)
  225. {
  226. unsigned long start = ia64_get_itc();
  227. unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
  228. while (time_before(ia64_get_itc(), end))
  229. cpu_relax();
  230. }
  231. void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
  232. void
  233. udelay (unsigned long usecs)
  234. {
  235. (*ia64_udelay)(usecs);
  236. }
  237. EXPORT_SYMBOL(udelay);
  238. static unsigned long long ia64_itc_printk_clock(void)
  239. {
  240. if (ia64_get_kr(IA64_KR_PER_CPU_DATA))
  241. return sched_clock();
  242. return 0;
  243. }
  244. static unsigned long long ia64_default_printk_clock(void)
  245. {
  246. return (unsigned long long)(jiffies_64 - INITIAL_JIFFIES) *
  247. (1000000000/HZ);
  248. }
  249. unsigned long long (*ia64_printk_clock)(void) = &ia64_default_printk_clock;
  250. unsigned long long printk_clock(void)
  251. {
  252. return ia64_printk_clock();
  253. }
  254. void __init
  255. ia64_setup_printk_clock(void)
  256. {
  257. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT))
  258. ia64_printk_clock = ia64_itc_printk_clock;
  259. }