process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */
  12. #include <linux/cpu.h>
  13. #include <linux/pm.h>
  14. #include <linux/elf.h>
  15. #include <linux/errno.h>
  16. #include <linux/kallsyms.h>
  17. #include <linux/kernel.h>
  18. #include <linux/mm.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/sched.h>
  23. #include <linux/slab.h>
  24. #include <linux/smp_lock.h>
  25. #include <linux/stddef.h>
  26. #include <linux/thread_info.h>
  27. #include <linux/unistd.h>
  28. #include <linux/efi.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/delay.h>
  31. #include <asm/cpu.h>
  32. #include <asm/delay.h>
  33. #include <asm/elf.h>
  34. #include <asm/ia32.h>
  35. #include <asm/irq.h>
  36. #include <asm/kdebug.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sal.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/unwind.h>
  43. #include <asm/user.h>
  44. #include "entry.h"
  45. #ifdef CONFIG_PERFMON
  46. # include <asm/perfmon.h>
  47. #endif
  48. #include "sigframe.h"
  49. void (*ia64_mark_idle)(int);
  50. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  51. unsigned long boot_option_idle_override = 0;
  52. EXPORT_SYMBOL(boot_option_idle_override);
  53. void
  54. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  55. {
  56. unsigned long ip, sp, bsp;
  57. char buf[128]; /* don't make it so big that it overflows the stack! */
  58. printk("\nCall Trace:\n");
  59. do {
  60. unw_get_ip(info, &ip);
  61. if (ip == 0)
  62. break;
  63. unw_get_sp(info, &sp);
  64. unw_get_bsp(info, &bsp);
  65. snprintf(buf, sizeof(buf),
  66. " [<%016lx>] %%s\n"
  67. " sp=%016lx bsp=%016lx\n",
  68. ip, sp, bsp);
  69. print_symbol(buf, ip);
  70. } while (unw_unwind(info) >= 0);
  71. }
  72. void
  73. show_stack (struct task_struct *task, unsigned long *sp)
  74. {
  75. if (!task)
  76. unw_init_running(ia64_do_show_stack, NULL);
  77. else {
  78. struct unw_frame_info info;
  79. unw_init_from_blocked_task(&info, task);
  80. ia64_do_show_stack(&info, NULL);
  81. }
  82. }
  83. void
  84. dump_stack (void)
  85. {
  86. show_stack(NULL, NULL);
  87. }
  88. EXPORT_SYMBOL(dump_stack);
  89. void
  90. show_regs (struct pt_regs *regs)
  91. {
  92. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  93. print_modules();
  94. printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
  95. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
  96. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
  97. print_symbol("ip is at %s\n", ip);
  98. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  99. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  100. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  101. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  102. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  103. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  104. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  105. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  106. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  107. regs->f6.u.bits[1], regs->f6.u.bits[0],
  108. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  109. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  110. regs->f8.u.bits[1], regs->f8.u.bits[0],
  111. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  112. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  113. regs->f10.u.bits[1], regs->f10.u.bits[0],
  114. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  115. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  116. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  117. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  118. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  119. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  120. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  121. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  122. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  123. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  124. if (user_mode(regs)) {
  125. /* print the stacked registers */
  126. unsigned long val, *bsp, ndirty;
  127. int i, sof, is_nat = 0;
  128. sof = regs->cr_ifs & 0x7f; /* size of frame */
  129. ndirty = (regs->loadrs >> 19);
  130. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  131. for (i = 0; i < sof; ++i) {
  132. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  133. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  134. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  135. }
  136. } else
  137. show_stack(NULL, NULL);
  138. }
  139. void
  140. do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
  141. {
  142. if (fsys_mode(current, &scr->pt)) {
  143. /* defer signal-handling etc. until we return to privilege-level 0. */
  144. if (!ia64_psr(&scr->pt)->lp)
  145. ia64_psr(&scr->pt)->lp = 1;
  146. return;
  147. }
  148. #ifdef CONFIG_PERFMON
  149. if (current->thread.pfm_needs_checking)
  150. pfm_handle_work();
  151. #endif
  152. /* deal with pending signal delivery */
  153. if (test_thread_flag(TIF_SIGPENDING))
  154. ia64_do_signal(oldset, scr, in_syscall);
  155. }
  156. static int pal_halt = 1;
  157. static int can_do_pal_halt = 1;
  158. static int __init nohalt_setup(char * str)
  159. {
  160. pal_halt = can_do_pal_halt = 0;
  161. return 1;
  162. }
  163. __setup("nohalt", nohalt_setup);
  164. void
  165. update_pal_halt_status(int status)
  166. {
  167. can_do_pal_halt = pal_halt && status;
  168. }
  169. /*
  170. * We use this if we don't have any better idle routine..
  171. */
  172. void
  173. default_idle (void)
  174. {
  175. local_irq_enable();
  176. while (!need_resched()) {
  177. if (can_do_pal_halt)
  178. safe_halt();
  179. else
  180. cpu_relax();
  181. }
  182. }
  183. #ifdef CONFIG_HOTPLUG_CPU
  184. /* We don't actually take CPU down, just spin without interrupts. */
  185. static inline void play_dead(void)
  186. {
  187. extern void ia64_cpu_local_tick (void);
  188. unsigned int this_cpu = smp_processor_id();
  189. /* Ack it */
  190. __get_cpu_var(cpu_state) = CPU_DEAD;
  191. max_xtp();
  192. local_irq_disable();
  193. idle_task_exit();
  194. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  195. /*
  196. * The above is a point of no-return, the processor is
  197. * expected to be in SAL loop now.
  198. */
  199. BUG();
  200. }
  201. #else
  202. static inline void play_dead(void)
  203. {
  204. BUG();
  205. }
  206. #endif /* CONFIG_HOTPLUG_CPU */
  207. void cpu_idle_wait(void)
  208. {
  209. unsigned int cpu, this_cpu = get_cpu();
  210. cpumask_t map;
  211. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  212. put_cpu();
  213. cpus_clear(map);
  214. for_each_online_cpu(cpu) {
  215. per_cpu(cpu_idle_state, cpu) = 1;
  216. cpu_set(cpu, map);
  217. }
  218. __get_cpu_var(cpu_idle_state) = 0;
  219. wmb();
  220. do {
  221. ssleep(1);
  222. for_each_online_cpu(cpu) {
  223. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  224. cpu_clear(cpu, map);
  225. }
  226. cpus_and(map, map, cpu_online_map);
  227. } while (!cpus_empty(map));
  228. }
  229. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  230. void __attribute__((noreturn))
  231. cpu_idle (void)
  232. {
  233. void (*mark_idle)(int) = ia64_mark_idle;
  234. int cpu = smp_processor_id();
  235. /* endless idle loop with no priority at all */
  236. while (1) {
  237. if (can_do_pal_halt)
  238. current_thread_info()->status &= ~TS_POLLING;
  239. else
  240. current_thread_info()->status |= TS_POLLING;
  241. if (!need_resched()) {
  242. void (*idle)(void);
  243. #ifdef CONFIG_SMP
  244. min_xtp();
  245. #endif
  246. if (__get_cpu_var(cpu_idle_state))
  247. __get_cpu_var(cpu_idle_state) = 0;
  248. rmb();
  249. if (mark_idle)
  250. (*mark_idle)(1);
  251. idle = pm_idle;
  252. if (!idle)
  253. idle = default_idle;
  254. (*idle)();
  255. if (mark_idle)
  256. (*mark_idle)(0);
  257. #ifdef CONFIG_SMP
  258. normal_xtp();
  259. #endif
  260. }
  261. preempt_enable_no_resched();
  262. schedule();
  263. preempt_disable();
  264. check_pgt_cache();
  265. if (cpu_is_offline(cpu))
  266. play_dead();
  267. }
  268. }
  269. void
  270. ia64_save_extra (struct task_struct *task)
  271. {
  272. #ifdef CONFIG_PERFMON
  273. unsigned long info;
  274. #endif
  275. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  276. ia64_save_debug_regs(&task->thread.dbr[0]);
  277. #ifdef CONFIG_PERFMON
  278. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  279. pfm_save_regs(task);
  280. info = __get_cpu_var(pfm_syst_info);
  281. if (info & PFM_CPUINFO_SYST_WIDE)
  282. pfm_syst_wide_update_task(task, info, 0);
  283. #endif
  284. #ifdef CONFIG_IA32_SUPPORT
  285. if (IS_IA32_PROCESS(task_pt_regs(task)))
  286. ia32_save_state(task);
  287. #endif
  288. }
  289. void
  290. ia64_load_extra (struct task_struct *task)
  291. {
  292. #ifdef CONFIG_PERFMON
  293. unsigned long info;
  294. #endif
  295. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  296. ia64_load_debug_regs(&task->thread.dbr[0]);
  297. #ifdef CONFIG_PERFMON
  298. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  299. pfm_load_regs(task);
  300. info = __get_cpu_var(pfm_syst_info);
  301. if (info & PFM_CPUINFO_SYST_WIDE)
  302. pfm_syst_wide_update_task(task, info, 1);
  303. #endif
  304. #ifdef CONFIG_IA32_SUPPORT
  305. if (IS_IA32_PROCESS(task_pt_regs(task)))
  306. ia32_load_state(task);
  307. #endif
  308. }
  309. /*
  310. * Copy the state of an ia-64 thread.
  311. *
  312. * We get here through the following call chain:
  313. *
  314. * from user-level: from kernel:
  315. *
  316. * <clone syscall> <some kernel call frames>
  317. * sys_clone :
  318. * do_fork do_fork
  319. * copy_thread copy_thread
  320. *
  321. * This means that the stack layout is as follows:
  322. *
  323. * +---------------------+ (highest addr)
  324. * | struct pt_regs |
  325. * +---------------------+
  326. * | struct switch_stack |
  327. * +---------------------+
  328. * | |
  329. * | memory stack |
  330. * | | <-- sp (lowest addr)
  331. * +---------------------+
  332. *
  333. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  334. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  335. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  336. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  337. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  338. * so there is nothing to worry about.
  339. */
  340. int
  341. copy_thread (int nr, unsigned long clone_flags,
  342. unsigned long user_stack_base, unsigned long user_stack_size,
  343. struct task_struct *p, struct pt_regs *regs)
  344. {
  345. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  346. struct switch_stack *child_stack, *stack;
  347. unsigned long rbs, child_rbs, rbs_size;
  348. struct pt_regs *child_ptregs;
  349. int retval = 0;
  350. #ifdef CONFIG_SMP
  351. /*
  352. * For SMP idle threads, fork_by_hand() calls do_fork with
  353. * NULL regs.
  354. */
  355. if (!regs)
  356. return 0;
  357. #endif
  358. stack = ((struct switch_stack *) regs) - 1;
  359. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  360. child_stack = (struct switch_stack *) child_ptregs - 1;
  361. /* copy parent's switch_stack & pt_regs to child: */
  362. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  363. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  364. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  365. rbs_size = stack->ar_bspstore - rbs;
  366. /* copy the parent's register backing store to the child: */
  367. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  368. if (likely(user_mode(child_ptregs))) {
  369. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  370. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  371. if (user_stack_base) {
  372. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  373. child_ptregs->ar_bspstore = user_stack_base;
  374. child_ptregs->ar_rnat = 0;
  375. child_ptregs->loadrs = 0;
  376. }
  377. } else {
  378. /*
  379. * Note: we simply preserve the relative position of
  380. * the stack pointer here. There is no need to
  381. * allocate a scratch area here, since that will have
  382. * been taken care of by the caller of sys_clone()
  383. * already.
  384. */
  385. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  386. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  387. }
  388. child_stack->ar_bspstore = child_rbs + rbs_size;
  389. if (IS_IA32_PROCESS(regs))
  390. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  391. else
  392. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  393. /* copy parts of thread_struct: */
  394. p->thread.ksp = (unsigned long) child_stack - 16;
  395. /* stop some PSR bits from being inherited.
  396. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  397. * therefore we must specify them explicitly here and not include them in
  398. * IA64_PSR_BITS_TO_CLEAR.
  399. */
  400. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  401. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  402. /*
  403. * NOTE: The calling convention considers all floating point
  404. * registers in the high partition (fph) to be scratch. Since
  405. * the only way to get to this point is through a system call,
  406. * we know that the values in fph are all dead. Hence, there
  407. * is no need to inherit the fph state from the parent to the
  408. * child and all we have to do is to make sure that
  409. * IA64_THREAD_FPH_VALID is cleared in the child.
  410. *
  411. * XXX We could push this optimization a bit further by
  412. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  413. * However, it's not clear this is worth doing. Also, it
  414. * would be a slight deviation from the normal Linux system
  415. * call behavior where scratch registers are preserved across
  416. * system calls (unless used by the system call itself).
  417. */
  418. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  419. | IA64_THREAD_PM_VALID)
  420. # define THREAD_FLAGS_TO_SET 0
  421. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  422. | THREAD_FLAGS_TO_SET);
  423. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  424. #ifdef CONFIG_IA32_SUPPORT
  425. /*
  426. * If we're cloning an IA32 task then save the IA32 extra
  427. * state from the current task to the new task
  428. */
  429. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  430. ia32_save_state(p);
  431. if (clone_flags & CLONE_SETTLS)
  432. retval = ia32_clone_tls(p, child_ptregs);
  433. /* Copy partially mapped page list */
  434. if (!retval)
  435. retval = ia32_copy_partial_page_list(p, clone_flags);
  436. }
  437. #endif
  438. #ifdef CONFIG_PERFMON
  439. if (current->thread.pfm_context)
  440. pfm_inherit(p, child_ptregs);
  441. #endif
  442. return retval;
  443. }
  444. static void
  445. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  446. {
  447. unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
  448. elf_greg_t *dst = arg;
  449. struct pt_regs *pt;
  450. char nat;
  451. int i;
  452. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  453. if (unw_unwind_to_user(info) < 0)
  454. return;
  455. unw_get_sp(info, &sp);
  456. pt = (struct pt_regs *) (sp + 16);
  457. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  458. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  459. return;
  460. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  461. &ar_rnat);
  462. /*
  463. * coredump format:
  464. * r0-r31
  465. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  466. * predicate registers (p0-p63)
  467. * b0-b7
  468. * ip cfm user-mask
  469. * ar.rsc ar.bsp ar.bspstore ar.rnat
  470. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  471. */
  472. /* r0 is zero */
  473. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  474. unw_get_gr(info, i, &dst[i], &nat);
  475. if (nat)
  476. nat_bits |= mask;
  477. mask <<= 1;
  478. }
  479. dst[32] = nat_bits;
  480. unw_get_pr(info, &dst[33]);
  481. for (i = 0; i < 8; ++i)
  482. unw_get_br(info, i, &dst[34 + i]);
  483. unw_get_rp(info, &ip);
  484. dst[42] = ip + ia64_psr(pt)->ri;
  485. dst[43] = cfm;
  486. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  487. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  488. /*
  489. * For bsp and bspstore, unw_get_ar() would return the kernel
  490. * addresses, but we need the user-level addresses instead:
  491. */
  492. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  493. dst[47] = pt->ar_bspstore;
  494. dst[48] = ar_rnat;
  495. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  496. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  497. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  498. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  499. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  500. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  501. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  502. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  503. }
  504. void
  505. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  506. {
  507. elf_fpreg_t *dst = arg;
  508. int i;
  509. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  510. if (unw_unwind_to_user(info) < 0)
  511. return;
  512. /* f0 is 0.0, f1 is 1.0 */
  513. for (i = 2; i < 32; ++i)
  514. unw_get_fr(info, i, dst + i);
  515. ia64_flush_fph(task);
  516. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  517. memcpy(dst + 32, task->thread.fph, 96*16);
  518. }
  519. void
  520. do_copy_regs (struct unw_frame_info *info, void *arg)
  521. {
  522. do_copy_task_regs(current, info, arg);
  523. }
  524. void
  525. do_dump_fpu (struct unw_frame_info *info, void *arg)
  526. {
  527. do_dump_task_fpu(current, info, arg);
  528. }
  529. int
  530. dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
  531. {
  532. struct unw_frame_info tcore_info;
  533. if (current == task) {
  534. unw_init_running(do_copy_regs, regs);
  535. } else {
  536. memset(&tcore_info, 0, sizeof(tcore_info));
  537. unw_init_from_blocked_task(&tcore_info, task);
  538. do_copy_task_regs(task, &tcore_info, regs);
  539. }
  540. return 1;
  541. }
  542. void
  543. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  544. {
  545. unw_init_running(do_copy_regs, dst);
  546. }
  547. int
  548. dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
  549. {
  550. struct unw_frame_info tcore_info;
  551. if (current == task) {
  552. unw_init_running(do_dump_fpu, dst);
  553. } else {
  554. memset(&tcore_info, 0, sizeof(tcore_info));
  555. unw_init_from_blocked_task(&tcore_info, task);
  556. do_dump_task_fpu(task, &tcore_info, dst);
  557. }
  558. return 1;
  559. }
  560. int
  561. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  562. {
  563. unw_init_running(do_dump_fpu, dst);
  564. return 1; /* f0-f31 are always valid so we always return 1 */
  565. }
  566. long
  567. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  568. struct pt_regs *regs)
  569. {
  570. char *fname;
  571. int error;
  572. fname = getname(filename);
  573. error = PTR_ERR(fname);
  574. if (IS_ERR(fname))
  575. goto out;
  576. error = do_execve(fname, argv, envp, regs);
  577. putname(fname);
  578. out:
  579. return error;
  580. }
  581. pid_t
  582. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  583. {
  584. extern void start_kernel_thread (void);
  585. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  586. struct {
  587. struct switch_stack sw;
  588. struct pt_regs pt;
  589. } regs;
  590. memset(&regs, 0, sizeof(regs));
  591. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  592. regs.pt.r1 = helper_fptr[1]; /* set GP */
  593. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  594. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  595. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  596. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  597. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  598. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  599. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  600. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  601. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  602. }
  603. EXPORT_SYMBOL(kernel_thread);
  604. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  605. int
  606. kernel_thread_helper (int (*fn)(void *), void *arg)
  607. {
  608. #ifdef CONFIG_IA32_SUPPORT
  609. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  610. /* A kernel thread is always a 64-bit process. */
  611. current->thread.map_base = DEFAULT_MAP_BASE;
  612. current->thread.task_size = DEFAULT_TASK_SIZE;
  613. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  614. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  615. }
  616. #endif
  617. return (*fn)(arg);
  618. }
  619. /*
  620. * Flush thread state. This is called when a thread does an execve().
  621. */
  622. void
  623. flush_thread (void)
  624. {
  625. /* drop floating-point and debug-register state if it exists: */
  626. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  627. ia64_drop_fpu(current);
  628. #ifdef CONFIG_IA32_SUPPORT
  629. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  630. ia32_drop_partial_page_list(current);
  631. current->thread.task_size = IA32_PAGE_OFFSET;
  632. set_fs(USER_DS);
  633. }
  634. #endif
  635. }
  636. /*
  637. * Clean up state associated with current thread. This is called when
  638. * the thread calls exit().
  639. */
  640. void
  641. exit_thread (void)
  642. {
  643. ia64_drop_fpu(current);
  644. #ifdef CONFIG_PERFMON
  645. /* if needed, stop monitoring and flush state to perfmon context */
  646. if (current->thread.pfm_context)
  647. pfm_exit_thread(current);
  648. /* free debug register resources */
  649. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  650. pfm_release_debug_registers(current);
  651. #endif
  652. if (IS_IA32_PROCESS(task_pt_regs(current)))
  653. ia32_drop_partial_page_list(current);
  654. }
  655. unsigned long
  656. get_wchan (struct task_struct *p)
  657. {
  658. struct unw_frame_info info;
  659. unsigned long ip;
  660. int count = 0;
  661. /*
  662. * Note: p may not be a blocked task (it could be current or
  663. * another process running on some other CPU. Rather than
  664. * trying to determine if p is really blocked, we just assume
  665. * it's blocked and rely on the unwind routines to fail
  666. * gracefully if the process wasn't really blocked after all.
  667. * --davidm 99/12/15
  668. */
  669. unw_init_from_blocked_task(&info, p);
  670. do {
  671. if (unw_unwind(&info) < 0)
  672. return 0;
  673. unw_get_ip(&info, &ip);
  674. if (!in_sched_functions(ip))
  675. return ip;
  676. } while (count++ < 16);
  677. return 0;
  678. }
  679. void
  680. cpu_halt (void)
  681. {
  682. pal_power_mgmt_info_u_t power_info[8];
  683. unsigned long min_power;
  684. int i, min_power_state;
  685. if (ia64_pal_halt_info(power_info) != 0)
  686. return;
  687. min_power_state = 0;
  688. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  689. for (i = 1; i < 8; ++i)
  690. if (power_info[i].pal_power_mgmt_info_s.im
  691. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  692. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  693. min_power_state = i;
  694. }
  695. while (1)
  696. ia64_pal_halt(min_power_state);
  697. }
  698. void
  699. machine_restart (char *restart_cmd)
  700. {
  701. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  702. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  703. }
  704. void
  705. machine_halt (void)
  706. {
  707. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  708. cpu_halt();
  709. }
  710. void
  711. machine_power_off (void)
  712. {
  713. if (pm_power_off)
  714. pm_power_off();
  715. machine_halt();
  716. }