acpi-cpufreq.c 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447
  1. /*
  2. * arch/ia64/kernel/cpufreq/acpi-cpufreq.c
  3. * This file provides the ACPI based P-state support. This
  4. * module works with generic cpufreq infrastructure. Most of
  5. * the code is based on i386 version
  6. * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
  7. *
  8. * Copyright (C) 2005 Intel Corp
  9. * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/cpufreq.h>
  15. #include <linux/proc_fs.h>
  16. #include <linux/seq_file.h>
  17. #include <asm/io.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/pal.h>
  20. #include <linux/acpi.h>
  21. #include <acpi/processor.h>
  22. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
  23. MODULE_AUTHOR("Venkatesh Pallipadi");
  24. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  25. MODULE_LICENSE("GPL");
  26. struct cpufreq_acpi_io {
  27. struct acpi_processor_performance acpi_data;
  28. struct cpufreq_frequency_table *freq_table;
  29. unsigned int resume;
  30. };
  31. static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
  32. static struct cpufreq_driver acpi_cpufreq_driver;
  33. static int
  34. processor_set_pstate (
  35. u32 value)
  36. {
  37. s64 retval;
  38. dprintk("processor_set_pstate\n");
  39. retval = ia64_pal_set_pstate((u64)value);
  40. if (retval) {
  41. dprintk("Failed to set freq to 0x%x, with error 0x%x\n",
  42. value, retval);
  43. return -ENODEV;
  44. }
  45. return (int)retval;
  46. }
  47. static int
  48. processor_get_pstate (
  49. u32 *value)
  50. {
  51. u64 pstate_index = 0;
  52. s64 retval;
  53. dprintk("processor_get_pstate\n");
  54. retval = ia64_pal_get_pstate(&pstate_index);
  55. *value = (u32) pstate_index;
  56. if (retval)
  57. dprintk("Failed to get current freq with "
  58. "error 0x%x, idx 0x%x\n", retval, *value);
  59. return (int)retval;
  60. }
  61. /* To be used only after data->acpi_data is initialized */
  62. static unsigned
  63. extract_clock (
  64. struct cpufreq_acpi_io *data,
  65. unsigned value,
  66. unsigned int cpu)
  67. {
  68. unsigned long i;
  69. dprintk("extract_clock\n");
  70. for (i = 0; i < data->acpi_data.state_count; i++) {
  71. if (value >= data->acpi_data.states[i].control)
  72. return data->acpi_data.states[i].core_frequency;
  73. }
  74. return data->acpi_data.states[i-1].core_frequency;
  75. }
  76. static unsigned int
  77. processor_get_freq (
  78. struct cpufreq_acpi_io *data,
  79. unsigned int cpu)
  80. {
  81. int ret = 0;
  82. u32 value = 0;
  83. cpumask_t saved_mask;
  84. unsigned long clock_freq;
  85. dprintk("processor_get_freq\n");
  86. saved_mask = current->cpus_allowed;
  87. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  88. if (smp_processor_id() != cpu) {
  89. ret = -EAGAIN;
  90. goto migrate_end;
  91. }
  92. /*
  93. * processor_get_pstate gets the average frequency since the
  94. * last get. So, do two PAL_get_freq()...
  95. */
  96. ret = processor_get_pstate(&value);
  97. ret = processor_get_pstate(&value);
  98. if (ret) {
  99. set_cpus_allowed(current, saved_mask);
  100. printk(KERN_WARNING "get performance failed with error %d\n",
  101. ret);
  102. ret = -EAGAIN;
  103. goto migrate_end;
  104. }
  105. clock_freq = extract_clock(data, value, cpu);
  106. ret = (clock_freq*1000);
  107. migrate_end:
  108. set_cpus_allowed(current, saved_mask);
  109. return ret;
  110. }
  111. static int
  112. processor_set_freq (
  113. struct cpufreq_acpi_io *data,
  114. unsigned int cpu,
  115. int state)
  116. {
  117. int ret = 0;
  118. u32 value = 0;
  119. struct cpufreq_freqs cpufreq_freqs;
  120. cpumask_t saved_mask;
  121. int retval;
  122. dprintk("processor_set_freq\n");
  123. saved_mask = current->cpus_allowed;
  124. set_cpus_allowed(current, cpumask_of_cpu(cpu));
  125. if (smp_processor_id() != cpu) {
  126. retval = -EAGAIN;
  127. goto migrate_end;
  128. }
  129. if (state == data->acpi_data.state) {
  130. if (unlikely(data->resume)) {
  131. dprintk("Called after resume, resetting to P%d\n", state);
  132. data->resume = 0;
  133. } else {
  134. dprintk("Already at target state (P%d)\n", state);
  135. retval = 0;
  136. goto migrate_end;
  137. }
  138. }
  139. dprintk("Transitioning from P%d to P%d\n",
  140. data->acpi_data.state, state);
  141. /* cpufreq frequency struct */
  142. cpufreq_freqs.cpu = cpu;
  143. cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency;
  144. cpufreq_freqs.new = data->freq_table[state].frequency;
  145. /* notify cpufreq */
  146. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
  147. /*
  148. * First we write the target state's 'control' value to the
  149. * control_register.
  150. */
  151. value = (u32) data->acpi_data.states[state].control;
  152. dprintk("Transitioning to state: 0x%08x\n", value);
  153. ret = processor_set_pstate(value);
  154. if (ret) {
  155. unsigned int tmp = cpufreq_freqs.new;
  156. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  157. cpufreq_freqs.new = cpufreq_freqs.old;
  158. cpufreq_freqs.old = tmp;
  159. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE);
  160. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  161. printk(KERN_WARNING "Transition failed with error %d\n", ret);
  162. retval = -ENODEV;
  163. goto migrate_end;
  164. }
  165. cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE);
  166. data->acpi_data.state = state;
  167. retval = 0;
  168. migrate_end:
  169. set_cpus_allowed(current, saved_mask);
  170. return (retval);
  171. }
  172. static unsigned int
  173. acpi_cpufreq_get (
  174. unsigned int cpu)
  175. {
  176. struct cpufreq_acpi_io *data = acpi_io_data[cpu];
  177. dprintk("acpi_cpufreq_get\n");
  178. return processor_get_freq(data, cpu);
  179. }
  180. static int
  181. acpi_cpufreq_target (
  182. struct cpufreq_policy *policy,
  183. unsigned int target_freq,
  184. unsigned int relation)
  185. {
  186. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  187. unsigned int next_state = 0;
  188. unsigned int result = 0;
  189. dprintk("acpi_cpufreq_setpolicy\n");
  190. result = cpufreq_frequency_table_target(policy,
  191. data->freq_table, target_freq, relation, &next_state);
  192. if (result)
  193. return (result);
  194. result = processor_set_freq(data, policy->cpu, next_state);
  195. return (result);
  196. }
  197. static int
  198. acpi_cpufreq_verify (
  199. struct cpufreq_policy *policy)
  200. {
  201. unsigned int result = 0;
  202. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  203. dprintk("acpi_cpufreq_verify\n");
  204. result = cpufreq_frequency_table_verify(policy,
  205. data->freq_table);
  206. return (result);
  207. }
  208. static int
  209. acpi_cpufreq_cpu_init (
  210. struct cpufreq_policy *policy)
  211. {
  212. unsigned int i;
  213. unsigned int cpu = policy->cpu;
  214. struct cpufreq_acpi_io *data;
  215. unsigned int result = 0;
  216. dprintk("acpi_cpufreq_cpu_init\n");
  217. data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
  218. if (!data)
  219. return (-ENOMEM);
  220. memset(data, 0, sizeof(struct cpufreq_acpi_io));
  221. acpi_io_data[cpu] = data;
  222. result = acpi_processor_register_performance(&data->acpi_data, cpu);
  223. if (result)
  224. goto err_free;
  225. /* capability check */
  226. if (data->acpi_data.state_count <= 1) {
  227. dprintk("No P-States\n");
  228. result = -ENODEV;
  229. goto err_unreg;
  230. }
  231. if ((data->acpi_data.control_register.space_id !=
  232. ACPI_ADR_SPACE_FIXED_HARDWARE) ||
  233. (data->acpi_data.status_register.space_id !=
  234. ACPI_ADR_SPACE_FIXED_HARDWARE)) {
  235. dprintk("Unsupported address space [%d, %d]\n",
  236. (u32) (data->acpi_data.control_register.space_id),
  237. (u32) (data->acpi_data.status_register.space_id));
  238. result = -ENODEV;
  239. goto err_unreg;
  240. }
  241. /* alloc freq_table */
  242. data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
  243. (data->acpi_data.state_count + 1),
  244. GFP_KERNEL);
  245. if (!data->freq_table) {
  246. result = -ENOMEM;
  247. goto err_unreg;
  248. }
  249. /* detect transition latency */
  250. policy->cpuinfo.transition_latency = 0;
  251. for (i=0; i<data->acpi_data.state_count; i++) {
  252. if ((data->acpi_data.states[i].transition_latency * 1000) >
  253. policy->cpuinfo.transition_latency) {
  254. policy->cpuinfo.transition_latency =
  255. data->acpi_data.states[i].transition_latency * 1000;
  256. }
  257. }
  258. policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
  259. policy->cur = processor_get_freq(data, policy->cpu);
  260. /* table init */
  261. for (i = 0; i <= data->acpi_data.state_count; i++)
  262. {
  263. data->freq_table[i].index = i;
  264. if (i < data->acpi_data.state_count) {
  265. data->freq_table[i].frequency =
  266. data->acpi_data.states[i].core_frequency * 1000;
  267. } else {
  268. data->freq_table[i].frequency = CPUFREQ_TABLE_END;
  269. }
  270. }
  271. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  272. if (result) {
  273. goto err_freqfree;
  274. }
  275. /* notify BIOS that we exist */
  276. acpi_processor_notify_smm(THIS_MODULE);
  277. printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management "
  278. "activated.\n", cpu);
  279. for (i = 0; i < data->acpi_data.state_count; i++)
  280. dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
  281. (i == data->acpi_data.state?'*':' '), i,
  282. (u32) data->acpi_data.states[i].core_frequency,
  283. (u32) data->acpi_data.states[i].power,
  284. (u32) data->acpi_data.states[i].transition_latency,
  285. (u32) data->acpi_data.states[i].bus_master_latency,
  286. (u32) data->acpi_data.states[i].status,
  287. (u32) data->acpi_data.states[i].control);
  288. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  289. /* the first call to ->target() should result in us actually
  290. * writing something to the appropriate registers. */
  291. data->resume = 1;
  292. return (result);
  293. err_freqfree:
  294. kfree(data->freq_table);
  295. err_unreg:
  296. acpi_processor_unregister_performance(&data->acpi_data, cpu);
  297. err_free:
  298. kfree(data);
  299. acpi_io_data[cpu] = NULL;
  300. return (result);
  301. }
  302. static int
  303. acpi_cpufreq_cpu_exit (
  304. struct cpufreq_policy *policy)
  305. {
  306. struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
  307. dprintk("acpi_cpufreq_cpu_exit\n");
  308. if (data) {
  309. cpufreq_frequency_table_put_attr(policy->cpu);
  310. acpi_io_data[policy->cpu] = NULL;
  311. acpi_processor_unregister_performance(&data->acpi_data,
  312. policy->cpu);
  313. kfree(data);
  314. }
  315. return (0);
  316. }
  317. static struct freq_attr* acpi_cpufreq_attr[] = {
  318. &cpufreq_freq_attr_scaling_available_freqs,
  319. NULL,
  320. };
  321. static struct cpufreq_driver acpi_cpufreq_driver = {
  322. .verify = acpi_cpufreq_verify,
  323. .target = acpi_cpufreq_target,
  324. .get = acpi_cpufreq_get,
  325. .init = acpi_cpufreq_cpu_init,
  326. .exit = acpi_cpufreq_cpu_exit,
  327. .name = "acpi-cpufreq",
  328. .owner = THIS_MODULE,
  329. .attr = acpi_cpufreq_attr,
  330. };
  331. static int __init
  332. acpi_cpufreq_init (void)
  333. {
  334. dprintk("acpi_cpufreq_init\n");
  335. return cpufreq_register_driver(&acpi_cpufreq_driver);
  336. }
  337. static void __exit
  338. acpi_cpufreq_exit (void)
  339. {
  340. dprintk("acpi_cpufreq_exit\n");
  341. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  342. return;
  343. }
  344. late_initcall(acpi_cpufreq_init);
  345. module_exit(acpi_cpufreq_exit);