pgtable.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. /*
  2. * linux/arch/i386/mm/pgtable.c
  3. */
  4. #include <linux/sched.h>
  5. #include <linux/kernel.h>
  6. #include <linux/errno.h>
  7. #include <linux/mm.h>
  8. #include <linux/swap.h>
  9. #include <linux/smp.h>
  10. #include <linux/highmem.h>
  11. #include <linux/slab.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/spinlock.h>
  14. #include <asm/system.h>
  15. #include <asm/pgtable.h>
  16. #include <asm/pgalloc.h>
  17. #include <asm/fixmap.h>
  18. #include <asm/e820.h>
  19. #include <asm/tlb.h>
  20. #include <asm/tlbflush.h>
  21. void show_mem(void)
  22. {
  23. int total = 0, reserved = 0;
  24. int shared = 0, cached = 0;
  25. int highmem = 0;
  26. struct page *page;
  27. pg_data_t *pgdat;
  28. unsigned long i;
  29. unsigned long flags;
  30. printk(KERN_INFO "Mem-info:\n");
  31. show_free_areas();
  32. printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  33. for_each_online_pgdat(pgdat) {
  34. pgdat_resize_lock(pgdat, &flags);
  35. for (i = 0; i < pgdat->node_spanned_pages; ++i) {
  36. page = pgdat_page_nr(pgdat, i);
  37. total++;
  38. if (PageHighMem(page))
  39. highmem++;
  40. if (PageReserved(page))
  41. reserved++;
  42. else if (PageSwapCache(page))
  43. cached++;
  44. else if (page_count(page))
  45. shared += page_count(page) - 1;
  46. }
  47. pgdat_resize_unlock(pgdat, &flags);
  48. }
  49. printk(KERN_INFO "%d pages of RAM\n", total);
  50. printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
  51. printk(KERN_INFO "%d reserved pages\n", reserved);
  52. printk(KERN_INFO "%d pages shared\n", shared);
  53. printk(KERN_INFO "%d pages swap cached\n", cached);
  54. printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
  55. printk(KERN_INFO "%lu pages writeback\n",
  56. global_page_state(NR_WRITEBACK));
  57. printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
  58. printk(KERN_INFO "%lu pages slab\n", global_page_state(NR_SLAB));
  59. printk(KERN_INFO "%lu pages pagetables\n",
  60. global_page_state(NR_PAGETABLE));
  61. }
  62. /*
  63. * Associate a virtual page frame with a given physical page frame
  64. * and protection flags for that frame.
  65. */
  66. static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  67. {
  68. pgd_t *pgd;
  69. pud_t *pud;
  70. pmd_t *pmd;
  71. pte_t *pte;
  72. pgd = swapper_pg_dir + pgd_index(vaddr);
  73. if (pgd_none(*pgd)) {
  74. BUG();
  75. return;
  76. }
  77. pud = pud_offset(pgd, vaddr);
  78. if (pud_none(*pud)) {
  79. BUG();
  80. return;
  81. }
  82. pmd = pmd_offset(pud, vaddr);
  83. if (pmd_none(*pmd)) {
  84. BUG();
  85. return;
  86. }
  87. pte = pte_offset_kernel(pmd, vaddr);
  88. /* <pfn,flags> stored as-is, to permit clearing entries */
  89. set_pte(pte, pfn_pte(pfn, flags));
  90. /*
  91. * It's enough to flush this one mapping.
  92. * (PGE mappings get flushed as well)
  93. */
  94. __flush_tlb_one(vaddr);
  95. }
  96. /*
  97. * Associate a large virtual page frame with a given physical page frame
  98. * and protection flags for that frame. pfn is for the base of the page,
  99. * vaddr is what the page gets mapped to - both must be properly aligned.
  100. * The pmd must already be instantiated. Assumes PAE mode.
  101. */
  102. void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
  103. {
  104. pgd_t *pgd;
  105. pud_t *pud;
  106. pmd_t *pmd;
  107. if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
  108. printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
  109. return; /* BUG(); */
  110. }
  111. if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
  112. printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
  113. return; /* BUG(); */
  114. }
  115. pgd = swapper_pg_dir + pgd_index(vaddr);
  116. if (pgd_none(*pgd)) {
  117. printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
  118. return; /* BUG(); */
  119. }
  120. pud = pud_offset(pgd, vaddr);
  121. pmd = pmd_offset(pud, vaddr);
  122. set_pmd(pmd, pfn_pmd(pfn, flags));
  123. /*
  124. * It's enough to flush this one mapping.
  125. * (PGE mappings get flushed as well)
  126. */
  127. __flush_tlb_one(vaddr);
  128. }
  129. void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  130. {
  131. unsigned long address = __fix_to_virt(idx);
  132. if (idx >= __end_of_fixed_addresses) {
  133. BUG();
  134. return;
  135. }
  136. set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
  137. }
  138. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  139. {
  140. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  141. }
  142. struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
  143. {
  144. struct page *pte;
  145. #ifdef CONFIG_HIGHPTE
  146. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  147. #else
  148. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  149. #endif
  150. return pte;
  151. }
  152. void pmd_ctor(void *pmd, kmem_cache_t *cache, unsigned long flags)
  153. {
  154. memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
  155. }
  156. /*
  157. * List of all pgd's needed for non-PAE so it can invalidate entries
  158. * in both cached and uncached pgd's; not needed for PAE since the
  159. * kernel pmd is shared. If PAE were not to share the pmd a similar
  160. * tactic would be needed. This is essentially codepath-based locking
  161. * against pageattr.c; it is the unique case in which a valid change
  162. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  163. * vmalloc faults work because attached pagetables are never freed.
  164. * The locking scheme was chosen on the basis of manfred's
  165. * recommendations and having no core impact whatsoever.
  166. * -- wli
  167. */
  168. DEFINE_SPINLOCK(pgd_lock);
  169. struct page *pgd_list;
  170. static inline void pgd_list_add(pgd_t *pgd)
  171. {
  172. struct page *page = virt_to_page(pgd);
  173. page->index = (unsigned long)pgd_list;
  174. if (pgd_list)
  175. set_page_private(pgd_list, (unsigned long)&page->index);
  176. pgd_list = page;
  177. set_page_private(page, (unsigned long)&pgd_list);
  178. }
  179. static inline void pgd_list_del(pgd_t *pgd)
  180. {
  181. struct page *next, **pprev, *page = virt_to_page(pgd);
  182. next = (struct page *)page->index;
  183. pprev = (struct page **)page_private(page);
  184. *pprev = next;
  185. if (next)
  186. set_page_private(next, (unsigned long)pprev);
  187. }
  188. void pgd_ctor(void *pgd, kmem_cache_t *cache, unsigned long unused)
  189. {
  190. unsigned long flags;
  191. if (PTRS_PER_PMD == 1) {
  192. memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
  193. spin_lock_irqsave(&pgd_lock, flags);
  194. }
  195. clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
  196. swapper_pg_dir + USER_PTRS_PER_PGD,
  197. KERNEL_PGD_PTRS);
  198. if (PTRS_PER_PMD > 1)
  199. return;
  200. pgd_list_add(pgd);
  201. spin_unlock_irqrestore(&pgd_lock, flags);
  202. }
  203. /* never called when PTRS_PER_PMD > 1 */
  204. void pgd_dtor(void *pgd, kmem_cache_t *cache, unsigned long unused)
  205. {
  206. unsigned long flags; /* can be called from interrupt context */
  207. spin_lock_irqsave(&pgd_lock, flags);
  208. pgd_list_del(pgd);
  209. spin_unlock_irqrestore(&pgd_lock, flags);
  210. }
  211. pgd_t *pgd_alloc(struct mm_struct *mm)
  212. {
  213. int i;
  214. pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
  215. if (PTRS_PER_PMD == 1 || !pgd)
  216. return pgd;
  217. for (i = 0; i < USER_PTRS_PER_PGD; ++i) {
  218. pmd_t *pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
  219. if (!pmd)
  220. goto out_oom;
  221. set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
  222. }
  223. return pgd;
  224. out_oom:
  225. for (i--; i >= 0; i--)
  226. kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1));
  227. kmem_cache_free(pgd_cache, pgd);
  228. return NULL;
  229. }
  230. void pgd_free(pgd_t *pgd)
  231. {
  232. int i;
  233. /* in the PAE case user pgd entries are overwritten before usage */
  234. if (PTRS_PER_PMD > 1)
  235. for (i = 0; i < USER_PTRS_PER_PGD; ++i)
  236. kmem_cache_free(pmd_cache, (void *)__va(pgd_val(pgd[i])-1));
  237. /* in the non-PAE case, free_pgtables() clears user pgd entries */
  238. kmem_cache_free(pgd_cache, pgd);
  239. }