intel_hdmi.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2009 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Eric Anholt <eric@anholt.net>
  26. * Jesse Barnes <jesse.barnes@intel.com>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/slab.h>
  30. #include <linux/delay.h>
  31. #include "drmP.h"
  32. #include "drm.h"
  33. #include "drm_crtc.h"
  34. #include "drm_edid.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
  39. {
  40. return container_of(encoder, struct intel_hdmi, base.base);
  41. }
  42. static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
  43. {
  44. return container_of(intel_attached_encoder(connector),
  45. struct intel_hdmi, base);
  46. }
  47. void intel_dip_infoframe_csum(struct dip_infoframe *frame)
  48. {
  49. uint8_t *data = (uint8_t *)frame;
  50. uint8_t sum = 0;
  51. unsigned i;
  52. frame->checksum = 0;
  53. frame->ecc = 0;
  54. for (i = 0; i < frame->len + DIP_HEADER_SIZE; i++)
  55. sum += data[i];
  56. frame->checksum = 0x100 - sum;
  57. }
  58. static u32 g4x_infoframe_index(struct dip_infoframe *frame)
  59. {
  60. switch (frame->type) {
  61. case DIP_TYPE_AVI:
  62. return VIDEO_DIP_SELECT_AVI;
  63. case DIP_TYPE_SPD:
  64. return VIDEO_DIP_SELECT_SPD;
  65. default:
  66. DRM_DEBUG_DRIVER("unknown info frame type %d\n", frame->type);
  67. return 0;
  68. }
  69. }
  70. static u32 g4x_infoframe_enable(struct dip_infoframe *frame)
  71. {
  72. switch (frame->type) {
  73. case DIP_TYPE_AVI:
  74. return VIDEO_DIP_ENABLE_AVI;
  75. case DIP_TYPE_SPD:
  76. return VIDEO_DIP_ENABLE_SPD;
  77. default:
  78. DRM_DEBUG_DRIVER("unknown info frame type %d\n", frame->type);
  79. return 0;
  80. }
  81. }
  82. static u32 hsw_infoframe_enable(struct dip_infoframe *frame)
  83. {
  84. switch (frame->type) {
  85. case DIP_TYPE_AVI:
  86. return VIDEO_DIP_ENABLE_AVI_HSW;
  87. case DIP_TYPE_SPD:
  88. return VIDEO_DIP_ENABLE_SPD_HSW;
  89. default:
  90. DRM_DEBUG_DRIVER("unknown info frame type %d\n", frame->type);
  91. return 0;
  92. }
  93. }
  94. static u32 hsw_infoframe_data_reg(struct dip_infoframe *frame, enum pipe pipe)
  95. {
  96. switch (frame->type) {
  97. case DIP_TYPE_AVI:
  98. return HSW_TVIDEO_DIP_AVI_DATA(pipe);
  99. case DIP_TYPE_SPD:
  100. return HSW_TVIDEO_DIP_SPD_DATA(pipe);
  101. default:
  102. DRM_DEBUG_DRIVER("unknown info frame type %d\n", frame->type);
  103. return 0;
  104. }
  105. }
  106. static void g4x_write_infoframe(struct drm_encoder *encoder,
  107. struct dip_infoframe *frame)
  108. {
  109. uint32_t *data = (uint32_t *)frame;
  110. struct drm_device *dev = encoder->dev;
  111. struct drm_i915_private *dev_priv = dev->dev_private;
  112. u32 val = I915_READ(VIDEO_DIP_CTL);
  113. unsigned i, len = DIP_HEADER_SIZE + frame->len;
  114. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  115. val |= g4x_infoframe_index(frame);
  116. val &= ~g4x_infoframe_enable(frame);
  117. val |= VIDEO_DIP_ENABLE;
  118. I915_WRITE(VIDEO_DIP_CTL, val);
  119. for (i = 0; i < len; i += 4) {
  120. I915_WRITE(VIDEO_DIP_DATA, *data);
  121. data++;
  122. }
  123. val |= g4x_infoframe_enable(frame);
  124. val &= ~VIDEO_DIP_FREQ_MASK;
  125. val |= VIDEO_DIP_FREQ_VSYNC;
  126. I915_WRITE(VIDEO_DIP_CTL, val);
  127. }
  128. static void ibx_write_infoframe(struct drm_encoder *encoder,
  129. struct dip_infoframe *frame)
  130. {
  131. uint32_t *data = (uint32_t *)frame;
  132. struct drm_device *dev = encoder->dev;
  133. struct drm_i915_private *dev_priv = dev->dev_private;
  134. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  135. int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  136. unsigned i, len = DIP_HEADER_SIZE + frame->len;
  137. u32 val = I915_READ(reg);
  138. intel_wait_for_vblank(dev, intel_crtc->pipe);
  139. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  140. val |= g4x_infoframe_index(frame);
  141. val &= ~g4x_infoframe_enable(frame);
  142. val |= VIDEO_DIP_ENABLE;
  143. I915_WRITE(reg, val);
  144. for (i = 0; i < len; i += 4) {
  145. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  146. data++;
  147. }
  148. val |= g4x_infoframe_enable(frame);
  149. val &= ~VIDEO_DIP_FREQ_MASK;
  150. val |= VIDEO_DIP_FREQ_VSYNC;
  151. I915_WRITE(reg, val);
  152. }
  153. static void cpt_write_infoframe(struct drm_encoder *encoder,
  154. struct dip_infoframe *frame)
  155. {
  156. uint32_t *data = (uint32_t *)frame;
  157. struct drm_device *dev = encoder->dev;
  158. struct drm_i915_private *dev_priv = dev->dev_private;
  159. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  160. int reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  161. unsigned i, len = DIP_HEADER_SIZE + frame->len;
  162. u32 val = I915_READ(reg);
  163. intel_wait_for_vblank(dev, intel_crtc->pipe);
  164. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  165. val |= g4x_infoframe_index(frame);
  166. /* The DIP control register spec says that we need to update the AVI
  167. * infoframe without clearing its enable bit */
  168. if (frame->type == DIP_TYPE_AVI)
  169. val |= VIDEO_DIP_ENABLE_AVI;
  170. else
  171. val &= ~g4x_infoframe_enable(frame);
  172. val |= VIDEO_DIP_ENABLE;
  173. I915_WRITE(reg, val);
  174. for (i = 0; i < len; i += 4) {
  175. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  176. data++;
  177. }
  178. val |= g4x_infoframe_enable(frame);
  179. val &= ~VIDEO_DIP_FREQ_MASK;
  180. val |= VIDEO_DIP_FREQ_VSYNC;
  181. I915_WRITE(reg, val);
  182. }
  183. static void vlv_write_infoframe(struct drm_encoder *encoder,
  184. struct dip_infoframe *frame)
  185. {
  186. uint32_t *data = (uint32_t *)frame;
  187. struct drm_device *dev = encoder->dev;
  188. struct drm_i915_private *dev_priv = dev->dev_private;
  189. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  190. int reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  191. unsigned i, len = DIP_HEADER_SIZE + frame->len;
  192. u32 val = I915_READ(reg);
  193. intel_wait_for_vblank(dev, intel_crtc->pipe);
  194. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  195. val |= g4x_infoframe_index(frame);
  196. val &= ~g4x_infoframe_enable(frame);
  197. val |= VIDEO_DIP_ENABLE;
  198. I915_WRITE(reg, val);
  199. for (i = 0; i < len; i += 4) {
  200. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  201. data++;
  202. }
  203. val |= g4x_infoframe_enable(frame);
  204. val &= ~VIDEO_DIP_FREQ_MASK;
  205. val |= VIDEO_DIP_FREQ_VSYNC;
  206. I915_WRITE(reg, val);
  207. }
  208. static void hsw_write_infoframe(struct drm_encoder *encoder,
  209. struct dip_infoframe *frame)
  210. {
  211. uint32_t *data = (uint32_t *)frame;
  212. struct drm_device *dev = encoder->dev;
  213. struct drm_i915_private *dev_priv = dev->dev_private;
  214. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  215. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->pipe);
  216. u32 data_reg = hsw_infoframe_data_reg(frame, intel_crtc->pipe);
  217. unsigned int i, len = DIP_HEADER_SIZE + frame->len;
  218. u32 val = I915_READ(ctl_reg);
  219. if (data_reg == 0)
  220. return;
  221. intel_wait_for_vblank(dev, intel_crtc->pipe);
  222. val &= ~hsw_infoframe_enable(frame);
  223. I915_WRITE(ctl_reg, val);
  224. for (i = 0; i < len; i += 4) {
  225. I915_WRITE(data_reg + i, *data);
  226. data++;
  227. }
  228. val |= hsw_infoframe_enable(frame);
  229. I915_WRITE(ctl_reg, val);
  230. }
  231. static void intel_set_infoframe(struct drm_encoder *encoder,
  232. struct dip_infoframe *frame)
  233. {
  234. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  235. intel_dip_infoframe_csum(frame);
  236. intel_hdmi->write_infoframe(encoder, frame);
  237. }
  238. static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
  239. struct drm_display_mode *adjusted_mode)
  240. {
  241. struct dip_infoframe avi_if = {
  242. .type = DIP_TYPE_AVI,
  243. .ver = DIP_VERSION_AVI,
  244. .len = DIP_LEN_AVI,
  245. };
  246. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  247. avi_if.body.avi.YQ_CN_PR |= DIP_AVI_PR_2;
  248. intel_set_infoframe(encoder, &avi_if);
  249. }
  250. static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
  251. {
  252. struct dip_infoframe spd_if;
  253. memset(&spd_if, 0, sizeof(spd_if));
  254. spd_if.type = DIP_TYPE_SPD;
  255. spd_if.ver = DIP_VERSION_SPD;
  256. spd_if.len = DIP_LEN_SPD;
  257. strcpy(spd_if.body.spd.vn, "Intel");
  258. strcpy(spd_if.body.spd.pd, "Integrated gfx");
  259. spd_if.body.spd.sdi = DIP_SPD_PC;
  260. intel_set_infoframe(encoder, &spd_if);
  261. }
  262. static void g4x_set_infoframes(struct drm_encoder *encoder,
  263. struct drm_display_mode *adjusted_mode)
  264. {
  265. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  266. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  267. u32 reg = VIDEO_DIP_CTL;
  268. u32 val = I915_READ(reg);
  269. /* If the registers were not initialized yet, they might be zeroes,
  270. * which means we're selecting the AVI DIP and we're setting its
  271. * frequency to once. This seems to really confuse the HW and make
  272. * things stop working (the register spec says the AVI always needs to
  273. * be sent every VSync). So here we avoid writing to the register more
  274. * than we need and also explicitly select the AVI DIP and explicitly
  275. * set its frequency to every VSync. Avoiding to write it twice seems to
  276. * be enough to solve the problem, but being defensive shouldn't hurt us
  277. * either. */
  278. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  279. if (!intel_hdmi->has_hdmi_sink) {
  280. if (!(val & VIDEO_DIP_ENABLE))
  281. return;
  282. val &= ~VIDEO_DIP_ENABLE;
  283. I915_WRITE(reg, val);
  284. return;
  285. }
  286. val &= ~VIDEO_DIP_PORT_MASK;
  287. switch (intel_hdmi->sdvox_reg) {
  288. case SDVOB:
  289. val |= VIDEO_DIP_PORT_B;
  290. break;
  291. case SDVOC:
  292. val |= VIDEO_DIP_PORT_C;
  293. break;
  294. default:
  295. return;
  296. }
  297. I915_WRITE(reg, val);
  298. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  299. intel_hdmi_set_spd_infoframe(encoder);
  300. }
  301. static void ibx_set_infoframes(struct drm_encoder *encoder,
  302. struct drm_display_mode *adjusted_mode)
  303. {
  304. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  305. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  306. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  307. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  308. u32 val = I915_READ(reg);
  309. /* See the big comment in g4x_set_infoframes() */
  310. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  311. if (!intel_hdmi->has_hdmi_sink) {
  312. if (!(val & VIDEO_DIP_ENABLE))
  313. return;
  314. val &= ~VIDEO_DIP_ENABLE;
  315. I915_WRITE(reg, val);
  316. return;
  317. }
  318. val &= ~VIDEO_DIP_PORT_MASK;
  319. switch (intel_hdmi->sdvox_reg) {
  320. case HDMIB:
  321. val |= VIDEO_DIP_PORT_B;
  322. break;
  323. case HDMIC:
  324. val |= VIDEO_DIP_PORT_C;
  325. break;
  326. case HDMID:
  327. val |= VIDEO_DIP_PORT_D;
  328. break;
  329. default:
  330. return;
  331. }
  332. I915_WRITE(reg, val);
  333. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  334. intel_hdmi_set_spd_infoframe(encoder);
  335. }
  336. static void cpt_set_infoframes(struct drm_encoder *encoder,
  337. struct drm_display_mode *adjusted_mode)
  338. {
  339. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  340. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  341. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  342. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  343. u32 val = I915_READ(reg);
  344. /* See the big comment in g4x_set_infoframes() */
  345. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  346. if (!intel_hdmi->has_hdmi_sink) {
  347. if (!(val & VIDEO_DIP_ENABLE))
  348. return;
  349. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
  350. I915_WRITE(reg, val);
  351. return;
  352. }
  353. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  354. intel_hdmi_set_spd_infoframe(encoder);
  355. }
  356. static void vlv_set_infoframes(struct drm_encoder *encoder,
  357. struct drm_display_mode *adjusted_mode)
  358. {
  359. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  360. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  361. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  362. u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  363. u32 val = I915_READ(reg);
  364. /* See the big comment in g4x_set_infoframes() */
  365. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  366. if (!intel_hdmi->has_hdmi_sink) {
  367. if (!(val & VIDEO_DIP_ENABLE))
  368. return;
  369. val &= ~VIDEO_DIP_ENABLE;
  370. I915_WRITE(reg, val);
  371. return;
  372. }
  373. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  374. intel_hdmi_set_spd_infoframe(encoder);
  375. }
  376. static void hsw_set_infoframes(struct drm_encoder *encoder,
  377. struct drm_display_mode *adjusted_mode)
  378. {
  379. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  380. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  381. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  382. u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->pipe);
  383. if (!intel_hdmi->has_hdmi_sink) {
  384. I915_WRITE(reg, 0);
  385. return;
  386. }
  387. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  388. intel_hdmi_set_spd_infoframe(encoder);
  389. }
  390. static void intel_hdmi_mode_set(struct drm_encoder *encoder,
  391. struct drm_display_mode *mode,
  392. struct drm_display_mode *adjusted_mode)
  393. {
  394. struct drm_device *dev = encoder->dev;
  395. struct drm_i915_private *dev_priv = dev->dev_private;
  396. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  397. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  398. u32 sdvox;
  399. sdvox = SDVO_ENCODING_HDMI | SDVO_BORDER_ENABLE;
  400. if (!HAS_PCH_SPLIT(dev))
  401. sdvox |= intel_hdmi->color_range;
  402. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  403. sdvox |= SDVO_VSYNC_ACTIVE_HIGH;
  404. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  405. sdvox |= SDVO_HSYNC_ACTIVE_HIGH;
  406. if (intel_crtc->bpp > 24)
  407. sdvox |= COLOR_FORMAT_12bpc;
  408. else
  409. sdvox |= COLOR_FORMAT_8bpc;
  410. /* Required on CPT */
  411. if (intel_hdmi->has_hdmi_sink && HAS_PCH_CPT(dev))
  412. sdvox |= HDMI_MODE_SELECT;
  413. if (intel_hdmi->has_audio) {
  414. DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
  415. pipe_name(intel_crtc->pipe));
  416. sdvox |= SDVO_AUDIO_ENABLE;
  417. sdvox |= SDVO_NULL_PACKETS_DURING_VSYNC;
  418. intel_write_eld(encoder, adjusted_mode);
  419. }
  420. if (HAS_PCH_CPT(dev))
  421. sdvox |= PORT_TRANS_SEL_CPT(intel_crtc->pipe);
  422. else if (intel_crtc->pipe == 1)
  423. sdvox |= SDVO_PIPE_B_SELECT;
  424. I915_WRITE(intel_hdmi->sdvox_reg, sdvox);
  425. POSTING_READ(intel_hdmi->sdvox_reg);
  426. intel_hdmi->set_infoframes(encoder, adjusted_mode);
  427. }
  428. static void intel_hdmi_dpms(struct drm_encoder *encoder, int mode)
  429. {
  430. struct drm_device *dev = encoder->dev;
  431. struct drm_i915_private *dev_priv = dev->dev_private;
  432. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  433. u32 temp;
  434. u32 enable_bits = SDVO_ENABLE;
  435. if (intel_hdmi->has_audio)
  436. enable_bits |= SDVO_AUDIO_ENABLE;
  437. temp = I915_READ(intel_hdmi->sdvox_reg);
  438. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  439. * we do this anyway which shows more stable in testing.
  440. */
  441. if (HAS_PCH_SPLIT(dev)) {
  442. I915_WRITE(intel_hdmi->sdvox_reg, temp & ~SDVO_ENABLE);
  443. POSTING_READ(intel_hdmi->sdvox_reg);
  444. }
  445. if (mode != DRM_MODE_DPMS_ON) {
  446. temp &= ~enable_bits;
  447. } else {
  448. temp |= enable_bits;
  449. }
  450. I915_WRITE(intel_hdmi->sdvox_reg, temp);
  451. POSTING_READ(intel_hdmi->sdvox_reg);
  452. /* HW workaround, need to write this twice for issue that may result
  453. * in first write getting masked.
  454. */
  455. if (HAS_PCH_SPLIT(dev)) {
  456. I915_WRITE(intel_hdmi->sdvox_reg, temp);
  457. POSTING_READ(intel_hdmi->sdvox_reg);
  458. }
  459. }
  460. static int intel_hdmi_mode_valid(struct drm_connector *connector,
  461. struct drm_display_mode *mode)
  462. {
  463. if (mode->clock > 165000)
  464. return MODE_CLOCK_HIGH;
  465. if (mode->clock < 20000)
  466. return MODE_CLOCK_LOW;
  467. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  468. return MODE_NO_DBLESCAN;
  469. return MODE_OK;
  470. }
  471. static bool intel_hdmi_mode_fixup(struct drm_encoder *encoder,
  472. struct drm_display_mode *mode,
  473. struct drm_display_mode *adjusted_mode)
  474. {
  475. return true;
  476. }
  477. static bool g4x_hdmi_connected(struct intel_hdmi *intel_hdmi)
  478. {
  479. struct drm_device *dev = intel_hdmi->base.base.dev;
  480. struct drm_i915_private *dev_priv = dev->dev_private;
  481. uint32_t bit;
  482. switch (intel_hdmi->sdvox_reg) {
  483. case SDVOB:
  484. bit = HDMIB_HOTPLUG_LIVE_STATUS;
  485. break;
  486. case SDVOC:
  487. bit = HDMIC_HOTPLUG_LIVE_STATUS;
  488. break;
  489. default:
  490. bit = 0;
  491. break;
  492. }
  493. return I915_READ(PORT_HOTPLUG_STAT) & bit;
  494. }
  495. static enum drm_connector_status
  496. intel_hdmi_detect(struct drm_connector *connector, bool force)
  497. {
  498. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  499. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  500. struct edid *edid;
  501. enum drm_connector_status status = connector_status_disconnected;
  502. if (IS_G4X(connector->dev) && !g4x_hdmi_connected(intel_hdmi))
  503. return status;
  504. intel_hdmi->has_hdmi_sink = false;
  505. intel_hdmi->has_audio = false;
  506. edid = drm_get_edid(connector,
  507. intel_gmbus_get_adapter(dev_priv,
  508. intel_hdmi->ddc_bus));
  509. if (edid) {
  510. if (edid->input & DRM_EDID_INPUT_DIGITAL) {
  511. status = connector_status_connected;
  512. if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
  513. intel_hdmi->has_hdmi_sink =
  514. drm_detect_hdmi_monitor(edid);
  515. intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
  516. }
  517. connector->display_info.raw_edid = NULL;
  518. kfree(edid);
  519. }
  520. if (status == connector_status_connected) {
  521. if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
  522. intel_hdmi->has_audio =
  523. (intel_hdmi->force_audio == HDMI_AUDIO_ON);
  524. }
  525. return status;
  526. }
  527. static int intel_hdmi_get_modes(struct drm_connector *connector)
  528. {
  529. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  530. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  531. /* We should parse the EDID data and find out if it's an HDMI sink so
  532. * we can send audio to it.
  533. */
  534. return intel_ddc_get_modes(connector,
  535. intel_gmbus_get_adapter(dev_priv,
  536. intel_hdmi->ddc_bus));
  537. }
  538. static bool
  539. intel_hdmi_detect_audio(struct drm_connector *connector)
  540. {
  541. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  542. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  543. struct edid *edid;
  544. bool has_audio = false;
  545. edid = drm_get_edid(connector,
  546. intel_gmbus_get_adapter(dev_priv,
  547. intel_hdmi->ddc_bus));
  548. if (edid) {
  549. if (edid->input & DRM_EDID_INPUT_DIGITAL)
  550. has_audio = drm_detect_monitor_audio(edid);
  551. connector->display_info.raw_edid = NULL;
  552. kfree(edid);
  553. }
  554. return has_audio;
  555. }
  556. static int
  557. intel_hdmi_set_property(struct drm_connector *connector,
  558. struct drm_property *property,
  559. uint64_t val)
  560. {
  561. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  562. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  563. int ret;
  564. ret = drm_connector_property_set_value(connector, property, val);
  565. if (ret)
  566. return ret;
  567. if (property == dev_priv->force_audio_property) {
  568. enum hdmi_force_audio i = val;
  569. bool has_audio;
  570. if (i == intel_hdmi->force_audio)
  571. return 0;
  572. intel_hdmi->force_audio = i;
  573. if (i == HDMI_AUDIO_AUTO)
  574. has_audio = intel_hdmi_detect_audio(connector);
  575. else
  576. has_audio = (i == HDMI_AUDIO_ON);
  577. if (i == HDMI_AUDIO_OFF_DVI)
  578. intel_hdmi->has_hdmi_sink = 0;
  579. intel_hdmi->has_audio = has_audio;
  580. goto done;
  581. }
  582. if (property == dev_priv->broadcast_rgb_property) {
  583. if (val == !!intel_hdmi->color_range)
  584. return 0;
  585. intel_hdmi->color_range = val ? SDVO_COLOR_RANGE_16_235 : 0;
  586. goto done;
  587. }
  588. return -EINVAL;
  589. done:
  590. if (intel_hdmi->base.base.crtc) {
  591. struct drm_crtc *crtc = intel_hdmi->base.base.crtc;
  592. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  593. crtc->x, crtc->y,
  594. crtc->fb);
  595. }
  596. return 0;
  597. }
  598. static void intel_hdmi_destroy(struct drm_connector *connector)
  599. {
  600. drm_sysfs_connector_remove(connector);
  601. drm_connector_cleanup(connector);
  602. kfree(connector);
  603. }
  604. static const struct drm_encoder_helper_funcs intel_hdmi_helper_funcs_hsw = {
  605. .dpms = intel_ddi_dpms,
  606. .mode_fixup = intel_hdmi_mode_fixup,
  607. .prepare = intel_encoder_prepare,
  608. .mode_set = intel_ddi_mode_set,
  609. .commit = intel_encoder_commit,
  610. };
  611. static const struct drm_encoder_helper_funcs intel_hdmi_helper_funcs = {
  612. .dpms = intel_hdmi_dpms,
  613. .mode_fixup = intel_hdmi_mode_fixup,
  614. .prepare = intel_encoder_prepare,
  615. .mode_set = intel_hdmi_mode_set,
  616. .commit = intel_encoder_commit,
  617. };
  618. static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
  619. .dpms = drm_helper_connector_dpms,
  620. .detect = intel_hdmi_detect,
  621. .fill_modes = drm_helper_probe_single_connector_modes,
  622. .set_property = intel_hdmi_set_property,
  623. .destroy = intel_hdmi_destroy,
  624. };
  625. static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
  626. .get_modes = intel_hdmi_get_modes,
  627. .mode_valid = intel_hdmi_mode_valid,
  628. .best_encoder = intel_best_encoder,
  629. };
  630. static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
  631. .destroy = intel_encoder_destroy,
  632. };
  633. static void
  634. intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
  635. {
  636. intel_attach_force_audio_property(connector);
  637. intel_attach_broadcast_rgb_property(connector);
  638. }
  639. void intel_hdmi_init(struct drm_device *dev, int sdvox_reg)
  640. {
  641. struct drm_i915_private *dev_priv = dev->dev_private;
  642. struct drm_connector *connector;
  643. struct intel_encoder *intel_encoder;
  644. struct intel_connector *intel_connector;
  645. struct intel_hdmi *intel_hdmi;
  646. int i;
  647. intel_hdmi = kzalloc(sizeof(struct intel_hdmi), GFP_KERNEL);
  648. if (!intel_hdmi)
  649. return;
  650. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  651. if (!intel_connector) {
  652. kfree(intel_hdmi);
  653. return;
  654. }
  655. intel_encoder = &intel_hdmi->base;
  656. drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
  657. DRM_MODE_ENCODER_TMDS);
  658. connector = &intel_connector->base;
  659. drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
  660. DRM_MODE_CONNECTOR_HDMIA);
  661. drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
  662. intel_encoder->type = INTEL_OUTPUT_HDMI;
  663. connector->polled = DRM_CONNECTOR_POLL_HPD;
  664. connector->interlace_allowed = 1;
  665. connector->doublescan_allowed = 0;
  666. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  667. /* Set up the DDC bus. */
  668. if (sdvox_reg == SDVOB) {
  669. intel_encoder->clone_mask = (1 << INTEL_HDMIB_CLONE_BIT);
  670. intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
  671. dev_priv->hotplug_supported_mask |= HDMIB_HOTPLUG_INT_STATUS;
  672. } else if (sdvox_reg == SDVOC) {
  673. intel_encoder->clone_mask = (1 << INTEL_HDMIC_CLONE_BIT);
  674. intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
  675. dev_priv->hotplug_supported_mask |= HDMIC_HOTPLUG_INT_STATUS;
  676. } else if (sdvox_reg == HDMIB) {
  677. intel_encoder->clone_mask = (1 << INTEL_HDMID_CLONE_BIT);
  678. intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
  679. dev_priv->hotplug_supported_mask |= HDMIB_HOTPLUG_INT_STATUS;
  680. } else if (sdvox_reg == HDMIC) {
  681. intel_encoder->clone_mask = (1 << INTEL_HDMIE_CLONE_BIT);
  682. intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
  683. dev_priv->hotplug_supported_mask |= HDMIC_HOTPLUG_INT_STATUS;
  684. } else if (sdvox_reg == HDMID) {
  685. intel_encoder->clone_mask = (1 << INTEL_HDMIF_CLONE_BIT);
  686. intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
  687. dev_priv->hotplug_supported_mask |= HDMID_HOTPLUG_INT_STATUS;
  688. } else if (sdvox_reg == DDI_BUF_CTL(PORT_B)) {
  689. DRM_DEBUG_DRIVER("LPT: detected output on DDI B\n");
  690. intel_encoder->clone_mask = (1 << INTEL_HDMIB_CLONE_BIT);
  691. intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
  692. intel_hdmi->ddi_port = PORT_B;
  693. dev_priv->hotplug_supported_mask |= HDMIB_HOTPLUG_INT_STATUS;
  694. } else if (sdvox_reg == DDI_BUF_CTL(PORT_C)) {
  695. DRM_DEBUG_DRIVER("LPT: detected output on DDI C\n");
  696. intel_encoder->clone_mask = (1 << INTEL_HDMIC_CLONE_BIT);
  697. intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
  698. intel_hdmi->ddi_port = PORT_C;
  699. dev_priv->hotplug_supported_mask |= HDMIC_HOTPLUG_INT_STATUS;
  700. } else if (sdvox_reg == DDI_BUF_CTL(PORT_D)) {
  701. DRM_DEBUG_DRIVER("LPT: detected output on DDI D\n");
  702. intel_encoder->clone_mask = (1 << INTEL_HDMID_CLONE_BIT);
  703. intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
  704. intel_hdmi->ddi_port = PORT_D;
  705. dev_priv->hotplug_supported_mask |= HDMID_HOTPLUG_INT_STATUS;
  706. } else {
  707. /* If we got an unknown sdvox_reg, things are pretty much broken
  708. * in a way that we should let the kernel know about it */
  709. BUG();
  710. }
  711. intel_hdmi->sdvox_reg = sdvox_reg;
  712. if (!HAS_PCH_SPLIT(dev)) {
  713. intel_hdmi->write_infoframe = g4x_write_infoframe;
  714. intel_hdmi->set_infoframes = g4x_set_infoframes;
  715. I915_WRITE(VIDEO_DIP_CTL, 0);
  716. } else if (IS_VALLEYVIEW(dev)) {
  717. intel_hdmi->write_infoframe = vlv_write_infoframe;
  718. intel_hdmi->set_infoframes = vlv_set_infoframes;
  719. for_each_pipe(i)
  720. I915_WRITE(VLV_TVIDEO_DIP_CTL(i), 0);
  721. } else if (IS_HASWELL(dev)) {
  722. /* FIXME: Haswell has a new set of DIP frame registers, but we are
  723. * just doing the minimal required for HDMI to work at this stage.
  724. */
  725. intel_hdmi->write_infoframe = hsw_write_infoframe;
  726. intel_hdmi->set_infoframes = hsw_set_infoframes;
  727. for_each_pipe(i)
  728. I915_WRITE(HSW_TVIDEO_DIP_CTL(i), 0);
  729. } else if (HAS_PCH_IBX(dev)) {
  730. intel_hdmi->write_infoframe = ibx_write_infoframe;
  731. intel_hdmi->set_infoframes = ibx_set_infoframes;
  732. for_each_pipe(i)
  733. I915_WRITE(TVIDEO_DIP_CTL(i), 0);
  734. } else {
  735. intel_hdmi->write_infoframe = cpt_write_infoframe;
  736. intel_hdmi->set_infoframes = cpt_set_infoframes;
  737. for_each_pipe(i)
  738. I915_WRITE(TVIDEO_DIP_CTL(i), 0);
  739. }
  740. if (IS_HASWELL(dev))
  741. drm_encoder_helper_add(&intel_encoder->base, &intel_hdmi_helper_funcs_hsw);
  742. else
  743. drm_encoder_helper_add(&intel_encoder->base, &intel_hdmi_helper_funcs);
  744. intel_hdmi_add_properties(intel_hdmi, connector);
  745. intel_connector_attach_encoder(intel_connector, intel_encoder);
  746. drm_sysfs_connector_add(connector);
  747. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  748. * 0xd. Failure to do so will result in spurious interrupts being
  749. * generated on the port when a cable is not attached.
  750. */
  751. if (IS_G4X(dev) && !IS_GM45(dev)) {
  752. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  753. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  754. }
  755. }