ste_dma40.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/platform_data/dma-ste-dma40.h>
  22. #include "dmaengine.h"
  23. #include "ste_dma40_ll.h"
  24. #define D40_NAME "dma40"
  25. #define D40_PHY_CHAN -1
  26. /* For masking out/in 2 bit channel positions */
  27. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  28. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  29. /* Maximum iterations taken before giving up suspending a channel */
  30. #define D40_SUSPEND_MAX_IT 500
  31. /* Milliseconds */
  32. #define DMA40_AUTOSUSPEND_DELAY 100
  33. /* Hardware requirement on LCLA alignment */
  34. #define LCLA_ALIGNMENT 0x40000
  35. /* Max number of links per event group */
  36. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  37. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  38. /* Attempts before giving up to trying to get pages that are aligned */
  39. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  40. /* Bit markings for allocation map */
  41. #define D40_ALLOC_FREE (1 << 31)
  42. #define D40_ALLOC_PHY (1 << 30)
  43. #define D40_ALLOC_LOG_FREE 0
  44. #define MAX(a, b) (((a) < (b)) ? (b) : (a))
  45. /**
  46. * enum 40_command - The different commands and/or statuses.
  47. *
  48. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  49. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  50. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  51. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  52. */
  53. enum d40_command {
  54. D40_DMA_STOP = 0,
  55. D40_DMA_RUN = 1,
  56. D40_DMA_SUSPEND_REQ = 2,
  57. D40_DMA_SUSPENDED = 3
  58. };
  59. /*
  60. * enum d40_events - The different Event Enables for the event lines.
  61. *
  62. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  63. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  64. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  65. * @D40_ROUND_EVENTLINE: Status check for event line.
  66. */
  67. enum d40_events {
  68. D40_DEACTIVATE_EVENTLINE = 0,
  69. D40_ACTIVATE_EVENTLINE = 1,
  70. D40_SUSPEND_REQ_EVENTLINE = 2,
  71. D40_ROUND_EVENTLINE = 3
  72. };
  73. /*
  74. * These are the registers that has to be saved and later restored
  75. * when the DMA hw is powered off.
  76. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  77. */
  78. static u32 d40_backup_regs[] = {
  79. D40_DREG_LCPA,
  80. D40_DREG_LCLA,
  81. D40_DREG_PRMSE,
  82. D40_DREG_PRMSO,
  83. D40_DREG_PRMOE,
  84. D40_DREG_PRMOO,
  85. };
  86. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  87. /*
  88. * since 9540 and 8540 has the same HW revision
  89. * use v4a for 9540 or ealier
  90. * use v4b for 8540 or later
  91. * HW revision:
  92. * DB8500ed has revision 0
  93. * DB8500v1 has revision 2
  94. * DB8500v2 has revision 3
  95. * AP9540v1 has revision 4
  96. * DB8540v1 has revision 4
  97. * TODO: Check if all these registers have to be saved/restored on dma40 v4a
  98. */
  99. static u32 d40_backup_regs_v4a[] = {
  100. D40_DREG_PSEG1,
  101. D40_DREG_PSEG2,
  102. D40_DREG_PSEG3,
  103. D40_DREG_PSEG4,
  104. D40_DREG_PCEG1,
  105. D40_DREG_PCEG2,
  106. D40_DREG_PCEG3,
  107. D40_DREG_PCEG4,
  108. D40_DREG_RSEG1,
  109. D40_DREG_RSEG2,
  110. D40_DREG_RSEG3,
  111. D40_DREG_RSEG4,
  112. D40_DREG_RCEG1,
  113. D40_DREG_RCEG2,
  114. D40_DREG_RCEG3,
  115. D40_DREG_RCEG4,
  116. };
  117. #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
  118. static u32 d40_backup_regs_v4b[] = {
  119. D40_DREG_CPSEG1,
  120. D40_DREG_CPSEG2,
  121. D40_DREG_CPSEG3,
  122. D40_DREG_CPSEG4,
  123. D40_DREG_CPSEG5,
  124. D40_DREG_CPCEG1,
  125. D40_DREG_CPCEG2,
  126. D40_DREG_CPCEG3,
  127. D40_DREG_CPCEG4,
  128. D40_DREG_CPCEG5,
  129. D40_DREG_CRSEG1,
  130. D40_DREG_CRSEG2,
  131. D40_DREG_CRSEG3,
  132. D40_DREG_CRSEG4,
  133. D40_DREG_CRSEG5,
  134. D40_DREG_CRCEG1,
  135. D40_DREG_CRCEG2,
  136. D40_DREG_CRCEG3,
  137. D40_DREG_CRCEG4,
  138. D40_DREG_CRCEG5,
  139. };
  140. #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
  141. static u32 d40_backup_regs_chan[] = {
  142. D40_CHAN_REG_SSCFG,
  143. D40_CHAN_REG_SSELT,
  144. D40_CHAN_REG_SSPTR,
  145. D40_CHAN_REG_SSLNK,
  146. D40_CHAN_REG_SDCFG,
  147. D40_CHAN_REG_SDELT,
  148. D40_CHAN_REG_SDPTR,
  149. D40_CHAN_REG_SDLNK,
  150. };
  151. /**
  152. * struct d40_interrupt_lookup - lookup table for interrupt handler
  153. *
  154. * @src: Interrupt mask register.
  155. * @clr: Interrupt clear register.
  156. * @is_error: true if this is an error interrupt.
  157. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  158. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  159. */
  160. struct d40_interrupt_lookup {
  161. u32 src;
  162. u32 clr;
  163. bool is_error;
  164. int offset;
  165. };
  166. static struct d40_interrupt_lookup il_v4a[] = {
  167. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  168. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  169. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  170. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  171. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  172. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  173. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  174. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  175. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  176. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  177. };
  178. static struct d40_interrupt_lookup il_v4b[] = {
  179. {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
  180. {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
  181. {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
  182. {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
  183. {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
  184. {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
  185. {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
  186. {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
  187. {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
  188. {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
  189. {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
  190. {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
  191. };
  192. /**
  193. * struct d40_reg_val - simple lookup struct
  194. *
  195. * @reg: The register.
  196. * @val: The value that belongs to the register in reg.
  197. */
  198. struct d40_reg_val {
  199. unsigned int reg;
  200. unsigned int val;
  201. };
  202. static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
  203. /* Clock every part of the DMA block from start */
  204. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  205. /* Interrupts on all logical channels */
  206. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  207. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  208. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  209. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  210. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  211. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  212. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  213. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  214. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  215. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  216. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  217. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  218. };
  219. static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
  220. /* Clock every part of the DMA block from start */
  221. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  222. /* Interrupts on all logical channels */
  223. { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
  224. { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
  225. { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
  226. { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
  227. { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
  228. { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
  229. { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
  230. { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
  231. { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
  232. { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
  233. { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
  234. { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
  235. { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
  236. { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
  237. { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
  238. };
  239. /**
  240. * struct d40_lli_pool - Structure for keeping LLIs in memory
  241. *
  242. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  243. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  244. * pre_alloc_lli is used.
  245. * @dma_addr: DMA address, if mapped
  246. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  247. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  248. * one buffer to one buffer.
  249. */
  250. struct d40_lli_pool {
  251. void *base;
  252. int size;
  253. dma_addr_t dma_addr;
  254. /* Space for dst and src, plus an extra for padding */
  255. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  256. };
  257. /**
  258. * struct d40_desc - A descriptor is one DMA job.
  259. *
  260. * @lli_phy: LLI settings for physical channel. Both src and dst=
  261. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  262. * lli_len equals one.
  263. * @lli_log: Same as above but for logical channels.
  264. * @lli_pool: The pool with two entries pre-allocated.
  265. * @lli_len: Number of llis of current descriptor.
  266. * @lli_current: Number of transferred llis.
  267. * @lcla_alloc: Number of LCLA entries allocated.
  268. * @txd: DMA engine struct. Used for among other things for communication
  269. * during a transfer.
  270. * @node: List entry.
  271. * @is_in_client_list: true if the client owns this descriptor.
  272. * @cyclic: true if this is a cyclic job
  273. *
  274. * This descriptor is used for both logical and physical transfers.
  275. */
  276. struct d40_desc {
  277. /* LLI physical */
  278. struct d40_phy_lli_bidir lli_phy;
  279. /* LLI logical */
  280. struct d40_log_lli_bidir lli_log;
  281. struct d40_lli_pool lli_pool;
  282. int lli_len;
  283. int lli_current;
  284. int lcla_alloc;
  285. struct dma_async_tx_descriptor txd;
  286. struct list_head node;
  287. bool is_in_client_list;
  288. bool cyclic;
  289. };
  290. /**
  291. * struct d40_lcla_pool - LCLA pool settings and data.
  292. *
  293. * @base: The virtual address of LCLA. 18 bit aligned.
  294. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  295. * This pointer is only there for clean-up on error.
  296. * @pages: The number of pages needed for all physical channels.
  297. * Only used later for clean-up on error
  298. * @lock: Lock to protect the content in this struct.
  299. * @alloc_map: big map over which LCLA entry is own by which job.
  300. */
  301. struct d40_lcla_pool {
  302. void *base;
  303. dma_addr_t dma_addr;
  304. void *base_unaligned;
  305. int pages;
  306. spinlock_t lock;
  307. struct d40_desc **alloc_map;
  308. };
  309. /**
  310. * struct d40_phy_res - struct for handling eventlines mapped to physical
  311. * channels.
  312. *
  313. * @lock: A lock protection this entity.
  314. * @reserved: True if used by secure world or otherwise.
  315. * @num: The physical channel number of this entity.
  316. * @allocated_src: Bit mapped to show which src event line's are mapped to
  317. * this physical channel. Can also be free or physically allocated.
  318. * @allocated_dst: Same as for src but is dst.
  319. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  320. * event line number.
  321. */
  322. struct d40_phy_res {
  323. spinlock_t lock;
  324. bool reserved;
  325. int num;
  326. u32 allocated_src;
  327. u32 allocated_dst;
  328. };
  329. struct d40_base;
  330. /**
  331. * struct d40_chan - Struct that describes a channel.
  332. *
  333. * @lock: A spinlock to protect this struct.
  334. * @log_num: The logical number, if any of this channel.
  335. * @pending_tx: The number of pending transfers. Used between interrupt handler
  336. * and tasklet.
  337. * @busy: Set to true when transfer is ongoing on this channel.
  338. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  339. * point is NULL, then the channel is not allocated.
  340. * @chan: DMA engine handle.
  341. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  342. * transfer and call client callback.
  343. * @client: Cliented owned descriptor list.
  344. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  345. * @active: Active descriptor.
  346. * @done: Completed jobs
  347. * @queue: Queued jobs.
  348. * @prepare_queue: Prepared jobs.
  349. * @dma_cfg: The client configuration of this dma channel.
  350. * @configured: whether the dma_cfg configuration is valid
  351. * @base: Pointer to the device instance struct.
  352. * @src_def_cfg: Default cfg register setting for src.
  353. * @dst_def_cfg: Default cfg register setting for dst.
  354. * @log_def: Default logical channel settings.
  355. * @lcpa: Pointer to dst and src lcpa settings.
  356. * @runtime_addr: runtime configured address.
  357. * @runtime_direction: runtime configured direction.
  358. *
  359. * This struct can either "be" a logical or a physical channel.
  360. */
  361. struct d40_chan {
  362. spinlock_t lock;
  363. int log_num;
  364. int pending_tx;
  365. bool busy;
  366. struct d40_phy_res *phy_chan;
  367. struct dma_chan chan;
  368. struct tasklet_struct tasklet;
  369. struct list_head client;
  370. struct list_head pending_queue;
  371. struct list_head active;
  372. struct list_head done;
  373. struct list_head queue;
  374. struct list_head prepare_queue;
  375. struct stedma40_chan_cfg dma_cfg;
  376. bool configured;
  377. struct d40_base *base;
  378. /* Default register configurations */
  379. u32 src_def_cfg;
  380. u32 dst_def_cfg;
  381. struct d40_def_lcsp log_def;
  382. struct d40_log_lli_full *lcpa;
  383. /* Runtime reconfiguration */
  384. dma_addr_t runtime_addr;
  385. enum dma_transfer_direction runtime_direction;
  386. };
  387. /**
  388. * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
  389. * controller
  390. *
  391. * @backup: the pointer to the registers address array for backup
  392. * @backup_size: the size of the registers address array for backup
  393. * @realtime_en: the realtime enable register
  394. * @realtime_clear: the realtime clear register
  395. * @high_prio_en: the high priority enable register
  396. * @high_prio_clear: the high priority clear register
  397. * @interrupt_en: the interrupt enable register
  398. * @interrupt_clear: the interrupt clear register
  399. * @il: the pointer to struct d40_interrupt_lookup
  400. * @il_size: the size of d40_interrupt_lookup array
  401. * @init_reg: the pointer to the struct d40_reg_val
  402. * @init_reg_size: the size of d40_reg_val array
  403. */
  404. struct d40_gen_dmac {
  405. u32 *backup;
  406. u32 backup_size;
  407. u32 realtime_en;
  408. u32 realtime_clear;
  409. u32 high_prio_en;
  410. u32 high_prio_clear;
  411. u32 interrupt_en;
  412. u32 interrupt_clear;
  413. struct d40_interrupt_lookup *il;
  414. u32 il_size;
  415. struct d40_reg_val *init_reg;
  416. u32 init_reg_size;
  417. };
  418. /**
  419. * struct d40_base - The big global struct, one for each probe'd instance.
  420. *
  421. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  422. * @execmd_lock: Lock for execute command usage since several channels share
  423. * the same physical register.
  424. * @dev: The device structure.
  425. * @virtbase: The virtual base address of the DMA's register.
  426. * @rev: silicon revision detected.
  427. * @clk: Pointer to the DMA clock structure.
  428. * @phy_start: Physical memory start of the DMA registers.
  429. * @phy_size: Size of the DMA register map.
  430. * @irq: The IRQ number.
  431. * @num_phy_chans: The number of physical channels. Read from HW. This
  432. * is the number of available channels for this driver, not counting "Secure
  433. * mode" allocated physical channels.
  434. * @num_log_chans: The number of logical channels. Calculated from
  435. * num_phy_chans.
  436. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  437. * @dma_slave: dma_device channels that can do only do slave transfers.
  438. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  439. * @phy_chans: Room for all possible physical channels in system.
  440. * @log_chans: Room for all possible logical channels in system.
  441. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  442. * to log_chans entries.
  443. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  444. * to phy_chans entries.
  445. * @plat_data: Pointer to provided platform_data which is the driver
  446. * configuration.
  447. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  448. * @phy_res: Vector containing all physical channels.
  449. * @lcla_pool: lcla pool settings and data.
  450. * @lcpa_base: The virtual mapped address of LCPA.
  451. * @phy_lcpa: The physical address of the LCPA.
  452. * @lcpa_size: The size of the LCPA area.
  453. * @desc_slab: cache for descriptors.
  454. * @reg_val_backup: Here the values of some hardware registers are stored
  455. * before the DMA is powered off. They are restored when the power is back on.
  456. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
  457. * later
  458. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  459. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  460. * @initialized: true if the dma has been initialized
  461. * @gen_dmac: the struct for generic registers values to represent u8500/8540
  462. * DMA controller
  463. */
  464. struct d40_base {
  465. spinlock_t interrupt_lock;
  466. spinlock_t execmd_lock;
  467. struct device *dev;
  468. void __iomem *virtbase;
  469. u8 rev:4;
  470. struct clk *clk;
  471. phys_addr_t phy_start;
  472. resource_size_t phy_size;
  473. int irq;
  474. int num_phy_chans;
  475. int num_log_chans;
  476. struct device_dma_parameters dma_parms;
  477. struct dma_device dma_both;
  478. struct dma_device dma_slave;
  479. struct dma_device dma_memcpy;
  480. struct d40_chan *phy_chans;
  481. struct d40_chan *log_chans;
  482. struct d40_chan **lookup_log_chans;
  483. struct d40_chan **lookup_phy_chans;
  484. struct stedma40_platform_data *plat_data;
  485. struct regulator *lcpa_regulator;
  486. /* Physical half channels */
  487. struct d40_phy_res *phy_res;
  488. struct d40_lcla_pool lcla_pool;
  489. void *lcpa_base;
  490. dma_addr_t phy_lcpa;
  491. resource_size_t lcpa_size;
  492. struct kmem_cache *desc_slab;
  493. u32 reg_val_backup[BACKUP_REGS_SZ];
  494. u32 reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)];
  495. u32 *reg_val_backup_chan;
  496. u16 gcc_pwr_off_mask;
  497. bool initialized;
  498. struct d40_gen_dmac gen_dmac;
  499. };
  500. static struct device *chan2dev(struct d40_chan *d40c)
  501. {
  502. return &d40c->chan.dev->device;
  503. }
  504. static bool chan_is_physical(struct d40_chan *chan)
  505. {
  506. return chan->log_num == D40_PHY_CHAN;
  507. }
  508. static bool chan_is_logical(struct d40_chan *chan)
  509. {
  510. return !chan_is_physical(chan);
  511. }
  512. static void __iomem *chan_base(struct d40_chan *chan)
  513. {
  514. return chan->base->virtbase + D40_DREG_PCBASE +
  515. chan->phy_chan->num * D40_DREG_PCDELTA;
  516. }
  517. #define d40_err(dev, format, arg...) \
  518. dev_err(dev, "[%s] " format, __func__, ## arg)
  519. #define chan_err(d40c, format, arg...) \
  520. d40_err(chan2dev(d40c), format, ## arg)
  521. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  522. int lli_len)
  523. {
  524. bool is_log = chan_is_logical(d40c);
  525. u32 align;
  526. void *base;
  527. if (is_log)
  528. align = sizeof(struct d40_log_lli);
  529. else
  530. align = sizeof(struct d40_phy_lli);
  531. if (lli_len == 1) {
  532. base = d40d->lli_pool.pre_alloc_lli;
  533. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  534. d40d->lli_pool.base = NULL;
  535. } else {
  536. d40d->lli_pool.size = lli_len * 2 * align;
  537. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  538. d40d->lli_pool.base = base;
  539. if (d40d->lli_pool.base == NULL)
  540. return -ENOMEM;
  541. }
  542. if (is_log) {
  543. d40d->lli_log.src = PTR_ALIGN(base, align);
  544. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  545. d40d->lli_pool.dma_addr = 0;
  546. } else {
  547. d40d->lli_phy.src = PTR_ALIGN(base, align);
  548. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  549. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  550. d40d->lli_phy.src,
  551. d40d->lli_pool.size,
  552. DMA_TO_DEVICE);
  553. if (dma_mapping_error(d40c->base->dev,
  554. d40d->lli_pool.dma_addr)) {
  555. kfree(d40d->lli_pool.base);
  556. d40d->lli_pool.base = NULL;
  557. d40d->lli_pool.dma_addr = 0;
  558. return -ENOMEM;
  559. }
  560. }
  561. return 0;
  562. }
  563. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  564. {
  565. if (d40d->lli_pool.dma_addr)
  566. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  567. d40d->lli_pool.size, DMA_TO_DEVICE);
  568. kfree(d40d->lli_pool.base);
  569. d40d->lli_pool.base = NULL;
  570. d40d->lli_pool.size = 0;
  571. d40d->lli_log.src = NULL;
  572. d40d->lli_log.dst = NULL;
  573. d40d->lli_phy.src = NULL;
  574. d40d->lli_phy.dst = NULL;
  575. }
  576. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  577. struct d40_desc *d40d)
  578. {
  579. unsigned long flags;
  580. int i;
  581. int ret = -EINVAL;
  582. int p;
  583. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  584. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  585. /*
  586. * Allocate both src and dst at the same time, therefore the half
  587. * start on 1 since 0 can't be used since zero is used as end marker.
  588. */
  589. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  590. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  591. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  592. d40d->lcla_alloc++;
  593. ret = i;
  594. break;
  595. }
  596. }
  597. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  598. return ret;
  599. }
  600. static int d40_lcla_free_all(struct d40_chan *d40c,
  601. struct d40_desc *d40d)
  602. {
  603. unsigned long flags;
  604. int i;
  605. int ret = -EINVAL;
  606. if (chan_is_physical(d40c))
  607. return 0;
  608. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  609. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  610. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  611. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  612. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  613. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  614. d40d->lcla_alloc--;
  615. if (d40d->lcla_alloc == 0) {
  616. ret = 0;
  617. break;
  618. }
  619. }
  620. }
  621. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  622. return ret;
  623. }
  624. static void d40_desc_remove(struct d40_desc *d40d)
  625. {
  626. list_del(&d40d->node);
  627. }
  628. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  629. {
  630. struct d40_desc *desc = NULL;
  631. if (!list_empty(&d40c->client)) {
  632. struct d40_desc *d;
  633. struct d40_desc *_d;
  634. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  635. if (async_tx_test_ack(&d->txd)) {
  636. d40_desc_remove(d);
  637. desc = d;
  638. memset(desc, 0, sizeof(*desc));
  639. break;
  640. }
  641. }
  642. }
  643. if (!desc)
  644. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  645. if (desc)
  646. INIT_LIST_HEAD(&desc->node);
  647. return desc;
  648. }
  649. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  650. {
  651. d40_pool_lli_free(d40c, d40d);
  652. d40_lcla_free_all(d40c, d40d);
  653. kmem_cache_free(d40c->base->desc_slab, d40d);
  654. }
  655. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  656. {
  657. list_add_tail(&desc->node, &d40c->active);
  658. }
  659. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  660. {
  661. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  662. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  663. void __iomem *base = chan_base(chan);
  664. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  665. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  666. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  667. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  668. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  669. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  670. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  671. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  672. }
  673. static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
  674. {
  675. list_add_tail(&desc->node, &d40c->done);
  676. }
  677. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  678. {
  679. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  680. struct d40_log_lli_bidir *lli = &desc->lli_log;
  681. int lli_current = desc->lli_current;
  682. int lli_len = desc->lli_len;
  683. bool cyclic = desc->cyclic;
  684. int curr_lcla = -EINVAL;
  685. int first_lcla = 0;
  686. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  687. bool linkback;
  688. /*
  689. * We may have partially running cyclic transfers, in case we did't get
  690. * enough LCLA entries.
  691. */
  692. linkback = cyclic && lli_current == 0;
  693. /*
  694. * For linkback, we need one LCLA even with only one link, because we
  695. * can't link back to the one in LCPA space
  696. */
  697. if (linkback || (lli_len - lli_current > 1)) {
  698. curr_lcla = d40_lcla_alloc_one(chan, desc);
  699. first_lcla = curr_lcla;
  700. }
  701. /*
  702. * For linkback, we normally load the LCPA in the loop since we need to
  703. * link it to the second LCLA and not the first. However, if we
  704. * couldn't even get a first LCLA, then we have to run in LCPA and
  705. * reload manually.
  706. */
  707. if (!linkback || curr_lcla == -EINVAL) {
  708. unsigned int flags = 0;
  709. if (curr_lcla == -EINVAL)
  710. flags |= LLI_TERM_INT;
  711. d40_log_lli_lcpa_write(chan->lcpa,
  712. &lli->dst[lli_current],
  713. &lli->src[lli_current],
  714. curr_lcla,
  715. flags);
  716. lli_current++;
  717. }
  718. if (curr_lcla < 0)
  719. goto out;
  720. for (; lli_current < lli_len; lli_current++) {
  721. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  722. 8 * curr_lcla * 2;
  723. struct d40_log_lli *lcla = pool->base + lcla_offset;
  724. unsigned int flags = 0;
  725. int next_lcla;
  726. if (lli_current + 1 < lli_len)
  727. next_lcla = d40_lcla_alloc_one(chan, desc);
  728. else
  729. next_lcla = linkback ? first_lcla : -EINVAL;
  730. if (cyclic || next_lcla == -EINVAL)
  731. flags |= LLI_TERM_INT;
  732. if (linkback && curr_lcla == first_lcla) {
  733. /* First link goes in both LCPA and LCLA */
  734. d40_log_lli_lcpa_write(chan->lcpa,
  735. &lli->dst[lli_current],
  736. &lli->src[lli_current],
  737. next_lcla, flags);
  738. }
  739. /*
  740. * One unused LCLA in the cyclic case if the very first
  741. * next_lcla fails...
  742. */
  743. d40_log_lli_lcla_write(lcla,
  744. &lli->dst[lli_current],
  745. &lli->src[lli_current],
  746. next_lcla, flags);
  747. /*
  748. * Cache maintenance is not needed if lcla is
  749. * mapped in esram
  750. */
  751. if (!use_esram_lcla) {
  752. dma_sync_single_range_for_device(chan->base->dev,
  753. pool->dma_addr, lcla_offset,
  754. 2 * sizeof(struct d40_log_lli),
  755. DMA_TO_DEVICE);
  756. }
  757. curr_lcla = next_lcla;
  758. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  759. lli_current++;
  760. break;
  761. }
  762. }
  763. out:
  764. desc->lli_current = lli_current;
  765. }
  766. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  767. {
  768. if (chan_is_physical(d40c)) {
  769. d40_phy_lli_load(d40c, d40d);
  770. d40d->lli_current = d40d->lli_len;
  771. } else
  772. d40_log_lli_to_lcxa(d40c, d40d);
  773. }
  774. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  775. {
  776. struct d40_desc *d;
  777. if (list_empty(&d40c->active))
  778. return NULL;
  779. d = list_first_entry(&d40c->active,
  780. struct d40_desc,
  781. node);
  782. return d;
  783. }
  784. /* remove desc from current queue and add it to the pending_queue */
  785. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  786. {
  787. d40_desc_remove(desc);
  788. desc->is_in_client_list = false;
  789. list_add_tail(&desc->node, &d40c->pending_queue);
  790. }
  791. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  792. {
  793. struct d40_desc *d;
  794. if (list_empty(&d40c->pending_queue))
  795. return NULL;
  796. d = list_first_entry(&d40c->pending_queue,
  797. struct d40_desc,
  798. node);
  799. return d;
  800. }
  801. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  802. {
  803. struct d40_desc *d;
  804. if (list_empty(&d40c->queue))
  805. return NULL;
  806. d = list_first_entry(&d40c->queue,
  807. struct d40_desc,
  808. node);
  809. return d;
  810. }
  811. static struct d40_desc *d40_first_done(struct d40_chan *d40c)
  812. {
  813. if (list_empty(&d40c->done))
  814. return NULL;
  815. return list_first_entry(&d40c->done, struct d40_desc, node);
  816. }
  817. static int d40_psize_2_burst_size(bool is_log, int psize)
  818. {
  819. if (is_log) {
  820. if (psize == STEDMA40_PSIZE_LOG_1)
  821. return 1;
  822. } else {
  823. if (psize == STEDMA40_PSIZE_PHY_1)
  824. return 1;
  825. }
  826. return 2 << psize;
  827. }
  828. /*
  829. * The dma only supports transmitting packages up to
  830. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  831. * dma elements required to send the entire sg list
  832. */
  833. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  834. {
  835. int dmalen;
  836. u32 max_w = max(data_width1, data_width2);
  837. u32 min_w = min(data_width1, data_width2);
  838. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  839. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  840. seg_max -= (1 << max_w);
  841. if (!IS_ALIGNED(size, 1 << max_w))
  842. return -EINVAL;
  843. if (size <= seg_max)
  844. dmalen = 1;
  845. else {
  846. dmalen = size / seg_max;
  847. if (dmalen * seg_max < size)
  848. dmalen++;
  849. }
  850. return dmalen;
  851. }
  852. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  853. u32 data_width1, u32 data_width2)
  854. {
  855. struct scatterlist *sg;
  856. int i;
  857. int len = 0;
  858. int ret;
  859. for_each_sg(sgl, sg, sg_len, i) {
  860. ret = d40_size_2_dmalen(sg_dma_len(sg),
  861. data_width1, data_width2);
  862. if (ret < 0)
  863. return ret;
  864. len += ret;
  865. }
  866. return len;
  867. }
  868. #ifdef CONFIG_PM
  869. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  870. u32 *regaddr, int num, bool save)
  871. {
  872. int i;
  873. for (i = 0; i < num; i++) {
  874. void __iomem *addr = baseaddr + regaddr[i];
  875. if (save)
  876. backup[i] = readl_relaxed(addr);
  877. else
  878. writel_relaxed(backup[i], addr);
  879. }
  880. }
  881. static void d40_save_restore_registers(struct d40_base *base, bool save)
  882. {
  883. int i;
  884. /* Save/Restore channel specific registers */
  885. for (i = 0; i < base->num_phy_chans; i++) {
  886. void __iomem *addr;
  887. int idx;
  888. if (base->phy_res[i].reserved)
  889. continue;
  890. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  891. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  892. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  893. d40_backup_regs_chan,
  894. ARRAY_SIZE(d40_backup_regs_chan),
  895. save);
  896. }
  897. /* Save/Restore global registers */
  898. dma40_backup(base->virtbase, base->reg_val_backup,
  899. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  900. save);
  901. /* Save/Restore registers only existing on dma40 v3 and later */
  902. if (base->gen_dmac.backup)
  903. dma40_backup(base->virtbase, base->reg_val_backup_v4,
  904. base->gen_dmac.backup,
  905. base->gen_dmac.backup_size,
  906. save);
  907. }
  908. #else
  909. static void d40_save_restore_registers(struct d40_base *base, bool save)
  910. {
  911. }
  912. #endif
  913. static int __d40_execute_command_phy(struct d40_chan *d40c,
  914. enum d40_command command)
  915. {
  916. u32 status;
  917. int i;
  918. void __iomem *active_reg;
  919. int ret = 0;
  920. unsigned long flags;
  921. u32 wmask;
  922. if (command == D40_DMA_STOP) {
  923. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  924. if (ret)
  925. return ret;
  926. }
  927. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  928. if (d40c->phy_chan->num % 2 == 0)
  929. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  930. else
  931. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  932. if (command == D40_DMA_SUSPEND_REQ) {
  933. status = (readl(active_reg) &
  934. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  935. D40_CHAN_POS(d40c->phy_chan->num);
  936. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  937. goto done;
  938. }
  939. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  940. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  941. active_reg);
  942. if (command == D40_DMA_SUSPEND_REQ) {
  943. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  944. status = (readl(active_reg) &
  945. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  946. D40_CHAN_POS(d40c->phy_chan->num);
  947. cpu_relax();
  948. /*
  949. * Reduce the number of bus accesses while
  950. * waiting for the DMA to suspend.
  951. */
  952. udelay(3);
  953. if (status == D40_DMA_STOP ||
  954. status == D40_DMA_SUSPENDED)
  955. break;
  956. }
  957. if (i == D40_SUSPEND_MAX_IT) {
  958. chan_err(d40c,
  959. "unable to suspend the chl %d (log: %d) status %x\n",
  960. d40c->phy_chan->num, d40c->log_num,
  961. status);
  962. dump_stack();
  963. ret = -EBUSY;
  964. }
  965. }
  966. done:
  967. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  968. return ret;
  969. }
  970. static void d40_term_all(struct d40_chan *d40c)
  971. {
  972. struct d40_desc *d40d;
  973. struct d40_desc *_d;
  974. /* Release completed descriptors */
  975. while ((d40d = d40_first_done(d40c))) {
  976. d40_desc_remove(d40d);
  977. d40_desc_free(d40c, d40d);
  978. }
  979. /* Release active descriptors */
  980. while ((d40d = d40_first_active_get(d40c))) {
  981. d40_desc_remove(d40d);
  982. d40_desc_free(d40c, d40d);
  983. }
  984. /* Release queued descriptors waiting for transfer */
  985. while ((d40d = d40_first_queued(d40c))) {
  986. d40_desc_remove(d40d);
  987. d40_desc_free(d40c, d40d);
  988. }
  989. /* Release pending descriptors */
  990. while ((d40d = d40_first_pending(d40c))) {
  991. d40_desc_remove(d40d);
  992. d40_desc_free(d40c, d40d);
  993. }
  994. /* Release client owned descriptors */
  995. if (!list_empty(&d40c->client))
  996. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  997. d40_desc_remove(d40d);
  998. d40_desc_free(d40c, d40d);
  999. }
  1000. /* Release descriptors in prepare queue */
  1001. if (!list_empty(&d40c->prepare_queue))
  1002. list_for_each_entry_safe(d40d, _d,
  1003. &d40c->prepare_queue, node) {
  1004. d40_desc_remove(d40d);
  1005. d40_desc_free(d40c, d40d);
  1006. }
  1007. d40c->pending_tx = 0;
  1008. }
  1009. static void __d40_config_set_event(struct d40_chan *d40c,
  1010. enum d40_events event_type, u32 event,
  1011. int reg)
  1012. {
  1013. void __iomem *addr = chan_base(d40c) + reg;
  1014. int tries;
  1015. u32 status;
  1016. switch (event_type) {
  1017. case D40_DEACTIVATE_EVENTLINE:
  1018. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  1019. | ~D40_EVENTLINE_MASK(event), addr);
  1020. break;
  1021. case D40_SUSPEND_REQ_EVENTLINE:
  1022. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1023. D40_EVENTLINE_POS(event);
  1024. if (status == D40_DEACTIVATE_EVENTLINE ||
  1025. status == D40_SUSPEND_REQ_EVENTLINE)
  1026. break;
  1027. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  1028. | ~D40_EVENTLINE_MASK(event), addr);
  1029. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  1030. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1031. D40_EVENTLINE_POS(event);
  1032. cpu_relax();
  1033. /*
  1034. * Reduce the number of bus accesses while
  1035. * waiting for the DMA to suspend.
  1036. */
  1037. udelay(3);
  1038. if (status == D40_DEACTIVATE_EVENTLINE)
  1039. break;
  1040. }
  1041. if (tries == D40_SUSPEND_MAX_IT) {
  1042. chan_err(d40c,
  1043. "unable to stop the event_line chl %d (log: %d)"
  1044. "status %x\n", d40c->phy_chan->num,
  1045. d40c->log_num, status);
  1046. }
  1047. break;
  1048. case D40_ACTIVATE_EVENTLINE:
  1049. /*
  1050. * The hardware sometimes doesn't register the enable when src and dst
  1051. * event lines are active on the same logical channel. Retry to ensure
  1052. * it does. Usually only one retry is sufficient.
  1053. */
  1054. tries = 100;
  1055. while (--tries) {
  1056. writel((D40_ACTIVATE_EVENTLINE <<
  1057. D40_EVENTLINE_POS(event)) |
  1058. ~D40_EVENTLINE_MASK(event), addr);
  1059. if (readl(addr) & D40_EVENTLINE_MASK(event))
  1060. break;
  1061. }
  1062. if (tries != 99)
  1063. dev_dbg(chan2dev(d40c),
  1064. "[%s] workaround enable S%cLNK (%d tries)\n",
  1065. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  1066. 100 - tries);
  1067. WARN_ON(!tries);
  1068. break;
  1069. case D40_ROUND_EVENTLINE:
  1070. BUG();
  1071. break;
  1072. }
  1073. }
  1074. static void d40_config_set_event(struct d40_chan *d40c,
  1075. enum d40_events event_type)
  1076. {
  1077. /* Enable event line connected to device (or memcpy) */
  1078. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1079. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  1080. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1081. __d40_config_set_event(d40c, event_type, event,
  1082. D40_CHAN_REG_SSLNK);
  1083. }
  1084. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  1085. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1086. __d40_config_set_event(d40c, event_type, event,
  1087. D40_CHAN_REG_SDLNK);
  1088. }
  1089. }
  1090. static u32 d40_chan_has_events(struct d40_chan *d40c)
  1091. {
  1092. void __iomem *chanbase = chan_base(d40c);
  1093. u32 val;
  1094. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  1095. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  1096. return val;
  1097. }
  1098. static int
  1099. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  1100. {
  1101. unsigned long flags;
  1102. int ret = 0;
  1103. u32 active_status;
  1104. void __iomem *active_reg;
  1105. if (d40c->phy_chan->num % 2 == 0)
  1106. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1107. else
  1108. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1109. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  1110. switch (command) {
  1111. case D40_DMA_STOP:
  1112. case D40_DMA_SUSPEND_REQ:
  1113. active_status = (readl(active_reg) &
  1114. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1115. D40_CHAN_POS(d40c->phy_chan->num);
  1116. if (active_status == D40_DMA_RUN)
  1117. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  1118. else
  1119. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  1120. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  1121. ret = __d40_execute_command_phy(d40c, command);
  1122. break;
  1123. case D40_DMA_RUN:
  1124. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  1125. ret = __d40_execute_command_phy(d40c, command);
  1126. break;
  1127. case D40_DMA_SUSPENDED:
  1128. BUG();
  1129. break;
  1130. }
  1131. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  1132. return ret;
  1133. }
  1134. static int d40_channel_execute_command(struct d40_chan *d40c,
  1135. enum d40_command command)
  1136. {
  1137. if (chan_is_logical(d40c))
  1138. return __d40_execute_command_log(d40c, command);
  1139. else
  1140. return __d40_execute_command_phy(d40c, command);
  1141. }
  1142. static u32 d40_get_prmo(struct d40_chan *d40c)
  1143. {
  1144. static const unsigned int phy_map[] = {
  1145. [STEDMA40_PCHAN_BASIC_MODE]
  1146. = D40_DREG_PRMO_PCHAN_BASIC,
  1147. [STEDMA40_PCHAN_MODULO_MODE]
  1148. = D40_DREG_PRMO_PCHAN_MODULO,
  1149. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1150. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1151. };
  1152. static const unsigned int log_map[] = {
  1153. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1154. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1155. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1156. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1157. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1158. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1159. };
  1160. if (chan_is_physical(d40c))
  1161. return phy_map[d40c->dma_cfg.mode_opt];
  1162. else
  1163. return log_map[d40c->dma_cfg.mode_opt];
  1164. }
  1165. static void d40_config_write(struct d40_chan *d40c)
  1166. {
  1167. u32 addr_base;
  1168. u32 var;
  1169. /* Odd addresses are even addresses + 4 */
  1170. addr_base = (d40c->phy_chan->num % 2) * 4;
  1171. /* Setup channel mode to logical or physical */
  1172. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1173. D40_CHAN_POS(d40c->phy_chan->num);
  1174. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1175. /* Setup operational mode option register */
  1176. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1177. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1178. if (chan_is_logical(d40c)) {
  1179. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1180. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1181. void __iomem *chanbase = chan_base(d40c);
  1182. /* Set default config for CFG reg */
  1183. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1184. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1185. /* Set LIDX for lcla */
  1186. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1187. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1188. /* Clear LNK which will be used by d40_chan_has_events() */
  1189. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1190. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1191. }
  1192. }
  1193. static u32 d40_residue(struct d40_chan *d40c)
  1194. {
  1195. u32 num_elt;
  1196. if (chan_is_logical(d40c))
  1197. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1198. >> D40_MEM_LCSP2_ECNT_POS;
  1199. else {
  1200. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1201. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1202. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1203. }
  1204. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1205. }
  1206. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1207. {
  1208. bool is_link;
  1209. if (chan_is_logical(d40c))
  1210. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1211. else
  1212. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1213. & D40_SREG_LNK_PHYS_LNK_MASK;
  1214. return is_link;
  1215. }
  1216. static int d40_pause(struct d40_chan *d40c)
  1217. {
  1218. int res = 0;
  1219. unsigned long flags;
  1220. if (!d40c->busy)
  1221. return 0;
  1222. pm_runtime_get_sync(d40c->base->dev);
  1223. spin_lock_irqsave(&d40c->lock, flags);
  1224. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1225. pm_runtime_mark_last_busy(d40c->base->dev);
  1226. pm_runtime_put_autosuspend(d40c->base->dev);
  1227. spin_unlock_irqrestore(&d40c->lock, flags);
  1228. return res;
  1229. }
  1230. static int d40_resume(struct d40_chan *d40c)
  1231. {
  1232. int res = 0;
  1233. unsigned long flags;
  1234. if (!d40c->busy)
  1235. return 0;
  1236. spin_lock_irqsave(&d40c->lock, flags);
  1237. pm_runtime_get_sync(d40c->base->dev);
  1238. /* If bytes left to transfer or linked tx resume job */
  1239. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1240. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1241. pm_runtime_mark_last_busy(d40c->base->dev);
  1242. pm_runtime_put_autosuspend(d40c->base->dev);
  1243. spin_unlock_irqrestore(&d40c->lock, flags);
  1244. return res;
  1245. }
  1246. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1247. {
  1248. struct d40_chan *d40c = container_of(tx->chan,
  1249. struct d40_chan,
  1250. chan);
  1251. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1252. unsigned long flags;
  1253. dma_cookie_t cookie;
  1254. spin_lock_irqsave(&d40c->lock, flags);
  1255. cookie = dma_cookie_assign(tx);
  1256. d40_desc_queue(d40c, d40d);
  1257. spin_unlock_irqrestore(&d40c->lock, flags);
  1258. return cookie;
  1259. }
  1260. static int d40_start(struct d40_chan *d40c)
  1261. {
  1262. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1263. }
  1264. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1265. {
  1266. struct d40_desc *d40d;
  1267. int err;
  1268. /* Start queued jobs, if any */
  1269. d40d = d40_first_queued(d40c);
  1270. if (d40d != NULL) {
  1271. if (!d40c->busy) {
  1272. d40c->busy = true;
  1273. pm_runtime_get_sync(d40c->base->dev);
  1274. }
  1275. /* Remove from queue */
  1276. d40_desc_remove(d40d);
  1277. /* Add to active queue */
  1278. d40_desc_submit(d40c, d40d);
  1279. /* Initiate DMA job */
  1280. d40_desc_load(d40c, d40d);
  1281. /* Start dma job */
  1282. err = d40_start(d40c);
  1283. if (err)
  1284. return NULL;
  1285. }
  1286. return d40d;
  1287. }
  1288. /* called from interrupt context */
  1289. static void dma_tc_handle(struct d40_chan *d40c)
  1290. {
  1291. struct d40_desc *d40d;
  1292. /* Get first active entry from list */
  1293. d40d = d40_first_active_get(d40c);
  1294. if (d40d == NULL)
  1295. return;
  1296. if (d40d->cyclic) {
  1297. /*
  1298. * If this was a paritially loaded list, we need to reloaded
  1299. * it, and only when the list is completed. We need to check
  1300. * for done because the interrupt will hit for every link, and
  1301. * not just the last one.
  1302. */
  1303. if (d40d->lli_current < d40d->lli_len
  1304. && !d40_tx_is_linked(d40c)
  1305. && !d40_residue(d40c)) {
  1306. d40_lcla_free_all(d40c, d40d);
  1307. d40_desc_load(d40c, d40d);
  1308. (void) d40_start(d40c);
  1309. if (d40d->lli_current == d40d->lli_len)
  1310. d40d->lli_current = 0;
  1311. }
  1312. } else {
  1313. d40_lcla_free_all(d40c, d40d);
  1314. if (d40d->lli_current < d40d->lli_len) {
  1315. d40_desc_load(d40c, d40d);
  1316. /* Start dma job */
  1317. (void) d40_start(d40c);
  1318. return;
  1319. }
  1320. if (d40_queue_start(d40c) == NULL)
  1321. d40c->busy = false;
  1322. pm_runtime_mark_last_busy(d40c->base->dev);
  1323. pm_runtime_put_autosuspend(d40c->base->dev);
  1324. }
  1325. d40_desc_remove(d40d);
  1326. d40_desc_done(d40c, d40d);
  1327. d40c->pending_tx++;
  1328. tasklet_schedule(&d40c->tasklet);
  1329. }
  1330. static void dma_tasklet(unsigned long data)
  1331. {
  1332. struct d40_chan *d40c = (struct d40_chan *) data;
  1333. struct d40_desc *d40d;
  1334. unsigned long flags;
  1335. dma_async_tx_callback callback;
  1336. void *callback_param;
  1337. spin_lock_irqsave(&d40c->lock, flags);
  1338. /* Get first entry from the done list */
  1339. d40d = d40_first_done(d40c);
  1340. if (d40d == NULL) {
  1341. /* Check if we have reached here for cyclic job */
  1342. d40d = d40_first_active_get(d40c);
  1343. if (d40d == NULL || !d40d->cyclic)
  1344. goto err;
  1345. }
  1346. if (!d40d->cyclic)
  1347. dma_cookie_complete(&d40d->txd);
  1348. /*
  1349. * If terminating a channel pending_tx is set to zero.
  1350. * This prevents any finished active jobs to return to the client.
  1351. */
  1352. if (d40c->pending_tx == 0) {
  1353. spin_unlock_irqrestore(&d40c->lock, flags);
  1354. return;
  1355. }
  1356. /* Callback to client */
  1357. callback = d40d->txd.callback;
  1358. callback_param = d40d->txd.callback_param;
  1359. if (!d40d->cyclic) {
  1360. if (async_tx_test_ack(&d40d->txd)) {
  1361. d40_desc_remove(d40d);
  1362. d40_desc_free(d40c, d40d);
  1363. } else if (!d40d->is_in_client_list) {
  1364. d40_desc_remove(d40d);
  1365. d40_lcla_free_all(d40c, d40d);
  1366. list_add_tail(&d40d->node, &d40c->client);
  1367. d40d->is_in_client_list = true;
  1368. }
  1369. }
  1370. d40c->pending_tx--;
  1371. if (d40c->pending_tx)
  1372. tasklet_schedule(&d40c->tasklet);
  1373. spin_unlock_irqrestore(&d40c->lock, flags);
  1374. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1375. callback(callback_param);
  1376. return;
  1377. err:
  1378. /* Rescue manouver if receiving double interrupts */
  1379. if (d40c->pending_tx > 0)
  1380. d40c->pending_tx--;
  1381. spin_unlock_irqrestore(&d40c->lock, flags);
  1382. }
  1383. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1384. {
  1385. int i;
  1386. u32 idx;
  1387. u32 row;
  1388. long chan = -1;
  1389. struct d40_chan *d40c;
  1390. unsigned long flags;
  1391. struct d40_base *base = data;
  1392. u32 regs[base->gen_dmac.il_size];
  1393. struct d40_interrupt_lookup *il = base->gen_dmac.il;
  1394. u32 il_size = base->gen_dmac.il_size;
  1395. spin_lock_irqsave(&base->interrupt_lock, flags);
  1396. /* Read interrupt status of both logical and physical channels */
  1397. for (i = 0; i < il_size; i++)
  1398. regs[i] = readl(base->virtbase + il[i].src);
  1399. for (;;) {
  1400. chan = find_next_bit((unsigned long *)regs,
  1401. BITS_PER_LONG * il_size, chan + 1);
  1402. /* No more set bits found? */
  1403. if (chan == BITS_PER_LONG * il_size)
  1404. break;
  1405. row = chan / BITS_PER_LONG;
  1406. idx = chan & (BITS_PER_LONG - 1);
  1407. /* ACK interrupt */
  1408. writel(1 << idx, base->virtbase + il[row].clr);
  1409. if (il[row].offset == D40_PHY_CHAN)
  1410. d40c = base->lookup_phy_chans[idx];
  1411. else
  1412. d40c = base->lookup_log_chans[il[row].offset + idx];
  1413. spin_lock(&d40c->lock);
  1414. if (!il[row].is_error)
  1415. dma_tc_handle(d40c);
  1416. else
  1417. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1418. chan, il[row].offset, idx);
  1419. spin_unlock(&d40c->lock);
  1420. }
  1421. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1422. return IRQ_HANDLED;
  1423. }
  1424. static int d40_validate_conf(struct d40_chan *d40c,
  1425. struct stedma40_chan_cfg *conf)
  1426. {
  1427. int res = 0;
  1428. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1429. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1430. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1431. if (!conf->dir) {
  1432. chan_err(d40c, "Invalid direction.\n");
  1433. res = -EINVAL;
  1434. }
  1435. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1436. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1437. d40c->runtime_addr == 0) {
  1438. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1439. conf->dst_dev_type);
  1440. res = -EINVAL;
  1441. }
  1442. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1443. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1444. d40c->runtime_addr == 0) {
  1445. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1446. conf->src_dev_type);
  1447. res = -EINVAL;
  1448. }
  1449. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1450. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1451. chan_err(d40c, "Invalid dst\n");
  1452. res = -EINVAL;
  1453. }
  1454. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1455. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1456. chan_err(d40c, "Invalid src\n");
  1457. res = -EINVAL;
  1458. }
  1459. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1460. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1461. chan_err(d40c, "No event line\n");
  1462. res = -EINVAL;
  1463. }
  1464. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1465. (src_event_group != dst_event_group)) {
  1466. chan_err(d40c, "Invalid event group\n");
  1467. res = -EINVAL;
  1468. }
  1469. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1470. /*
  1471. * DMAC HW supports it. Will be added to this driver,
  1472. * in case any dma client requires it.
  1473. */
  1474. chan_err(d40c, "periph to periph not supported\n");
  1475. res = -EINVAL;
  1476. }
  1477. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1478. (1 << conf->src_info.data_width) !=
  1479. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1480. (1 << conf->dst_info.data_width)) {
  1481. /*
  1482. * The DMAC hardware only supports
  1483. * src (burst x width) == dst (burst x width)
  1484. */
  1485. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1486. res = -EINVAL;
  1487. }
  1488. return res;
  1489. }
  1490. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1491. bool is_src, int log_event_line, bool is_log,
  1492. bool *first_user)
  1493. {
  1494. unsigned long flags;
  1495. spin_lock_irqsave(&phy->lock, flags);
  1496. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1497. == D40_ALLOC_FREE);
  1498. if (!is_log) {
  1499. /* Physical interrupts are masked per physical full channel */
  1500. if (phy->allocated_src == D40_ALLOC_FREE &&
  1501. phy->allocated_dst == D40_ALLOC_FREE) {
  1502. phy->allocated_dst = D40_ALLOC_PHY;
  1503. phy->allocated_src = D40_ALLOC_PHY;
  1504. goto found;
  1505. } else
  1506. goto not_found;
  1507. }
  1508. /* Logical channel */
  1509. if (is_src) {
  1510. if (phy->allocated_src == D40_ALLOC_PHY)
  1511. goto not_found;
  1512. if (phy->allocated_src == D40_ALLOC_FREE)
  1513. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1514. if (!(phy->allocated_src & (1 << log_event_line))) {
  1515. phy->allocated_src |= 1 << log_event_line;
  1516. goto found;
  1517. } else
  1518. goto not_found;
  1519. } else {
  1520. if (phy->allocated_dst == D40_ALLOC_PHY)
  1521. goto not_found;
  1522. if (phy->allocated_dst == D40_ALLOC_FREE)
  1523. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1524. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1525. phy->allocated_dst |= 1 << log_event_line;
  1526. goto found;
  1527. } else
  1528. goto not_found;
  1529. }
  1530. not_found:
  1531. spin_unlock_irqrestore(&phy->lock, flags);
  1532. return false;
  1533. found:
  1534. spin_unlock_irqrestore(&phy->lock, flags);
  1535. return true;
  1536. }
  1537. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1538. int log_event_line)
  1539. {
  1540. unsigned long flags;
  1541. bool is_free = false;
  1542. spin_lock_irqsave(&phy->lock, flags);
  1543. if (!log_event_line) {
  1544. phy->allocated_dst = D40_ALLOC_FREE;
  1545. phy->allocated_src = D40_ALLOC_FREE;
  1546. is_free = true;
  1547. goto out;
  1548. }
  1549. /* Logical channel */
  1550. if (is_src) {
  1551. phy->allocated_src &= ~(1 << log_event_line);
  1552. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1553. phy->allocated_src = D40_ALLOC_FREE;
  1554. } else {
  1555. phy->allocated_dst &= ~(1 << log_event_line);
  1556. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1557. phy->allocated_dst = D40_ALLOC_FREE;
  1558. }
  1559. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1560. D40_ALLOC_FREE);
  1561. out:
  1562. spin_unlock_irqrestore(&phy->lock, flags);
  1563. return is_free;
  1564. }
  1565. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1566. {
  1567. int dev_type;
  1568. int event_group;
  1569. int event_line;
  1570. struct d40_phy_res *phys;
  1571. int i;
  1572. int j;
  1573. int log_num;
  1574. int num_phy_chans;
  1575. bool is_src;
  1576. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1577. phys = d40c->base->phy_res;
  1578. num_phy_chans = d40c->base->num_phy_chans;
  1579. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1580. dev_type = d40c->dma_cfg.src_dev_type;
  1581. log_num = 2 * dev_type;
  1582. is_src = true;
  1583. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1584. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1585. /* dst event lines are used for logical memcpy */
  1586. dev_type = d40c->dma_cfg.dst_dev_type;
  1587. log_num = 2 * dev_type + 1;
  1588. is_src = false;
  1589. } else
  1590. return -EINVAL;
  1591. event_group = D40_TYPE_TO_GROUP(dev_type);
  1592. event_line = D40_TYPE_TO_EVENT(dev_type);
  1593. if (!is_log) {
  1594. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1595. /* Find physical half channel */
  1596. if (d40c->dma_cfg.use_fixed_channel) {
  1597. i = d40c->dma_cfg.phy_channel;
  1598. if (d40_alloc_mask_set(&phys[i], is_src,
  1599. 0, is_log,
  1600. first_phy_user))
  1601. goto found_phy;
  1602. } else {
  1603. for (i = 0; i < num_phy_chans; i++) {
  1604. if (d40_alloc_mask_set(&phys[i], is_src,
  1605. 0, is_log,
  1606. first_phy_user))
  1607. goto found_phy;
  1608. }
  1609. }
  1610. } else
  1611. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1612. int phy_num = j + event_group * 2;
  1613. for (i = phy_num; i < phy_num + 2; i++) {
  1614. if (d40_alloc_mask_set(&phys[i],
  1615. is_src,
  1616. 0,
  1617. is_log,
  1618. first_phy_user))
  1619. goto found_phy;
  1620. }
  1621. }
  1622. return -EINVAL;
  1623. found_phy:
  1624. d40c->phy_chan = &phys[i];
  1625. d40c->log_num = D40_PHY_CHAN;
  1626. goto out;
  1627. }
  1628. if (dev_type == -1)
  1629. return -EINVAL;
  1630. /* Find logical channel */
  1631. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1632. int phy_num = j + event_group * 2;
  1633. if (d40c->dma_cfg.use_fixed_channel) {
  1634. i = d40c->dma_cfg.phy_channel;
  1635. if ((i != phy_num) && (i != phy_num + 1)) {
  1636. dev_err(chan2dev(d40c),
  1637. "invalid fixed phy channel %d\n", i);
  1638. return -EINVAL;
  1639. }
  1640. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1641. is_log, first_phy_user))
  1642. goto found_log;
  1643. dev_err(chan2dev(d40c),
  1644. "could not allocate fixed phy channel %d\n", i);
  1645. return -EINVAL;
  1646. }
  1647. /*
  1648. * Spread logical channels across all available physical rather
  1649. * than pack every logical channel at the first available phy
  1650. * channels.
  1651. */
  1652. if (is_src) {
  1653. for (i = phy_num; i < phy_num + 2; i++) {
  1654. if (d40_alloc_mask_set(&phys[i], is_src,
  1655. event_line, is_log,
  1656. first_phy_user))
  1657. goto found_log;
  1658. }
  1659. } else {
  1660. for (i = phy_num + 1; i >= phy_num; i--) {
  1661. if (d40_alloc_mask_set(&phys[i], is_src,
  1662. event_line, is_log,
  1663. first_phy_user))
  1664. goto found_log;
  1665. }
  1666. }
  1667. }
  1668. return -EINVAL;
  1669. found_log:
  1670. d40c->phy_chan = &phys[i];
  1671. d40c->log_num = log_num;
  1672. out:
  1673. if (is_log)
  1674. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1675. else
  1676. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1677. return 0;
  1678. }
  1679. static int d40_config_memcpy(struct d40_chan *d40c)
  1680. {
  1681. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1682. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1683. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1684. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1685. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1686. memcpy[d40c->chan.chan_id];
  1687. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1688. dma_has_cap(DMA_SLAVE, cap)) {
  1689. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1690. } else {
  1691. chan_err(d40c, "No memcpy\n");
  1692. return -EINVAL;
  1693. }
  1694. return 0;
  1695. }
  1696. static int d40_free_dma(struct d40_chan *d40c)
  1697. {
  1698. int res = 0;
  1699. u32 event;
  1700. struct d40_phy_res *phy = d40c->phy_chan;
  1701. bool is_src;
  1702. /* Terminate all queued and active transfers */
  1703. d40_term_all(d40c);
  1704. if (phy == NULL) {
  1705. chan_err(d40c, "phy == null\n");
  1706. return -EINVAL;
  1707. }
  1708. if (phy->allocated_src == D40_ALLOC_FREE &&
  1709. phy->allocated_dst == D40_ALLOC_FREE) {
  1710. chan_err(d40c, "channel already free\n");
  1711. return -EINVAL;
  1712. }
  1713. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1714. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1715. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1716. is_src = false;
  1717. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1718. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1719. is_src = true;
  1720. } else {
  1721. chan_err(d40c, "Unknown direction\n");
  1722. return -EINVAL;
  1723. }
  1724. pm_runtime_get_sync(d40c->base->dev);
  1725. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1726. if (res) {
  1727. chan_err(d40c, "stop failed\n");
  1728. goto out;
  1729. }
  1730. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1731. if (chan_is_logical(d40c))
  1732. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1733. else
  1734. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1735. if (d40c->busy) {
  1736. pm_runtime_mark_last_busy(d40c->base->dev);
  1737. pm_runtime_put_autosuspend(d40c->base->dev);
  1738. }
  1739. d40c->busy = false;
  1740. d40c->phy_chan = NULL;
  1741. d40c->configured = false;
  1742. out:
  1743. pm_runtime_mark_last_busy(d40c->base->dev);
  1744. pm_runtime_put_autosuspend(d40c->base->dev);
  1745. return res;
  1746. }
  1747. static bool d40_is_paused(struct d40_chan *d40c)
  1748. {
  1749. void __iomem *chanbase = chan_base(d40c);
  1750. bool is_paused = false;
  1751. unsigned long flags;
  1752. void __iomem *active_reg;
  1753. u32 status;
  1754. u32 event;
  1755. spin_lock_irqsave(&d40c->lock, flags);
  1756. if (chan_is_physical(d40c)) {
  1757. if (d40c->phy_chan->num % 2 == 0)
  1758. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1759. else
  1760. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1761. status = (readl(active_reg) &
  1762. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1763. D40_CHAN_POS(d40c->phy_chan->num);
  1764. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1765. is_paused = true;
  1766. goto _exit;
  1767. }
  1768. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1769. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1770. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1771. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1772. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1773. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1774. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1775. } else {
  1776. chan_err(d40c, "Unknown direction\n");
  1777. goto _exit;
  1778. }
  1779. status = (status & D40_EVENTLINE_MASK(event)) >>
  1780. D40_EVENTLINE_POS(event);
  1781. if (status != D40_DMA_RUN)
  1782. is_paused = true;
  1783. _exit:
  1784. spin_unlock_irqrestore(&d40c->lock, flags);
  1785. return is_paused;
  1786. }
  1787. static u32 stedma40_residue(struct dma_chan *chan)
  1788. {
  1789. struct d40_chan *d40c =
  1790. container_of(chan, struct d40_chan, chan);
  1791. u32 bytes_left;
  1792. unsigned long flags;
  1793. spin_lock_irqsave(&d40c->lock, flags);
  1794. bytes_left = d40_residue(d40c);
  1795. spin_unlock_irqrestore(&d40c->lock, flags);
  1796. return bytes_left;
  1797. }
  1798. static int
  1799. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1800. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1801. unsigned int sg_len, dma_addr_t src_dev_addr,
  1802. dma_addr_t dst_dev_addr)
  1803. {
  1804. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1805. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1806. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1807. int ret;
  1808. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1809. src_dev_addr,
  1810. desc->lli_log.src,
  1811. chan->log_def.lcsp1,
  1812. src_info->data_width,
  1813. dst_info->data_width);
  1814. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1815. dst_dev_addr,
  1816. desc->lli_log.dst,
  1817. chan->log_def.lcsp3,
  1818. dst_info->data_width,
  1819. src_info->data_width);
  1820. return ret < 0 ? ret : 0;
  1821. }
  1822. static int
  1823. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1824. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1825. unsigned int sg_len, dma_addr_t src_dev_addr,
  1826. dma_addr_t dst_dev_addr)
  1827. {
  1828. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1829. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1830. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1831. unsigned long flags = 0;
  1832. int ret;
  1833. if (desc->cyclic)
  1834. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1835. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1836. desc->lli_phy.src,
  1837. virt_to_phys(desc->lli_phy.src),
  1838. chan->src_def_cfg,
  1839. src_info, dst_info, flags);
  1840. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1841. desc->lli_phy.dst,
  1842. virt_to_phys(desc->lli_phy.dst),
  1843. chan->dst_def_cfg,
  1844. dst_info, src_info, flags);
  1845. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1846. desc->lli_pool.size, DMA_TO_DEVICE);
  1847. return ret < 0 ? ret : 0;
  1848. }
  1849. static struct d40_desc *
  1850. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1851. unsigned int sg_len, unsigned long dma_flags)
  1852. {
  1853. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1854. struct d40_desc *desc;
  1855. int ret;
  1856. desc = d40_desc_get(chan);
  1857. if (!desc)
  1858. return NULL;
  1859. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1860. cfg->dst_info.data_width);
  1861. if (desc->lli_len < 0) {
  1862. chan_err(chan, "Unaligned size\n");
  1863. goto err;
  1864. }
  1865. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1866. if (ret < 0) {
  1867. chan_err(chan, "Could not allocate lli\n");
  1868. goto err;
  1869. }
  1870. desc->lli_current = 0;
  1871. desc->txd.flags = dma_flags;
  1872. desc->txd.tx_submit = d40_tx_submit;
  1873. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1874. return desc;
  1875. err:
  1876. d40_desc_free(chan, desc);
  1877. return NULL;
  1878. }
  1879. static dma_addr_t
  1880. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1881. {
  1882. struct stedma40_platform_data *plat = chan->base->plat_data;
  1883. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1884. dma_addr_t addr = 0;
  1885. if (chan->runtime_addr)
  1886. return chan->runtime_addr;
  1887. if (direction == DMA_DEV_TO_MEM)
  1888. addr = plat->dev_rx[cfg->src_dev_type];
  1889. else if (direction == DMA_MEM_TO_DEV)
  1890. addr = plat->dev_tx[cfg->dst_dev_type];
  1891. return addr;
  1892. }
  1893. static struct dma_async_tx_descriptor *
  1894. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1895. struct scatterlist *sg_dst, unsigned int sg_len,
  1896. enum dma_transfer_direction direction, unsigned long dma_flags)
  1897. {
  1898. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1899. dma_addr_t src_dev_addr = 0;
  1900. dma_addr_t dst_dev_addr = 0;
  1901. struct d40_desc *desc;
  1902. unsigned long flags;
  1903. int ret;
  1904. if (!chan->phy_chan) {
  1905. chan_err(chan, "Cannot prepare unallocated channel\n");
  1906. return NULL;
  1907. }
  1908. spin_lock_irqsave(&chan->lock, flags);
  1909. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1910. if (desc == NULL)
  1911. goto err;
  1912. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1913. desc->cyclic = true;
  1914. if (direction != DMA_TRANS_NONE) {
  1915. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1916. if (direction == DMA_DEV_TO_MEM)
  1917. src_dev_addr = dev_addr;
  1918. else if (direction == DMA_MEM_TO_DEV)
  1919. dst_dev_addr = dev_addr;
  1920. }
  1921. if (chan_is_logical(chan))
  1922. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1923. sg_len, src_dev_addr, dst_dev_addr);
  1924. else
  1925. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1926. sg_len, src_dev_addr, dst_dev_addr);
  1927. if (ret) {
  1928. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1929. chan_is_logical(chan) ? "log" : "phy", ret);
  1930. goto err;
  1931. }
  1932. /*
  1933. * add descriptor to the prepare queue in order to be able
  1934. * to free them later in terminate_all
  1935. */
  1936. list_add_tail(&desc->node, &chan->prepare_queue);
  1937. spin_unlock_irqrestore(&chan->lock, flags);
  1938. return &desc->txd;
  1939. err:
  1940. if (desc)
  1941. d40_desc_free(chan, desc);
  1942. spin_unlock_irqrestore(&chan->lock, flags);
  1943. return NULL;
  1944. }
  1945. bool stedma40_filter(struct dma_chan *chan, void *data)
  1946. {
  1947. struct stedma40_chan_cfg *info = data;
  1948. struct d40_chan *d40c =
  1949. container_of(chan, struct d40_chan, chan);
  1950. int err;
  1951. if (data) {
  1952. err = d40_validate_conf(d40c, info);
  1953. if (!err)
  1954. d40c->dma_cfg = *info;
  1955. } else
  1956. err = d40_config_memcpy(d40c);
  1957. if (!err)
  1958. d40c->configured = true;
  1959. return err == 0;
  1960. }
  1961. EXPORT_SYMBOL(stedma40_filter);
  1962. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1963. {
  1964. bool realtime = d40c->dma_cfg.realtime;
  1965. bool highprio = d40c->dma_cfg.high_priority;
  1966. u32 rtreg;
  1967. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1968. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1969. u32 bit = 1 << event;
  1970. u32 prioreg;
  1971. struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
  1972. rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
  1973. /*
  1974. * Due to a hardware bug, in some cases a logical channel triggered by
  1975. * a high priority destination event line can generate extra packet
  1976. * transactions.
  1977. *
  1978. * The workaround is to not set the high priority level for the
  1979. * destination event lines that trigger logical channels.
  1980. */
  1981. if (!src && chan_is_logical(d40c))
  1982. highprio = false;
  1983. prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
  1984. /* Destination event lines are stored in the upper halfword */
  1985. if (!src)
  1986. bit <<= 16;
  1987. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  1988. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  1989. }
  1990. static void d40_set_prio_realtime(struct d40_chan *d40c)
  1991. {
  1992. if (d40c->base->rev < 3)
  1993. return;
  1994. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1995. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1996. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  1997. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  1998. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  1999. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  2000. }
  2001. /* DMA ENGINE functions */
  2002. static int d40_alloc_chan_resources(struct dma_chan *chan)
  2003. {
  2004. int err;
  2005. unsigned long flags;
  2006. struct d40_chan *d40c =
  2007. container_of(chan, struct d40_chan, chan);
  2008. bool is_free_phy;
  2009. spin_lock_irqsave(&d40c->lock, flags);
  2010. dma_cookie_init(chan);
  2011. /* If no dma configuration is set use default configuration (memcpy) */
  2012. if (!d40c->configured) {
  2013. err = d40_config_memcpy(d40c);
  2014. if (err) {
  2015. chan_err(d40c, "Failed to configure memcpy channel\n");
  2016. goto fail;
  2017. }
  2018. }
  2019. err = d40_allocate_channel(d40c, &is_free_phy);
  2020. if (err) {
  2021. chan_err(d40c, "Failed to allocate channel\n");
  2022. d40c->configured = false;
  2023. goto fail;
  2024. }
  2025. pm_runtime_get_sync(d40c->base->dev);
  2026. /* Fill in basic CFG register values */
  2027. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  2028. &d40c->dst_def_cfg, chan_is_logical(d40c));
  2029. d40_set_prio_realtime(d40c);
  2030. if (chan_is_logical(d40c)) {
  2031. d40_log_cfg(&d40c->dma_cfg,
  2032. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2033. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  2034. d40c->lcpa = d40c->base->lcpa_base +
  2035. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  2036. else
  2037. d40c->lcpa = d40c->base->lcpa_base +
  2038. d40c->dma_cfg.dst_dev_type *
  2039. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  2040. }
  2041. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  2042. chan_is_logical(d40c) ? "logical" : "physical",
  2043. d40c->phy_chan->num,
  2044. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  2045. /*
  2046. * Only write channel configuration to the DMA if the physical
  2047. * resource is free. In case of multiple logical channels
  2048. * on the same physical resource, only the first write is necessary.
  2049. */
  2050. if (is_free_phy)
  2051. d40_config_write(d40c);
  2052. fail:
  2053. pm_runtime_mark_last_busy(d40c->base->dev);
  2054. pm_runtime_put_autosuspend(d40c->base->dev);
  2055. spin_unlock_irqrestore(&d40c->lock, flags);
  2056. return err;
  2057. }
  2058. static void d40_free_chan_resources(struct dma_chan *chan)
  2059. {
  2060. struct d40_chan *d40c =
  2061. container_of(chan, struct d40_chan, chan);
  2062. int err;
  2063. unsigned long flags;
  2064. if (d40c->phy_chan == NULL) {
  2065. chan_err(d40c, "Cannot free unallocated channel\n");
  2066. return;
  2067. }
  2068. spin_lock_irqsave(&d40c->lock, flags);
  2069. err = d40_free_dma(d40c);
  2070. if (err)
  2071. chan_err(d40c, "Failed to free channel\n");
  2072. spin_unlock_irqrestore(&d40c->lock, flags);
  2073. }
  2074. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  2075. dma_addr_t dst,
  2076. dma_addr_t src,
  2077. size_t size,
  2078. unsigned long dma_flags)
  2079. {
  2080. struct scatterlist dst_sg;
  2081. struct scatterlist src_sg;
  2082. sg_init_table(&dst_sg, 1);
  2083. sg_init_table(&src_sg, 1);
  2084. sg_dma_address(&dst_sg) = dst;
  2085. sg_dma_address(&src_sg) = src;
  2086. sg_dma_len(&dst_sg) = size;
  2087. sg_dma_len(&src_sg) = size;
  2088. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  2089. }
  2090. static struct dma_async_tx_descriptor *
  2091. d40_prep_memcpy_sg(struct dma_chan *chan,
  2092. struct scatterlist *dst_sg, unsigned int dst_nents,
  2093. struct scatterlist *src_sg, unsigned int src_nents,
  2094. unsigned long dma_flags)
  2095. {
  2096. if (dst_nents != src_nents)
  2097. return NULL;
  2098. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  2099. }
  2100. static struct dma_async_tx_descriptor *
  2101. d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2102. unsigned int sg_len, enum dma_transfer_direction direction,
  2103. unsigned long dma_flags, void *context)
  2104. {
  2105. if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
  2106. return NULL;
  2107. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  2108. }
  2109. static struct dma_async_tx_descriptor *
  2110. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  2111. size_t buf_len, size_t period_len,
  2112. enum dma_transfer_direction direction, unsigned long flags,
  2113. void *context)
  2114. {
  2115. unsigned int periods = buf_len / period_len;
  2116. struct dma_async_tx_descriptor *txd;
  2117. struct scatterlist *sg;
  2118. int i;
  2119. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  2120. for (i = 0; i < periods; i++) {
  2121. sg_dma_address(&sg[i]) = dma_addr;
  2122. sg_dma_len(&sg[i]) = period_len;
  2123. dma_addr += period_len;
  2124. }
  2125. sg[periods].offset = 0;
  2126. sg_dma_len(&sg[periods]) = 0;
  2127. sg[periods].page_link =
  2128. ((unsigned long)sg | 0x01) & ~0x02;
  2129. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  2130. DMA_PREP_INTERRUPT);
  2131. kfree(sg);
  2132. return txd;
  2133. }
  2134. static enum dma_status d40_tx_status(struct dma_chan *chan,
  2135. dma_cookie_t cookie,
  2136. struct dma_tx_state *txstate)
  2137. {
  2138. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2139. enum dma_status ret;
  2140. if (d40c->phy_chan == NULL) {
  2141. chan_err(d40c, "Cannot read status of unallocated channel\n");
  2142. return -EINVAL;
  2143. }
  2144. ret = dma_cookie_status(chan, cookie, txstate);
  2145. if (ret != DMA_SUCCESS)
  2146. dma_set_residue(txstate, stedma40_residue(chan));
  2147. if (d40_is_paused(d40c))
  2148. ret = DMA_PAUSED;
  2149. return ret;
  2150. }
  2151. static void d40_issue_pending(struct dma_chan *chan)
  2152. {
  2153. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2154. unsigned long flags;
  2155. if (d40c->phy_chan == NULL) {
  2156. chan_err(d40c, "Channel is not allocated!\n");
  2157. return;
  2158. }
  2159. spin_lock_irqsave(&d40c->lock, flags);
  2160. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  2161. /* Busy means that queued jobs are already being processed */
  2162. if (!d40c->busy)
  2163. (void) d40_queue_start(d40c);
  2164. spin_unlock_irqrestore(&d40c->lock, flags);
  2165. }
  2166. static void d40_terminate_all(struct dma_chan *chan)
  2167. {
  2168. unsigned long flags;
  2169. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2170. int ret;
  2171. spin_lock_irqsave(&d40c->lock, flags);
  2172. pm_runtime_get_sync(d40c->base->dev);
  2173. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2174. if (ret)
  2175. chan_err(d40c, "Failed to stop channel\n");
  2176. d40_term_all(d40c);
  2177. pm_runtime_mark_last_busy(d40c->base->dev);
  2178. pm_runtime_put_autosuspend(d40c->base->dev);
  2179. if (d40c->busy) {
  2180. pm_runtime_mark_last_busy(d40c->base->dev);
  2181. pm_runtime_put_autosuspend(d40c->base->dev);
  2182. }
  2183. d40c->busy = false;
  2184. spin_unlock_irqrestore(&d40c->lock, flags);
  2185. }
  2186. static int
  2187. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2188. struct stedma40_half_channel_info *info,
  2189. enum dma_slave_buswidth width,
  2190. u32 maxburst)
  2191. {
  2192. enum stedma40_periph_data_width addr_width;
  2193. int psize;
  2194. switch (width) {
  2195. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2196. addr_width = STEDMA40_BYTE_WIDTH;
  2197. break;
  2198. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2199. addr_width = STEDMA40_HALFWORD_WIDTH;
  2200. break;
  2201. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2202. addr_width = STEDMA40_WORD_WIDTH;
  2203. break;
  2204. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2205. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  2206. break;
  2207. default:
  2208. dev_err(d40c->base->dev,
  2209. "illegal peripheral address width "
  2210. "requested (%d)\n",
  2211. width);
  2212. return -EINVAL;
  2213. }
  2214. if (chan_is_logical(d40c)) {
  2215. if (maxburst >= 16)
  2216. psize = STEDMA40_PSIZE_LOG_16;
  2217. else if (maxburst >= 8)
  2218. psize = STEDMA40_PSIZE_LOG_8;
  2219. else if (maxburst >= 4)
  2220. psize = STEDMA40_PSIZE_LOG_4;
  2221. else
  2222. psize = STEDMA40_PSIZE_LOG_1;
  2223. } else {
  2224. if (maxburst >= 16)
  2225. psize = STEDMA40_PSIZE_PHY_16;
  2226. else if (maxburst >= 8)
  2227. psize = STEDMA40_PSIZE_PHY_8;
  2228. else if (maxburst >= 4)
  2229. psize = STEDMA40_PSIZE_PHY_4;
  2230. else
  2231. psize = STEDMA40_PSIZE_PHY_1;
  2232. }
  2233. info->data_width = addr_width;
  2234. info->psize = psize;
  2235. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2236. return 0;
  2237. }
  2238. /* Runtime reconfiguration extension */
  2239. static int d40_set_runtime_config(struct dma_chan *chan,
  2240. struct dma_slave_config *config)
  2241. {
  2242. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2243. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2244. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2245. dma_addr_t config_addr;
  2246. u32 src_maxburst, dst_maxburst;
  2247. int ret;
  2248. src_addr_width = config->src_addr_width;
  2249. src_maxburst = config->src_maxburst;
  2250. dst_addr_width = config->dst_addr_width;
  2251. dst_maxburst = config->dst_maxburst;
  2252. if (config->direction == DMA_DEV_TO_MEM) {
  2253. dma_addr_t dev_addr_rx =
  2254. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2255. config_addr = config->src_addr;
  2256. if (dev_addr_rx)
  2257. dev_dbg(d40c->base->dev,
  2258. "channel has a pre-wired RX address %08x "
  2259. "overriding with %08x\n",
  2260. dev_addr_rx, config_addr);
  2261. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2262. dev_dbg(d40c->base->dev,
  2263. "channel was not configured for peripheral "
  2264. "to memory transfer (%d) overriding\n",
  2265. cfg->dir);
  2266. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2267. /* Configure the memory side */
  2268. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2269. dst_addr_width = src_addr_width;
  2270. if (dst_maxburst == 0)
  2271. dst_maxburst = src_maxburst;
  2272. } else if (config->direction == DMA_MEM_TO_DEV) {
  2273. dma_addr_t dev_addr_tx =
  2274. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2275. config_addr = config->dst_addr;
  2276. if (dev_addr_tx)
  2277. dev_dbg(d40c->base->dev,
  2278. "channel has a pre-wired TX address %08x "
  2279. "overriding with %08x\n",
  2280. dev_addr_tx, config_addr);
  2281. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2282. dev_dbg(d40c->base->dev,
  2283. "channel was not configured for memory "
  2284. "to peripheral transfer (%d) overriding\n",
  2285. cfg->dir);
  2286. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2287. /* Configure the memory side */
  2288. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2289. src_addr_width = dst_addr_width;
  2290. if (src_maxburst == 0)
  2291. src_maxburst = dst_maxburst;
  2292. } else {
  2293. dev_err(d40c->base->dev,
  2294. "unrecognized channel direction %d\n",
  2295. config->direction);
  2296. return -EINVAL;
  2297. }
  2298. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2299. dev_err(d40c->base->dev,
  2300. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2301. src_maxburst,
  2302. src_addr_width,
  2303. dst_maxburst,
  2304. dst_addr_width);
  2305. return -EINVAL;
  2306. }
  2307. if (src_maxburst > 16) {
  2308. src_maxburst = 16;
  2309. dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
  2310. } else if (dst_maxburst > 16) {
  2311. dst_maxburst = 16;
  2312. src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
  2313. }
  2314. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2315. src_addr_width,
  2316. src_maxburst);
  2317. if (ret)
  2318. return ret;
  2319. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2320. dst_addr_width,
  2321. dst_maxburst);
  2322. if (ret)
  2323. return ret;
  2324. /* Fill in register values */
  2325. if (chan_is_logical(d40c))
  2326. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2327. else
  2328. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2329. &d40c->dst_def_cfg, false);
  2330. /* These settings will take precedence later */
  2331. d40c->runtime_addr = config_addr;
  2332. d40c->runtime_direction = config->direction;
  2333. dev_dbg(d40c->base->dev,
  2334. "configured channel %s for %s, data width %d/%d, "
  2335. "maxburst %d/%d elements, LE, no flow control\n",
  2336. dma_chan_name(chan),
  2337. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2338. src_addr_width, dst_addr_width,
  2339. src_maxburst, dst_maxburst);
  2340. return 0;
  2341. }
  2342. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2343. unsigned long arg)
  2344. {
  2345. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2346. if (d40c->phy_chan == NULL) {
  2347. chan_err(d40c, "Channel is not allocated!\n");
  2348. return -EINVAL;
  2349. }
  2350. switch (cmd) {
  2351. case DMA_TERMINATE_ALL:
  2352. d40_terminate_all(chan);
  2353. return 0;
  2354. case DMA_PAUSE:
  2355. return d40_pause(d40c);
  2356. case DMA_RESUME:
  2357. return d40_resume(d40c);
  2358. case DMA_SLAVE_CONFIG:
  2359. return d40_set_runtime_config(chan,
  2360. (struct dma_slave_config *) arg);
  2361. default:
  2362. break;
  2363. }
  2364. /* Other commands are unimplemented */
  2365. return -ENXIO;
  2366. }
  2367. /* Initialization functions */
  2368. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2369. struct d40_chan *chans, int offset,
  2370. int num_chans)
  2371. {
  2372. int i = 0;
  2373. struct d40_chan *d40c;
  2374. INIT_LIST_HEAD(&dma->channels);
  2375. for (i = offset; i < offset + num_chans; i++) {
  2376. d40c = &chans[i];
  2377. d40c->base = base;
  2378. d40c->chan.device = dma;
  2379. spin_lock_init(&d40c->lock);
  2380. d40c->log_num = D40_PHY_CHAN;
  2381. INIT_LIST_HEAD(&d40c->done);
  2382. INIT_LIST_HEAD(&d40c->active);
  2383. INIT_LIST_HEAD(&d40c->queue);
  2384. INIT_LIST_HEAD(&d40c->pending_queue);
  2385. INIT_LIST_HEAD(&d40c->client);
  2386. INIT_LIST_HEAD(&d40c->prepare_queue);
  2387. tasklet_init(&d40c->tasklet, dma_tasklet,
  2388. (unsigned long) d40c);
  2389. list_add_tail(&d40c->chan.device_node,
  2390. &dma->channels);
  2391. }
  2392. }
  2393. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2394. {
  2395. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2396. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2397. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2398. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2399. /*
  2400. * This controller can only access address at even
  2401. * 32bit boundaries, i.e. 2^2
  2402. */
  2403. dev->copy_align = 2;
  2404. }
  2405. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2406. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2407. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2408. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2409. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2410. dev->device_free_chan_resources = d40_free_chan_resources;
  2411. dev->device_issue_pending = d40_issue_pending;
  2412. dev->device_tx_status = d40_tx_status;
  2413. dev->device_control = d40_control;
  2414. dev->dev = base->dev;
  2415. }
  2416. static int __init d40_dmaengine_init(struct d40_base *base,
  2417. int num_reserved_chans)
  2418. {
  2419. int err ;
  2420. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2421. 0, base->num_log_chans);
  2422. dma_cap_zero(base->dma_slave.cap_mask);
  2423. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2424. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2425. d40_ops_init(base, &base->dma_slave);
  2426. err = dma_async_device_register(&base->dma_slave);
  2427. if (err) {
  2428. d40_err(base->dev, "Failed to register slave channels\n");
  2429. goto failure1;
  2430. }
  2431. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2432. base->num_log_chans, base->plat_data->memcpy_len);
  2433. dma_cap_zero(base->dma_memcpy.cap_mask);
  2434. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2435. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2436. d40_ops_init(base, &base->dma_memcpy);
  2437. err = dma_async_device_register(&base->dma_memcpy);
  2438. if (err) {
  2439. d40_err(base->dev,
  2440. "Failed to regsiter memcpy only channels\n");
  2441. goto failure2;
  2442. }
  2443. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2444. 0, num_reserved_chans);
  2445. dma_cap_zero(base->dma_both.cap_mask);
  2446. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2447. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2448. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2449. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2450. d40_ops_init(base, &base->dma_both);
  2451. err = dma_async_device_register(&base->dma_both);
  2452. if (err) {
  2453. d40_err(base->dev,
  2454. "Failed to register logical and physical capable channels\n");
  2455. goto failure3;
  2456. }
  2457. return 0;
  2458. failure3:
  2459. dma_async_device_unregister(&base->dma_memcpy);
  2460. failure2:
  2461. dma_async_device_unregister(&base->dma_slave);
  2462. failure1:
  2463. return err;
  2464. }
  2465. /* Suspend resume functionality */
  2466. #ifdef CONFIG_PM
  2467. static int dma40_pm_suspend(struct device *dev)
  2468. {
  2469. struct platform_device *pdev = to_platform_device(dev);
  2470. struct d40_base *base = platform_get_drvdata(pdev);
  2471. int ret = 0;
  2472. if (base->lcpa_regulator)
  2473. ret = regulator_disable(base->lcpa_regulator);
  2474. return ret;
  2475. }
  2476. static int dma40_runtime_suspend(struct device *dev)
  2477. {
  2478. struct platform_device *pdev = to_platform_device(dev);
  2479. struct d40_base *base = platform_get_drvdata(pdev);
  2480. d40_save_restore_registers(base, true);
  2481. /* Don't disable/enable clocks for v1 due to HW bugs */
  2482. if (base->rev != 1)
  2483. writel_relaxed(base->gcc_pwr_off_mask,
  2484. base->virtbase + D40_DREG_GCC);
  2485. return 0;
  2486. }
  2487. static int dma40_runtime_resume(struct device *dev)
  2488. {
  2489. struct platform_device *pdev = to_platform_device(dev);
  2490. struct d40_base *base = platform_get_drvdata(pdev);
  2491. if (base->initialized)
  2492. d40_save_restore_registers(base, false);
  2493. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2494. base->virtbase + D40_DREG_GCC);
  2495. return 0;
  2496. }
  2497. static int dma40_resume(struct device *dev)
  2498. {
  2499. struct platform_device *pdev = to_platform_device(dev);
  2500. struct d40_base *base = platform_get_drvdata(pdev);
  2501. int ret = 0;
  2502. if (base->lcpa_regulator)
  2503. ret = regulator_enable(base->lcpa_regulator);
  2504. return ret;
  2505. }
  2506. static const struct dev_pm_ops dma40_pm_ops = {
  2507. .suspend = dma40_pm_suspend,
  2508. .runtime_suspend = dma40_runtime_suspend,
  2509. .runtime_resume = dma40_runtime_resume,
  2510. .resume = dma40_resume,
  2511. };
  2512. #define DMA40_PM_OPS (&dma40_pm_ops)
  2513. #else
  2514. #define DMA40_PM_OPS NULL
  2515. #endif
  2516. /* Initialization functions. */
  2517. static int __init d40_phy_res_init(struct d40_base *base)
  2518. {
  2519. int i;
  2520. int num_phy_chans_avail = 0;
  2521. u32 val[2];
  2522. int odd_even_bit = -2;
  2523. int gcc = D40_DREG_GCC_ENA;
  2524. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2525. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2526. for (i = 0; i < base->num_phy_chans; i++) {
  2527. base->phy_res[i].num = i;
  2528. odd_even_bit += 2 * ((i % 2) == 0);
  2529. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2530. /* Mark security only channels as occupied */
  2531. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2532. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2533. base->phy_res[i].reserved = true;
  2534. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2535. D40_DREG_GCC_SRC);
  2536. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2537. D40_DREG_GCC_DST);
  2538. } else {
  2539. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2540. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2541. base->phy_res[i].reserved = false;
  2542. num_phy_chans_avail++;
  2543. }
  2544. spin_lock_init(&base->phy_res[i].lock);
  2545. }
  2546. /* Mark disabled channels as occupied */
  2547. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2548. int chan = base->plat_data->disabled_channels[i];
  2549. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2550. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2551. base->phy_res[chan].reserved = true;
  2552. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2553. D40_DREG_GCC_SRC);
  2554. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2555. D40_DREG_GCC_DST);
  2556. num_phy_chans_avail--;
  2557. }
  2558. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2559. num_phy_chans_avail, base->num_phy_chans);
  2560. /* Verify settings extended vs standard */
  2561. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2562. for (i = 0; i < base->num_phy_chans; i++) {
  2563. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2564. (val[0] & 0x3) != 1)
  2565. dev_info(base->dev,
  2566. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2567. __func__, i, val[0] & 0x3);
  2568. val[0] = val[0] >> 2;
  2569. }
  2570. /*
  2571. * To keep things simple, Enable all clocks initially.
  2572. * The clocks will get managed later post channel allocation.
  2573. * The clocks for the event lines on which reserved channels exists
  2574. * are not managed here.
  2575. */
  2576. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2577. base->gcc_pwr_off_mask = gcc;
  2578. return num_phy_chans_avail;
  2579. }
  2580. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2581. {
  2582. struct stedma40_platform_data *plat_data;
  2583. struct clk *clk = NULL;
  2584. void __iomem *virtbase = NULL;
  2585. struct resource *res = NULL;
  2586. struct d40_base *base = NULL;
  2587. int num_log_chans = 0;
  2588. int num_phy_chans;
  2589. int clk_ret = -EINVAL;
  2590. int i;
  2591. u32 pid;
  2592. u32 cid;
  2593. u8 rev;
  2594. clk = clk_get(&pdev->dev, NULL);
  2595. if (IS_ERR(clk)) {
  2596. d40_err(&pdev->dev, "No matching clock found\n");
  2597. goto failure;
  2598. }
  2599. clk_ret = clk_prepare_enable(clk);
  2600. if (clk_ret) {
  2601. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2602. goto failure;
  2603. }
  2604. /* Get IO for DMAC base address */
  2605. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2606. if (!res)
  2607. goto failure;
  2608. if (request_mem_region(res->start, resource_size(res),
  2609. D40_NAME " I/O base") == NULL)
  2610. goto failure;
  2611. virtbase = ioremap(res->start, resource_size(res));
  2612. if (!virtbase)
  2613. goto failure;
  2614. /* This is just a regular AMBA PrimeCell ID actually */
  2615. for (pid = 0, i = 0; i < 4; i++)
  2616. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2617. & 255) << (i * 8);
  2618. for (cid = 0, i = 0; i < 4; i++)
  2619. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2620. & 255) << (i * 8);
  2621. if (cid != AMBA_CID) {
  2622. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2623. goto failure;
  2624. }
  2625. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2626. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2627. AMBA_MANF_BITS(pid),
  2628. AMBA_VENDOR_ST);
  2629. goto failure;
  2630. }
  2631. /*
  2632. * HW revision:
  2633. * DB8500ed has revision 0
  2634. * ? has revision 1
  2635. * DB8500v1 has revision 2
  2636. * DB8500v2 has revision 3
  2637. * AP9540v1 has revision 4
  2638. * DB8540v1 has revision 4
  2639. */
  2640. rev = AMBA_REV_BITS(pid);
  2641. plat_data = pdev->dev.platform_data;
  2642. /* The number of physical channels on this HW */
  2643. if (plat_data->num_of_phy_chans)
  2644. num_phy_chans = plat_data->num_of_phy_chans;
  2645. else
  2646. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2647. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
  2648. rev, res->start, num_phy_chans);
  2649. if (rev < 2) {
  2650. d40_err(&pdev->dev, "hardware revision: %d is not supported",
  2651. rev);
  2652. goto failure;
  2653. }
  2654. /* Count the number of logical channels in use */
  2655. for (i = 0; i < plat_data->dev_len; i++)
  2656. if (plat_data->dev_rx[i] != 0)
  2657. num_log_chans++;
  2658. for (i = 0; i < plat_data->dev_len; i++)
  2659. if (plat_data->dev_tx[i] != 0)
  2660. num_log_chans++;
  2661. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2662. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2663. sizeof(struct d40_chan), GFP_KERNEL);
  2664. if (base == NULL) {
  2665. d40_err(&pdev->dev, "Out of memory\n");
  2666. goto failure;
  2667. }
  2668. base->rev = rev;
  2669. base->clk = clk;
  2670. base->num_phy_chans = num_phy_chans;
  2671. base->num_log_chans = num_log_chans;
  2672. base->phy_start = res->start;
  2673. base->phy_size = resource_size(res);
  2674. base->virtbase = virtbase;
  2675. base->plat_data = plat_data;
  2676. base->dev = &pdev->dev;
  2677. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2678. base->log_chans = &base->phy_chans[num_phy_chans];
  2679. if (base->plat_data->num_of_phy_chans == 14) {
  2680. base->gen_dmac.backup = d40_backup_regs_v4b;
  2681. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
  2682. base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
  2683. base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
  2684. base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
  2685. base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
  2686. base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
  2687. base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
  2688. base->gen_dmac.il = il_v4b;
  2689. base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
  2690. base->gen_dmac.init_reg = dma_init_reg_v4b;
  2691. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
  2692. } else {
  2693. if (base->rev >= 3) {
  2694. base->gen_dmac.backup = d40_backup_regs_v4a;
  2695. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
  2696. }
  2697. base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
  2698. base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
  2699. base->gen_dmac.realtime_en = D40_DREG_RSEG1;
  2700. base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
  2701. base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
  2702. base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
  2703. base->gen_dmac.il = il_v4a;
  2704. base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
  2705. base->gen_dmac.init_reg = dma_init_reg_v4a;
  2706. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
  2707. }
  2708. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2709. GFP_KERNEL);
  2710. if (!base->phy_res)
  2711. goto failure;
  2712. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2713. sizeof(struct d40_chan *),
  2714. GFP_KERNEL);
  2715. if (!base->lookup_phy_chans)
  2716. goto failure;
  2717. if (num_log_chans + plat_data->memcpy_len) {
  2718. /*
  2719. * The max number of logical channels are event lines for all
  2720. * src devices and dst devices
  2721. */
  2722. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2723. sizeof(struct d40_chan *),
  2724. GFP_KERNEL);
  2725. if (!base->lookup_log_chans)
  2726. goto failure;
  2727. }
  2728. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2729. sizeof(d40_backup_regs_chan),
  2730. GFP_KERNEL);
  2731. if (!base->reg_val_backup_chan)
  2732. goto failure;
  2733. base->lcla_pool.alloc_map =
  2734. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2735. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2736. if (!base->lcla_pool.alloc_map)
  2737. goto failure;
  2738. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2739. 0, SLAB_HWCACHE_ALIGN,
  2740. NULL);
  2741. if (base->desc_slab == NULL)
  2742. goto failure;
  2743. return base;
  2744. failure:
  2745. if (!clk_ret)
  2746. clk_disable_unprepare(clk);
  2747. if (!IS_ERR(clk))
  2748. clk_put(clk);
  2749. if (virtbase)
  2750. iounmap(virtbase);
  2751. if (res)
  2752. release_mem_region(res->start,
  2753. resource_size(res));
  2754. if (virtbase)
  2755. iounmap(virtbase);
  2756. if (base) {
  2757. kfree(base->lcla_pool.alloc_map);
  2758. kfree(base->reg_val_backup_chan);
  2759. kfree(base->lookup_log_chans);
  2760. kfree(base->lookup_phy_chans);
  2761. kfree(base->phy_res);
  2762. kfree(base);
  2763. }
  2764. return NULL;
  2765. }
  2766. static void __init d40_hw_init(struct d40_base *base)
  2767. {
  2768. int i;
  2769. u32 prmseo[2] = {0, 0};
  2770. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2771. u32 pcmis = 0;
  2772. u32 pcicr = 0;
  2773. struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
  2774. u32 reg_size = base->gen_dmac.init_reg_size;
  2775. for (i = 0; i < reg_size; i++)
  2776. writel(dma_init_reg[i].val,
  2777. base->virtbase + dma_init_reg[i].reg);
  2778. /* Configure all our dma channels to default settings */
  2779. for (i = 0; i < base->num_phy_chans; i++) {
  2780. activeo[i % 2] = activeo[i % 2] << 2;
  2781. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2782. == D40_ALLOC_PHY) {
  2783. activeo[i % 2] |= 3;
  2784. continue;
  2785. }
  2786. /* Enable interrupt # */
  2787. pcmis = (pcmis << 1) | 1;
  2788. /* Clear interrupt # */
  2789. pcicr = (pcicr << 1) | 1;
  2790. /* Set channel to physical mode */
  2791. prmseo[i % 2] = prmseo[i % 2] << 2;
  2792. prmseo[i % 2] |= 1;
  2793. }
  2794. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2795. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2796. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2797. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2798. /* Write which interrupt to enable */
  2799. writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
  2800. /* Write which interrupt to clear */
  2801. writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
  2802. /* These are __initdata and cannot be accessed after init */
  2803. base->gen_dmac.init_reg = NULL;
  2804. base->gen_dmac.init_reg_size = 0;
  2805. }
  2806. static int __init d40_lcla_allocate(struct d40_base *base)
  2807. {
  2808. struct d40_lcla_pool *pool = &base->lcla_pool;
  2809. unsigned long *page_list;
  2810. int i, j;
  2811. int ret = 0;
  2812. /*
  2813. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2814. * To full fill this hardware requirement without wasting 256 kb
  2815. * we allocate pages until we get an aligned one.
  2816. */
  2817. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2818. GFP_KERNEL);
  2819. if (!page_list) {
  2820. ret = -ENOMEM;
  2821. goto failure;
  2822. }
  2823. /* Calculating how many pages that are required */
  2824. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2825. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2826. page_list[i] = __get_free_pages(GFP_KERNEL,
  2827. base->lcla_pool.pages);
  2828. if (!page_list[i]) {
  2829. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2830. base->lcla_pool.pages);
  2831. for (j = 0; j < i; j++)
  2832. free_pages(page_list[j], base->lcla_pool.pages);
  2833. goto failure;
  2834. }
  2835. if ((virt_to_phys((void *)page_list[i]) &
  2836. (LCLA_ALIGNMENT - 1)) == 0)
  2837. break;
  2838. }
  2839. for (j = 0; j < i; j++)
  2840. free_pages(page_list[j], base->lcla_pool.pages);
  2841. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2842. base->lcla_pool.base = (void *)page_list[i];
  2843. } else {
  2844. /*
  2845. * After many attempts and no succees with finding the correct
  2846. * alignment, try with allocating a big buffer.
  2847. */
  2848. dev_warn(base->dev,
  2849. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2850. __func__, base->lcla_pool.pages);
  2851. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2852. base->num_phy_chans +
  2853. LCLA_ALIGNMENT,
  2854. GFP_KERNEL);
  2855. if (!base->lcla_pool.base_unaligned) {
  2856. ret = -ENOMEM;
  2857. goto failure;
  2858. }
  2859. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2860. LCLA_ALIGNMENT);
  2861. }
  2862. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2863. SZ_1K * base->num_phy_chans,
  2864. DMA_TO_DEVICE);
  2865. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2866. pool->dma_addr = 0;
  2867. ret = -ENOMEM;
  2868. goto failure;
  2869. }
  2870. writel(virt_to_phys(base->lcla_pool.base),
  2871. base->virtbase + D40_DREG_LCLA);
  2872. failure:
  2873. kfree(page_list);
  2874. return ret;
  2875. }
  2876. static int __init d40_probe(struct platform_device *pdev)
  2877. {
  2878. int err;
  2879. int ret = -ENOENT;
  2880. struct d40_base *base;
  2881. struct resource *res = NULL;
  2882. int num_reserved_chans;
  2883. u32 val;
  2884. base = d40_hw_detect_init(pdev);
  2885. if (!base)
  2886. goto failure;
  2887. num_reserved_chans = d40_phy_res_init(base);
  2888. platform_set_drvdata(pdev, base);
  2889. spin_lock_init(&base->interrupt_lock);
  2890. spin_lock_init(&base->execmd_lock);
  2891. /* Get IO for logical channel parameter address */
  2892. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2893. if (!res) {
  2894. ret = -ENOENT;
  2895. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2896. goto failure;
  2897. }
  2898. base->lcpa_size = resource_size(res);
  2899. base->phy_lcpa = res->start;
  2900. if (request_mem_region(res->start, resource_size(res),
  2901. D40_NAME " I/O lcpa") == NULL) {
  2902. ret = -EBUSY;
  2903. d40_err(&pdev->dev,
  2904. "Failed to request LCPA region 0x%x-0x%x\n",
  2905. res->start, res->end);
  2906. goto failure;
  2907. }
  2908. /* We make use of ESRAM memory for this. */
  2909. val = readl(base->virtbase + D40_DREG_LCPA);
  2910. if (res->start != val && val != 0) {
  2911. dev_warn(&pdev->dev,
  2912. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2913. __func__, val, res->start);
  2914. } else
  2915. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2916. base->lcpa_base = ioremap(res->start, resource_size(res));
  2917. if (!base->lcpa_base) {
  2918. ret = -ENOMEM;
  2919. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2920. goto failure;
  2921. }
  2922. /* If lcla has to be located in ESRAM we don't need to allocate */
  2923. if (base->plat_data->use_esram_lcla) {
  2924. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2925. "lcla_esram");
  2926. if (!res) {
  2927. ret = -ENOENT;
  2928. d40_err(&pdev->dev,
  2929. "No \"lcla_esram\" memory resource\n");
  2930. goto failure;
  2931. }
  2932. base->lcla_pool.base = ioremap(res->start,
  2933. resource_size(res));
  2934. if (!base->lcla_pool.base) {
  2935. ret = -ENOMEM;
  2936. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2937. goto failure;
  2938. }
  2939. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2940. } else {
  2941. ret = d40_lcla_allocate(base);
  2942. if (ret) {
  2943. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2944. goto failure;
  2945. }
  2946. }
  2947. spin_lock_init(&base->lcla_pool.lock);
  2948. base->irq = platform_get_irq(pdev, 0);
  2949. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2950. if (ret) {
  2951. d40_err(&pdev->dev, "No IRQ defined\n");
  2952. goto failure;
  2953. }
  2954. pm_runtime_irq_safe(base->dev);
  2955. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2956. pm_runtime_use_autosuspend(base->dev);
  2957. pm_runtime_enable(base->dev);
  2958. pm_runtime_resume(base->dev);
  2959. if (base->plat_data->use_esram_lcla) {
  2960. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2961. if (IS_ERR(base->lcpa_regulator)) {
  2962. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2963. base->lcpa_regulator = NULL;
  2964. goto failure;
  2965. }
  2966. ret = regulator_enable(base->lcpa_regulator);
  2967. if (ret) {
  2968. d40_err(&pdev->dev,
  2969. "Failed to enable lcpa_regulator\n");
  2970. regulator_put(base->lcpa_regulator);
  2971. base->lcpa_regulator = NULL;
  2972. goto failure;
  2973. }
  2974. }
  2975. base->initialized = true;
  2976. err = d40_dmaengine_init(base, num_reserved_chans);
  2977. if (err)
  2978. goto failure;
  2979. base->dev->dma_parms = &base->dma_parms;
  2980. err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
  2981. if (err) {
  2982. d40_err(&pdev->dev, "Failed to set dma max seg size\n");
  2983. goto failure;
  2984. }
  2985. d40_hw_init(base);
  2986. dev_info(base->dev, "initialized\n");
  2987. return 0;
  2988. failure:
  2989. if (base) {
  2990. if (base->desc_slab)
  2991. kmem_cache_destroy(base->desc_slab);
  2992. if (base->virtbase)
  2993. iounmap(base->virtbase);
  2994. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  2995. iounmap(base->lcla_pool.base);
  2996. base->lcla_pool.base = NULL;
  2997. }
  2998. if (base->lcla_pool.dma_addr)
  2999. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  3000. SZ_1K * base->num_phy_chans,
  3001. DMA_TO_DEVICE);
  3002. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  3003. free_pages((unsigned long)base->lcla_pool.base,
  3004. base->lcla_pool.pages);
  3005. kfree(base->lcla_pool.base_unaligned);
  3006. if (base->phy_lcpa)
  3007. release_mem_region(base->phy_lcpa,
  3008. base->lcpa_size);
  3009. if (base->phy_start)
  3010. release_mem_region(base->phy_start,
  3011. base->phy_size);
  3012. if (base->clk) {
  3013. clk_disable(base->clk);
  3014. clk_put(base->clk);
  3015. }
  3016. if (base->lcpa_regulator) {
  3017. regulator_disable(base->lcpa_regulator);
  3018. regulator_put(base->lcpa_regulator);
  3019. }
  3020. kfree(base->lcla_pool.alloc_map);
  3021. kfree(base->lookup_log_chans);
  3022. kfree(base->lookup_phy_chans);
  3023. kfree(base->phy_res);
  3024. kfree(base);
  3025. }
  3026. d40_err(&pdev->dev, "probe failed\n");
  3027. return ret;
  3028. }
  3029. static struct platform_driver d40_driver = {
  3030. .driver = {
  3031. .owner = THIS_MODULE,
  3032. .name = D40_NAME,
  3033. .pm = DMA40_PM_OPS,
  3034. },
  3035. };
  3036. static int __init stedma40_init(void)
  3037. {
  3038. return platform_driver_probe(&d40_driver, d40_probe);
  3039. }
  3040. subsys_initcall(stedma40_init);