1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027 |
- /*
- * Copyright (C) 1995 Linus Torvalds
- * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
- */
- #include <linux/signal.h>
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/errno.h>
- #include <linux/string.h>
- #include <linux/types.h>
- #include <linux/ptrace.h>
- #include <linux/mmiotrace.h>
- #include <linux/mman.h>
- #include <linux/mm.h>
- #include <linux/smp.h>
- #include <linux/interrupt.h>
- #include <linux/init.h>
- #include <linux/tty.h>
- #include <linux/vt_kern.h> /* For unblank_screen() */
- #include <linux/compiler.h>
- #include <linux/highmem.h>
- #include <linux/bootmem.h> /* for max_low_pfn */
- #include <linux/vmalloc.h>
- #include <linux/module.h>
- #include <linux/kprobes.h>
- #include <linux/uaccess.h>
- #include <linux/kdebug.h>
- #include <linux/magic.h>
- #include <asm/system.h>
- #include <asm/desc.h>
- #include <asm/segment.h>
- #include <asm/pgalloc.h>
- #include <asm/smp.h>
- #include <asm/tlbflush.h>
- #include <asm/proto.h>
- #include <asm-generic/sections.h>
- #include <asm/traps.h>
- /*
- * Page fault error code bits
- * bit 0 == 0 means no page found, 1 means protection fault
- * bit 1 == 0 means read, 1 means write
- * bit 2 == 0 means kernel, 1 means user-mode
- * bit 3 == 1 means use of reserved bit detected
- * bit 4 == 1 means fault was an instruction fetch
- */
- #define PF_PROT (1<<0)
- #define PF_WRITE (1<<1)
- #define PF_USER (1<<2)
- #define PF_RSVD (1<<3)
- #define PF_INSTR (1<<4)
- static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
- {
- #ifdef CONFIG_MMIOTRACE
- if (unlikely(is_kmmio_active()))
- if (kmmio_handler(regs, addr) == 1)
- return -1;
- #endif
- return 0;
- }
- static inline int notify_page_fault(struct pt_regs *regs)
- {
- #ifdef CONFIG_KPROBES
- int ret = 0;
- /* kprobe_running() needs smp_processor_id() */
- if (!user_mode_vm(regs)) {
- preempt_disable();
- if (kprobe_running() && kprobe_fault_handler(regs, 14))
- ret = 1;
- preempt_enable();
- }
- return ret;
- #else
- return 0;
- #endif
- }
- /*
- * X86_32
- * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
- * Check that here and ignore it.
- *
- * X86_64
- * Sometimes the CPU reports invalid exceptions on prefetch.
- * Check that here and ignore it.
- *
- * Opcode checker based on code by Richard Brunner
- */
- static int is_prefetch(struct pt_regs *regs, unsigned long error_code,
- unsigned long addr)
- {
- unsigned char *instr;
- int scan_more = 1;
- int prefetch = 0;
- unsigned char *max_instr;
- /*
- * If it was a exec (instruction fetch) fault on NX page, then
- * do not ignore the fault:
- */
- if (error_code & PF_INSTR)
- return 0;
- instr = (unsigned char *)convert_ip_to_linear(current, regs);
- max_instr = instr + 15;
- if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
- return 0;
- while (scan_more && instr < max_instr) {
- unsigned char opcode;
- unsigned char instr_hi;
- unsigned char instr_lo;
- if (probe_kernel_address(instr, opcode))
- break;
- instr_hi = opcode & 0xf0;
- instr_lo = opcode & 0x0f;
- instr++;
- switch (instr_hi) {
- case 0x20:
- case 0x30:
- /*
- * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
- * In X86_64 long mode, the CPU will signal invalid
- * opcode if some of these prefixes are present so
- * X86_64 will never get here anyway
- */
- scan_more = ((instr_lo & 7) == 0x6);
- break;
- #ifdef CONFIG_X86_64
- case 0x40:
- /*
- * In AMD64 long mode 0x40..0x4F are valid REX prefixes
- * Need to figure out under what instruction mode the
- * instruction was issued. Could check the LDT for lm,
- * but for now it's good enough to assume that long
- * mode only uses well known segments or kernel.
- */
- scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
- break;
- #endif
- case 0x60:
- /* 0x64 thru 0x67 are valid prefixes in all modes. */
- scan_more = (instr_lo & 0xC) == 0x4;
- break;
- case 0xF0:
- /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
- scan_more = !instr_lo || (instr_lo>>1) == 1;
- break;
- case 0x00:
- /* Prefetch instruction is 0x0F0D or 0x0F18 */
- scan_more = 0;
- if (probe_kernel_address(instr, opcode))
- break;
- prefetch = (instr_lo == 0xF) &&
- (opcode == 0x0D || opcode == 0x18);
- break;
- default:
- scan_more = 0;
- break;
- }
- }
- return prefetch;
- }
- static void force_sig_info_fault(int si_signo, int si_code,
- unsigned long address, struct task_struct *tsk)
- {
- siginfo_t info;
- info.si_signo = si_signo;
- info.si_errno = 0;
- info.si_code = si_code;
- info.si_addr = (void __user *)address;
- force_sig_info(si_signo, &info, tsk);
- }
- #ifdef CONFIG_X86_64
- static int bad_address(void *p)
- {
- unsigned long dummy;
- return probe_kernel_address((unsigned long *)p, dummy);
- }
- #endif
- static void dump_pagetable(unsigned long address)
- {
- #ifdef CONFIG_X86_32
- __typeof__(pte_val(__pte(0))) page;
- page = read_cr3();
- page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
- #ifdef CONFIG_X86_PAE
- printk("*pdpt = %016Lx ", page);
- if ((page >> PAGE_SHIFT) < max_low_pfn
- && page & _PAGE_PRESENT) {
- page &= PAGE_MASK;
- page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
- & (PTRS_PER_PMD - 1)];
- printk(KERN_CONT "*pde = %016Lx ", page);
- page &= ~_PAGE_NX;
- }
- #else
- printk("*pde = %08lx ", page);
- #endif
- /*
- * We must not directly access the pte in the highpte
- * case if the page table is located in highmem.
- * And let's rather not kmap-atomic the pte, just in case
- * it's allocated already.
- */
- if ((page >> PAGE_SHIFT) < max_low_pfn
- && (page & _PAGE_PRESENT)
- && !(page & _PAGE_PSE)) {
- page &= PAGE_MASK;
- page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
- & (PTRS_PER_PTE - 1)];
- printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
- }
- printk("\n");
- #else /* CONFIG_X86_64 */
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- pgd = (pgd_t *)read_cr3();
- pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
- pgd += pgd_index(address);
- if (bad_address(pgd)) goto bad;
- printk("PGD %lx ", pgd_val(*pgd));
- if (!pgd_present(*pgd)) goto ret;
- pud = pud_offset(pgd, address);
- if (bad_address(pud)) goto bad;
- printk("PUD %lx ", pud_val(*pud));
- if (!pud_present(*pud) || pud_large(*pud))
- goto ret;
- pmd = pmd_offset(pud, address);
- if (bad_address(pmd)) goto bad;
- printk("PMD %lx ", pmd_val(*pmd));
- if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
- pte = pte_offset_kernel(pmd, address);
- if (bad_address(pte)) goto bad;
- printk("PTE %lx", pte_val(*pte));
- ret:
- printk("\n");
- return;
- bad:
- printk("BAD\n");
- #endif
- }
- #ifdef CONFIG_X86_32
- static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
- {
- unsigned index = pgd_index(address);
- pgd_t *pgd_k;
- pud_t *pud, *pud_k;
- pmd_t *pmd, *pmd_k;
- pgd += index;
- pgd_k = init_mm.pgd + index;
- if (!pgd_present(*pgd_k))
- return NULL;
- /*
- * set_pgd(pgd, *pgd_k); here would be useless on PAE
- * and redundant with the set_pmd() on non-PAE. As would
- * set_pud.
- */
- pud = pud_offset(pgd, address);
- pud_k = pud_offset(pgd_k, address);
- if (!pud_present(*pud_k))
- return NULL;
- pmd = pmd_offset(pud, address);
- pmd_k = pmd_offset(pud_k, address);
- if (!pmd_present(*pmd_k))
- return NULL;
- if (!pmd_present(*pmd)) {
- set_pmd(pmd, *pmd_k);
- arch_flush_lazy_mmu_mode();
- } else
- BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
- return pmd_k;
- }
- #endif
- #ifdef CONFIG_X86_64
- static const char errata93_warning[] =
- KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
- KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
- KERN_ERR "******* Please consider a BIOS update.\n"
- KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
- #endif
- /* Workaround for K8 erratum #93 & buggy BIOS.
- BIOS SMM functions are required to use a specific workaround
- to avoid corruption of the 64bit RIP register on C stepping K8.
- A lot of BIOS that didn't get tested properly miss this.
- The OS sees this as a page fault with the upper 32bits of RIP cleared.
- Try to work around it here.
- Note we only handle faults in kernel here.
- Does nothing for X86_32
- */
- static int is_errata93(struct pt_regs *regs, unsigned long address)
- {
- #ifdef CONFIG_X86_64
- static int warned;
- if (address != regs->ip)
- return 0;
- if ((address >> 32) != 0)
- return 0;
- address |= 0xffffffffUL << 32;
- if ((address >= (u64)_stext && address <= (u64)_etext) ||
- (address >= MODULES_VADDR && address <= MODULES_END)) {
- if (!warned) {
- printk(errata93_warning);
- warned = 1;
- }
- regs->ip = address;
- return 1;
- }
- #endif
- return 0;
- }
- /*
- * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
- * addresses >4GB. We catch this in the page fault handler because these
- * addresses are not reachable. Just detect this case and return. Any code
- * segment in LDT is compatibility mode.
- */
- static int is_errata100(struct pt_regs *regs, unsigned long address)
- {
- #ifdef CONFIG_X86_64
- if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
- (address >> 32))
- return 1;
- #endif
- return 0;
- }
- static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
- {
- #ifdef CONFIG_X86_F00F_BUG
- unsigned long nr;
- /*
- * Pentium F0 0F C7 C8 bug workaround.
- */
- if (boot_cpu_data.f00f_bug) {
- nr = (address - idt_descr.address) >> 3;
- if (nr == 6) {
- do_invalid_op(regs, 0);
- return 1;
- }
- }
- #endif
- return 0;
- }
- static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
- unsigned long address)
- {
- #ifdef CONFIG_X86_32
- if (!oops_may_print())
- return;
- #endif
- #ifdef CONFIG_X86_PAE
- if (error_code & PF_INSTR) {
- unsigned int level;
- pte_t *pte = lookup_address(address, &level);
- if (pte && pte_present(*pte) && !pte_exec(*pte))
- printk(KERN_CRIT "kernel tried to execute "
- "NX-protected page - exploit attempt? "
- "(uid: %d)\n", current_uid());
- }
- #endif
- printk(KERN_ALERT "BUG: unable to handle kernel ");
- if (address < PAGE_SIZE)
- printk(KERN_CONT "NULL pointer dereference");
- else
- printk(KERN_CONT "paging request");
- printk(KERN_CONT " at %p\n", (void *) address);
- printk(KERN_ALERT "IP:");
- printk_address(regs->ip, 1);
- dump_pagetable(address);
- }
- #ifdef CONFIG_X86_64
- static noinline void pgtable_bad(struct pt_regs *regs,
- unsigned long error_code, unsigned long address)
- {
- unsigned long flags = oops_begin();
- int sig = SIGKILL;
- struct task_struct *tsk = current;
- printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
- tsk->comm, address);
- dump_pagetable(address);
- tsk->thread.cr2 = address;
- tsk->thread.trap_no = 14;
- tsk->thread.error_code = error_code;
- if (__die("Bad pagetable", regs, error_code))
- sig = 0;
- oops_end(flags, regs, sig);
- }
- #endif
- static noinline void no_context(struct pt_regs *regs,
- unsigned long error_code, unsigned long address)
- {
- struct task_struct *tsk = current;
- unsigned long *stackend;
- #ifdef CONFIG_X86_64
- unsigned long flags;
- int sig;
- #endif
- /* Are we prepared to handle this kernel fault? */
- if (fixup_exception(regs))
- return;
- /*
- * X86_32
- * Valid to do another page fault here, because if this fault
- * had been triggered by is_prefetch fixup_exception would have
- * handled it.
- *
- * X86_64
- * Hall of shame of CPU/BIOS bugs.
- */
- if (is_prefetch(regs, error_code, address))
- return;
- if (is_errata93(regs, address))
- return;
- /*
- * Oops. The kernel tried to access some bad page. We'll have to
- * terminate things with extreme prejudice.
- */
- #ifdef CONFIG_X86_32
- bust_spinlocks(1);
- #else
- flags = oops_begin();
- #endif
- show_fault_oops(regs, error_code, address);
- stackend = end_of_stack(tsk);
- if (*stackend != STACK_END_MAGIC)
- printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
- tsk->thread.cr2 = address;
- tsk->thread.trap_no = 14;
- tsk->thread.error_code = error_code;
- #ifdef CONFIG_X86_32
- die("Oops", regs, error_code);
- bust_spinlocks(0);
- do_exit(SIGKILL);
- #else
- sig = SIGKILL;
- if (__die("Oops", regs, error_code))
- sig = 0;
- /* Executive summary in case the body of the oops scrolled away */
- printk(KERN_EMERG "CR2: %016lx\n", address);
- oops_end(flags, regs, sig);
- #endif
- }
- static void __bad_area_nosemaphore(struct pt_regs *regs,
- unsigned long error_code, unsigned long address,
- int si_code)
- {
- struct task_struct *tsk = current;
- /* User mode accesses just cause a SIGSEGV */
- if (error_code & PF_USER) {
- /*
- * It's possible to have interrupts off here.
- */
- local_irq_enable();
- /*
- * Valid to do another page fault here because this one came
- * from user space.
- */
- if (is_prefetch(regs, error_code, address))
- return;
- if (is_errata100(regs, address))
- return;
- if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
- printk_ratelimit()) {
- printk(
- "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
- task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
- tsk->comm, task_pid_nr(tsk), address,
- (void *) regs->ip, (void *) regs->sp, error_code);
- print_vma_addr(" in ", regs->ip);
- printk("\n");
- }
- tsk->thread.cr2 = address;
- /* Kernel addresses are always protection faults */
- tsk->thread.error_code = error_code | (address >= TASK_SIZE);
- tsk->thread.trap_no = 14;
- force_sig_info_fault(SIGSEGV, si_code, address, tsk);
- return;
- }
- if (is_f00f_bug(regs, address))
- return;
- no_context(regs, error_code, address);
- }
- static noinline void bad_area_nosemaphore(struct pt_regs *regs,
- unsigned long error_code, unsigned long address)
- {
- __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
- }
- static void __bad_area(struct pt_regs *regs,
- unsigned long error_code, unsigned long address,
- int si_code)
- {
- struct mm_struct *mm = current->mm;
- /*
- * Something tried to access memory that isn't in our memory map..
- * Fix it, but check if it's kernel or user first..
- */
- up_read(&mm->mmap_sem);
- __bad_area_nosemaphore(regs, error_code, address, si_code);
- }
- static noinline void bad_area(struct pt_regs *regs,
- unsigned long error_code, unsigned long address)
- {
- __bad_area(regs, error_code, address, SEGV_MAPERR);
- }
- static noinline void bad_area_access_error(struct pt_regs *regs,
- unsigned long error_code, unsigned long address)
- {
- __bad_area(regs, error_code, address, SEGV_ACCERR);
- }
- /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
- static void out_of_memory(struct pt_regs *regs,
- unsigned long error_code, unsigned long address)
- {
- /*
- * We ran out of memory, call the OOM killer, and return the userspace
- * (which will retry the fault, or kill us if we got oom-killed).
- */
- up_read(¤t->mm->mmap_sem);
- pagefault_out_of_memory();
- }
- static void do_sigbus(struct pt_regs *regs,
- unsigned long error_code, unsigned long address)
- {
- struct task_struct *tsk = current;
- struct mm_struct *mm = tsk->mm;
- up_read(&mm->mmap_sem);
- /* Kernel mode? Handle exceptions or die */
- if (!(error_code & PF_USER))
- no_context(regs, error_code, address);
- #ifdef CONFIG_X86_32
- /* User space => ok to do another page fault */
- if (is_prefetch(regs, error_code, address))
- return;
- #endif
- tsk->thread.cr2 = address;
- tsk->thread.error_code = error_code;
- tsk->thread.trap_no = 14;
- force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
- }
- static noinline void mm_fault_error(struct pt_regs *regs,
- unsigned long error_code, unsigned long address, unsigned int fault)
- {
- if (fault & VM_FAULT_OOM)
- out_of_memory(regs, error_code, address);
- else if (fault & VM_FAULT_SIGBUS)
- do_sigbus(regs, error_code, address);
- else
- BUG();
- }
- static int spurious_fault_check(unsigned long error_code, pte_t *pte)
- {
- if ((error_code & PF_WRITE) && !pte_write(*pte))
- return 0;
- if ((error_code & PF_INSTR) && !pte_exec(*pte))
- return 0;
- return 1;
- }
- /*
- * Handle a spurious fault caused by a stale TLB entry. This allows
- * us to lazily refresh the TLB when increasing the permissions of a
- * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
- * expensive since that implies doing a full cross-processor TLB
- * flush, even if no stale TLB entries exist on other processors.
- * There are no security implications to leaving a stale TLB when
- * increasing the permissions on a page.
- */
- static noinline int spurious_fault(unsigned long error_code,
- unsigned long address)
- {
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- /* Reserved-bit violation or user access to kernel space? */
- if (error_code & (PF_USER | PF_RSVD))
- return 0;
- pgd = init_mm.pgd + pgd_index(address);
- if (!pgd_present(*pgd))
- return 0;
- pud = pud_offset(pgd, address);
- if (!pud_present(*pud))
- return 0;
- if (pud_large(*pud))
- return spurious_fault_check(error_code, (pte_t *) pud);
- pmd = pmd_offset(pud, address);
- if (!pmd_present(*pmd))
- return 0;
- if (pmd_large(*pmd))
- return spurious_fault_check(error_code, (pte_t *) pmd);
- pte = pte_offset_kernel(pmd, address);
- if (!pte_present(*pte))
- return 0;
- return spurious_fault_check(error_code, pte);
- }
- /*
- * X86_32
- * Handle a fault on the vmalloc or module mapping area
- *
- * X86_64
- * Handle a fault on the vmalloc area
- *
- * This assumes no large pages in there.
- */
- static noinline int vmalloc_fault(unsigned long address)
- {
- #ifdef CONFIG_X86_32
- unsigned long pgd_paddr;
- pmd_t *pmd_k;
- pte_t *pte_k;
- /* Make sure we are in vmalloc area */
- if (!(address >= VMALLOC_START && address < VMALLOC_END))
- return -1;
- /*
- * Synchronize this task's top level page-table
- * with the 'reference' page table.
- *
- * Do _not_ use "current" here. We might be inside
- * an interrupt in the middle of a task switch..
- */
- pgd_paddr = read_cr3();
- pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
- if (!pmd_k)
- return -1;
- pte_k = pte_offset_kernel(pmd_k, address);
- if (!pte_present(*pte_k))
- return -1;
- return 0;
- #else
- pgd_t *pgd, *pgd_ref;
- pud_t *pud, *pud_ref;
- pmd_t *pmd, *pmd_ref;
- pte_t *pte, *pte_ref;
- /* Make sure we are in vmalloc area */
- if (!(address >= VMALLOC_START && address < VMALLOC_END))
- return -1;
- /* Copy kernel mappings over when needed. This can also
- happen within a race in page table update. In the later
- case just flush. */
- pgd = pgd_offset(current->active_mm, address);
- pgd_ref = pgd_offset_k(address);
- if (pgd_none(*pgd_ref))
- return -1;
- if (pgd_none(*pgd))
- set_pgd(pgd, *pgd_ref);
- else
- BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
- /* Below here mismatches are bugs because these lower tables
- are shared */
- pud = pud_offset(pgd, address);
- pud_ref = pud_offset(pgd_ref, address);
- if (pud_none(*pud_ref))
- return -1;
- if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
- BUG();
- pmd = pmd_offset(pud, address);
- pmd_ref = pmd_offset(pud_ref, address);
- if (pmd_none(*pmd_ref))
- return -1;
- if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
- BUG();
- pte_ref = pte_offset_kernel(pmd_ref, address);
- if (!pte_present(*pte_ref))
- return -1;
- pte = pte_offset_kernel(pmd, address);
- /* Don't use pte_page here, because the mappings can point
- outside mem_map, and the NUMA hash lookup cannot handle
- that. */
- if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
- BUG();
- return 0;
- #endif
- }
- int show_unhandled_signals = 1;
- static inline int access_error(unsigned long error_code, int write,
- struct vm_area_struct *vma)
- {
- if (write) {
- /* write, present and write, not present */
- if (unlikely(!(vma->vm_flags & VM_WRITE)))
- return 1;
- } else if (unlikely(error_code & PF_PROT)) {
- /* read, present */
- return 1;
- } else {
- /* read, not present */
- if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
- return 1;
- }
- return 0;
- }
- static int fault_in_kernel_space(unsigned long address)
- {
- #ifdef CONFIG_X86_32
- return address >= TASK_SIZE;
- #else /* !CONFIG_X86_32 */
- return address >= TASK_SIZE64;
- #endif /* CONFIG_X86_32 */
- }
- /*
- * This routine handles page faults. It determines the address,
- * and the problem, and then passes it off to one of the appropriate
- * routines.
- */
- #ifdef CONFIG_X86_64
- asmlinkage
- #endif
- void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
- {
- unsigned long address;
- struct task_struct *tsk;
- struct mm_struct *mm;
- struct vm_area_struct *vma;
- int write;
- int fault;
- tsk = current;
- mm = tsk->mm;
- prefetchw(&mm->mmap_sem);
- /* get the address */
- address = read_cr2();
- if (unlikely(kmmio_fault(regs, address)))
- return;
- /*
- * We fault-in kernel-space virtual memory on-demand. The
- * 'reference' page table is init_mm.pgd.
- *
- * NOTE! We MUST NOT take any locks for this case. We may
- * be in an interrupt or a critical region, and should
- * only copy the information from the master page table,
- * nothing more.
- *
- * This verifies that the fault happens in kernel space
- * (error_code & 4) == 0, and that the fault was not a
- * protection error (error_code & 9) == 0.
- */
- if (unlikely(fault_in_kernel_space(address))) {
- if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
- vmalloc_fault(address) >= 0)
- return;
- /* Can handle a stale RO->RW TLB */
- if (spurious_fault(error_code, address))
- return;
- /* kprobes don't want to hook the spurious faults. */
- if (notify_page_fault(regs))
- return;
- /*
- * Don't take the mm semaphore here. If we fixup a prefetch
- * fault we could otherwise deadlock.
- */
- bad_area_nosemaphore(regs, error_code, address);
- return;
- }
- if (unlikely(notify_page_fault(regs)))
- return;
- /*
- * It's safe to allow irq's after cr2 has been saved and the
- * vmalloc fault has been handled.
- *
- * User-mode registers count as a user access even for any
- * potential system fault or CPU buglet.
- */
- if (user_mode_vm(regs)) {
- local_irq_enable();
- error_code |= PF_USER;
- } else if (regs->flags & X86_EFLAGS_IF)
- local_irq_enable();
- #ifdef CONFIG_X86_64
- if (unlikely(error_code & PF_RSVD))
- pgtable_bad(regs, error_code, address);
- #endif
- /*
- * If we're in an interrupt, have no user context or are running in an
- * atomic region then we must not take the fault.
- */
- if (unlikely(in_atomic() || !mm)) {
- bad_area_nosemaphore(regs, error_code, address);
- return;
- }
- /*
- * When running in the kernel we expect faults to occur only to
- * addresses in user space. All other faults represent errors in the
- * kernel and should generate an OOPS. Unfortunately, in the case of an
- * erroneous fault occurring in a code path which already holds mmap_sem
- * we will deadlock attempting to validate the fault against the
- * address space. Luckily the kernel only validly references user
- * space from well defined areas of code, which are listed in the
- * exceptions table.
- *
- * As the vast majority of faults will be valid we will only perform
- * the source reference check when there is a possibility of a deadlock.
- * Attempt to lock the address space, if we cannot we then validate the
- * source. If this is invalid we can skip the address space check,
- * thus avoiding the deadlock.
- */
- if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
- if ((error_code & PF_USER) == 0 &&
- !search_exception_tables(regs->ip)) {
- bad_area_nosemaphore(regs, error_code, address);
- return;
- }
- down_read(&mm->mmap_sem);
- } else {
- /*
- * The above down_read_trylock() might have succeeded in which
- * case we'll have missed the might_sleep() from down_read().
- */
- might_sleep();
- }
- vma = find_vma(mm, address);
- if (unlikely(!vma)) {
- bad_area(regs, error_code, address);
- return;
- }
- if (likely(vma->vm_start <= address))
- goto good_area;
- if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
- bad_area(regs, error_code, address);
- return;
- }
- if (error_code & PF_USER) {
- /*
- * Accessing the stack below %sp is always a bug.
- * The large cushion allows instructions like enter
- * and pusha to work. ("enter $65535,$31" pushes
- * 32 pointers and then decrements %sp by 65535.)
- */
- if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
- bad_area(regs, error_code, address);
- return;
- }
- }
- if (unlikely(expand_stack(vma, address))) {
- bad_area(regs, error_code, address);
- return;
- }
- /*
- * Ok, we have a good vm_area for this memory access, so
- * we can handle it..
- */
- good_area:
- write = error_code & PF_WRITE;
- if (unlikely(access_error(error_code, write, vma))) {
- bad_area_access_error(regs, error_code, address);
- return;
- }
- /*
- * If for any reason at all we couldn't handle the fault,
- * make sure we exit gracefully rather than endlessly redo
- * the fault.
- */
- fault = handle_mm_fault(mm, vma, address, write);
- if (unlikely(fault & VM_FAULT_ERROR)) {
- mm_fault_error(regs, error_code, address, fault);
- return;
- }
- if (fault & VM_FAULT_MAJOR)
- tsk->maj_flt++;
- else
- tsk->min_flt++;
- #ifdef CONFIG_X86_32
- /*
- * Did it hit the DOS screen memory VA from vm86 mode?
- */
- if (v8086_mode(regs)) {
- unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
- if (bit < 32)
- tsk->thread.screen_bitmap |= 1 << bit;
- }
- #endif
- up_read(&mm->mmap_sem);
- }
- DEFINE_SPINLOCK(pgd_lock);
- LIST_HEAD(pgd_list);
- void vmalloc_sync_all(void)
- {
- unsigned long address;
- #ifdef CONFIG_X86_32
- if (SHARED_KERNEL_PMD)
- return;
- for (address = VMALLOC_START & PMD_MASK;
- address >= TASK_SIZE && address < FIXADDR_TOP;
- address += PMD_SIZE) {
- unsigned long flags;
- struct page *page;
- spin_lock_irqsave(&pgd_lock, flags);
- list_for_each_entry(page, &pgd_list, lru) {
- if (!vmalloc_sync_one(page_address(page),
- address))
- break;
- }
- spin_unlock_irqrestore(&pgd_lock, flags);
- }
- #else /* CONFIG_X86_64 */
- for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
- address += PGDIR_SIZE) {
- const pgd_t *pgd_ref = pgd_offset_k(address);
- unsigned long flags;
- struct page *page;
- if (pgd_none(*pgd_ref))
- continue;
- spin_lock_irqsave(&pgd_lock, flags);
- list_for_each_entry(page, &pgd_list, lru) {
- pgd_t *pgd;
- pgd = (pgd_t *)page_address(page) + pgd_index(address);
- if (pgd_none(*pgd))
- set_pgd(pgd, *pgd_ref);
- else
- BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
- }
- spin_unlock_irqrestore(&pgd_lock, flags);
- }
- #endif
- }
|