vmx.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  52. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  53. #define KVM_GUEST_CR0_MASK \
  54. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  55. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  56. (X86_CR0_WP | X86_CR0_NE | X86_CR0_MP)
  57. #define KVM_VM_CR0_ALWAYS_ON \
  58. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  59. #define KVM_CR4_GUEST_OWNED_BITS \
  60. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  61. | X86_CR4_OSXMMEXCPT)
  62. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  63. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  64. /*
  65. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  66. * ple_gap: upper bound on the amount of time between two successive
  67. * executions of PAUSE in a loop. Also indicate if ple enabled.
  68. * According to test, this time is usually small than 41 cycles.
  69. * ple_window: upper bound on the amount of time a guest is allowed to execute
  70. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  71. * less than 2^12 cycles
  72. * Time is measured based on a counter that runs at the same rate as the TSC,
  73. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  74. */
  75. #define KVM_VMX_DEFAULT_PLE_GAP 41
  76. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  77. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  78. module_param(ple_gap, int, S_IRUGO);
  79. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  80. module_param(ple_window, int, S_IRUGO);
  81. struct vmcs {
  82. u32 revision_id;
  83. u32 abort;
  84. char data[0];
  85. };
  86. struct shared_msr_entry {
  87. unsigned index;
  88. u64 data;
  89. u64 mask;
  90. };
  91. struct vcpu_vmx {
  92. struct kvm_vcpu vcpu;
  93. struct list_head local_vcpus_link;
  94. unsigned long host_rsp;
  95. int launched;
  96. u8 fail;
  97. u32 idt_vectoring_info;
  98. struct shared_msr_entry *guest_msrs;
  99. int nmsrs;
  100. int save_nmsrs;
  101. #ifdef CONFIG_X86_64
  102. u64 msr_host_kernel_gs_base;
  103. u64 msr_guest_kernel_gs_base;
  104. #endif
  105. struct vmcs *vmcs;
  106. struct {
  107. int loaded;
  108. u16 fs_sel, gs_sel, ldt_sel;
  109. int gs_ldt_reload_needed;
  110. int fs_reload_needed;
  111. } host_state;
  112. struct {
  113. int vm86_active;
  114. u8 save_iopl;
  115. struct kvm_save_segment {
  116. u16 selector;
  117. unsigned long base;
  118. u32 limit;
  119. u32 ar;
  120. } tr, es, ds, fs, gs;
  121. struct {
  122. bool pending;
  123. u8 vector;
  124. unsigned rip;
  125. } irq;
  126. } rmode;
  127. int vpid;
  128. bool emulation_required;
  129. /* Support for vnmi-less CPUs */
  130. int soft_vnmi_blocked;
  131. ktime_t entry_time;
  132. s64 vnmi_blocked_time;
  133. u32 exit_reason;
  134. bool rdtscp_enabled;
  135. };
  136. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  137. {
  138. return container_of(vcpu, struct vcpu_vmx, vcpu);
  139. }
  140. static int init_rmode(struct kvm *kvm);
  141. static u64 construct_eptp(unsigned long root_hpa);
  142. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  143. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  144. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  145. static unsigned long *vmx_io_bitmap_a;
  146. static unsigned long *vmx_io_bitmap_b;
  147. static unsigned long *vmx_msr_bitmap_legacy;
  148. static unsigned long *vmx_msr_bitmap_longmode;
  149. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  150. static DEFINE_SPINLOCK(vmx_vpid_lock);
  151. static struct vmcs_config {
  152. int size;
  153. int order;
  154. u32 revision_id;
  155. u32 pin_based_exec_ctrl;
  156. u32 cpu_based_exec_ctrl;
  157. u32 cpu_based_2nd_exec_ctrl;
  158. u32 vmexit_ctrl;
  159. u32 vmentry_ctrl;
  160. } vmcs_config;
  161. static struct vmx_capability {
  162. u32 ept;
  163. u32 vpid;
  164. } vmx_capability;
  165. #define VMX_SEGMENT_FIELD(seg) \
  166. [VCPU_SREG_##seg] = { \
  167. .selector = GUEST_##seg##_SELECTOR, \
  168. .base = GUEST_##seg##_BASE, \
  169. .limit = GUEST_##seg##_LIMIT, \
  170. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  171. }
  172. static struct kvm_vmx_segment_field {
  173. unsigned selector;
  174. unsigned base;
  175. unsigned limit;
  176. unsigned ar_bytes;
  177. } kvm_vmx_segment_fields[] = {
  178. VMX_SEGMENT_FIELD(CS),
  179. VMX_SEGMENT_FIELD(DS),
  180. VMX_SEGMENT_FIELD(ES),
  181. VMX_SEGMENT_FIELD(FS),
  182. VMX_SEGMENT_FIELD(GS),
  183. VMX_SEGMENT_FIELD(SS),
  184. VMX_SEGMENT_FIELD(TR),
  185. VMX_SEGMENT_FIELD(LDTR),
  186. };
  187. static u64 host_efer;
  188. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  189. /*
  190. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  191. * away by decrementing the array size.
  192. */
  193. static const u32 vmx_msr_index[] = {
  194. #ifdef CONFIG_X86_64
  195. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  196. #endif
  197. MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
  198. };
  199. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  200. static inline int is_page_fault(u32 intr_info)
  201. {
  202. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  203. INTR_INFO_VALID_MASK)) ==
  204. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  205. }
  206. static inline int is_no_device(u32 intr_info)
  207. {
  208. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  209. INTR_INFO_VALID_MASK)) ==
  210. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  211. }
  212. static inline int is_invalid_opcode(u32 intr_info)
  213. {
  214. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  215. INTR_INFO_VALID_MASK)) ==
  216. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  217. }
  218. static inline int is_external_interrupt(u32 intr_info)
  219. {
  220. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  221. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  222. }
  223. static inline int is_machine_check(u32 intr_info)
  224. {
  225. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  226. INTR_INFO_VALID_MASK)) ==
  227. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  228. }
  229. static inline int cpu_has_vmx_msr_bitmap(void)
  230. {
  231. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  232. }
  233. static inline int cpu_has_vmx_tpr_shadow(void)
  234. {
  235. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  236. }
  237. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  238. {
  239. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  240. }
  241. static inline int cpu_has_secondary_exec_ctrls(void)
  242. {
  243. return vmcs_config.cpu_based_exec_ctrl &
  244. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  245. }
  246. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  247. {
  248. return vmcs_config.cpu_based_2nd_exec_ctrl &
  249. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  250. }
  251. static inline bool cpu_has_vmx_flexpriority(void)
  252. {
  253. return cpu_has_vmx_tpr_shadow() &&
  254. cpu_has_vmx_virtualize_apic_accesses();
  255. }
  256. static inline bool cpu_has_vmx_ept_execute_only(void)
  257. {
  258. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  259. }
  260. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  261. {
  262. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  263. }
  264. static inline bool cpu_has_vmx_eptp_writeback(void)
  265. {
  266. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  267. }
  268. static inline bool cpu_has_vmx_ept_2m_page(void)
  269. {
  270. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  271. }
  272. static inline bool cpu_has_vmx_ept_1g_page(void)
  273. {
  274. return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
  275. }
  276. static inline int cpu_has_vmx_invept_individual_addr(void)
  277. {
  278. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  279. }
  280. static inline int cpu_has_vmx_invept_context(void)
  281. {
  282. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  283. }
  284. static inline int cpu_has_vmx_invept_global(void)
  285. {
  286. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  287. }
  288. static inline int cpu_has_vmx_ept(void)
  289. {
  290. return vmcs_config.cpu_based_2nd_exec_ctrl &
  291. SECONDARY_EXEC_ENABLE_EPT;
  292. }
  293. static inline int cpu_has_vmx_unrestricted_guest(void)
  294. {
  295. return vmcs_config.cpu_based_2nd_exec_ctrl &
  296. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  297. }
  298. static inline int cpu_has_vmx_ple(void)
  299. {
  300. return vmcs_config.cpu_based_2nd_exec_ctrl &
  301. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  302. }
  303. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  304. {
  305. return flexpriority_enabled &&
  306. (cpu_has_vmx_virtualize_apic_accesses()) &&
  307. (irqchip_in_kernel(kvm));
  308. }
  309. static inline int cpu_has_vmx_vpid(void)
  310. {
  311. return vmcs_config.cpu_based_2nd_exec_ctrl &
  312. SECONDARY_EXEC_ENABLE_VPID;
  313. }
  314. static inline int cpu_has_vmx_rdtscp(void)
  315. {
  316. return vmcs_config.cpu_based_2nd_exec_ctrl &
  317. SECONDARY_EXEC_RDTSCP;
  318. }
  319. static inline int cpu_has_virtual_nmis(void)
  320. {
  321. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  322. }
  323. static inline bool report_flexpriority(void)
  324. {
  325. return flexpriority_enabled;
  326. }
  327. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  328. {
  329. int i;
  330. for (i = 0; i < vmx->nmsrs; ++i)
  331. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  332. return i;
  333. return -1;
  334. }
  335. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  336. {
  337. struct {
  338. u64 vpid : 16;
  339. u64 rsvd : 48;
  340. u64 gva;
  341. } operand = { vpid, 0, gva };
  342. asm volatile (__ex(ASM_VMX_INVVPID)
  343. /* CF==1 or ZF==1 --> rc = -1 */
  344. "; ja 1f ; ud2 ; 1:"
  345. : : "a"(&operand), "c"(ext) : "cc", "memory");
  346. }
  347. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  348. {
  349. struct {
  350. u64 eptp, gpa;
  351. } operand = {eptp, gpa};
  352. asm volatile (__ex(ASM_VMX_INVEPT)
  353. /* CF==1 or ZF==1 --> rc = -1 */
  354. "; ja 1f ; ud2 ; 1:\n"
  355. : : "a" (&operand), "c" (ext) : "cc", "memory");
  356. }
  357. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  358. {
  359. int i;
  360. i = __find_msr_index(vmx, msr);
  361. if (i >= 0)
  362. return &vmx->guest_msrs[i];
  363. return NULL;
  364. }
  365. static void vmcs_clear(struct vmcs *vmcs)
  366. {
  367. u64 phys_addr = __pa(vmcs);
  368. u8 error;
  369. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  370. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  371. : "cc", "memory");
  372. if (error)
  373. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  374. vmcs, phys_addr);
  375. }
  376. static void __vcpu_clear(void *arg)
  377. {
  378. struct vcpu_vmx *vmx = arg;
  379. int cpu = raw_smp_processor_id();
  380. if (vmx->vcpu.cpu == cpu)
  381. vmcs_clear(vmx->vmcs);
  382. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  383. per_cpu(current_vmcs, cpu) = NULL;
  384. rdtscll(vmx->vcpu.arch.host_tsc);
  385. list_del(&vmx->local_vcpus_link);
  386. vmx->vcpu.cpu = -1;
  387. vmx->launched = 0;
  388. }
  389. static void vcpu_clear(struct vcpu_vmx *vmx)
  390. {
  391. if (vmx->vcpu.cpu == -1)
  392. return;
  393. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  394. }
  395. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  396. {
  397. if (vmx->vpid == 0)
  398. return;
  399. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  400. }
  401. static inline void ept_sync_global(void)
  402. {
  403. if (cpu_has_vmx_invept_global())
  404. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  405. }
  406. static inline void ept_sync_context(u64 eptp)
  407. {
  408. if (enable_ept) {
  409. if (cpu_has_vmx_invept_context())
  410. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  411. else
  412. ept_sync_global();
  413. }
  414. }
  415. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  416. {
  417. if (enable_ept) {
  418. if (cpu_has_vmx_invept_individual_addr())
  419. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  420. eptp, gpa);
  421. else
  422. ept_sync_context(eptp);
  423. }
  424. }
  425. static unsigned long vmcs_readl(unsigned long field)
  426. {
  427. unsigned long value;
  428. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  429. : "=a"(value) : "d"(field) : "cc");
  430. return value;
  431. }
  432. static u16 vmcs_read16(unsigned long field)
  433. {
  434. return vmcs_readl(field);
  435. }
  436. static u32 vmcs_read32(unsigned long field)
  437. {
  438. return vmcs_readl(field);
  439. }
  440. static u64 vmcs_read64(unsigned long field)
  441. {
  442. #ifdef CONFIG_X86_64
  443. return vmcs_readl(field);
  444. #else
  445. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  446. #endif
  447. }
  448. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  449. {
  450. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  451. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  452. dump_stack();
  453. }
  454. static void vmcs_writel(unsigned long field, unsigned long value)
  455. {
  456. u8 error;
  457. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  458. : "=q"(error) : "a"(value), "d"(field) : "cc");
  459. if (unlikely(error))
  460. vmwrite_error(field, value);
  461. }
  462. static void vmcs_write16(unsigned long field, u16 value)
  463. {
  464. vmcs_writel(field, value);
  465. }
  466. static void vmcs_write32(unsigned long field, u32 value)
  467. {
  468. vmcs_writel(field, value);
  469. }
  470. static void vmcs_write64(unsigned long field, u64 value)
  471. {
  472. vmcs_writel(field, value);
  473. #ifndef CONFIG_X86_64
  474. asm volatile ("");
  475. vmcs_writel(field+1, value >> 32);
  476. #endif
  477. }
  478. static void vmcs_clear_bits(unsigned long field, u32 mask)
  479. {
  480. vmcs_writel(field, vmcs_readl(field) & ~mask);
  481. }
  482. static void vmcs_set_bits(unsigned long field, u32 mask)
  483. {
  484. vmcs_writel(field, vmcs_readl(field) | mask);
  485. }
  486. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  487. {
  488. u32 eb;
  489. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR)
  490. | (1u << NM_VECTOR);
  491. /*
  492. * Unconditionally intercept #DB so we can maintain dr6 without
  493. * reading it every exit.
  494. */
  495. eb |= 1u << DB_VECTOR;
  496. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  497. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  498. eb |= 1u << BP_VECTOR;
  499. }
  500. if (to_vmx(vcpu)->rmode.vm86_active)
  501. eb = ~0;
  502. if (enable_ept)
  503. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  504. if (vcpu->fpu_active)
  505. eb &= ~(1u << NM_VECTOR);
  506. vmcs_write32(EXCEPTION_BITMAP, eb);
  507. }
  508. static void reload_tss(void)
  509. {
  510. /*
  511. * VT restores TR but not its size. Useless.
  512. */
  513. struct descriptor_table gdt;
  514. struct desc_struct *descs;
  515. kvm_get_gdt(&gdt);
  516. descs = (void *)gdt.base;
  517. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  518. load_TR_desc();
  519. }
  520. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  521. {
  522. u64 guest_efer;
  523. u64 ignore_bits;
  524. guest_efer = vmx->vcpu.arch.shadow_efer;
  525. /*
  526. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  527. * outside long mode
  528. */
  529. ignore_bits = EFER_NX | EFER_SCE;
  530. #ifdef CONFIG_X86_64
  531. ignore_bits |= EFER_LMA | EFER_LME;
  532. /* SCE is meaningful only in long mode on Intel */
  533. if (guest_efer & EFER_LMA)
  534. ignore_bits &= ~(u64)EFER_SCE;
  535. #endif
  536. guest_efer &= ~ignore_bits;
  537. guest_efer |= host_efer & ignore_bits;
  538. vmx->guest_msrs[efer_offset].data = guest_efer;
  539. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  540. return true;
  541. }
  542. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  543. {
  544. struct vcpu_vmx *vmx = to_vmx(vcpu);
  545. int i;
  546. if (vmx->host_state.loaded)
  547. return;
  548. vmx->host_state.loaded = 1;
  549. /*
  550. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  551. * allow segment selectors with cpl > 0 or ti == 1.
  552. */
  553. vmx->host_state.ldt_sel = kvm_read_ldt();
  554. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  555. vmx->host_state.fs_sel = kvm_read_fs();
  556. if (!(vmx->host_state.fs_sel & 7)) {
  557. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  558. vmx->host_state.fs_reload_needed = 0;
  559. } else {
  560. vmcs_write16(HOST_FS_SELECTOR, 0);
  561. vmx->host_state.fs_reload_needed = 1;
  562. }
  563. vmx->host_state.gs_sel = kvm_read_gs();
  564. if (!(vmx->host_state.gs_sel & 7))
  565. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  566. else {
  567. vmcs_write16(HOST_GS_SELECTOR, 0);
  568. vmx->host_state.gs_ldt_reload_needed = 1;
  569. }
  570. #ifdef CONFIG_X86_64
  571. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  572. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  573. #else
  574. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  575. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  576. #endif
  577. #ifdef CONFIG_X86_64
  578. if (is_long_mode(&vmx->vcpu)) {
  579. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  580. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  581. }
  582. #endif
  583. for (i = 0; i < vmx->save_nmsrs; ++i)
  584. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  585. vmx->guest_msrs[i].data,
  586. vmx->guest_msrs[i].mask);
  587. }
  588. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  589. {
  590. unsigned long flags;
  591. if (!vmx->host_state.loaded)
  592. return;
  593. ++vmx->vcpu.stat.host_state_reload;
  594. vmx->host_state.loaded = 0;
  595. if (vmx->host_state.fs_reload_needed)
  596. kvm_load_fs(vmx->host_state.fs_sel);
  597. if (vmx->host_state.gs_ldt_reload_needed) {
  598. kvm_load_ldt(vmx->host_state.ldt_sel);
  599. /*
  600. * If we have to reload gs, we must take care to
  601. * preserve our gs base.
  602. */
  603. local_irq_save(flags);
  604. kvm_load_gs(vmx->host_state.gs_sel);
  605. #ifdef CONFIG_X86_64
  606. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  607. #endif
  608. local_irq_restore(flags);
  609. }
  610. reload_tss();
  611. #ifdef CONFIG_X86_64
  612. if (is_long_mode(&vmx->vcpu)) {
  613. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  614. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  615. }
  616. #endif
  617. }
  618. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  619. {
  620. preempt_disable();
  621. __vmx_load_host_state(vmx);
  622. preempt_enable();
  623. }
  624. /*
  625. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  626. * vcpu mutex is already taken.
  627. */
  628. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  629. {
  630. struct vcpu_vmx *vmx = to_vmx(vcpu);
  631. u64 phys_addr = __pa(vmx->vmcs);
  632. u64 tsc_this, delta, new_offset;
  633. if (vcpu->cpu != cpu) {
  634. vcpu_clear(vmx);
  635. kvm_migrate_timers(vcpu);
  636. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  637. local_irq_disable();
  638. list_add(&vmx->local_vcpus_link,
  639. &per_cpu(vcpus_on_cpu, cpu));
  640. local_irq_enable();
  641. }
  642. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  643. u8 error;
  644. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  645. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  646. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  647. : "cc");
  648. if (error)
  649. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  650. vmx->vmcs, phys_addr);
  651. }
  652. if (vcpu->cpu != cpu) {
  653. struct descriptor_table dt;
  654. unsigned long sysenter_esp;
  655. vcpu->cpu = cpu;
  656. /*
  657. * Linux uses per-cpu TSS and GDT, so set these when switching
  658. * processors.
  659. */
  660. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  661. kvm_get_gdt(&dt);
  662. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  663. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  664. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  665. /*
  666. * Make sure the time stamp counter is monotonous.
  667. */
  668. rdtscll(tsc_this);
  669. if (tsc_this < vcpu->arch.host_tsc) {
  670. delta = vcpu->arch.host_tsc - tsc_this;
  671. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  672. vmcs_write64(TSC_OFFSET, new_offset);
  673. }
  674. }
  675. }
  676. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  677. {
  678. __vmx_load_host_state(to_vmx(vcpu));
  679. }
  680. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  681. {
  682. if (vcpu->fpu_active)
  683. return;
  684. vcpu->fpu_active = 1;
  685. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  686. if (kvm_read_cr0_bits(vcpu, X86_CR0_TS))
  687. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  688. update_exception_bitmap(vcpu);
  689. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  690. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  691. }
  692. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  693. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  694. {
  695. vmx_decache_cr0_guest_bits(vcpu);
  696. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  697. update_exception_bitmap(vcpu);
  698. vcpu->arch.cr0_guest_owned_bits = 0;
  699. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  700. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  701. }
  702. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  703. {
  704. unsigned long rflags;
  705. rflags = vmcs_readl(GUEST_RFLAGS);
  706. if (to_vmx(vcpu)->rmode.vm86_active)
  707. rflags &= ~(unsigned long)(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  708. return rflags;
  709. }
  710. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  711. {
  712. if (to_vmx(vcpu)->rmode.vm86_active)
  713. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  714. vmcs_writel(GUEST_RFLAGS, rflags);
  715. }
  716. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  717. {
  718. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  719. int ret = 0;
  720. if (interruptibility & GUEST_INTR_STATE_STI)
  721. ret |= X86_SHADOW_INT_STI;
  722. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  723. ret |= X86_SHADOW_INT_MOV_SS;
  724. return ret & mask;
  725. }
  726. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  727. {
  728. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  729. u32 interruptibility = interruptibility_old;
  730. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  731. if (mask & X86_SHADOW_INT_MOV_SS)
  732. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  733. if (mask & X86_SHADOW_INT_STI)
  734. interruptibility |= GUEST_INTR_STATE_STI;
  735. if ((interruptibility != interruptibility_old))
  736. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  737. }
  738. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  739. {
  740. unsigned long rip;
  741. rip = kvm_rip_read(vcpu);
  742. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  743. kvm_rip_write(vcpu, rip);
  744. /* skipping an emulated instruction also counts */
  745. vmx_set_interrupt_shadow(vcpu, 0);
  746. }
  747. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  748. bool has_error_code, u32 error_code)
  749. {
  750. struct vcpu_vmx *vmx = to_vmx(vcpu);
  751. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  752. if (has_error_code) {
  753. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  754. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  755. }
  756. if (vmx->rmode.vm86_active) {
  757. vmx->rmode.irq.pending = true;
  758. vmx->rmode.irq.vector = nr;
  759. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  760. if (kvm_exception_is_soft(nr))
  761. vmx->rmode.irq.rip +=
  762. vmx->vcpu.arch.event_exit_inst_len;
  763. intr_info |= INTR_TYPE_SOFT_INTR;
  764. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  765. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  766. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  767. return;
  768. }
  769. if (kvm_exception_is_soft(nr)) {
  770. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  771. vmx->vcpu.arch.event_exit_inst_len);
  772. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  773. } else
  774. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  775. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  776. }
  777. static bool vmx_rdtscp_supported(void)
  778. {
  779. return cpu_has_vmx_rdtscp();
  780. }
  781. /*
  782. * Swap MSR entry in host/guest MSR entry array.
  783. */
  784. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  785. {
  786. struct shared_msr_entry tmp;
  787. tmp = vmx->guest_msrs[to];
  788. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  789. vmx->guest_msrs[from] = tmp;
  790. }
  791. /*
  792. * Set up the vmcs to automatically save and restore system
  793. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  794. * mode, as fiddling with msrs is very expensive.
  795. */
  796. static void setup_msrs(struct vcpu_vmx *vmx)
  797. {
  798. int save_nmsrs, index;
  799. unsigned long *msr_bitmap;
  800. vmx_load_host_state(vmx);
  801. save_nmsrs = 0;
  802. #ifdef CONFIG_X86_64
  803. if (is_long_mode(&vmx->vcpu)) {
  804. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  805. if (index >= 0)
  806. move_msr_up(vmx, index, save_nmsrs++);
  807. index = __find_msr_index(vmx, MSR_LSTAR);
  808. if (index >= 0)
  809. move_msr_up(vmx, index, save_nmsrs++);
  810. index = __find_msr_index(vmx, MSR_CSTAR);
  811. if (index >= 0)
  812. move_msr_up(vmx, index, save_nmsrs++);
  813. index = __find_msr_index(vmx, MSR_TSC_AUX);
  814. if (index >= 0 && vmx->rdtscp_enabled)
  815. move_msr_up(vmx, index, save_nmsrs++);
  816. /*
  817. * MSR_K6_STAR is only needed on long mode guests, and only
  818. * if efer.sce is enabled.
  819. */
  820. index = __find_msr_index(vmx, MSR_K6_STAR);
  821. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  822. move_msr_up(vmx, index, save_nmsrs++);
  823. }
  824. #endif
  825. index = __find_msr_index(vmx, MSR_EFER);
  826. if (index >= 0 && update_transition_efer(vmx, index))
  827. move_msr_up(vmx, index, save_nmsrs++);
  828. vmx->save_nmsrs = save_nmsrs;
  829. if (cpu_has_vmx_msr_bitmap()) {
  830. if (is_long_mode(&vmx->vcpu))
  831. msr_bitmap = vmx_msr_bitmap_longmode;
  832. else
  833. msr_bitmap = vmx_msr_bitmap_legacy;
  834. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  835. }
  836. }
  837. /*
  838. * reads and returns guest's timestamp counter "register"
  839. * guest_tsc = host_tsc + tsc_offset -- 21.3
  840. */
  841. static u64 guest_read_tsc(void)
  842. {
  843. u64 host_tsc, tsc_offset;
  844. rdtscll(host_tsc);
  845. tsc_offset = vmcs_read64(TSC_OFFSET);
  846. return host_tsc + tsc_offset;
  847. }
  848. /*
  849. * writes 'guest_tsc' into guest's timestamp counter "register"
  850. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  851. */
  852. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  853. {
  854. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  855. }
  856. /*
  857. * Reads an msr value (of 'msr_index') into 'pdata'.
  858. * Returns 0 on success, non-0 otherwise.
  859. * Assumes vcpu_load() was already called.
  860. */
  861. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  862. {
  863. u64 data;
  864. struct shared_msr_entry *msr;
  865. if (!pdata) {
  866. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  867. return -EINVAL;
  868. }
  869. switch (msr_index) {
  870. #ifdef CONFIG_X86_64
  871. case MSR_FS_BASE:
  872. data = vmcs_readl(GUEST_FS_BASE);
  873. break;
  874. case MSR_GS_BASE:
  875. data = vmcs_readl(GUEST_GS_BASE);
  876. break;
  877. case MSR_KERNEL_GS_BASE:
  878. vmx_load_host_state(to_vmx(vcpu));
  879. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  880. break;
  881. #endif
  882. case MSR_EFER:
  883. return kvm_get_msr_common(vcpu, msr_index, pdata);
  884. case MSR_IA32_TSC:
  885. data = guest_read_tsc();
  886. break;
  887. case MSR_IA32_SYSENTER_CS:
  888. data = vmcs_read32(GUEST_SYSENTER_CS);
  889. break;
  890. case MSR_IA32_SYSENTER_EIP:
  891. data = vmcs_readl(GUEST_SYSENTER_EIP);
  892. break;
  893. case MSR_IA32_SYSENTER_ESP:
  894. data = vmcs_readl(GUEST_SYSENTER_ESP);
  895. break;
  896. case MSR_TSC_AUX:
  897. if (!to_vmx(vcpu)->rdtscp_enabled)
  898. return 1;
  899. /* Otherwise falls through */
  900. default:
  901. vmx_load_host_state(to_vmx(vcpu));
  902. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  903. if (msr) {
  904. vmx_load_host_state(to_vmx(vcpu));
  905. data = msr->data;
  906. break;
  907. }
  908. return kvm_get_msr_common(vcpu, msr_index, pdata);
  909. }
  910. *pdata = data;
  911. return 0;
  912. }
  913. /*
  914. * Writes msr value into into the appropriate "register".
  915. * Returns 0 on success, non-0 otherwise.
  916. * Assumes vcpu_load() was already called.
  917. */
  918. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  919. {
  920. struct vcpu_vmx *vmx = to_vmx(vcpu);
  921. struct shared_msr_entry *msr;
  922. u64 host_tsc;
  923. int ret = 0;
  924. switch (msr_index) {
  925. case MSR_EFER:
  926. vmx_load_host_state(vmx);
  927. ret = kvm_set_msr_common(vcpu, msr_index, data);
  928. break;
  929. #ifdef CONFIG_X86_64
  930. case MSR_FS_BASE:
  931. vmcs_writel(GUEST_FS_BASE, data);
  932. break;
  933. case MSR_GS_BASE:
  934. vmcs_writel(GUEST_GS_BASE, data);
  935. break;
  936. case MSR_KERNEL_GS_BASE:
  937. vmx_load_host_state(vmx);
  938. vmx->msr_guest_kernel_gs_base = data;
  939. break;
  940. #endif
  941. case MSR_IA32_SYSENTER_CS:
  942. vmcs_write32(GUEST_SYSENTER_CS, data);
  943. break;
  944. case MSR_IA32_SYSENTER_EIP:
  945. vmcs_writel(GUEST_SYSENTER_EIP, data);
  946. break;
  947. case MSR_IA32_SYSENTER_ESP:
  948. vmcs_writel(GUEST_SYSENTER_ESP, data);
  949. break;
  950. case MSR_IA32_TSC:
  951. rdtscll(host_tsc);
  952. guest_write_tsc(data, host_tsc);
  953. break;
  954. case MSR_IA32_CR_PAT:
  955. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  956. vmcs_write64(GUEST_IA32_PAT, data);
  957. vcpu->arch.pat = data;
  958. break;
  959. }
  960. ret = kvm_set_msr_common(vcpu, msr_index, data);
  961. break;
  962. case MSR_TSC_AUX:
  963. if (!vmx->rdtscp_enabled)
  964. return 1;
  965. /* Check reserved bit, higher 32 bits should be zero */
  966. if ((data >> 32) != 0)
  967. return 1;
  968. /* Otherwise falls through */
  969. default:
  970. msr = find_msr_entry(vmx, msr_index);
  971. if (msr) {
  972. vmx_load_host_state(vmx);
  973. msr->data = data;
  974. break;
  975. }
  976. ret = kvm_set_msr_common(vcpu, msr_index, data);
  977. }
  978. return ret;
  979. }
  980. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  981. {
  982. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  983. switch (reg) {
  984. case VCPU_REGS_RSP:
  985. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  986. break;
  987. case VCPU_REGS_RIP:
  988. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  989. break;
  990. case VCPU_EXREG_PDPTR:
  991. if (enable_ept)
  992. ept_save_pdptrs(vcpu);
  993. break;
  994. default:
  995. break;
  996. }
  997. }
  998. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  999. {
  1000. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1001. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1002. else
  1003. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1004. update_exception_bitmap(vcpu);
  1005. }
  1006. static __init int cpu_has_kvm_support(void)
  1007. {
  1008. return cpu_has_vmx();
  1009. }
  1010. static __init int vmx_disabled_by_bios(void)
  1011. {
  1012. u64 msr;
  1013. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1014. return (msr & (FEATURE_CONTROL_LOCKED |
  1015. FEATURE_CONTROL_VMXON_ENABLED))
  1016. == FEATURE_CONTROL_LOCKED;
  1017. /* locked but not enabled */
  1018. }
  1019. static int hardware_enable(void *garbage)
  1020. {
  1021. int cpu = raw_smp_processor_id();
  1022. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1023. u64 old;
  1024. if (read_cr4() & X86_CR4_VMXE)
  1025. return -EBUSY;
  1026. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  1027. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1028. if ((old & (FEATURE_CONTROL_LOCKED |
  1029. FEATURE_CONTROL_VMXON_ENABLED))
  1030. != (FEATURE_CONTROL_LOCKED |
  1031. FEATURE_CONTROL_VMXON_ENABLED))
  1032. /* enable and lock */
  1033. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  1034. FEATURE_CONTROL_LOCKED |
  1035. FEATURE_CONTROL_VMXON_ENABLED);
  1036. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1037. asm volatile (ASM_VMX_VMXON_RAX
  1038. : : "a"(&phys_addr), "m"(phys_addr)
  1039. : "memory", "cc");
  1040. ept_sync_global();
  1041. return 0;
  1042. }
  1043. static void vmclear_local_vcpus(void)
  1044. {
  1045. int cpu = raw_smp_processor_id();
  1046. struct vcpu_vmx *vmx, *n;
  1047. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  1048. local_vcpus_link)
  1049. __vcpu_clear(vmx);
  1050. }
  1051. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1052. * tricks.
  1053. */
  1054. static void kvm_cpu_vmxoff(void)
  1055. {
  1056. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1057. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1058. }
  1059. static void hardware_disable(void *garbage)
  1060. {
  1061. vmclear_local_vcpus();
  1062. kvm_cpu_vmxoff();
  1063. }
  1064. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1065. u32 msr, u32 *result)
  1066. {
  1067. u32 vmx_msr_low, vmx_msr_high;
  1068. u32 ctl = ctl_min | ctl_opt;
  1069. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1070. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1071. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1072. /* Ensure minimum (required) set of control bits are supported. */
  1073. if (ctl_min & ~ctl)
  1074. return -EIO;
  1075. *result = ctl;
  1076. return 0;
  1077. }
  1078. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1079. {
  1080. u32 vmx_msr_low, vmx_msr_high;
  1081. u32 min, opt, min2, opt2;
  1082. u32 _pin_based_exec_control = 0;
  1083. u32 _cpu_based_exec_control = 0;
  1084. u32 _cpu_based_2nd_exec_control = 0;
  1085. u32 _vmexit_control = 0;
  1086. u32 _vmentry_control = 0;
  1087. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1088. opt = PIN_BASED_VIRTUAL_NMIS;
  1089. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1090. &_pin_based_exec_control) < 0)
  1091. return -EIO;
  1092. min = CPU_BASED_HLT_EXITING |
  1093. #ifdef CONFIG_X86_64
  1094. CPU_BASED_CR8_LOAD_EXITING |
  1095. CPU_BASED_CR8_STORE_EXITING |
  1096. #endif
  1097. CPU_BASED_CR3_LOAD_EXITING |
  1098. CPU_BASED_CR3_STORE_EXITING |
  1099. CPU_BASED_USE_IO_BITMAPS |
  1100. CPU_BASED_MOV_DR_EXITING |
  1101. CPU_BASED_USE_TSC_OFFSETING |
  1102. CPU_BASED_MWAIT_EXITING |
  1103. CPU_BASED_MONITOR_EXITING |
  1104. CPU_BASED_INVLPG_EXITING;
  1105. opt = CPU_BASED_TPR_SHADOW |
  1106. CPU_BASED_USE_MSR_BITMAPS |
  1107. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1108. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1109. &_cpu_based_exec_control) < 0)
  1110. return -EIO;
  1111. #ifdef CONFIG_X86_64
  1112. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1113. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1114. ~CPU_BASED_CR8_STORE_EXITING;
  1115. #endif
  1116. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1117. min2 = 0;
  1118. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1119. SECONDARY_EXEC_WBINVD_EXITING |
  1120. SECONDARY_EXEC_ENABLE_VPID |
  1121. SECONDARY_EXEC_ENABLE_EPT |
  1122. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  1123. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  1124. SECONDARY_EXEC_RDTSCP;
  1125. if (adjust_vmx_controls(min2, opt2,
  1126. MSR_IA32_VMX_PROCBASED_CTLS2,
  1127. &_cpu_based_2nd_exec_control) < 0)
  1128. return -EIO;
  1129. }
  1130. #ifndef CONFIG_X86_64
  1131. if (!(_cpu_based_2nd_exec_control &
  1132. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1133. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1134. #endif
  1135. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1136. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1137. enabled */
  1138. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1139. CPU_BASED_CR3_STORE_EXITING |
  1140. CPU_BASED_INVLPG_EXITING);
  1141. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1142. vmx_capability.ept, vmx_capability.vpid);
  1143. }
  1144. min = 0;
  1145. #ifdef CONFIG_X86_64
  1146. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1147. #endif
  1148. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1149. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1150. &_vmexit_control) < 0)
  1151. return -EIO;
  1152. min = 0;
  1153. opt = VM_ENTRY_LOAD_IA32_PAT;
  1154. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1155. &_vmentry_control) < 0)
  1156. return -EIO;
  1157. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1158. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1159. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1160. return -EIO;
  1161. #ifdef CONFIG_X86_64
  1162. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1163. if (vmx_msr_high & (1u<<16))
  1164. return -EIO;
  1165. #endif
  1166. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1167. if (((vmx_msr_high >> 18) & 15) != 6)
  1168. return -EIO;
  1169. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1170. vmcs_conf->order = get_order(vmcs_config.size);
  1171. vmcs_conf->revision_id = vmx_msr_low;
  1172. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1173. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1174. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1175. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1176. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1177. return 0;
  1178. }
  1179. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1180. {
  1181. int node = cpu_to_node(cpu);
  1182. struct page *pages;
  1183. struct vmcs *vmcs;
  1184. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1185. if (!pages)
  1186. return NULL;
  1187. vmcs = page_address(pages);
  1188. memset(vmcs, 0, vmcs_config.size);
  1189. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1190. return vmcs;
  1191. }
  1192. static struct vmcs *alloc_vmcs(void)
  1193. {
  1194. return alloc_vmcs_cpu(raw_smp_processor_id());
  1195. }
  1196. static void free_vmcs(struct vmcs *vmcs)
  1197. {
  1198. free_pages((unsigned long)vmcs, vmcs_config.order);
  1199. }
  1200. static void free_kvm_area(void)
  1201. {
  1202. int cpu;
  1203. for_each_possible_cpu(cpu) {
  1204. free_vmcs(per_cpu(vmxarea, cpu));
  1205. per_cpu(vmxarea, cpu) = NULL;
  1206. }
  1207. }
  1208. static __init int alloc_kvm_area(void)
  1209. {
  1210. int cpu;
  1211. for_each_possible_cpu(cpu) {
  1212. struct vmcs *vmcs;
  1213. vmcs = alloc_vmcs_cpu(cpu);
  1214. if (!vmcs) {
  1215. free_kvm_area();
  1216. return -ENOMEM;
  1217. }
  1218. per_cpu(vmxarea, cpu) = vmcs;
  1219. }
  1220. return 0;
  1221. }
  1222. static __init int hardware_setup(void)
  1223. {
  1224. if (setup_vmcs_config(&vmcs_config) < 0)
  1225. return -EIO;
  1226. if (boot_cpu_has(X86_FEATURE_NX))
  1227. kvm_enable_efer_bits(EFER_NX);
  1228. if (!cpu_has_vmx_vpid())
  1229. enable_vpid = 0;
  1230. if (!cpu_has_vmx_ept()) {
  1231. enable_ept = 0;
  1232. enable_unrestricted_guest = 0;
  1233. }
  1234. if (!cpu_has_vmx_unrestricted_guest())
  1235. enable_unrestricted_guest = 0;
  1236. if (!cpu_has_vmx_flexpriority())
  1237. flexpriority_enabled = 0;
  1238. if (!cpu_has_vmx_tpr_shadow())
  1239. kvm_x86_ops->update_cr8_intercept = NULL;
  1240. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1241. kvm_disable_largepages();
  1242. if (!cpu_has_vmx_ple())
  1243. ple_gap = 0;
  1244. return alloc_kvm_area();
  1245. }
  1246. static __exit void hardware_unsetup(void)
  1247. {
  1248. free_kvm_area();
  1249. }
  1250. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1251. {
  1252. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1253. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1254. vmcs_write16(sf->selector, save->selector);
  1255. vmcs_writel(sf->base, save->base);
  1256. vmcs_write32(sf->limit, save->limit);
  1257. vmcs_write32(sf->ar_bytes, save->ar);
  1258. } else {
  1259. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1260. << AR_DPL_SHIFT;
  1261. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1262. }
  1263. }
  1264. static void enter_pmode(struct kvm_vcpu *vcpu)
  1265. {
  1266. unsigned long flags;
  1267. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1268. vmx->emulation_required = 1;
  1269. vmx->rmode.vm86_active = 0;
  1270. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1271. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1272. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1273. flags = vmcs_readl(GUEST_RFLAGS);
  1274. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1275. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1276. vmcs_writel(GUEST_RFLAGS, flags);
  1277. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1278. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1279. update_exception_bitmap(vcpu);
  1280. if (emulate_invalid_guest_state)
  1281. return;
  1282. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1283. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1284. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1285. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1286. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1287. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1288. vmcs_write16(GUEST_CS_SELECTOR,
  1289. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1290. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1291. }
  1292. static gva_t rmode_tss_base(struct kvm *kvm)
  1293. {
  1294. if (!kvm->arch.tss_addr) {
  1295. struct kvm_memslots *slots;
  1296. gfn_t base_gfn;
  1297. slots = rcu_dereference(kvm->memslots);
  1298. base_gfn = kvm->memslots->memslots[0].base_gfn +
  1299. kvm->memslots->memslots[0].npages - 3;
  1300. return base_gfn << PAGE_SHIFT;
  1301. }
  1302. return kvm->arch.tss_addr;
  1303. }
  1304. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1305. {
  1306. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1307. save->selector = vmcs_read16(sf->selector);
  1308. save->base = vmcs_readl(sf->base);
  1309. save->limit = vmcs_read32(sf->limit);
  1310. save->ar = vmcs_read32(sf->ar_bytes);
  1311. vmcs_write16(sf->selector, save->base >> 4);
  1312. vmcs_write32(sf->base, save->base & 0xfffff);
  1313. vmcs_write32(sf->limit, 0xffff);
  1314. vmcs_write32(sf->ar_bytes, 0xf3);
  1315. }
  1316. static void enter_rmode(struct kvm_vcpu *vcpu)
  1317. {
  1318. unsigned long flags;
  1319. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1320. if (enable_unrestricted_guest)
  1321. return;
  1322. vmx->emulation_required = 1;
  1323. vmx->rmode.vm86_active = 1;
  1324. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1325. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1326. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1327. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1328. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1329. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1330. flags = vmcs_readl(GUEST_RFLAGS);
  1331. vmx->rmode.save_iopl
  1332. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1333. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1334. vmcs_writel(GUEST_RFLAGS, flags);
  1335. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1336. update_exception_bitmap(vcpu);
  1337. if (emulate_invalid_guest_state)
  1338. goto continue_rmode;
  1339. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1340. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1341. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1342. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1343. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1344. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1345. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1346. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1347. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1348. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1349. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1350. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1351. continue_rmode:
  1352. kvm_mmu_reset_context(vcpu);
  1353. init_rmode(vcpu->kvm);
  1354. }
  1355. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1356. {
  1357. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1358. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1359. if (!msr)
  1360. return;
  1361. /*
  1362. * Force kernel_gs_base reloading before EFER changes, as control
  1363. * of this msr depends on is_long_mode().
  1364. */
  1365. vmx_load_host_state(to_vmx(vcpu));
  1366. vcpu->arch.shadow_efer = efer;
  1367. if (!msr)
  1368. return;
  1369. if (efer & EFER_LMA) {
  1370. vmcs_write32(VM_ENTRY_CONTROLS,
  1371. vmcs_read32(VM_ENTRY_CONTROLS) |
  1372. VM_ENTRY_IA32E_MODE);
  1373. msr->data = efer;
  1374. } else {
  1375. vmcs_write32(VM_ENTRY_CONTROLS,
  1376. vmcs_read32(VM_ENTRY_CONTROLS) &
  1377. ~VM_ENTRY_IA32E_MODE);
  1378. msr->data = efer & ~EFER_LME;
  1379. }
  1380. setup_msrs(vmx);
  1381. }
  1382. #ifdef CONFIG_X86_64
  1383. static void enter_lmode(struct kvm_vcpu *vcpu)
  1384. {
  1385. u32 guest_tr_ar;
  1386. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1387. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1388. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1389. __func__);
  1390. vmcs_write32(GUEST_TR_AR_BYTES,
  1391. (guest_tr_ar & ~AR_TYPE_MASK)
  1392. | AR_TYPE_BUSY_64_TSS);
  1393. }
  1394. vcpu->arch.shadow_efer |= EFER_LMA;
  1395. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1396. }
  1397. static void exit_lmode(struct kvm_vcpu *vcpu)
  1398. {
  1399. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1400. vmcs_write32(VM_ENTRY_CONTROLS,
  1401. vmcs_read32(VM_ENTRY_CONTROLS)
  1402. & ~VM_ENTRY_IA32E_MODE);
  1403. }
  1404. #endif
  1405. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1406. {
  1407. vpid_sync_vcpu_all(to_vmx(vcpu));
  1408. if (enable_ept)
  1409. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1410. }
  1411. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  1412. {
  1413. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  1414. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  1415. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  1416. }
  1417. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1418. {
  1419. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  1420. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  1421. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  1422. }
  1423. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1424. {
  1425. if (!test_bit(VCPU_EXREG_PDPTR,
  1426. (unsigned long *)&vcpu->arch.regs_dirty))
  1427. return;
  1428. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1429. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1430. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1431. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1432. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1433. }
  1434. }
  1435. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1436. {
  1437. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1438. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1439. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1440. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1441. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1442. }
  1443. __set_bit(VCPU_EXREG_PDPTR,
  1444. (unsigned long *)&vcpu->arch.regs_avail);
  1445. __set_bit(VCPU_EXREG_PDPTR,
  1446. (unsigned long *)&vcpu->arch.regs_dirty);
  1447. }
  1448. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1449. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1450. unsigned long cr0,
  1451. struct kvm_vcpu *vcpu)
  1452. {
  1453. if (!(cr0 & X86_CR0_PG)) {
  1454. /* From paging/starting to nonpaging */
  1455. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1456. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1457. (CPU_BASED_CR3_LOAD_EXITING |
  1458. CPU_BASED_CR3_STORE_EXITING));
  1459. vcpu->arch.cr0 = cr0;
  1460. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1461. } else if (!is_paging(vcpu)) {
  1462. /* From nonpaging to paging */
  1463. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1464. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1465. ~(CPU_BASED_CR3_LOAD_EXITING |
  1466. CPU_BASED_CR3_STORE_EXITING));
  1467. vcpu->arch.cr0 = cr0;
  1468. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  1469. }
  1470. if (!(cr0 & X86_CR0_WP))
  1471. *hw_cr0 &= ~X86_CR0_WP;
  1472. }
  1473. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1474. {
  1475. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1476. unsigned long hw_cr0;
  1477. if (enable_unrestricted_guest)
  1478. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1479. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1480. else
  1481. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1482. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1483. enter_pmode(vcpu);
  1484. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1485. enter_rmode(vcpu);
  1486. #ifdef CONFIG_X86_64
  1487. if (vcpu->arch.shadow_efer & EFER_LME) {
  1488. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1489. enter_lmode(vcpu);
  1490. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1491. exit_lmode(vcpu);
  1492. }
  1493. #endif
  1494. if (enable_ept)
  1495. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1496. if (!vcpu->fpu_active)
  1497. hw_cr0 |= X86_CR0_TS;
  1498. vmcs_writel(CR0_READ_SHADOW, cr0);
  1499. vmcs_writel(GUEST_CR0, hw_cr0);
  1500. vcpu->arch.cr0 = cr0;
  1501. }
  1502. static u64 construct_eptp(unsigned long root_hpa)
  1503. {
  1504. u64 eptp;
  1505. /* TODO write the value reading from MSR */
  1506. eptp = VMX_EPT_DEFAULT_MT |
  1507. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1508. eptp |= (root_hpa & PAGE_MASK);
  1509. return eptp;
  1510. }
  1511. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1512. {
  1513. unsigned long guest_cr3;
  1514. u64 eptp;
  1515. guest_cr3 = cr3;
  1516. if (enable_ept) {
  1517. eptp = construct_eptp(cr3);
  1518. vmcs_write64(EPT_POINTER, eptp);
  1519. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1520. vcpu->kvm->arch.ept_identity_map_addr;
  1521. ept_load_pdptrs(vcpu);
  1522. }
  1523. vmx_flush_tlb(vcpu);
  1524. vmcs_writel(GUEST_CR3, guest_cr3);
  1525. }
  1526. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1527. {
  1528. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1529. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1530. vcpu->arch.cr4 = cr4;
  1531. if (enable_ept) {
  1532. if (!is_paging(vcpu)) {
  1533. hw_cr4 &= ~X86_CR4_PAE;
  1534. hw_cr4 |= X86_CR4_PSE;
  1535. } else if (!(cr4 & X86_CR4_PAE)) {
  1536. hw_cr4 &= ~X86_CR4_PAE;
  1537. }
  1538. }
  1539. vmcs_writel(CR4_READ_SHADOW, cr4);
  1540. vmcs_writel(GUEST_CR4, hw_cr4);
  1541. }
  1542. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1543. {
  1544. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1545. return vmcs_readl(sf->base);
  1546. }
  1547. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1548. struct kvm_segment *var, int seg)
  1549. {
  1550. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1551. u32 ar;
  1552. var->base = vmcs_readl(sf->base);
  1553. var->limit = vmcs_read32(sf->limit);
  1554. var->selector = vmcs_read16(sf->selector);
  1555. ar = vmcs_read32(sf->ar_bytes);
  1556. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1557. ar = 0;
  1558. var->type = ar & 15;
  1559. var->s = (ar >> 4) & 1;
  1560. var->dpl = (ar >> 5) & 3;
  1561. var->present = (ar >> 7) & 1;
  1562. var->avl = (ar >> 12) & 1;
  1563. var->l = (ar >> 13) & 1;
  1564. var->db = (ar >> 14) & 1;
  1565. var->g = (ar >> 15) & 1;
  1566. var->unusable = (ar >> 16) & 1;
  1567. }
  1568. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1569. {
  1570. if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) /* if real mode */
  1571. return 0;
  1572. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1573. return 3;
  1574. return vmcs_read16(GUEST_CS_SELECTOR) & 3;
  1575. }
  1576. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1577. {
  1578. u32 ar;
  1579. if (var->unusable)
  1580. ar = 1 << 16;
  1581. else {
  1582. ar = var->type & 15;
  1583. ar |= (var->s & 1) << 4;
  1584. ar |= (var->dpl & 3) << 5;
  1585. ar |= (var->present & 1) << 7;
  1586. ar |= (var->avl & 1) << 12;
  1587. ar |= (var->l & 1) << 13;
  1588. ar |= (var->db & 1) << 14;
  1589. ar |= (var->g & 1) << 15;
  1590. }
  1591. if (ar == 0) /* a 0 value means unusable */
  1592. ar = AR_UNUSABLE_MASK;
  1593. return ar;
  1594. }
  1595. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1596. struct kvm_segment *var, int seg)
  1597. {
  1598. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1599. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1600. u32 ar;
  1601. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1602. vmx->rmode.tr.selector = var->selector;
  1603. vmx->rmode.tr.base = var->base;
  1604. vmx->rmode.tr.limit = var->limit;
  1605. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1606. return;
  1607. }
  1608. vmcs_writel(sf->base, var->base);
  1609. vmcs_write32(sf->limit, var->limit);
  1610. vmcs_write16(sf->selector, var->selector);
  1611. if (vmx->rmode.vm86_active && var->s) {
  1612. /*
  1613. * Hack real-mode segments into vm86 compatibility.
  1614. */
  1615. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1616. vmcs_writel(sf->base, 0xf0000);
  1617. ar = 0xf3;
  1618. } else
  1619. ar = vmx_segment_access_rights(var);
  1620. /*
  1621. * Fix the "Accessed" bit in AR field of segment registers for older
  1622. * qemu binaries.
  1623. * IA32 arch specifies that at the time of processor reset the
  1624. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1625. * is setting it to 0 in the usedland code. This causes invalid guest
  1626. * state vmexit when "unrestricted guest" mode is turned on.
  1627. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1628. * tree. Newer qemu binaries with that qemu fix would not need this
  1629. * kvm hack.
  1630. */
  1631. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1632. ar |= 0x1; /* Accessed */
  1633. vmcs_write32(sf->ar_bytes, ar);
  1634. }
  1635. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1636. {
  1637. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1638. *db = (ar >> 14) & 1;
  1639. *l = (ar >> 13) & 1;
  1640. }
  1641. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1642. {
  1643. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1644. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1645. }
  1646. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1647. {
  1648. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1649. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1650. }
  1651. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1652. {
  1653. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1654. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1655. }
  1656. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1657. {
  1658. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1659. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1660. }
  1661. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1662. {
  1663. struct kvm_segment var;
  1664. u32 ar;
  1665. vmx_get_segment(vcpu, &var, seg);
  1666. ar = vmx_segment_access_rights(&var);
  1667. if (var.base != (var.selector << 4))
  1668. return false;
  1669. if (var.limit != 0xffff)
  1670. return false;
  1671. if (ar != 0xf3)
  1672. return false;
  1673. return true;
  1674. }
  1675. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1676. {
  1677. struct kvm_segment cs;
  1678. unsigned int cs_rpl;
  1679. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1680. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1681. if (cs.unusable)
  1682. return false;
  1683. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1684. return false;
  1685. if (!cs.s)
  1686. return false;
  1687. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1688. if (cs.dpl > cs_rpl)
  1689. return false;
  1690. } else {
  1691. if (cs.dpl != cs_rpl)
  1692. return false;
  1693. }
  1694. if (!cs.present)
  1695. return false;
  1696. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1697. return true;
  1698. }
  1699. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1700. {
  1701. struct kvm_segment ss;
  1702. unsigned int ss_rpl;
  1703. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1704. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1705. if (ss.unusable)
  1706. return true;
  1707. if (ss.type != 3 && ss.type != 7)
  1708. return false;
  1709. if (!ss.s)
  1710. return false;
  1711. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1712. return false;
  1713. if (!ss.present)
  1714. return false;
  1715. return true;
  1716. }
  1717. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1718. {
  1719. struct kvm_segment var;
  1720. unsigned int rpl;
  1721. vmx_get_segment(vcpu, &var, seg);
  1722. rpl = var.selector & SELECTOR_RPL_MASK;
  1723. if (var.unusable)
  1724. return true;
  1725. if (!var.s)
  1726. return false;
  1727. if (!var.present)
  1728. return false;
  1729. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1730. if (var.dpl < rpl) /* DPL < RPL */
  1731. return false;
  1732. }
  1733. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1734. * rights flags
  1735. */
  1736. return true;
  1737. }
  1738. static bool tr_valid(struct kvm_vcpu *vcpu)
  1739. {
  1740. struct kvm_segment tr;
  1741. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1742. if (tr.unusable)
  1743. return false;
  1744. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1745. return false;
  1746. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1747. return false;
  1748. if (!tr.present)
  1749. return false;
  1750. return true;
  1751. }
  1752. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1753. {
  1754. struct kvm_segment ldtr;
  1755. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1756. if (ldtr.unusable)
  1757. return true;
  1758. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1759. return false;
  1760. if (ldtr.type != 2)
  1761. return false;
  1762. if (!ldtr.present)
  1763. return false;
  1764. return true;
  1765. }
  1766. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1767. {
  1768. struct kvm_segment cs, ss;
  1769. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1770. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1771. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1772. (ss.selector & SELECTOR_RPL_MASK));
  1773. }
  1774. /*
  1775. * Check if guest state is valid. Returns true if valid, false if
  1776. * not.
  1777. * We assume that registers are always usable
  1778. */
  1779. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1780. {
  1781. /* real mode guest state checks */
  1782. if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
  1783. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1784. return false;
  1785. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1786. return false;
  1787. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1788. return false;
  1789. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1790. return false;
  1791. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1792. return false;
  1793. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1794. return false;
  1795. } else {
  1796. /* protected mode guest state checks */
  1797. if (!cs_ss_rpl_check(vcpu))
  1798. return false;
  1799. if (!code_segment_valid(vcpu))
  1800. return false;
  1801. if (!stack_segment_valid(vcpu))
  1802. return false;
  1803. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1804. return false;
  1805. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1806. return false;
  1807. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1808. return false;
  1809. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1810. return false;
  1811. if (!tr_valid(vcpu))
  1812. return false;
  1813. if (!ldtr_valid(vcpu))
  1814. return false;
  1815. }
  1816. /* TODO:
  1817. * - Add checks on RIP
  1818. * - Add checks on RFLAGS
  1819. */
  1820. return true;
  1821. }
  1822. static int init_rmode_tss(struct kvm *kvm)
  1823. {
  1824. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1825. u16 data = 0;
  1826. int ret = 0;
  1827. int r;
  1828. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1829. if (r < 0)
  1830. goto out;
  1831. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1832. r = kvm_write_guest_page(kvm, fn++, &data,
  1833. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1834. if (r < 0)
  1835. goto out;
  1836. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1837. if (r < 0)
  1838. goto out;
  1839. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1840. if (r < 0)
  1841. goto out;
  1842. data = ~0;
  1843. r = kvm_write_guest_page(kvm, fn, &data,
  1844. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1845. sizeof(u8));
  1846. if (r < 0)
  1847. goto out;
  1848. ret = 1;
  1849. out:
  1850. return ret;
  1851. }
  1852. static int init_rmode_identity_map(struct kvm *kvm)
  1853. {
  1854. int i, r, ret;
  1855. pfn_t identity_map_pfn;
  1856. u32 tmp;
  1857. if (!enable_ept)
  1858. return 1;
  1859. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1860. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1861. "haven't been allocated!\n");
  1862. return 0;
  1863. }
  1864. if (likely(kvm->arch.ept_identity_pagetable_done))
  1865. return 1;
  1866. ret = 0;
  1867. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1868. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1869. if (r < 0)
  1870. goto out;
  1871. /* Set up identity-mapping pagetable for EPT in real mode */
  1872. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1873. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1874. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1875. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1876. &tmp, i * sizeof(tmp), sizeof(tmp));
  1877. if (r < 0)
  1878. goto out;
  1879. }
  1880. kvm->arch.ept_identity_pagetable_done = true;
  1881. ret = 1;
  1882. out:
  1883. return ret;
  1884. }
  1885. static void seg_setup(int seg)
  1886. {
  1887. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1888. unsigned int ar;
  1889. vmcs_write16(sf->selector, 0);
  1890. vmcs_writel(sf->base, 0);
  1891. vmcs_write32(sf->limit, 0xffff);
  1892. if (enable_unrestricted_guest) {
  1893. ar = 0x93;
  1894. if (seg == VCPU_SREG_CS)
  1895. ar |= 0x08; /* code segment */
  1896. } else
  1897. ar = 0xf3;
  1898. vmcs_write32(sf->ar_bytes, ar);
  1899. }
  1900. static int alloc_apic_access_page(struct kvm *kvm)
  1901. {
  1902. struct kvm_userspace_memory_region kvm_userspace_mem;
  1903. int r = 0;
  1904. mutex_lock(&kvm->slots_lock);
  1905. if (kvm->arch.apic_access_page)
  1906. goto out;
  1907. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1908. kvm_userspace_mem.flags = 0;
  1909. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1910. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1911. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1912. if (r)
  1913. goto out;
  1914. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1915. out:
  1916. mutex_unlock(&kvm->slots_lock);
  1917. return r;
  1918. }
  1919. static int alloc_identity_pagetable(struct kvm *kvm)
  1920. {
  1921. struct kvm_userspace_memory_region kvm_userspace_mem;
  1922. int r = 0;
  1923. mutex_lock(&kvm->slots_lock);
  1924. if (kvm->arch.ept_identity_pagetable)
  1925. goto out;
  1926. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1927. kvm_userspace_mem.flags = 0;
  1928. kvm_userspace_mem.guest_phys_addr =
  1929. kvm->arch.ept_identity_map_addr;
  1930. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1931. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1932. if (r)
  1933. goto out;
  1934. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1935. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1936. out:
  1937. mutex_unlock(&kvm->slots_lock);
  1938. return r;
  1939. }
  1940. static void allocate_vpid(struct vcpu_vmx *vmx)
  1941. {
  1942. int vpid;
  1943. vmx->vpid = 0;
  1944. if (!enable_vpid)
  1945. return;
  1946. spin_lock(&vmx_vpid_lock);
  1947. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1948. if (vpid < VMX_NR_VPIDS) {
  1949. vmx->vpid = vpid;
  1950. __set_bit(vpid, vmx_vpid_bitmap);
  1951. }
  1952. spin_unlock(&vmx_vpid_lock);
  1953. }
  1954. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1955. {
  1956. int f = sizeof(unsigned long);
  1957. if (!cpu_has_vmx_msr_bitmap())
  1958. return;
  1959. /*
  1960. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1961. * have the write-low and read-high bitmap offsets the wrong way round.
  1962. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1963. */
  1964. if (msr <= 0x1fff) {
  1965. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1966. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1967. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1968. msr &= 0x1fff;
  1969. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1970. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1971. }
  1972. }
  1973. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1974. {
  1975. if (!longmode_only)
  1976. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1977. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1978. }
  1979. /*
  1980. * Sets up the vmcs for emulated real mode.
  1981. */
  1982. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1983. {
  1984. u32 host_sysenter_cs, msr_low, msr_high;
  1985. u32 junk;
  1986. u64 host_pat, tsc_this, tsc_base;
  1987. unsigned long a;
  1988. struct descriptor_table dt;
  1989. int i;
  1990. unsigned long kvm_vmx_return;
  1991. u32 exec_control;
  1992. /* I/O */
  1993. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1994. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1995. if (cpu_has_vmx_msr_bitmap())
  1996. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1997. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1998. /* Control */
  1999. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  2000. vmcs_config.pin_based_exec_ctrl);
  2001. exec_control = vmcs_config.cpu_based_exec_ctrl;
  2002. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  2003. exec_control &= ~CPU_BASED_TPR_SHADOW;
  2004. #ifdef CONFIG_X86_64
  2005. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  2006. CPU_BASED_CR8_LOAD_EXITING;
  2007. #endif
  2008. }
  2009. if (!enable_ept)
  2010. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  2011. CPU_BASED_CR3_LOAD_EXITING |
  2012. CPU_BASED_INVLPG_EXITING;
  2013. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  2014. if (cpu_has_secondary_exec_ctrls()) {
  2015. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  2016. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2017. exec_control &=
  2018. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  2019. if (vmx->vpid == 0)
  2020. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  2021. if (!enable_ept) {
  2022. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  2023. enable_unrestricted_guest = 0;
  2024. }
  2025. if (!enable_unrestricted_guest)
  2026. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  2027. if (!ple_gap)
  2028. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  2029. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  2030. }
  2031. if (ple_gap) {
  2032. vmcs_write32(PLE_GAP, ple_gap);
  2033. vmcs_write32(PLE_WINDOW, ple_window);
  2034. }
  2035. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  2036. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  2037. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  2038. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  2039. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2040. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2041. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2042. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2043. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2044. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  2045. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  2046. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2047. #ifdef CONFIG_X86_64
  2048. rdmsrl(MSR_FS_BASE, a);
  2049. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  2050. rdmsrl(MSR_GS_BASE, a);
  2051. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  2052. #else
  2053. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  2054. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  2055. #endif
  2056. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2057. kvm_get_idt(&dt);
  2058. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  2059. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  2060. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  2061. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  2062. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  2063. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  2064. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  2065. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  2066. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  2067. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  2068. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  2069. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  2070. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  2071. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2072. host_pat = msr_low | ((u64) msr_high << 32);
  2073. vmcs_write64(HOST_IA32_PAT, host_pat);
  2074. }
  2075. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2076. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2077. host_pat = msr_low | ((u64) msr_high << 32);
  2078. /* Write the default value follow host pat */
  2079. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2080. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2081. vmx->vcpu.arch.pat = host_pat;
  2082. }
  2083. for (i = 0; i < NR_VMX_MSR; ++i) {
  2084. u32 index = vmx_msr_index[i];
  2085. u32 data_low, data_high;
  2086. int j = vmx->nmsrs;
  2087. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2088. continue;
  2089. if (wrmsr_safe(index, data_low, data_high) < 0)
  2090. continue;
  2091. vmx->guest_msrs[j].index = i;
  2092. vmx->guest_msrs[j].data = 0;
  2093. vmx->guest_msrs[j].mask = -1ull;
  2094. ++vmx->nmsrs;
  2095. }
  2096. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2097. /* 22.2.1, 20.8.1 */
  2098. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2099. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2100. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  2101. if (enable_ept)
  2102. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  2103. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  2104. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2105. rdtscll(tsc_this);
  2106. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2107. tsc_base = tsc_this;
  2108. guest_write_tsc(0, tsc_base);
  2109. return 0;
  2110. }
  2111. static int init_rmode(struct kvm *kvm)
  2112. {
  2113. if (!init_rmode_tss(kvm))
  2114. return 0;
  2115. if (!init_rmode_identity_map(kvm))
  2116. return 0;
  2117. return 1;
  2118. }
  2119. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2120. {
  2121. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2122. u64 msr;
  2123. int ret, idx;
  2124. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2125. idx = srcu_read_lock(&vcpu->kvm->srcu);
  2126. if (!init_rmode(vmx->vcpu.kvm)) {
  2127. ret = -ENOMEM;
  2128. goto out;
  2129. }
  2130. vmx->rmode.vm86_active = 0;
  2131. vmx->soft_vnmi_blocked = 0;
  2132. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2133. kvm_set_cr8(&vmx->vcpu, 0);
  2134. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2135. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2136. msr |= MSR_IA32_APICBASE_BSP;
  2137. kvm_set_apic_base(&vmx->vcpu, msr);
  2138. fx_init(&vmx->vcpu);
  2139. seg_setup(VCPU_SREG_CS);
  2140. /*
  2141. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2142. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2143. */
  2144. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2145. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2146. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2147. } else {
  2148. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2149. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2150. }
  2151. seg_setup(VCPU_SREG_DS);
  2152. seg_setup(VCPU_SREG_ES);
  2153. seg_setup(VCPU_SREG_FS);
  2154. seg_setup(VCPU_SREG_GS);
  2155. seg_setup(VCPU_SREG_SS);
  2156. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2157. vmcs_writel(GUEST_TR_BASE, 0);
  2158. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2159. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2160. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2161. vmcs_writel(GUEST_LDTR_BASE, 0);
  2162. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2163. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2164. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2165. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2166. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2167. vmcs_writel(GUEST_RFLAGS, 0x02);
  2168. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2169. kvm_rip_write(vcpu, 0xfff0);
  2170. else
  2171. kvm_rip_write(vcpu, 0);
  2172. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2173. vmcs_writel(GUEST_DR7, 0x400);
  2174. vmcs_writel(GUEST_GDTR_BASE, 0);
  2175. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2176. vmcs_writel(GUEST_IDTR_BASE, 0);
  2177. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2178. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2179. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2180. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2181. /* Special registers */
  2182. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2183. setup_msrs(vmx);
  2184. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2185. if (cpu_has_vmx_tpr_shadow()) {
  2186. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2187. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2188. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2189. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2190. vmcs_write32(TPR_THRESHOLD, 0);
  2191. }
  2192. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2193. vmcs_write64(APIC_ACCESS_ADDR,
  2194. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2195. if (vmx->vpid != 0)
  2196. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2197. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  2198. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  2199. vmx_set_cr4(&vmx->vcpu, 0);
  2200. vmx_set_efer(&vmx->vcpu, 0);
  2201. vmx_fpu_activate(&vmx->vcpu);
  2202. update_exception_bitmap(&vmx->vcpu);
  2203. vpid_sync_vcpu_all(vmx);
  2204. ret = 0;
  2205. /* HACK: Don't enable emulation on guest boot/reset */
  2206. vmx->emulation_required = 0;
  2207. out:
  2208. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  2209. return ret;
  2210. }
  2211. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2212. {
  2213. u32 cpu_based_vm_exec_control;
  2214. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2215. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2216. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2217. }
  2218. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2219. {
  2220. u32 cpu_based_vm_exec_control;
  2221. if (!cpu_has_virtual_nmis()) {
  2222. enable_irq_window(vcpu);
  2223. return;
  2224. }
  2225. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2226. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2227. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2228. }
  2229. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2230. {
  2231. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2232. uint32_t intr;
  2233. int irq = vcpu->arch.interrupt.nr;
  2234. trace_kvm_inj_virq(irq);
  2235. ++vcpu->stat.irq_injections;
  2236. if (vmx->rmode.vm86_active) {
  2237. vmx->rmode.irq.pending = true;
  2238. vmx->rmode.irq.vector = irq;
  2239. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2240. if (vcpu->arch.interrupt.soft)
  2241. vmx->rmode.irq.rip +=
  2242. vmx->vcpu.arch.event_exit_inst_len;
  2243. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2244. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2245. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2246. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2247. return;
  2248. }
  2249. intr = irq | INTR_INFO_VALID_MASK;
  2250. if (vcpu->arch.interrupt.soft) {
  2251. intr |= INTR_TYPE_SOFT_INTR;
  2252. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2253. vmx->vcpu.arch.event_exit_inst_len);
  2254. } else
  2255. intr |= INTR_TYPE_EXT_INTR;
  2256. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2257. }
  2258. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2259. {
  2260. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2261. if (!cpu_has_virtual_nmis()) {
  2262. /*
  2263. * Tracking the NMI-blocked state in software is built upon
  2264. * finding the next open IRQ window. This, in turn, depends on
  2265. * well-behaving guests: They have to keep IRQs disabled at
  2266. * least as long as the NMI handler runs. Otherwise we may
  2267. * cause NMI nesting, maybe breaking the guest. But as this is
  2268. * highly unlikely, we can live with the residual risk.
  2269. */
  2270. vmx->soft_vnmi_blocked = 1;
  2271. vmx->vnmi_blocked_time = 0;
  2272. }
  2273. ++vcpu->stat.nmi_injections;
  2274. if (vmx->rmode.vm86_active) {
  2275. vmx->rmode.irq.pending = true;
  2276. vmx->rmode.irq.vector = NMI_VECTOR;
  2277. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2278. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2279. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2280. INTR_INFO_VALID_MASK);
  2281. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2282. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2283. return;
  2284. }
  2285. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2286. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2287. }
  2288. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2289. {
  2290. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2291. return 0;
  2292. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2293. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2294. GUEST_INTR_STATE_NMI));
  2295. }
  2296. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  2297. {
  2298. if (!cpu_has_virtual_nmis())
  2299. return to_vmx(vcpu)->soft_vnmi_blocked;
  2300. else
  2301. return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2302. GUEST_INTR_STATE_NMI);
  2303. }
  2304. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2305. {
  2306. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2307. if (!cpu_has_virtual_nmis()) {
  2308. if (vmx->soft_vnmi_blocked != masked) {
  2309. vmx->soft_vnmi_blocked = masked;
  2310. vmx->vnmi_blocked_time = 0;
  2311. }
  2312. } else {
  2313. if (masked)
  2314. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2315. GUEST_INTR_STATE_NMI);
  2316. else
  2317. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2318. GUEST_INTR_STATE_NMI);
  2319. }
  2320. }
  2321. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2322. {
  2323. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2324. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2325. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2326. }
  2327. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2328. {
  2329. int ret;
  2330. struct kvm_userspace_memory_region tss_mem = {
  2331. .slot = TSS_PRIVATE_MEMSLOT,
  2332. .guest_phys_addr = addr,
  2333. .memory_size = PAGE_SIZE * 3,
  2334. .flags = 0,
  2335. };
  2336. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2337. if (ret)
  2338. return ret;
  2339. kvm->arch.tss_addr = addr;
  2340. return 0;
  2341. }
  2342. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2343. int vec, u32 err_code)
  2344. {
  2345. /*
  2346. * Instruction with address size override prefix opcode 0x67
  2347. * Cause the #SS fault with 0 error code in VM86 mode.
  2348. */
  2349. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2350. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
  2351. return 1;
  2352. /*
  2353. * Forward all other exceptions that are valid in real mode.
  2354. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2355. * the required debugging infrastructure rework.
  2356. */
  2357. switch (vec) {
  2358. case DB_VECTOR:
  2359. if (vcpu->guest_debug &
  2360. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2361. return 0;
  2362. kvm_queue_exception(vcpu, vec);
  2363. return 1;
  2364. case BP_VECTOR:
  2365. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2366. return 0;
  2367. /* fall through */
  2368. case DE_VECTOR:
  2369. case OF_VECTOR:
  2370. case BR_VECTOR:
  2371. case UD_VECTOR:
  2372. case DF_VECTOR:
  2373. case SS_VECTOR:
  2374. case GP_VECTOR:
  2375. case MF_VECTOR:
  2376. kvm_queue_exception(vcpu, vec);
  2377. return 1;
  2378. }
  2379. return 0;
  2380. }
  2381. /*
  2382. * Trigger machine check on the host. We assume all the MSRs are already set up
  2383. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2384. * We pass a fake environment to the machine check handler because we want
  2385. * the guest to be always treated like user space, no matter what context
  2386. * it used internally.
  2387. */
  2388. static void kvm_machine_check(void)
  2389. {
  2390. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2391. struct pt_regs regs = {
  2392. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2393. .flags = X86_EFLAGS_IF,
  2394. };
  2395. do_machine_check(&regs, 0);
  2396. #endif
  2397. }
  2398. static int handle_machine_check(struct kvm_vcpu *vcpu)
  2399. {
  2400. /* already handled by vcpu_run */
  2401. return 1;
  2402. }
  2403. static int handle_exception(struct kvm_vcpu *vcpu)
  2404. {
  2405. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2406. struct kvm_run *kvm_run = vcpu->run;
  2407. u32 intr_info, ex_no, error_code;
  2408. unsigned long cr2, rip, dr6;
  2409. u32 vect_info;
  2410. enum emulation_result er;
  2411. vect_info = vmx->idt_vectoring_info;
  2412. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2413. if (is_machine_check(intr_info))
  2414. return handle_machine_check(vcpu);
  2415. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2416. !is_page_fault(intr_info)) {
  2417. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2418. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  2419. vcpu->run->internal.ndata = 2;
  2420. vcpu->run->internal.data[0] = vect_info;
  2421. vcpu->run->internal.data[1] = intr_info;
  2422. return 0;
  2423. }
  2424. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2425. return 1; /* already handled by vmx_vcpu_run() */
  2426. if (is_no_device(intr_info)) {
  2427. vmx_fpu_activate(vcpu);
  2428. return 1;
  2429. }
  2430. if (is_invalid_opcode(intr_info)) {
  2431. er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
  2432. if (er != EMULATE_DONE)
  2433. kvm_queue_exception(vcpu, UD_VECTOR);
  2434. return 1;
  2435. }
  2436. error_code = 0;
  2437. rip = kvm_rip_read(vcpu);
  2438. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2439. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2440. if (is_page_fault(intr_info)) {
  2441. /* EPT won't cause page fault directly */
  2442. if (enable_ept)
  2443. BUG();
  2444. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2445. trace_kvm_page_fault(cr2, error_code);
  2446. if (kvm_event_needs_reinjection(vcpu))
  2447. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2448. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2449. }
  2450. if (vmx->rmode.vm86_active &&
  2451. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2452. error_code)) {
  2453. if (vcpu->arch.halt_request) {
  2454. vcpu->arch.halt_request = 0;
  2455. return kvm_emulate_halt(vcpu);
  2456. }
  2457. return 1;
  2458. }
  2459. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2460. switch (ex_no) {
  2461. case DB_VECTOR:
  2462. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2463. if (!(vcpu->guest_debug &
  2464. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2465. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2466. kvm_queue_exception(vcpu, DB_VECTOR);
  2467. return 1;
  2468. }
  2469. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2470. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2471. /* fall through */
  2472. case BP_VECTOR:
  2473. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2474. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2475. kvm_run->debug.arch.exception = ex_no;
  2476. break;
  2477. default:
  2478. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2479. kvm_run->ex.exception = ex_no;
  2480. kvm_run->ex.error_code = error_code;
  2481. break;
  2482. }
  2483. return 0;
  2484. }
  2485. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  2486. {
  2487. ++vcpu->stat.irq_exits;
  2488. return 1;
  2489. }
  2490. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  2491. {
  2492. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  2493. return 0;
  2494. }
  2495. static int handle_io(struct kvm_vcpu *vcpu)
  2496. {
  2497. unsigned long exit_qualification;
  2498. int size, in, string;
  2499. unsigned port;
  2500. ++vcpu->stat.io_exits;
  2501. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2502. string = (exit_qualification & 16) != 0;
  2503. if (string) {
  2504. if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
  2505. return 0;
  2506. return 1;
  2507. }
  2508. size = (exit_qualification & 7) + 1;
  2509. in = (exit_qualification & 8) != 0;
  2510. port = exit_qualification >> 16;
  2511. skip_emulated_instruction(vcpu);
  2512. return kvm_emulate_pio(vcpu, in, size, port);
  2513. }
  2514. static void
  2515. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2516. {
  2517. /*
  2518. * Patch in the VMCALL instruction:
  2519. */
  2520. hypercall[0] = 0x0f;
  2521. hypercall[1] = 0x01;
  2522. hypercall[2] = 0xc1;
  2523. }
  2524. static int handle_cr(struct kvm_vcpu *vcpu)
  2525. {
  2526. unsigned long exit_qualification, val;
  2527. int cr;
  2528. int reg;
  2529. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2530. cr = exit_qualification & 15;
  2531. reg = (exit_qualification >> 8) & 15;
  2532. switch ((exit_qualification >> 4) & 3) {
  2533. case 0: /* mov to cr */
  2534. val = kvm_register_read(vcpu, reg);
  2535. trace_kvm_cr_write(cr, val);
  2536. switch (cr) {
  2537. case 0:
  2538. kvm_set_cr0(vcpu, val);
  2539. skip_emulated_instruction(vcpu);
  2540. return 1;
  2541. case 3:
  2542. kvm_set_cr3(vcpu, val);
  2543. skip_emulated_instruction(vcpu);
  2544. return 1;
  2545. case 4:
  2546. kvm_set_cr4(vcpu, val);
  2547. skip_emulated_instruction(vcpu);
  2548. return 1;
  2549. case 8: {
  2550. u8 cr8_prev = kvm_get_cr8(vcpu);
  2551. u8 cr8 = kvm_register_read(vcpu, reg);
  2552. kvm_set_cr8(vcpu, cr8);
  2553. skip_emulated_instruction(vcpu);
  2554. if (irqchip_in_kernel(vcpu->kvm))
  2555. return 1;
  2556. if (cr8_prev <= cr8)
  2557. return 1;
  2558. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  2559. return 0;
  2560. }
  2561. };
  2562. break;
  2563. case 2: /* clts */
  2564. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  2565. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  2566. skip_emulated_instruction(vcpu);
  2567. return 1;
  2568. case 1: /*mov from cr*/
  2569. switch (cr) {
  2570. case 3:
  2571. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2572. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2573. skip_emulated_instruction(vcpu);
  2574. return 1;
  2575. case 8:
  2576. val = kvm_get_cr8(vcpu);
  2577. kvm_register_write(vcpu, reg, val);
  2578. trace_kvm_cr_read(cr, val);
  2579. skip_emulated_instruction(vcpu);
  2580. return 1;
  2581. }
  2582. break;
  2583. case 3: /* lmsw */
  2584. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  2585. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  2586. kvm_lmsw(vcpu, val);
  2587. skip_emulated_instruction(vcpu);
  2588. return 1;
  2589. default:
  2590. break;
  2591. }
  2592. vcpu->run->exit_reason = 0;
  2593. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2594. (int)(exit_qualification >> 4) & 3, cr);
  2595. return 0;
  2596. }
  2597. static int handle_dr(struct kvm_vcpu *vcpu)
  2598. {
  2599. unsigned long exit_qualification;
  2600. unsigned long val;
  2601. int dr, reg;
  2602. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  2603. if (!kvm_require_cpl(vcpu, 0))
  2604. return 1;
  2605. dr = vmcs_readl(GUEST_DR7);
  2606. if (dr & DR7_GD) {
  2607. /*
  2608. * As the vm-exit takes precedence over the debug trap, we
  2609. * need to emulate the latter, either for the host or the
  2610. * guest debugging itself.
  2611. */
  2612. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2613. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  2614. vcpu->run->debug.arch.dr7 = dr;
  2615. vcpu->run->debug.arch.pc =
  2616. vmcs_readl(GUEST_CS_BASE) +
  2617. vmcs_readl(GUEST_RIP);
  2618. vcpu->run->debug.arch.exception = DB_VECTOR;
  2619. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  2620. return 0;
  2621. } else {
  2622. vcpu->arch.dr7 &= ~DR7_GD;
  2623. vcpu->arch.dr6 |= DR6_BD;
  2624. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2625. kvm_queue_exception(vcpu, DB_VECTOR);
  2626. return 1;
  2627. }
  2628. }
  2629. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2630. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2631. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2632. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2633. switch (dr) {
  2634. case 0 ... 3:
  2635. val = vcpu->arch.db[dr];
  2636. break;
  2637. case 6:
  2638. val = vcpu->arch.dr6;
  2639. break;
  2640. case 7:
  2641. val = vcpu->arch.dr7;
  2642. break;
  2643. default:
  2644. val = 0;
  2645. }
  2646. kvm_register_write(vcpu, reg, val);
  2647. } else {
  2648. val = vcpu->arch.regs[reg];
  2649. switch (dr) {
  2650. case 0 ... 3:
  2651. vcpu->arch.db[dr] = val;
  2652. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2653. vcpu->arch.eff_db[dr] = val;
  2654. break;
  2655. case 4 ... 5:
  2656. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
  2657. kvm_queue_exception(vcpu, UD_VECTOR);
  2658. return 1;
  2659. }
  2660. break;
  2661. case 6:
  2662. if (val & 0xffffffff00000000ULL) {
  2663. kvm_inject_gp(vcpu, 0);
  2664. return 1;
  2665. }
  2666. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2667. break;
  2668. case 7:
  2669. if (val & 0xffffffff00000000ULL) {
  2670. kvm_inject_gp(vcpu, 0);
  2671. return 1;
  2672. }
  2673. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2674. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2675. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2676. vcpu->arch.switch_db_regs =
  2677. (val & DR7_BP_EN_MASK);
  2678. }
  2679. break;
  2680. }
  2681. }
  2682. skip_emulated_instruction(vcpu);
  2683. return 1;
  2684. }
  2685. static int handle_cpuid(struct kvm_vcpu *vcpu)
  2686. {
  2687. kvm_emulate_cpuid(vcpu);
  2688. return 1;
  2689. }
  2690. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  2691. {
  2692. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2693. u64 data;
  2694. if (vmx_get_msr(vcpu, ecx, &data)) {
  2695. kvm_inject_gp(vcpu, 0);
  2696. return 1;
  2697. }
  2698. trace_kvm_msr_read(ecx, data);
  2699. /* FIXME: handling of bits 32:63 of rax, rdx */
  2700. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2701. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2702. skip_emulated_instruction(vcpu);
  2703. return 1;
  2704. }
  2705. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  2706. {
  2707. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2708. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2709. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2710. trace_kvm_msr_write(ecx, data);
  2711. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2712. kvm_inject_gp(vcpu, 0);
  2713. return 1;
  2714. }
  2715. skip_emulated_instruction(vcpu);
  2716. return 1;
  2717. }
  2718. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  2719. {
  2720. return 1;
  2721. }
  2722. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  2723. {
  2724. u32 cpu_based_vm_exec_control;
  2725. /* clear pending irq */
  2726. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2727. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2728. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2729. ++vcpu->stat.irq_window_exits;
  2730. /*
  2731. * If the user space waits to inject interrupts, exit as soon as
  2732. * possible
  2733. */
  2734. if (!irqchip_in_kernel(vcpu->kvm) &&
  2735. vcpu->run->request_interrupt_window &&
  2736. !kvm_cpu_has_interrupt(vcpu)) {
  2737. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2738. return 0;
  2739. }
  2740. return 1;
  2741. }
  2742. static int handle_halt(struct kvm_vcpu *vcpu)
  2743. {
  2744. skip_emulated_instruction(vcpu);
  2745. return kvm_emulate_halt(vcpu);
  2746. }
  2747. static int handle_vmcall(struct kvm_vcpu *vcpu)
  2748. {
  2749. skip_emulated_instruction(vcpu);
  2750. kvm_emulate_hypercall(vcpu);
  2751. return 1;
  2752. }
  2753. static int handle_vmx_insn(struct kvm_vcpu *vcpu)
  2754. {
  2755. kvm_queue_exception(vcpu, UD_VECTOR);
  2756. return 1;
  2757. }
  2758. static int handle_invlpg(struct kvm_vcpu *vcpu)
  2759. {
  2760. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2761. kvm_mmu_invlpg(vcpu, exit_qualification);
  2762. skip_emulated_instruction(vcpu);
  2763. return 1;
  2764. }
  2765. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  2766. {
  2767. skip_emulated_instruction(vcpu);
  2768. /* TODO: Add support for VT-d/pass-through device */
  2769. return 1;
  2770. }
  2771. static int handle_apic_access(struct kvm_vcpu *vcpu)
  2772. {
  2773. unsigned long exit_qualification;
  2774. enum emulation_result er;
  2775. unsigned long offset;
  2776. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2777. offset = exit_qualification & 0xffful;
  2778. er = emulate_instruction(vcpu, 0, 0, 0);
  2779. if (er != EMULATE_DONE) {
  2780. printk(KERN_ERR
  2781. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2782. offset);
  2783. return -ENOEXEC;
  2784. }
  2785. return 1;
  2786. }
  2787. static int handle_task_switch(struct kvm_vcpu *vcpu)
  2788. {
  2789. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2790. unsigned long exit_qualification;
  2791. u16 tss_selector;
  2792. int reason, type, idt_v;
  2793. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2794. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2795. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2796. reason = (u32)exit_qualification >> 30;
  2797. if (reason == TASK_SWITCH_GATE && idt_v) {
  2798. switch (type) {
  2799. case INTR_TYPE_NMI_INTR:
  2800. vcpu->arch.nmi_injected = false;
  2801. if (cpu_has_virtual_nmis())
  2802. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2803. GUEST_INTR_STATE_NMI);
  2804. break;
  2805. case INTR_TYPE_EXT_INTR:
  2806. case INTR_TYPE_SOFT_INTR:
  2807. kvm_clear_interrupt_queue(vcpu);
  2808. break;
  2809. case INTR_TYPE_HARD_EXCEPTION:
  2810. case INTR_TYPE_SOFT_EXCEPTION:
  2811. kvm_clear_exception_queue(vcpu);
  2812. break;
  2813. default:
  2814. break;
  2815. }
  2816. }
  2817. tss_selector = exit_qualification;
  2818. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2819. type != INTR_TYPE_EXT_INTR &&
  2820. type != INTR_TYPE_NMI_INTR))
  2821. skip_emulated_instruction(vcpu);
  2822. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2823. return 0;
  2824. /* clear all local breakpoint enable flags */
  2825. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2826. /*
  2827. * TODO: What about debug traps on tss switch?
  2828. * Are we supposed to inject them and update dr6?
  2829. */
  2830. return 1;
  2831. }
  2832. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  2833. {
  2834. unsigned long exit_qualification;
  2835. gpa_t gpa;
  2836. int gla_validity;
  2837. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2838. if (exit_qualification & (1 << 6)) {
  2839. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2840. return -EINVAL;
  2841. }
  2842. gla_validity = (exit_qualification >> 7) & 0x3;
  2843. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2844. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2845. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2846. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2847. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2848. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2849. (long unsigned int)exit_qualification);
  2850. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2851. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2852. return 0;
  2853. }
  2854. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2855. trace_kvm_page_fault(gpa, exit_qualification);
  2856. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2857. }
  2858. static u64 ept_rsvd_mask(u64 spte, int level)
  2859. {
  2860. int i;
  2861. u64 mask = 0;
  2862. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2863. mask |= (1ULL << i);
  2864. if (level > 2)
  2865. /* bits 7:3 reserved */
  2866. mask |= 0xf8;
  2867. else if (level == 2) {
  2868. if (spte & (1ULL << 7))
  2869. /* 2MB ref, bits 20:12 reserved */
  2870. mask |= 0x1ff000;
  2871. else
  2872. /* bits 6:3 reserved */
  2873. mask |= 0x78;
  2874. }
  2875. return mask;
  2876. }
  2877. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2878. int level)
  2879. {
  2880. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2881. /* 010b (write-only) */
  2882. WARN_ON((spte & 0x7) == 0x2);
  2883. /* 110b (write/execute) */
  2884. WARN_ON((spte & 0x7) == 0x6);
  2885. /* 100b (execute-only) and value not supported by logical processor */
  2886. if (!cpu_has_vmx_ept_execute_only())
  2887. WARN_ON((spte & 0x7) == 0x4);
  2888. /* not 000b */
  2889. if ((spte & 0x7)) {
  2890. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2891. if (rsvd_bits != 0) {
  2892. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2893. __func__, rsvd_bits);
  2894. WARN_ON(1);
  2895. }
  2896. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2897. u64 ept_mem_type = (spte & 0x38) >> 3;
  2898. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2899. ept_mem_type == 7) {
  2900. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2901. __func__, ept_mem_type);
  2902. WARN_ON(1);
  2903. }
  2904. }
  2905. }
  2906. }
  2907. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  2908. {
  2909. u64 sptes[4];
  2910. int nr_sptes, i;
  2911. gpa_t gpa;
  2912. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2913. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2914. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2915. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2916. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2917. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2918. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  2919. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2920. return 0;
  2921. }
  2922. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  2923. {
  2924. u32 cpu_based_vm_exec_control;
  2925. /* clear pending NMI */
  2926. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2927. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2928. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2929. ++vcpu->stat.nmi_window_exits;
  2930. return 1;
  2931. }
  2932. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  2933. {
  2934. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2935. enum emulation_result err = EMULATE_DONE;
  2936. int ret = 1;
  2937. while (!guest_state_valid(vcpu)) {
  2938. err = emulate_instruction(vcpu, 0, 0, 0);
  2939. if (err == EMULATE_DO_MMIO) {
  2940. ret = 0;
  2941. goto out;
  2942. }
  2943. if (err != EMULATE_DONE) {
  2944. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2945. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2946. vcpu->run->internal.ndata = 0;
  2947. ret = 0;
  2948. goto out;
  2949. }
  2950. if (signal_pending(current))
  2951. goto out;
  2952. if (need_resched())
  2953. schedule();
  2954. }
  2955. vmx->emulation_required = 0;
  2956. out:
  2957. return ret;
  2958. }
  2959. /*
  2960. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  2961. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  2962. */
  2963. static int handle_pause(struct kvm_vcpu *vcpu)
  2964. {
  2965. skip_emulated_instruction(vcpu);
  2966. kvm_vcpu_on_spin(vcpu);
  2967. return 1;
  2968. }
  2969. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  2970. {
  2971. kvm_queue_exception(vcpu, UD_VECTOR);
  2972. return 1;
  2973. }
  2974. /*
  2975. * The exit handlers return 1 if the exit was handled fully and guest execution
  2976. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2977. * to be done to userspace and return 0.
  2978. */
  2979. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  2980. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2981. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2982. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2983. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2984. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2985. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2986. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2987. [EXIT_REASON_CPUID] = handle_cpuid,
  2988. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2989. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2990. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2991. [EXIT_REASON_HLT] = handle_halt,
  2992. [EXIT_REASON_INVLPG] = handle_invlpg,
  2993. [EXIT_REASON_VMCALL] = handle_vmcall,
  2994. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2995. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2996. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2997. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2998. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2999. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  3000. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  3001. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  3002. [EXIT_REASON_VMON] = handle_vmx_insn,
  3003. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  3004. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  3005. [EXIT_REASON_WBINVD] = handle_wbinvd,
  3006. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  3007. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  3008. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  3009. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  3010. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  3011. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  3012. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  3013. };
  3014. static const int kvm_vmx_max_exit_handlers =
  3015. ARRAY_SIZE(kvm_vmx_exit_handlers);
  3016. /*
  3017. * The guest has exited. See if we can fix it or if we need userspace
  3018. * assistance.
  3019. */
  3020. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  3021. {
  3022. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3023. u32 exit_reason = vmx->exit_reason;
  3024. u32 vectoring_info = vmx->idt_vectoring_info;
  3025. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  3026. /* If guest state is invalid, start emulating */
  3027. if (vmx->emulation_required && emulate_invalid_guest_state)
  3028. return handle_invalid_guest_state(vcpu);
  3029. /* Access CR3 don't cause VMExit in paging mode, so we need
  3030. * to sync with guest real CR3. */
  3031. if (enable_ept && is_paging(vcpu))
  3032. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  3033. if (unlikely(vmx->fail)) {
  3034. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  3035. vcpu->run->fail_entry.hardware_entry_failure_reason
  3036. = vmcs_read32(VM_INSTRUCTION_ERROR);
  3037. return 0;
  3038. }
  3039. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  3040. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  3041. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  3042. exit_reason != EXIT_REASON_TASK_SWITCH))
  3043. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  3044. "(0x%x) and exit reason is 0x%x\n",
  3045. __func__, vectoring_info, exit_reason);
  3046. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  3047. if (vmx_interrupt_allowed(vcpu)) {
  3048. vmx->soft_vnmi_blocked = 0;
  3049. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  3050. vcpu->arch.nmi_pending) {
  3051. /*
  3052. * This CPU don't support us in finding the end of an
  3053. * NMI-blocked window if the guest runs with IRQs
  3054. * disabled. So we pull the trigger after 1 s of
  3055. * futile waiting, but inform the user about this.
  3056. */
  3057. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  3058. "state on VCPU %d after 1 s timeout\n",
  3059. __func__, vcpu->vcpu_id);
  3060. vmx->soft_vnmi_blocked = 0;
  3061. }
  3062. }
  3063. if (exit_reason < kvm_vmx_max_exit_handlers
  3064. && kvm_vmx_exit_handlers[exit_reason])
  3065. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  3066. else {
  3067. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3068. vcpu->run->hw.hardware_exit_reason = exit_reason;
  3069. }
  3070. return 0;
  3071. }
  3072. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  3073. {
  3074. if (irr == -1 || tpr < irr) {
  3075. vmcs_write32(TPR_THRESHOLD, 0);
  3076. return;
  3077. }
  3078. vmcs_write32(TPR_THRESHOLD, irr);
  3079. }
  3080. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  3081. {
  3082. u32 exit_intr_info;
  3083. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  3084. bool unblock_nmi;
  3085. u8 vector;
  3086. int type;
  3087. bool idtv_info_valid;
  3088. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3089. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  3090. /* Handle machine checks before interrupts are enabled */
  3091. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  3092. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  3093. && is_machine_check(exit_intr_info)))
  3094. kvm_machine_check();
  3095. /* We need to handle NMIs before interrupts are enabled */
  3096. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3097. (exit_intr_info & INTR_INFO_VALID_MASK))
  3098. asm("int $2");
  3099. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  3100. if (cpu_has_virtual_nmis()) {
  3101. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  3102. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  3103. /*
  3104. * SDM 3: 27.7.1.2 (September 2008)
  3105. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  3106. * a guest IRET fault.
  3107. * SDM 3: 23.2.2 (September 2008)
  3108. * Bit 12 is undefined in any of the following cases:
  3109. * If the VM exit sets the valid bit in the IDT-vectoring
  3110. * information field.
  3111. * If the VM exit is due to a double fault.
  3112. */
  3113. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  3114. vector != DF_VECTOR && !idtv_info_valid)
  3115. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3116. GUEST_INTR_STATE_NMI);
  3117. } else if (unlikely(vmx->soft_vnmi_blocked))
  3118. vmx->vnmi_blocked_time +=
  3119. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  3120. vmx->vcpu.arch.nmi_injected = false;
  3121. kvm_clear_exception_queue(&vmx->vcpu);
  3122. kvm_clear_interrupt_queue(&vmx->vcpu);
  3123. if (!idtv_info_valid)
  3124. return;
  3125. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3126. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3127. switch (type) {
  3128. case INTR_TYPE_NMI_INTR:
  3129. vmx->vcpu.arch.nmi_injected = true;
  3130. /*
  3131. * SDM 3: 27.7.1.2 (September 2008)
  3132. * Clear bit "block by NMI" before VM entry if a NMI
  3133. * delivery faulted.
  3134. */
  3135. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3136. GUEST_INTR_STATE_NMI);
  3137. break;
  3138. case INTR_TYPE_SOFT_EXCEPTION:
  3139. vmx->vcpu.arch.event_exit_inst_len =
  3140. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3141. /* fall through */
  3142. case INTR_TYPE_HARD_EXCEPTION:
  3143. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3144. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3145. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3146. } else
  3147. kvm_queue_exception(&vmx->vcpu, vector);
  3148. break;
  3149. case INTR_TYPE_SOFT_INTR:
  3150. vmx->vcpu.arch.event_exit_inst_len =
  3151. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3152. /* fall through */
  3153. case INTR_TYPE_EXT_INTR:
  3154. kvm_queue_interrupt(&vmx->vcpu, vector,
  3155. type == INTR_TYPE_SOFT_INTR);
  3156. break;
  3157. default:
  3158. break;
  3159. }
  3160. }
  3161. /*
  3162. * Failure to inject an interrupt should give us the information
  3163. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3164. * when fetching the interrupt redirection bitmap in the real-mode
  3165. * tss, this doesn't happen. So we do it ourselves.
  3166. */
  3167. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3168. {
  3169. vmx->rmode.irq.pending = 0;
  3170. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3171. return;
  3172. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3173. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3174. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3175. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3176. return;
  3177. }
  3178. vmx->idt_vectoring_info =
  3179. VECTORING_INFO_VALID_MASK
  3180. | INTR_TYPE_EXT_INTR
  3181. | vmx->rmode.irq.vector;
  3182. }
  3183. #ifdef CONFIG_X86_64
  3184. #define R "r"
  3185. #define Q "q"
  3186. #else
  3187. #define R "e"
  3188. #define Q "l"
  3189. #endif
  3190. static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
  3191. {
  3192. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3193. /* Record the guest's net vcpu time for enforced NMI injections. */
  3194. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3195. vmx->entry_time = ktime_get();
  3196. /* Don't enter VMX if guest state is invalid, let the exit handler
  3197. start emulation until we arrive back to a valid state */
  3198. if (vmx->emulation_required && emulate_invalid_guest_state)
  3199. return;
  3200. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3201. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3202. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3203. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3204. /* When single-stepping over STI and MOV SS, we must clear the
  3205. * corresponding interruptibility bits in the guest state. Otherwise
  3206. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3207. * exceptions being set, but that's not correct for the guest debugging
  3208. * case. */
  3209. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3210. vmx_set_interrupt_shadow(vcpu, 0);
  3211. /*
  3212. * Loading guest fpu may have cleared host cr0.ts
  3213. */
  3214. vmcs_writel(HOST_CR0, read_cr0());
  3215. if (vcpu->arch.switch_db_regs)
  3216. set_debugreg(vcpu->arch.dr6, 6);
  3217. asm(
  3218. /* Store host registers */
  3219. "push %%"R"dx; push %%"R"bp;"
  3220. "push %%"R"cx \n\t"
  3221. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3222. "je 1f \n\t"
  3223. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3224. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3225. "1: \n\t"
  3226. /* Reload cr2 if changed */
  3227. "mov %c[cr2](%0), %%"R"ax \n\t"
  3228. "mov %%cr2, %%"R"dx \n\t"
  3229. "cmp %%"R"ax, %%"R"dx \n\t"
  3230. "je 2f \n\t"
  3231. "mov %%"R"ax, %%cr2 \n\t"
  3232. "2: \n\t"
  3233. /* Check if vmlaunch of vmresume is needed */
  3234. "cmpl $0, %c[launched](%0) \n\t"
  3235. /* Load guest registers. Don't clobber flags. */
  3236. "mov %c[rax](%0), %%"R"ax \n\t"
  3237. "mov %c[rbx](%0), %%"R"bx \n\t"
  3238. "mov %c[rdx](%0), %%"R"dx \n\t"
  3239. "mov %c[rsi](%0), %%"R"si \n\t"
  3240. "mov %c[rdi](%0), %%"R"di \n\t"
  3241. "mov %c[rbp](%0), %%"R"bp \n\t"
  3242. #ifdef CONFIG_X86_64
  3243. "mov %c[r8](%0), %%r8 \n\t"
  3244. "mov %c[r9](%0), %%r9 \n\t"
  3245. "mov %c[r10](%0), %%r10 \n\t"
  3246. "mov %c[r11](%0), %%r11 \n\t"
  3247. "mov %c[r12](%0), %%r12 \n\t"
  3248. "mov %c[r13](%0), %%r13 \n\t"
  3249. "mov %c[r14](%0), %%r14 \n\t"
  3250. "mov %c[r15](%0), %%r15 \n\t"
  3251. #endif
  3252. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3253. /* Enter guest mode */
  3254. "jne .Llaunched \n\t"
  3255. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3256. "jmp .Lkvm_vmx_return \n\t"
  3257. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3258. ".Lkvm_vmx_return: "
  3259. /* Save guest registers, load host registers, keep flags */
  3260. "xchg %0, (%%"R"sp) \n\t"
  3261. "mov %%"R"ax, %c[rax](%0) \n\t"
  3262. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3263. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3264. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3265. "mov %%"R"si, %c[rsi](%0) \n\t"
  3266. "mov %%"R"di, %c[rdi](%0) \n\t"
  3267. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3268. #ifdef CONFIG_X86_64
  3269. "mov %%r8, %c[r8](%0) \n\t"
  3270. "mov %%r9, %c[r9](%0) \n\t"
  3271. "mov %%r10, %c[r10](%0) \n\t"
  3272. "mov %%r11, %c[r11](%0) \n\t"
  3273. "mov %%r12, %c[r12](%0) \n\t"
  3274. "mov %%r13, %c[r13](%0) \n\t"
  3275. "mov %%r14, %c[r14](%0) \n\t"
  3276. "mov %%r15, %c[r15](%0) \n\t"
  3277. #endif
  3278. "mov %%cr2, %%"R"ax \n\t"
  3279. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3280. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3281. "setbe %c[fail](%0) \n\t"
  3282. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3283. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3284. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3285. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3286. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3287. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3288. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3289. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3290. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3291. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3292. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3293. #ifdef CONFIG_X86_64
  3294. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3295. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3296. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3297. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3298. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3299. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3300. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3301. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3302. #endif
  3303. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3304. : "cc", "memory"
  3305. , R"bx", R"di", R"si"
  3306. #ifdef CONFIG_X86_64
  3307. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3308. #endif
  3309. );
  3310. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3311. | (1 << VCPU_EXREG_PDPTR));
  3312. vcpu->arch.regs_dirty = 0;
  3313. if (vcpu->arch.switch_db_regs)
  3314. get_debugreg(vcpu->arch.dr6, 6);
  3315. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3316. if (vmx->rmode.irq.pending)
  3317. fixup_rmode_irq(vmx);
  3318. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3319. vmx->launched = 1;
  3320. vmx_complete_interrupts(vmx);
  3321. }
  3322. #undef R
  3323. #undef Q
  3324. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3325. {
  3326. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3327. if (vmx->vmcs) {
  3328. vcpu_clear(vmx);
  3329. free_vmcs(vmx->vmcs);
  3330. vmx->vmcs = NULL;
  3331. }
  3332. }
  3333. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3334. {
  3335. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3336. spin_lock(&vmx_vpid_lock);
  3337. if (vmx->vpid != 0)
  3338. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3339. spin_unlock(&vmx_vpid_lock);
  3340. vmx_free_vmcs(vcpu);
  3341. kfree(vmx->guest_msrs);
  3342. kvm_vcpu_uninit(vcpu);
  3343. kmem_cache_free(kvm_vcpu_cache, vmx);
  3344. }
  3345. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3346. {
  3347. int err;
  3348. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3349. int cpu;
  3350. if (!vmx)
  3351. return ERR_PTR(-ENOMEM);
  3352. allocate_vpid(vmx);
  3353. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3354. if (err)
  3355. goto free_vcpu;
  3356. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3357. if (!vmx->guest_msrs) {
  3358. err = -ENOMEM;
  3359. goto uninit_vcpu;
  3360. }
  3361. vmx->vmcs = alloc_vmcs();
  3362. if (!vmx->vmcs)
  3363. goto free_msrs;
  3364. vmcs_clear(vmx->vmcs);
  3365. cpu = get_cpu();
  3366. vmx_vcpu_load(&vmx->vcpu, cpu);
  3367. err = vmx_vcpu_setup(vmx);
  3368. vmx_vcpu_put(&vmx->vcpu);
  3369. put_cpu();
  3370. if (err)
  3371. goto free_vmcs;
  3372. if (vm_need_virtualize_apic_accesses(kvm))
  3373. if (alloc_apic_access_page(kvm) != 0)
  3374. goto free_vmcs;
  3375. if (enable_ept) {
  3376. if (!kvm->arch.ept_identity_map_addr)
  3377. kvm->arch.ept_identity_map_addr =
  3378. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3379. if (alloc_identity_pagetable(kvm) != 0)
  3380. goto free_vmcs;
  3381. }
  3382. return &vmx->vcpu;
  3383. free_vmcs:
  3384. free_vmcs(vmx->vmcs);
  3385. free_msrs:
  3386. kfree(vmx->guest_msrs);
  3387. uninit_vcpu:
  3388. kvm_vcpu_uninit(&vmx->vcpu);
  3389. free_vcpu:
  3390. kmem_cache_free(kvm_vcpu_cache, vmx);
  3391. return ERR_PTR(err);
  3392. }
  3393. static void __init vmx_check_processor_compat(void *rtn)
  3394. {
  3395. struct vmcs_config vmcs_conf;
  3396. *(int *)rtn = 0;
  3397. if (setup_vmcs_config(&vmcs_conf) < 0)
  3398. *(int *)rtn = -EIO;
  3399. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3400. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3401. smp_processor_id());
  3402. *(int *)rtn = -EIO;
  3403. }
  3404. }
  3405. static int get_ept_level(void)
  3406. {
  3407. return VMX_EPT_DEFAULT_GAW + 1;
  3408. }
  3409. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3410. {
  3411. u64 ret;
  3412. /* For VT-d and EPT combination
  3413. * 1. MMIO: always map as UC
  3414. * 2. EPT with VT-d:
  3415. * a. VT-d without snooping control feature: can't guarantee the
  3416. * result, try to trust guest.
  3417. * b. VT-d with snooping control feature: snooping control feature of
  3418. * VT-d engine can guarantee the cache correctness. Just set it
  3419. * to WB to keep consistent with host. So the same as item 3.
  3420. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3421. * consistent with host MTRR
  3422. */
  3423. if (is_mmio)
  3424. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3425. else if (vcpu->kvm->arch.iommu_domain &&
  3426. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3427. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3428. VMX_EPT_MT_EPTE_SHIFT;
  3429. else
  3430. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3431. | VMX_EPT_IGMT_BIT;
  3432. return ret;
  3433. }
  3434. #define _ER(x) { EXIT_REASON_##x, #x }
  3435. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3436. _ER(EXCEPTION_NMI),
  3437. _ER(EXTERNAL_INTERRUPT),
  3438. _ER(TRIPLE_FAULT),
  3439. _ER(PENDING_INTERRUPT),
  3440. _ER(NMI_WINDOW),
  3441. _ER(TASK_SWITCH),
  3442. _ER(CPUID),
  3443. _ER(HLT),
  3444. _ER(INVLPG),
  3445. _ER(RDPMC),
  3446. _ER(RDTSC),
  3447. _ER(VMCALL),
  3448. _ER(VMCLEAR),
  3449. _ER(VMLAUNCH),
  3450. _ER(VMPTRLD),
  3451. _ER(VMPTRST),
  3452. _ER(VMREAD),
  3453. _ER(VMRESUME),
  3454. _ER(VMWRITE),
  3455. _ER(VMOFF),
  3456. _ER(VMON),
  3457. _ER(CR_ACCESS),
  3458. _ER(DR_ACCESS),
  3459. _ER(IO_INSTRUCTION),
  3460. _ER(MSR_READ),
  3461. _ER(MSR_WRITE),
  3462. _ER(MWAIT_INSTRUCTION),
  3463. _ER(MONITOR_INSTRUCTION),
  3464. _ER(PAUSE_INSTRUCTION),
  3465. _ER(MCE_DURING_VMENTRY),
  3466. _ER(TPR_BELOW_THRESHOLD),
  3467. _ER(APIC_ACCESS),
  3468. _ER(EPT_VIOLATION),
  3469. _ER(EPT_MISCONFIG),
  3470. _ER(WBINVD),
  3471. { -1, NULL }
  3472. };
  3473. #undef _ER
  3474. static int vmx_get_lpage_level(void)
  3475. {
  3476. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  3477. return PT_DIRECTORY_LEVEL;
  3478. else
  3479. /* For shadow and EPT supported 1GB page */
  3480. return PT_PDPE_LEVEL;
  3481. }
  3482. static inline u32 bit(int bitno)
  3483. {
  3484. return 1 << (bitno & 31);
  3485. }
  3486. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  3487. {
  3488. struct kvm_cpuid_entry2 *best;
  3489. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3490. u32 exec_control;
  3491. vmx->rdtscp_enabled = false;
  3492. if (vmx_rdtscp_supported()) {
  3493. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  3494. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  3495. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  3496. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  3497. vmx->rdtscp_enabled = true;
  3498. else {
  3499. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  3500. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3501. exec_control);
  3502. }
  3503. }
  3504. }
  3505. }
  3506. static struct kvm_x86_ops vmx_x86_ops = {
  3507. .cpu_has_kvm_support = cpu_has_kvm_support,
  3508. .disabled_by_bios = vmx_disabled_by_bios,
  3509. .hardware_setup = hardware_setup,
  3510. .hardware_unsetup = hardware_unsetup,
  3511. .check_processor_compatibility = vmx_check_processor_compat,
  3512. .hardware_enable = hardware_enable,
  3513. .hardware_disable = hardware_disable,
  3514. .cpu_has_accelerated_tpr = report_flexpriority,
  3515. .vcpu_create = vmx_create_vcpu,
  3516. .vcpu_free = vmx_free_vcpu,
  3517. .vcpu_reset = vmx_vcpu_reset,
  3518. .prepare_guest_switch = vmx_save_host_state,
  3519. .vcpu_load = vmx_vcpu_load,
  3520. .vcpu_put = vmx_vcpu_put,
  3521. .set_guest_debug = set_guest_debug,
  3522. .get_msr = vmx_get_msr,
  3523. .set_msr = vmx_set_msr,
  3524. .get_segment_base = vmx_get_segment_base,
  3525. .get_segment = vmx_get_segment,
  3526. .set_segment = vmx_set_segment,
  3527. .get_cpl = vmx_get_cpl,
  3528. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3529. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  3530. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3531. .set_cr0 = vmx_set_cr0,
  3532. .set_cr3 = vmx_set_cr3,
  3533. .set_cr4 = vmx_set_cr4,
  3534. .set_efer = vmx_set_efer,
  3535. .get_idt = vmx_get_idt,
  3536. .set_idt = vmx_set_idt,
  3537. .get_gdt = vmx_get_gdt,
  3538. .set_gdt = vmx_set_gdt,
  3539. .cache_reg = vmx_cache_reg,
  3540. .get_rflags = vmx_get_rflags,
  3541. .set_rflags = vmx_set_rflags,
  3542. .fpu_deactivate = vmx_fpu_deactivate,
  3543. .tlb_flush = vmx_flush_tlb,
  3544. .run = vmx_vcpu_run,
  3545. .handle_exit = vmx_handle_exit,
  3546. .skip_emulated_instruction = skip_emulated_instruction,
  3547. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3548. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3549. .patch_hypercall = vmx_patch_hypercall,
  3550. .set_irq = vmx_inject_irq,
  3551. .set_nmi = vmx_inject_nmi,
  3552. .queue_exception = vmx_queue_exception,
  3553. .interrupt_allowed = vmx_interrupt_allowed,
  3554. .nmi_allowed = vmx_nmi_allowed,
  3555. .get_nmi_mask = vmx_get_nmi_mask,
  3556. .set_nmi_mask = vmx_set_nmi_mask,
  3557. .enable_nmi_window = enable_nmi_window,
  3558. .enable_irq_window = enable_irq_window,
  3559. .update_cr8_intercept = update_cr8_intercept,
  3560. .set_tss_addr = vmx_set_tss_addr,
  3561. .get_tdp_level = get_ept_level,
  3562. .get_mt_mask = vmx_get_mt_mask,
  3563. .exit_reasons_str = vmx_exit_reasons_str,
  3564. .get_lpage_level = vmx_get_lpage_level,
  3565. .cpuid_update = vmx_cpuid_update,
  3566. .rdtscp_supported = vmx_rdtscp_supported,
  3567. };
  3568. static int __init vmx_init(void)
  3569. {
  3570. int r, i;
  3571. rdmsrl_safe(MSR_EFER, &host_efer);
  3572. for (i = 0; i < NR_VMX_MSR; ++i)
  3573. kvm_define_shared_msr(i, vmx_msr_index[i]);
  3574. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3575. if (!vmx_io_bitmap_a)
  3576. return -ENOMEM;
  3577. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3578. if (!vmx_io_bitmap_b) {
  3579. r = -ENOMEM;
  3580. goto out;
  3581. }
  3582. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3583. if (!vmx_msr_bitmap_legacy) {
  3584. r = -ENOMEM;
  3585. goto out1;
  3586. }
  3587. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3588. if (!vmx_msr_bitmap_longmode) {
  3589. r = -ENOMEM;
  3590. goto out2;
  3591. }
  3592. /*
  3593. * Allow direct access to the PC debug port (it is often used for I/O
  3594. * delays, but the vmexits simply slow things down).
  3595. */
  3596. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3597. clear_bit(0x80, vmx_io_bitmap_a);
  3598. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3599. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3600. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3601. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3602. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3603. if (r)
  3604. goto out3;
  3605. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3606. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3607. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3608. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3609. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3610. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3611. if (enable_ept) {
  3612. bypass_guest_pf = 0;
  3613. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3614. VMX_EPT_WRITABLE_MASK);
  3615. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3616. VMX_EPT_EXECUTABLE_MASK);
  3617. kvm_enable_tdp();
  3618. } else
  3619. kvm_disable_tdp();
  3620. if (bypass_guest_pf)
  3621. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3622. return 0;
  3623. out3:
  3624. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3625. out2:
  3626. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3627. out1:
  3628. free_page((unsigned long)vmx_io_bitmap_b);
  3629. out:
  3630. free_page((unsigned long)vmx_io_bitmap_a);
  3631. return r;
  3632. }
  3633. static void __exit vmx_exit(void)
  3634. {
  3635. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3636. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3637. free_page((unsigned long)vmx_io_bitmap_b);
  3638. free_page((unsigned long)vmx_io_bitmap_a);
  3639. kvm_exit();
  3640. }
  3641. module_init(vmx_init)
  3642. module_exit(vmx_exit)