i915_gem.c 111 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_get_pages(struct drm_gem_object *obj);
  44. static void i915_gem_object_put_pages(struct drm_gem_object *obj);
  45. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  46. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  47. unsigned alignment);
  48. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  49. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  50. static int i915_gem_evict_something(struct drm_device *dev);
  51. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  52. struct drm_i915_gem_pwrite *args,
  53. struct drm_file *file_priv);
  54. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  55. unsigned long end)
  56. {
  57. drm_i915_private_t *dev_priv = dev->dev_private;
  58. if (start >= end ||
  59. (start & (PAGE_SIZE - 1)) != 0 ||
  60. (end & (PAGE_SIZE - 1)) != 0) {
  61. return -EINVAL;
  62. }
  63. drm_mm_init(&dev_priv->mm.gtt_space, start,
  64. end - start);
  65. dev->gtt_total = (uint32_t) (end - start);
  66. return 0;
  67. }
  68. int
  69. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  70. struct drm_file *file_priv)
  71. {
  72. struct drm_i915_gem_init *args = data;
  73. int ret;
  74. mutex_lock(&dev->struct_mutex);
  75. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  76. mutex_unlock(&dev->struct_mutex);
  77. return ret;
  78. }
  79. int
  80. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  81. struct drm_file *file_priv)
  82. {
  83. struct drm_i915_gem_get_aperture *args = data;
  84. if (!(dev->driver->driver_features & DRIVER_GEM))
  85. return -ENODEV;
  86. args->aper_size = dev->gtt_total;
  87. args->aper_available_size = (args->aper_size -
  88. atomic_read(&dev->pin_memory));
  89. return 0;
  90. }
  91. /**
  92. * Creates a new mm object and returns a handle to it.
  93. */
  94. int
  95. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  96. struct drm_file *file_priv)
  97. {
  98. struct drm_i915_gem_create *args = data;
  99. struct drm_gem_object *obj;
  100. int handle, ret;
  101. args->size = roundup(args->size, PAGE_SIZE);
  102. /* Allocate the new object */
  103. obj = drm_gem_object_alloc(dev, args->size);
  104. if (obj == NULL)
  105. return -ENOMEM;
  106. ret = drm_gem_handle_create(file_priv, obj, &handle);
  107. mutex_lock(&dev->struct_mutex);
  108. drm_gem_object_handle_unreference(obj);
  109. mutex_unlock(&dev->struct_mutex);
  110. if (ret)
  111. return ret;
  112. args->handle = handle;
  113. return 0;
  114. }
  115. static inline int
  116. fast_shmem_read(struct page **pages,
  117. loff_t page_base, int page_offset,
  118. char __user *data,
  119. int length)
  120. {
  121. char __iomem *vaddr;
  122. int ret;
  123. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  124. if (vaddr == NULL)
  125. return -ENOMEM;
  126. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  127. kunmap_atomic(vaddr, KM_USER0);
  128. return ret;
  129. }
  130. static inline int
  131. slow_shmem_copy(struct page *dst_page,
  132. int dst_offset,
  133. struct page *src_page,
  134. int src_offset,
  135. int length)
  136. {
  137. char *dst_vaddr, *src_vaddr;
  138. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  139. if (dst_vaddr == NULL)
  140. return -ENOMEM;
  141. src_vaddr = kmap_atomic(src_page, KM_USER1);
  142. if (src_vaddr == NULL) {
  143. kunmap_atomic(dst_vaddr, KM_USER0);
  144. return -ENOMEM;
  145. }
  146. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  147. kunmap_atomic(src_vaddr, KM_USER1);
  148. kunmap_atomic(dst_vaddr, KM_USER0);
  149. return 0;
  150. }
  151. /**
  152. * This is the fast shmem pread path, which attempts to copy_from_user directly
  153. * from the backing pages of the object to the user's address space. On a
  154. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  155. */
  156. static int
  157. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  158. struct drm_i915_gem_pread *args,
  159. struct drm_file *file_priv)
  160. {
  161. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  162. ssize_t remain;
  163. loff_t offset, page_base;
  164. char __user *user_data;
  165. int page_offset, page_length;
  166. int ret;
  167. user_data = (char __user *) (uintptr_t) args->data_ptr;
  168. remain = args->size;
  169. mutex_lock(&dev->struct_mutex);
  170. ret = i915_gem_object_get_pages(obj);
  171. if (ret != 0)
  172. goto fail_unlock;
  173. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  174. args->size);
  175. if (ret != 0)
  176. goto fail_put_pages;
  177. obj_priv = obj->driver_private;
  178. offset = args->offset;
  179. while (remain > 0) {
  180. /* Operation in this page
  181. *
  182. * page_base = page offset within aperture
  183. * page_offset = offset within page
  184. * page_length = bytes to copy for this page
  185. */
  186. page_base = (offset & ~(PAGE_SIZE-1));
  187. page_offset = offset & (PAGE_SIZE-1);
  188. page_length = remain;
  189. if ((page_offset + remain) > PAGE_SIZE)
  190. page_length = PAGE_SIZE - page_offset;
  191. ret = fast_shmem_read(obj_priv->pages,
  192. page_base, page_offset,
  193. user_data, page_length);
  194. if (ret)
  195. goto fail_put_pages;
  196. remain -= page_length;
  197. user_data += page_length;
  198. offset += page_length;
  199. }
  200. fail_put_pages:
  201. i915_gem_object_put_pages(obj);
  202. fail_unlock:
  203. mutex_unlock(&dev->struct_mutex);
  204. return ret;
  205. }
  206. /**
  207. * This is the fallback shmem pread path, which allocates temporary storage
  208. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  209. * can copy out of the object's backing pages while holding the struct mutex
  210. * and not take page faults.
  211. */
  212. static int
  213. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  214. struct drm_i915_gem_pread *args,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  218. struct mm_struct *mm = current->mm;
  219. struct page **user_pages;
  220. ssize_t remain;
  221. loff_t offset, pinned_pages, i;
  222. loff_t first_data_page, last_data_page, num_pages;
  223. int shmem_page_index, shmem_page_offset;
  224. int data_page_index, data_page_offset;
  225. int page_length;
  226. int ret;
  227. uint64_t data_ptr = args->data_ptr;
  228. remain = args->size;
  229. /* Pin the user pages containing the data. We can't fault while
  230. * holding the struct mutex, yet we want to hold it while
  231. * dereferencing the user data.
  232. */
  233. first_data_page = data_ptr / PAGE_SIZE;
  234. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  235. num_pages = last_data_page - first_data_page + 1;
  236. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  237. if (user_pages == NULL)
  238. return -ENOMEM;
  239. down_read(&mm->mmap_sem);
  240. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  241. num_pages, 0, 0, user_pages, NULL);
  242. up_read(&mm->mmap_sem);
  243. if (pinned_pages < num_pages) {
  244. ret = -EFAULT;
  245. goto fail_put_user_pages;
  246. }
  247. mutex_lock(&dev->struct_mutex);
  248. ret = i915_gem_object_get_pages(obj);
  249. if (ret != 0)
  250. goto fail_unlock;
  251. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  252. args->size);
  253. if (ret != 0)
  254. goto fail_put_pages;
  255. obj_priv = obj->driver_private;
  256. offset = args->offset;
  257. while (remain > 0) {
  258. /* Operation in this page
  259. *
  260. * shmem_page_index = page number within shmem file
  261. * shmem_page_offset = offset within page in shmem file
  262. * data_page_index = page number in get_user_pages return
  263. * data_page_offset = offset with data_page_index page.
  264. * page_length = bytes to copy for this page
  265. */
  266. shmem_page_index = offset / PAGE_SIZE;
  267. shmem_page_offset = offset & ~PAGE_MASK;
  268. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  269. data_page_offset = data_ptr & ~PAGE_MASK;
  270. page_length = remain;
  271. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  272. page_length = PAGE_SIZE - shmem_page_offset;
  273. if ((data_page_offset + page_length) > PAGE_SIZE)
  274. page_length = PAGE_SIZE - data_page_offset;
  275. ret = slow_shmem_copy(user_pages[data_page_index],
  276. data_page_offset,
  277. obj_priv->pages[shmem_page_index],
  278. shmem_page_offset,
  279. page_length);
  280. if (ret)
  281. goto fail_put_pages;
  282. remain -= page_length;
  283. data_ptr += page_length;
  284. offset += page_length;
  285. }
  286. fail_put_pages:
  287. i915_gem_object_put_pages(obj);
  288. fail_unlock:
  289. mutex_unlock(&dev->struct_mutex);
  290. fail_put_user_pages:
  291. for (i = 0; i < pinned_pages; i++) {
  292. SetPageDirty(user_pages[i]);
  293. page_cache_release(user_pages[i]);
  294. }
  295. kfree(user_pages);
  296. return ret;
  297. }
  298. /**
  299. * Reads data from the object referenced by handle.
  300. *
  301. * On error, the contents of *data are undefined.
  302. */
  303. int
  304. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  305. struct drm_file *file_priv)
  306. {
  307. struct drm_i915_gem_pread *args = data;
  308. struct drm_gem_object *obj;
  309. struct drm_i915_gem_object *obj_priv;
  310. int ret;
  311. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  312. if (obj == NULL)
  313. return -EBADF;
  314. obj_priv = obj->driver_private;
  315. /* Bounds check source.
  316. *
  317. * XXX: This could use review for overflow issues...
  318. */
  319. if (args->offset > obj->size || args->size > obj->size ||
  320. args->offset + args->size > obj->size) {
  321. drm_gem_object_unreference(obj);
  322. return -EINVAL;
  323. }
  324. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  325. if (ret != 0)
  326. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  327. drm_gem_object_unreference(obj);
  328. return ret;
  329. }
  330. /* This is the fast write path which cannot handle
  331. * page faults in the source data
  332. */
  333. static inline int
  334. fast_user_write(struct io_mapping *mapping,
  335. loff_t page_base, int page_offset,
  336. char __user *user_data,
  337. int length)
  338. {
  339. char *vaddr_atomic;
  340. unsigned long unwritten;
  341. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  342. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  343. user_data, length);
  344. io_mapping_unmap_atomic(vaddr_atomic);
  345. if (unwritten)
  346. return -EFAULT;
  347. return 0;
  348. }
  349. /* Here's the write path which can sleep for
  350. * page faults
  351. */
  352. static inline int
  353. slow_kernel_write(struct io_mapping *mapping,
  354. loff_t gtt_base, int gtt_offset,
  355. struct page *user_page, int user_offset,
  356. int length)
  357. {
  358. char *src_vaddr, *dst_vaddr;
  359. unsigned long unwritten;
  360. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  361. src_vaddr = kmap_atomic(user_page, KM_USER1);
  362. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  363. src_vaddr + user_offset,
  364. length);
  365. kunmap_atomic(src_vaddr, KM_USER1);
  366. io_mapping_unmap_atomic(dst_vaddr);
  367. if (unwritten)
  368. return -EFAULT;
  369. return 0;
  370. }
  371. static inline int
  372. fast_shmem_write(struct page **pages,
  373. loff_t page_base, int page_offset,
  374. char __user *data,
  375. int length)
  376. {
  377. char __iomem *vaddr;
  378. unsigned long unwritten;
  379. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  380. if (vaddr == NULL)
  381. return -ENOMEM;
  382. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  383. kunmap_atomic(vaddr, KM_USER0);
  384. if (unwritten)
  385. return -EFAULT;
  386. return 0;
  387. }
  388. /**
  389. * This is the fast pwrite path, where we copy the data directly from the
  390. * user into the GTT, uncached.
  391. */
  392. static int
  393. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  394. struct drm_i915_gem_pwrite *args,
  395. struct drm_file *file_priv)
  396. {
  397. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  398. drm_i915_private_t *dev_priv = dev->dev_private;
  399. ssize_t remain;
  400. loff_t offset, page_base;
  401. char __user *user_data;
  402. int page_offset, page_length;
  403. int ret;
  404. user_data = (char __user *) (uintptr_t) args->data_ptr;
  405. remain = args->size;
  406. if (!access_ok(VERIFY_READ, user_data, remain))
  407. return -EFAULT;
  408. mutex_lock(&dev->struct_mutex);
  409. ret = i915_gem_object_pin(obj, 0);
  410. if (ret) {
  411. mutex_unlock(&dev->struct_mutex);
  412. return ret;
  413. }
  414. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  415. if (ret)
  416. goto fail;
  417. obj_priv = obj->driver_private;
  418. offset = obj_priv->gtt_offset + args->offset;
  419. while (remain > 0) {
  420. /* Operation in this page
  421. *
  422. * page_base = page offset within aperture
  423. * page_offset = offset within page
  424. * page_length = bytes to copy for this page
  425. */
  426. page_base = (offset & ~(PAGE_SIZE-1));
  427. page_offset = offset & (PAGE_SIZE-1);
  428. page_length = remain;
  429. if ((page_offset + remain) > PAGE_SIZE)
  430. page_length = PAGE_SIZE - page_offset;
  431. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  432. page_offset, user_data, page_length);
  433. /* If we get a fault while copying data, then (presumably) our
  434. * source page isn't available. Return the error and we'll
  435. * retry in the slow path.
  436. */
  437. if (ret)
  438. goto fail;
  439. remain -= page_length;
  440. user_data += page_length;
  441. offset += page_length;
  442. }
  443. fail:
  444. i915_gem_object_unpin(obj);
  445. mutex_unlock(&dev->struct_mutex);
  446. return ret;
  447. }
  448. /**
  449. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  450. * the memory and maps it using kmap_atomic for copying.
  451. *
  452. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  453. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  454. */
  455. static int
  456. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  457. struct drm_i915_gem_pwrite *args,
  458. struct drm_file *file_priv)
  459. {
  460. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  461. drm_i915_private_t *dev_priv = dev->dev_private;
  462. ssize_t remain;
  463. loff_t gtt_page_base, offset;
  464. loff_t first_data_page, last_data_page, num_pages;
  465. loff_t pinned_pages, i;
  466. struct page **user_pages;
  467. struct mm_struct *mm = current->mm;
  468. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  469. int ret;
  470. uint64_t data_ptr = args->data_ptr;
  471. remain = args->size;
  472. /* Pin the user pages containing the data. We can't fault while
  473. * holding the struct mutex, and all of the pwrite implementations
  474. * want to hold it while dereferencing the user data.
  475. */
  476. first_data_page = data_ptr / PAGE_SIZE;
  477. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  478. num_pages = last_data_page - first_data_page + 1;
  479. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  480. if (user_pages == NULL)
  481. return -ENOMEM;
  482. down_read(&mm->mmap_sem);
  483. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  484. num_pages, 0, 0, user_pages, NULL);
  485. up_read(&mm->mmap_sem);
  486. if (pinned_pages < num_pages) {
  487. ret = -EFAULT;
  488. goto out_unpin_pages;
  489. }
  490. mutex_lock(&dev->struct_mutex);
  491. ret = i915_gem_object_pin(obj, 0);
  492. if (ret)
  493. goto out_unlock;
  494. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  495. if (ret)
  496. goto out_unpin_object;
  497. obj_priv = obj->driver_private;
  498. offset = obj_priv->gtt_offset + args->offset;
  499. while (remain > 0) {
  500. /* Operation in this page
  501. *
  502. * gtt_page_base = page offset within aperture
  503. * gtt_page_offset = offset within page in aperture
  504. * data_page_index = page number in get_user_pages return
  505. * data_page_offset = offset with data_page_index page.
  506. * page_length = bytes to copy for this page
  507. */
  508. gtt_page_base = offset & PAGE_MASK;
  509. gtt_page_offset = offset & ~PAGE_MASK;
  510. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  511. data_page_offset = data_ptr & ~PAGE_MASK;
  512. page_length = remain;
  513. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  514. page_length = PAGE_SIZE - gtt_page_offset;
  515. if ((data_page_offset + page_length) > PAGE_SIZE)
  516. page_length = PAGE_SIZE - data_page_offset;
  517. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  518. gtt_page_base, gtt_page_offset,
  519. user_pages[data_page_index],
  520. data_page_offset,
  521. page_length);
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (ret)
  527. goto out_unpin_object;
  528. remain -= page_length;
  529. offset += page_length;
  530. data_ptr += page_length;
  531. }
  532. out_unpin_object:
  533. i915_gem_object_unpin(obj);
  534. out_unlock:
  535. mutex_unlock(&dev->struct_mutex);
  536. out_unpin_pages:
  537. for (i = 0; i < pinned_pages; i++)
  538. page_cache_release(user_pages[i]);
  539. kfree(user_pages);
  540. return ret;
  541. }
  542. /**
  543. * This is the fast shmem pwrite path, which attempts to directly
  544. * copy_from_user into the kmapped pages backing the object.
  545. */
  546. static int
  547. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  548. struct drm_i915_gem_pwrite *args,
  549. struct drm_file *file_priv)
  550. {
  551. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  552. ssize_t remain;
  553. loff_t offset, page_base;
  554. char __user *user_data;
  555. int page_offset, page_length;
  556. int ret;
  557. user_data = (char __user *) (uintptr_t) args->data_ptr;
  558. remain = args->size;
  559. mutex_lock(&dev->struct_mutex);
  560. ret = i915_gem_object_get_pages(obj);
  561. if (ret != 0)
  562. goto fail_unlock;
  563. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  564. if (ret != 0)
  565. goto fail_put_pages;
  566. obj_priv = obj->driver_private;
  567. offset = args->offset;
  568. obj_priv->dirty = 1;
  569. while (remain > 0) {
  570. /* Operation in this page
  571. *
  572. * page_base = page offset within aperture
  573. * page_offset = offset within page
  574. * page_length = bytes to copy for this page
  575. */
  576. page_base = (offset & ~(PAGE_SIZE-1));
  577. page_offset = offset & (PAGE_SIZE-1);
  578. page_length = remain;
  579. if ((page_offset + remain) > PAGE_SIZE)
  580. page_length = PAGE_SIZE - page_offset;
  581. ret = fast_shmem_write(obj_priv->pages,
  582. page_base, page_offset,
  583. user_data, page_length);
  584. if (ret)
  585. goto fail_put_pages;
  586. remain -= page_length;
  587. user_data += page_length;
  588. offset += page_length;
  589. }
  590. fail_put_pages:
  591. i915_gem_object_put_pages(obj);
  592. fail_unlock:
  593. mutex_unlock(&dev->struct_mutex);
  594. return ret;
  595. }
  596. /**
  597. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  598. * the memory and maps it using kmap_atomic for copying.
  599. *
  600. * This avoids taking mmap_sem for faulting on the user's address while the
  601. * struct_mutex is held.
  602. */
  603. static int
  604. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  605. struct drm_i915_gem_pwrite *args,
  606. struct drm_file *file_priv)
  607. {
  608. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  609. struct mm_struct *mm = current->mm;
  610. struct page **user_pages;
  611. ssize_t remain;
  612. loff_t offset, pinned_pages, i;
  613. loff_t first_data_page, last_data_page, num_pages;
  614. int shmem_page_index, shmem_page_offset;
  615. int data_page_index, data_page_offset;
  616. int page_length;
  617. int ret;
  618. uint64_t data_ptr = args->data_ptr;
  619. remain = args->size;
  620. /* Pin the user pages containing the data. We can't fault while
  621. * holding the struct mutex, and all of the pwrite implementations
  622. * want to hold it while dereferencing the user data.
  623. */
  624. first_data_page = data_ptr / PAGE_SIZE;
  625. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  626. num_pages = last_data_page - first_data_page + 1;
  627. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  628. if (user_pages == NULL)
  629. return -ENOMEM;
  630. down_read(&mm->mmap_sem);
  631. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  632. num_pages, 0, 0, user_pages, NULL);
  633. up_read(&mm->mmap_sem);
  634. if (pinned_pages < num_pages) {
  635. ret = -EFAULT;
  636. goto fail_put_user_pages;
  637. }
  638. mutex_lock(&dev->struct_mutex);
  639. ret = i915_gem_object_get_pages(obj);
  640. if (ret != 0)
  641. goto fail_unlock;
  642. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  643. if (ret != 0)
  644. goto fail_put_pages;
  645. obj_priv = obj->driver_private;
  646. offset = args->offset;
  647. obj_priv->dirty = 1;
  648. while (remain > 0) {
  649. /* Operation in this page
  650. *
  651. * shmem_page_index = page number within shmem file
  652. * shmem_page_offset = offset within page in shmem file
  653. * data_page_index = page number in get_user_pages return
  654. * data_page_offset = offset with data_page_index page.
  655. * page_length = bytes to copy for this page
  656. */
  657. shmem_page_index = offset / PAGE_SIZE;
  658. shmem_page_offset = offset & ~PAGE_MASK;
  659. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  660. data_page_offset = data_ptr & ~PAGE_MASK;
  661. page_length = remain;
  662. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  663. page_length = PAGE_SIZE - shmem_page_offset;
  664. if ((data_page_offset + page_length) > PAGE_SIZE)
  665. page_length = PAGE_SIZE - data_page_offset;
  666. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  667. shmem_page_offset,
  668. user_pages[data_page_index],
  669. data_page_offset,
  670. page_length);
  671. if (ret)
  672. goto fail_put_pages;
  673. remain -= page_length;
  674. data_ptr += page_length;
  675. offset += page_length;
  676. }
  677. fail_put_pages:
  678. i915_gem_object_put_pages(obj);
  679. fail_unlock:
  680. mutex_unlock(&dev->struct_mutex);
  681. fail_put_user_pages:
  682. for (i = 0; i < pinned_pages; i++)
  683. page_cache_release(user_pages[i]);
  684. kfree(user_pages);
  685. return ret;
  686. }
  687. /**
  688. * Writes data to the object referenced by handle.
  689. *
  690. * On error, the contents of the buffer that were to be modified are undefined.
  691. */
  692. int
  693. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  694. struct drm_file *file_priv)
  695. {
  696. struct drm_i915_gem_pwrite *args = data;
  697. struct drm_gem_object *obj;
  698. struct drm_i915_gem_object *obj_priv;
  699. int ret = 0;
  700. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  701. if (obj == NULL)
  702. return -EBADF;
  703. obj_priv = obj->driver_private;
  704. /* Bounds check destination.
  705. *
  706. * XXX: This could use review for overflow issues...
  707. */
  708. if (args->offset > obj->size || args->size > obj->size ||
  709. args->offset + args->size > obj->size) {
  710. drm_gem_object_unreference(obj);
  711. return -EINVAL;
  712. }
  713. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  714. * it would end up going through the fenced access, and we'll get
  715. * different detiling behavior between reading and writing.
  716. * pread/pwrite currently are reading and writing from the CPU
  717. * perspective, requiring manual detiling by the client.
  718. */
  719. if (obj_priv->phys_obj)
  720. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  721. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  722. dev->gtt_total != 0) {
  723. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  724. if (ret == -EFAULT) {
  725. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  726. file_priv);
  727. }
  728. } else {
  729. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  730. if (ret == -EFAULT) {
  731. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  732. file_priv);
  733. }
  734. }
  735. #if WATCH_PWRITE
  736. if (ret)
  737. DRM_INFO("pwrite failed %d\n", ret);
  738. #endif
  739. drm_gem_object_unreference(obj);
  740. return ret;
  741. }
  742. /**
  743. * Called when user space prepares to use an object with the CPU, either
  744. * through the mmap ioctl's mapping or a GTT mapping.
  745. */
  746. int
  747. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  748. struct drm_file *file_priv)
  749. {
  750. struct drm_i915_gem_set_domain *args = data;
  751. struct drm_gem_object *obj;
  752. uint32_t read_domains = args->read_domains;
  753. uint32_t write_domain = args->write_domain;
  754. int ret;
  755. if (!(dev->driver->driver_features & DRIVER_GEM))
  756. return -ENODEV;
  757. /* Only handle setting domains to types used by the CPU. */
  758. if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  759. return -EINVAL;
  760. if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  761. return -EINVAL;
  762. /* Having something in the write domain implies it's in the read
  763. * domain, and only that read domain. Enforce that in the request.
  764. */
  765. if (write_domain != 0 && read_domains != write_domain)
  766. return -EINVAL;
  767. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  768. if (obj == NULL)
  769. return -EBADF;
  770. mutex_lock(&dev->struct_mutex);
  771. #if WATCH_BUF
  772. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  773. obj, obj->size, read_domains, write_domain);
  774. #endif
  775. if (read_domains & I915_GEM_DOMAIN_GTT) {
  776. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  777. /* Silently promote "you're not bound, there was nothing to do"
  778. * to success, since the client was just asking us to
  779. * make sure everything was done.
  780. */
  781. if (ret == -EINVAL)
  782. ret = 0;
  783. } else {
  784. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  785. }
  786. drm_gem_object_unreference(obj);
  787. mutex_unlock(&dev->struct_mutex);
  788. return ret;
  789. }
  790. /**
  791. * Called when user space has done writes to this buffer
  792. */
  793. int
  794. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  795. struct drm_file *file_priv)
  796. {
  797. struct drm_i915_gem_sw_finish *args = data;
  798. struct drm_gem_object *obj;
  799. struct drm_i915_gem_object *obj_priv;
  800. int ret = 0;
  801. if (!(dev->driver->driver_features & DRIVER_GEM))
  802. return -ENODEV;
  803. mutex_lock(&dev->struct_mutex);
  804. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  805. if (obj == NULL) {
  806. mutex_unlock(&dev->struct_mutex);
  807. return -EBADF;
  808. }
  809. #if WATCH_BUF
  810. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  811. __func__, args->handle, obj, obj->size);
  812. #endif
  813. obj_priv = obj->driver_private;
  814. /* Pinned buffers may be scanout, so flush the cache */
  815. if (obj_priv->pin_count)
  816. i915_gem_object_flush_cpu_write_domain(obj);
  817. drm_gem_object_unreference(obj);
  818. mutex_unlock(&dev->struct_mutex);
  819. return ret;
  820. }
  821. /**
  822. * Maps the contents of an object, returning the address it is mapped
  823. * into.
  824. *
  825. * While the mapping holds a reference on the contents of the object, it doesn't
  826. * imply a ref on the object itself.
  827. */
  828. int
  829. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  830. struct drm_file *file_priv)
  831. {
  832. struct drm_i915_gem_mmap *args = data;
  833. struct drm_gem_object *obj;
  834. loff_t offset;
  835. unsigned long addr;
  836. if (!(dev->driver->driver_features & DRIVER_GEM))
  837. return -ENODEV;
  838. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  839. if (obj == NULL)
  840. return -EBADF;
  841. offset = args->offset;
  842. down_write(&current->mm->mmap_sem);
  843. addr = do_mmap(obj->filp, 0, args->size,
  844. PROT_READ | PROT_WRITE, MAP_SHARED,
  845. args->offset);
  846. up_write(&current->mm->mmap_sem);
  847. mutex_lock(&dev->struct_mutex);
  848. drm_gem_object_unreference(obj);
  849. mutex_unlock(&dev->struct_mutex);
  850. if (IS_ERR((void *)addr))
  851. return addr;
  852. args->addr_ptr = (uint64_t) addr;
  853. return 0;
  854. }
  855. /**
  856. * i915_gem_fault - fault a page into the GTT
  857. * vma: VMA in question
  858. * vmf: fault info
  859. *
  860. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  861. * from userspace. The fault handler takes care of binding the object to
  862. * the GTT (if needed), allocating and programming a fence register (again,
  863. * only if needed based on whether the old reg is still valid or the object
  864. * is tiled) and inserting a new PTE into the faulting process.
  865. *
  866. * Note that the faulting process may involve evicting existing objects
  867. * from the GTT and/or fence registers to make room. So performance may
  868. * suffer if the GTT working set is large or there are few fence registers
  869. * left.
  870. */
  871. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  872. {
  873. struct drm_gem_object *obj = vma->vm_private_data;
  874. struct drm_device *dev = obj->dev;
  875. struct drm_i915_private *dev_priv = dev->dev_private;
  876. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  877. pgoff_t page_offset;
  878. unsigned long pfn;
  879. int ret = 0;
  880. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  881. /* We don't use vmf->pgoff since that has the fake offset */
  882. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  883. PAGE_SHIFT;
  884. /* Now bind it into the GTT if needed */
  885. mutex_lock(&dev->struct_mutex);
  886. if (!obj_priv->gtt_space) {
  887. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  888. if (ret) {
  889. mutex_unlock(&dev->struct_mutex);
  890. return VM_FAULT_SIGBUS;
  891. }
  892. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  893. }
  894. /* Need a new fence register? */
  895. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  896. obj_priv->tiling_mode != I915_TILING_NONE) {
  897. ret = i915_gem_object_get_fence_reg(obj, write);
  898. if (ret) {
  899. mutex_unlock(&dev->struct_mutex);
  900. return VM_FAULT_SIGBUS;
  901. }
  902. }
  903. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  904. page_offset;
  905. /* Finally, remap it using the new GTT offset */
  906. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  907. mutex_unlock(&dev->struct_mutex);
  908. switch (ret) {
  909. case -ENOMEM:
  910. case -EAGAIN:
  911. return VM_FAULT_OOM;
  912. case -EFAULT:
  913. return VM_FAULT_SIGBUS;
  914. default:
  915. return VM_FAULT_NOPAGE;
  916. }
  917. }
  918. /**
  919. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  920. * @obj: obj in question
  921. *
  922. * GEM memory mapping works by handing back to userspace a fake mmap offset
  923. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  924. * up the object based on the offset and sets up the various memory mapping
  925. * structures.
  926. *
  927. * This routine allocates and attaches a fake offset for @obj.
  928. */
  929. static int
  930. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  931. {
  932. struct drm_device *dev = obj->dev;
  933. struct drm_gem_mm *mm = dev->mm_private;
  934. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  935. struct drm_map_list *list;
  936. struct drm_local_map *map;
  937. int ret = 0;
  938. /* Set the object up for mmap'ing */
  939. list = &obj->map_list;
  940. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  941. DRM_MEM_DRIVER);
  942. if (!list->map)
  943. return -ENOMEM;
  944. map = list->map;
  945. map->type = _DRM_GEM;
  946. map->size = obj->size;
  947. map->handle = obj;
  948. /* Get a DRM GEM mmap offset allocated... */
  949. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  950. obj->size / PAGE_SIZE, 0, 0);
  951. if (!list->file_offset_node) {
  952. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  953. ret = -ENOMEM;
  954. goto out_free_list;
  955. }
  956. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  957. obj->size / PAGE_SIZE, 0);
  958. if (!list->file_offset_node) {
  959. ret = -ENOMEM;
  960. goto out_free_list;
  961. }
  962. list->hash.key = list->file_offset_node->start;
  963. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  964. DRM_ERROR("failed to add to map hash\n");
  965. goto out_free_mm;
  966. }
  967. /* By now we should be all set, any drm_mmap request on the offset
  968. * below will get to our mmap & fault handler */
  969. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  970. return 0;
  971. out_free_mm:
  972. drm_mm_put_block(list->file_offset_node);
  973. out_free_list:
  974. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  975. return ret;
  976. }
  977. static void
  978. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  979. {
  980. struct drm_device *dev = obj->dev;
  981. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  982. struct drm_gem_mm *mm = dev->mm_private;
  983. struct drm_map_list *list;
  984. list = &obj->map_list;
  985. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  986. if (list->file_offset_node) {
  987. drm_mm_put_block(list->file_offset_node);
  988. list->file_offset_node = NULL;
  989. }
  990. if (list->map) {
  991. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  992. list->map = NULL;
  993. }
  994. obj_priv->mmap_offset = 0;
  995. }
  996. /**
  997. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  998. * @obj: object to check
  999. *
  1000. * Return the required GTT alignment for an object, taking into account
  1001. * potential fence register mapping if needed.
  1002. */
  1003. static uint32_t
  1004. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1005. {
  1006. struct drm_device *dev = obj->dev;
  1007. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1008. int start, i;
  1009. /*
  1010. * Minimum alignment is 4k (GTT page size), but might be greater
  1011. * if a fence register is needed for the object.
  1012. */
  1013. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1014. return 4096;
  1015. /*
  1016. * Previous chips need to be aligned to the size of the smallest
  1017. * fence register that can contain the object.
  1018. */
  1019. if (IS_I9XX(dev))
  1020. start = 1024*1024;
  1021. else
  1022. start = 512*1024;
  1023. for (i = start; i < obj->size; i <<= 1)
  1024. ;
  1025. return i;
  1026. }
  1027. /**
  1028. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1029. * @dev: DRM device
  1030. * @data: GTT mapping ioctl data
  1031. * @file_priv: GEM object info
  1032. *
  1033. * Simply returns the fake offset to userspace so it can mmap it.
  1034. * The mmap call will end up in drm_gem_mmap(), which will set things
  1035. * up so we can get faults in the handler above.
  1036. *
  1037. * The fault handler will take care of binding the object into the GTT
  1038. * (since it may have been evicted to make room for something), allocating
  1039. * a fence register, and mapping the appropriate aperture address into
  1040. * userspace.
  1041. */
  1042. int
  1043. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1044. struct drm_file *file_priv)
  1045. {
  1046. struct drm_i915_gem_mmap_gtt *args = data;
  1047. struct drm_i915_private *dev_priv = dev->dev_private;
  1048. struct drm_gem_object *obj;
  1049. struct drm_i915_gem_object *obj_priv;
  1050. int ret;
  1051. if (!(dev->driver->driver_features & DRIVER_GEM))
  1052. return -ENODEV;
  1053. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1054. if (obj == NULL)
  1055. return -EBADF;
  1056. mutex_lock(&dev->struct_mutex);
  1057. obj_priv = obj->driver_private;
  1058. if (!obj_priv->mmap_offset) {
  1059. ret = i915_gem_create_mmap_offset(obj);
  1060. if (ret) {
  1061. drm_gem_object_unreference(obj);
  1062. mutex_unlock(&dev->struct_mutex);
  1063. return ret;
  1064. }
  1065. }
  1066. args->offset = obj_priv->mmap_offset;
  1067. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1068. /* Make sure the alignment is correct for fence regs etc */
  1069. if (obj_priv->agp_mem &&
  1070. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1071. drm_gem_object_unreference(obj);
  1072. mutex_unlock(&dev->struct_mutex);
  1073. return -EINVAL;
  1074. }
  1075. /*
  1076. * Pull it into the GTT so that we have a page list (makes the
  1077. * initial fault faster and any subsequent flushing possible).
  1078. */
  1079. if (!obj_priv->agp_mem) {
  1080. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1081. if (ret) {
  1082. drm_gem_object_unreference(obj);
  1083. mutex_unlock(&dev->struct_mutex);
  1084. return ret;
  1085. }
  1086. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  1087. }
  1088. drm_gem_object_unreference(obj);
  1089. mutex_unlock(&dev->struct_mutex);
  1090. return 0;
  1091. }
  1092. static void
  1093. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1094. {
  1095. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1096. int page_count = obj->size / PAGE_SIZE;
  1097. int i;
  1098. BUG_ON(obj_priv->pages_refcount == 0);
  1099. if (--obj_priv->pages_refcount != 0)
  1100. return;
  1101. for (i = 0; i < page_count; i++)
  1102. if (obj_priv->pages[i] != NULL) {
  1103. if (obj_priv->dirty)
  1104. set_page_dirty(obj_priv->pages[i]);
  1105. mark_page_accessed(obj_priv->pages[i]);
  1106. page_cache_release(obj_priv->pages[i]);
  1107. }
  1108. obj_priv->dirty = 0;
  1109. drm_free(obj_priv->pages,
  1110. page_count * sizeof(struct page *),
  1111. DRM_MEM_DRIVER);
  1112. obj_priv->pages = NULL;
  1113. }
  1114. static void
  1115. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1116. {
  1117. struct drm_device *dev = obj->dev;
  1118. drm_i915_private_t *dev_priv = dev->dev_private;
  1119. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1120. /* Add a reference if we're newly entering the active list. */
  1121. if (!obj_priv->active) {
  1122. drm_gem_object_reference(obj);
  1123. obj_priv->active = 1;
  1124. }
  1125. /* Move from whatever list we were on to the tail of execution. */
  1126. list_move_tail(&obj_priv->list,
  1127. &dev_priv->mm.active_list);
  1128. obj_priv->last_rendering_seqno = seqno;
  1129. }
  1130. static void
  1131. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1132. {
  1133. struct drm_device *dev = obj->dev;
  1134. drm_i915_private_t *dev_priv = dev->dev_private;
  1135. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1136. BUG_ON(!obj_priv->active);
  1137. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1138. obj_priv->last_rendering_seqno = 0;
  1139. }
  1140. static void
  1141. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1142. {
  1143. struct drm_device *dev = obj->dev;
  1144. drm_i915_private_t *dev_priv = dev->dev_private;
  1145. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1146. i915_verify_inactive(dev, __FILE__, __LINE__);
  1147. if (obj_priv->pin_count != 0)
  1148. list_del_init(&obj_priv->list);
  1149. else
  1150. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1151. obj_priv->last_rendering_seqno = 0;
  1152. if (obj_priv->active) {
  1153. obj_priv->active = 0;
  1154. drm_gem_object_unreference(obj);
  1155. }
  1156. i915_verify_inactive(dev, __FILE__, __LINE__);
  1157. }
  1158. /**
  1159. * Creates a new sequence number, emitting a write of it to the status page
  1160. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1161. *
  1162. * Must be called with struct_lock held.
  1163. *
  1164. * Returned sequence numbers are nonzero on success.
  1165. */
  1166. static uint32_t
  1167. i915_add_request(struct drm_device *dev, uint32_t flush_domains)
  1168. {
  1169. drm_i915_private_t *dev_priv = dev->dev_private;
  1170. struct drm_i915_gem_request *request;
  1171. uint32_t seqno;
  1172. int was_empty;
  1173. RING_LOCALS;
  1174. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1175. if (request == NULL)
  1176. return 0;
  1177. /* Grab the seqno we're going to make this request be, and bump the
  1178. * next (skipping 0 so it can be the reserved no-seqno value).
  1179. */
  1180. seqno = dev_priv->mm.next_gem_seqno;
  1181. dev_priv->mm.next_gem_seqno++;
  1182. if (dev_priv->mm.next_gem_seqno == 0)
  1183. dev_priv->mm.next_gem_seqno++;
  1184. BEGIN_LP_RING(4);
  1185. OUT_RING(MI_STORE_DWORD_INDEX);
  1186. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1187. OUT_RING(seqno);
  1188. OUT_RING(MI_USER_INTERRUPT);
  1189. ADVANCE_LP_RING();
  1190. DRM_DEBUG("%d\n", seqno);
  1191. request->seqno = seqno;
  1192. request->emitted_jiffies = jiffies;
  1193. was_empty = list_empty(&dev_priv->mm.request_list);
  1194. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1195. /* Associate any objects on the flushing list matching the write
  1196. * domain we're flushing with our flush.
  1197. */
  1198. if (flush_domains != 0) {
  1199. struct drm_i915_gem_object *obj_priv, *next;
  1200. list_for_each_entry_safe(obj_priv, next,
  1201. &dev_priv->mm.flushing_list, list) {
  1202. struct drm_gem_object *obj = obj_priv->obj;
  1203. if ((obj->write_domain & flush_domains) ==
  1204. obj->write_domain) {
  1205. obj->write_domain = 0;
  1206. i915_gem_object_move_to_active(obj, seqno);
  1207. }
  1208. }
  1209. }
  1210. if (was_empty && !dev_priv->mm.suspended)
  1211. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1212. return seqno;
  1213. }
  1214. /**
  1215. * Command execution barrier
  1216. *
  1217. * Ensures that all commands in the ring are finished
  1218. * before signalling the CPU
  1219. */
  1220. static uint32_t
  1221. i915_retire_commands(struct drm_device *dev)
  1222. {
  1223. drm_i915_private_t *dev_priv = dev->dev_private;
  1224. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1225. uint32_t flush_domains = 0;
  1226. RING_LOCALS;
  1227. /* The sampler always gets flushed on i965 (sigh) */
  1228. if (IS_I965G(dev))
  1229. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1230. BEGIN_LP_RING(2);
  1231. OUT_RING(cmd);
  1232. OUT_RING(0); /* noop */
  1233. ADVANCE_LP_RING();
  1234. return flush_domains;
  1235. }
  1236. /**
  1237. * Moves buffers associated only with the given active seqno from the active
  1238. * to inactive list, potentially freeing them.
  1239. */
  1240. static void
  1241. i915_gem_retire_request(struct drm_device *dev,
  1242. struct drm_i915_gem_request *request)
  1243. {
  1244. drm_i915_private_t *dev_priv = dev->dev_private;
  1245. /* Move any buffers on the active list that are no longer referenced
  1246. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1247. */
  1248. while (!list_empty(&dev_priv->mm.active_list)) {
  1249. struct drm_gem_object *obj;
  1250. struct drm_i915_gem_object *obj_priv;
  1251. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1252. struct drm_i915_gem_object,
  1253. list);
  1254. obj = obj_priv->obj;
  1255. /* If the seqno being retired doesn't match the oldest in the
  1256. * list, then the oldest in the list must still be newer than
  1257. * this seqno.
  1258. */
  1259. if (obj_priv->last_rendering_seqno != request->seqno)
  1260. return;
  1261. #if WATCH_LRU
  1262. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1263. __func__, request->seqno, obj);
  1264. #endif
  1265. if (obj->write_domain != 0)
  1266. i915_gem_object_move_to_flushing(obj);
  1267. else
  1268. i915_gem_object_move_to_inactive(obj);
  1269. }
  1270. }
  1271. /**
  1272. * Returns true if seq1 is later than seq2.
  1273. */
  1274. static int
  1275. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1276. {
  1277. return (int32_t)(seq1 - seq2) >= 0;
  1278. }
  1279. uint32_t
  1280. i915_get_gem_seqno(struct drm_device *dev)
  1281. {
  1282. drm_i915_private_t *dev_priv = dev->dev_private;
  1283. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1284. }
  1285. /**
  1286. * This function clears the request list as sequence numbers are passed.
  1287. */
  1288. void
  1289. i915_gem_retire_requests(struct drm_device *dev)
  1290. {
  1291. drm_i915_private_t *dev_priv = dev->dev_private;
  1292. uint32_t seqno;
  1293. if (!dev_priv->hw_status_page)
  1294. return;
  1295. seqno = i915_get_gem_seqno(dev);
  1296. while (!list_empty(&dev_priv->mm.request_list)) {
  1297. struct drm_i915_gem_request *request;
  1298. uint32_t retiring_seqno;
  1299. request = list_first_entry(&dev_priv->mm.request_list,
  1300. struct drm_i915_gem_request,
  1301. list);
  1302. retiring_seqno = request->seqno;
  1303. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1304. dev_priv->mm.wedged) {
  1305. i915_gem_retire_request(dev, request);
  1306. list_del(&request->list);
  1307. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1308. } else
  1309. break;
  1310. }
  1311. }
  1312. void
  1313. i915_gem_retire_work_handler(struct work_struct *work)
  1314. {
  1315. drm_i915_private_t *dev_priv;
  1316. struct drm_device *dev;
  1317. dev_priv = container_of(work, drm_i915_private_t,
  1318. mm.retire_work.work);
  1319. dev = dev_priv->dev;
  1320. mutex_lock(&dev->struct_mutex);
  1321. i915_gem_retire_requests(dev);
  1322. if (!dev_priv->mm.suspended &&
  1323. !list_empty(&dev_priv->mm.request_list))
  1324. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1325. mutex_unlock(&dev->struct_mutex);
  1326. }
  1327. /**
  1328. * Waits for a sequence number to be signaled, and cleans up the
  1329. * request and object lists appropriately for that event.
  1330. */
  1331. static int
  1332. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1333. {
  1334. drm_i915_private_t *dev_priv = dev->dev_private;
  1335. int ret = 0;
  1336. BUG_ON(seqno == 0);
  1337. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1338. dev_priv->mm.waiting_gem_seqno = seqno;
  1339. i915_user_irq_get(dev);
  1340. ret = wait_event_interruptible(dev_priv->irq_queue,
  1341. i915_seqno_passed(i915_get_gem_seqno(dev),
  1342. seqno) ||
  1343. dev_priv->mm.wedged);
  1344. i915_user_irq_put(dev);
  1345. dev_priv->mm.waiting_gem_seqno = 0;
  1346. }
  1347. if (dev_priv->mm.wedged)
  1348. ret = -EIO;
  1349. if (ret && ret != -ERESTARTSYS)
  1350. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1351. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1352. /* Directly dispatch request retiring. While we have the work queue
  1353. * to handle this, the waiter on a request often wants an associated
  1354. * buffer to have made it to the inactive list, and we would need
  1355. * a separate wait queue to handle that.
  1356. */
  1357. if (ret == 0)
  1358. i915_gem_retire_requests(dev);
  1359. return ret;
  1360. }
  1361. static void
  1362. i915_gem_flush(struct drm_device *dev,
  1363. uint32_t invalidate_domains,
  1364. uint32_t flush_domains)
  1365. {
  1366. drm_i915_private_t *dev_priv = dev->dev_private;
  1367. uint32_t cmd;
  1368. RING_LOCALS;
  1369. #if WATCH_EXEC
  1370. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1371. invalidate_domains, flush_domains);
  1372. #endif
  1373. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1374. drm_agp_chipset_flush(dev);
  1375. if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
  1376. I915_GEM_DOMAIN_GTT)) {
  1377. /*
  1378. * read/write caches:
  1379. *
  1380. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1381. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1382. * also flushed at 2d versus 3d pipeline switches.
  1383. *
  1384. * read-only caches:
  1385. *
  1386. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1387. * MI_READ_FLUSH is set, and is always flushed on 965.
  1388. *
  1389. * I915_GEM_DOMAIN_COMMAND may not exist?
  1390. *
  1391. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1392. * invalidated when MI_EXE_FLUSH is set.
  1393. *
  1394. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1395. * invalidated with every MI_FLUSH.
  1396. *
  1397. * TLBs:
  1398. *
  1399. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1400. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1401. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1402. * are flushed at any MI_FLUSH.
  1403. */
  1404. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1405. if ((invalidate_domains|flush_domains) &
  1406. I915_GEM_DOMAIN_RENDER)
  1407. cmd &= ~MI_NO_WRITE_FLUSH;
  1408. if (!IS_I965G(dev)) {
  1409. /*
  1410. * On the 965, the sampler cache always gets flushed
  1411. * and this bit is reserved.
  1412. */
  1413. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1414. cmd |= MI_READ_FLUSH;
  1415. }
  1416. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1417. cmd |= MI_EXE_FLUSH;
  1418. #if WATCH_EXEC
  1419. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1420. #endif
  1421. BEGIN_LP_RING(2);
  1422. OUT_RING(cmd);
  1423. OUT_RING(0); /* noop */
  1424. ADVANCE_LP_RING();
  1425. }
  1426. }
  1427. /**
  1428. * Ensures that all rendering to the object has completed and the object is
  1429. * safe to unbind from the GTT or access from the CPU.
  1430. */
  1431. static int
  1432. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1433. {
  1434. struct drm_device *dev = obj->dev;
  1435. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1436. int ret;
  1437. /* This function only exists to support waiting for existing rendering,
  1438. * not for emitting required flushes.
  1439. */
  1440. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1441. /* If there is rendering queued on the buffer being evicted, wait for
  1442. * it.
  1443. */
  1444. if (obj_priv->active) {
  1445. #if WATCH_BUF
  1446. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1447. __func__, obj, obj_priv->last_rendering_seqno);
  1448. #endif
  1449. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1450. if (ret != 0)
  1451. return ret;
  1452. }
  1453. return 0;
  1454. }
  1455. /**
  1456. * Unbinds an object from the GTT aperture.
  1457. */
  1458. int
  1459. i915_gem_object_unbind(struct drm_gem_object *obj)
  1460. {
  1461. struct drm_device *dev = obj->dev;
  1462. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1463. loff_t offset;
  1464. int ret = 0;
  1465. #if WATCH_BUF
  1466. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1467. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1468. #endif
  1469. if (obj_priv->gtt_space == NULL)
  1470. return 0;
  1471. if (obj_priv->pin_count != 0) {
  1472. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1473. return -EINVAL;
  1474. }
  1475. /* Move the object to the CPU domain to ensure that
  1476. * any possible CPU writes while it's not in the GTT
  1477. * are flushed when we go to remap it. This will
  1478. * also ensure that all pending GPU writes are finished
  1479. * before we unbind.
  1480. */
  1481. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1482. if (ret) {
  1483. if (ret != -ERESTARTSYS)
  1484. DRM_ERROR("set_domain failed: %d\n", ret);
  1485. return ret;
  1486. }
  1487. if (obj_priv->agp_mem != NULL) {
  1488. drm_unbind_agp(obj_priv->agp_mem);
  1489. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1490. obj_priv->agp_mem = NULL;
  1491. }
  1492. BUG_ON(obj_priv->active);
  1493. /* blow away mappings if mapped through GTT */
  1494. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1495. if (dev->dev_mapping)
  1496. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1497. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1498. i915_gem_clear_fence_reg(obj);
  1499. i915_gem_object_put_pages(obj);
  1500. if (obj_priv->gtt_space) {
  1501. atomic_dec(&dev->gtt_count);
  1502. atomic_sub(obj->size, &dev->gtt_memory);
  1503. drm_mm_put_block(obj_priv->gtt_space);
  1504. obj_priv->gtt_space = NULL;
  1505. }
  1506. /* Remove ourselves from the LRU list if present. */
  1507. if (!list_empty(&obj_priv->list))
  1508. list_del_init(&obj_priv->list);
  1509. return 0;
  1510. }
  1511. static int
  1512. i915_gem_evict_something(struct drm_device *dev)
  1513. {
  1514. drm_i915_private_t *dev_priv = dev->dev_private;
  1515. struct drm_gem_object *obj;
  1516. struct drm_i915_gem_object *obj_priv;
  1517. int ret = 0;
  1518. for (;;) {
  1519. /* If there's an inactive buffer available now, grab it
  1520. * and be done.
  1521. */
  1522. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1523. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1524. struct drm_i915_gem_object,
  1525. list);
  1526. obj = obj_priv->obj;
  1527. BUG_ON(obj_priv->pin_count != 0);
  1528. #if WATCH_LRU
  1529. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1530. #endif
  1531. BUG_ON(obj_priv->active);
  1532. /* Wait on the rendering and unbind the buffer. */
  1533. ret = i915_gem_object_unbind(obj);
  1534. break;
  1535. }
  1536. /* If we didn't get anything, but the ring is still processing
  1537. * things, wait for one of those things to finish and hopefully
  1538. * leave us a buffer to evict.
  1539. */
  1540. if (!list_empty(&dev_priv->mm.request_list)) {
  1541. struct drm_i915_gem_request *request;
  1542. request = list_first_entry(&dev_priv->mm.request_list,
  1543. struct drm_i915_gem_request,
  1544. list);
  1545. ret = i915_wait_request(dev, request->seqno);
  1546. if (ret)
  1547. break;
  1548. /* if waiting caused an object to become inactive,
  1549. * then loop around and wait for it. Otherwise, we
  1550. * assume that waiting freed and unbound something,
  1551. * so there should now be some space in the GTT
  1552. */
  1553. if (!list_empty(&dev_priv->mm.inactive_list))
  1554. continue;
  1555. break;
  1556. }
  1557. /* If we didn't have anything on the request list but there
  1558. * are buffers awaiting a flush, emit one and try again.
  1559. * When we wait on it, those buffers waiting for that flush
  1560. * will get moved to inactive.
  1561. */
  1562. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1563. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1564. struct drm_i915_gem_object,
  1565. list);
  1566. obj = obj_priv->obj;
  1567. i915_gem_flush(dev,
  1568. obj->write_domain,
  1569. obj->write_domain);
  1570. i915_add_request(dev, obj->write_domain);
  1571. obj = NULL;
  1572. continue;
  1573. }
  1574. DRM_ERROR("inactive empty %d request empty %d "
  1575. "flushing empty %d\n",
  1576. list_empty(&dev_priv->mm.inactive_list),
  1577. list_empty(&dev_priv->mm.request_list),
  1578. list_empty(&dev_priv->mm.flushing_list));
  1579. /* If we didn't do any of the above, there's nothing to be done
  1580. * and we just can't fit it in.
  1581. */
  1582. return -ENOMEM;
  1583. }
  1584. return ret;
  1585. }
  1586. static int
  1587. i915_gem_evict_everything(struct drm_device *dev)
  1588. {
  1589. int ret;
  1590. for (;;) {
  1591. ret = i915_gem_evict_something(dev);
  1592. if (ret != 0)
  1593. break;
  1594. }
  1595. if (ret == -ENOMEM)
  1596. return 0;
  1597. return ret;
  1598. }
  1599. static int
  1600. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1601. {
  1602. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1603. int page_count, i;
  1604. struct address_space *mapping;
  1605. struct inode *inode;
  1606. struct page *page;
  1607. int ret;
  1608. if (obj_priv->pages_refcount++ != 0)
  1609. return 0;
  1610. /* Get the list of pages out of our struct file. They'll be pinned
  1611. * at this point until we release them.
  1612. */
  1613. page_count = obj->size / PAGE_SIZE;
  1614. BUG_ON(obj_priv->pages != NULL);
  1615. obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
  1616. DRM_MEM_DRIVER);
  1617. if (obj_priv->pages == NULL) {
  1618. DRM_ERROR("Faled to allocate page list\n");
  1619. obj_priv->pages_refcount--;
  1620. return -ENOMEM;
  1621. }
  1622. inode = obj->filp->f_path.dentry->d_inode;
  1623. mapping = inode->i_mapping;
  1624. for (i = 0; i < page_count; i++) {
  1625. page = read_mapping_page(mapping, i, NULL);
  1626. if (IS_ERR(page)) {
  1627. ret = PTR_ERR(page);
  1628. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1629. i915_gem_object_put_pages(obj);
  1630. return ret;
  1631. }
  1632. obj_priv->pages[i] = page;
  1633. }
  1634. return 0;
  1635. }
  1636. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1637. {
  1638. struct drm_gem_object *obj = reg->obj;
  1639. struct drm_device *dev = obj->dev;
  1640. drm_i915_private_t *dev_priv = dev->dev_private;
  1641. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1642. int regnum = obj_priv->fence_reg;
  1643. uint64_t val;
  1644. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1645. 0xfffff000) << 32;
  1646. val |= obj_priv->gtt_offset & 0xfffff000;
  1647. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1648. if (obj_priv->tiling_mode == I915_TILING_Y)
  1649. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1650. val |= I965_FENCE_REG_VALID;
  1651. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1652. }
  1653. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1654. {
  1655. struct drm_gem_object *obj = reg->obj;
  1656. struct drm_device *dev = obj->dev;
  1657. drm_i915_private_t *dev_priv = dev->dev_private;
  1658. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1659. int regnum = obj_priv->fence_reg;
  1660. int tile_width;
  1661. uint32_t fence_reg, val;
  1662. uint32_t pitch_val;
  1663. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1664. (obj_priv->gtt_offset & (obj->size - 1))) {
  1665. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1666. __func__, obj_priv->gtt_offset, obj->size);
  1667. return;
  1668. }
  1669. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1670. HAS_128_BYTE_Y_TILING(dev))
  1671. tile_width = 128;
  1672. else
  1673. tile_width = 512;
  1674. /* Note: pitch better be a power of two tile widths */
  1675. pitch_val = obj_priv->stride / tile_width;
  1676. pitch_val = ffs(pitch_val) - 1;
  1677. val = obj_priv->gtt_offset;
  1678. if (obj_priv->tiling_mode == I915_TILING_Y)
  1679. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1680. val |= I915_FENCE_SIZE_BITS(obj->size);
  1681. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1682. val |= I830_FENCE_REG_VALID;
  1683. if (regnum < 8)
  1684. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1685. else
  1686. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1687. I915_WRITE(fence_reg, val);
  1688. }
  1689. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1690. {
  1691. struct drm_gem_object *obj = reg->obj;
  1692. struct drm_device *dev = obj->dev;
  1693. drm_i915_private_t *dev_priv = dev->dev_private;
  1694. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1695. int regnum = obj_priv->fence_reg;
  1696. uint32_t val;
  1697. uint32_t pitch_val;
  1698. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1699. (obj_priv->gtt_offset & (obj->size - 1))) {
  1700. WARN(1, "%s: object 0x%08x not 1M or size aligned\n",
  1701. __func__, obj_priv->gtt_offset);
  1702. return;
  1703. }
  1704. pitch_val = (obj_priv->stride / 128) - 1;
  1705. val = obj_priv->gtt_offset;
  1706. if (obj_priv->tiling_mode == I915_TILING_Y)
  1707. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1708. val |= I830_FENCE_SIZE_BITS(obj->size);
  1709. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1710. val |= I830_FENCE_REG_VALID;
  1711. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1712. }
  1713. /**
  1714. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1715. * @obj: object to map through a fence reg
  1716. * @write: object is about to be written
  1717. *
  1718. * When mapping objects through the GTT, userspace wants to be able to write
  1719. * to them without having to worry about swizzling if the object is tiled.
  1720. *
  1721. * This function walks the fence regs looking for a free one for @obj,
  1722. * stealing one if it can't find any.
  1723. *
  1724. * It then sets up the reg based on the object's properties: address, pitch
  1725. * and tiling format.
  1726. */
  1727. static int
  1728. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1729. {
  1730. struct drm_device *dev = obj->dev;
  1731. struct drm_i915_private *dev_priv = dev->dev_private;
  1732. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1733. struct drm_i915_fence_reg *reg = NULL;
  1734. struct drm_i915_gem_object *old_obj_priv = NULL;
  1735. int i, ret, avail;
  1736. switch (obj_priv->tiling_mode) {
  1737. case I915_TILING_NONE:
  1738. WARN(1, "allocating a fence for non-tiled object?\n");
  1739. break;
  1740. case I915_TILING_X:
  1741. if (!obj_priv->stride)
  1742. return -EINVAL;
  1743. WARN((obj_priv->stride & (512 - 1)),
  1744. "object 0x%08x is X tiled but has non-512B pitch\n",
  1745. obj_priv->gtt_offset);
  1746. break;
  1747. case I915_TILING_Y:
  1748. if (!obj_priv->stride)
  1749. return -EINVAL;
  1750. WARN((obj_priv->stride & (128 - 1)),
  1751. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1752. obj_priv->gtt_offset);
  1753. break;
  1754. }
  1755. /* First try to find a free reg */
  1756. try_again:
  1757. avail = 0;
  1758. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1759. reg = &dev_priv->fence_regs[i];
  1760. if (!reg->obj)
  1761. break;
  1762. old_obj_priv = reg->obj->driver_private;
  1763. if (!old_obj_priv->pin_count)
  1764. avail++;
  1765. }
  1766. /* None available, try to steal one or wait for a user to finish */
  1767. if (i == dev_priv->num_fence_regs) {
  1768. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1769. loff_t offset;
  1770. if (avail == 0)
  1771. return -ENOMEM;
  1772. for (i = dev_priv->fence_reg_start;
  1773. i < dev_priv->num_fence_regs; i++) {
  1774. uint32_t this_seqno;
  1775. reg = &dev_priv->fence_regs[i];
  1776. old_obj_priv = reg->obj->driver_private;
  1777. if (old_obj_priv->pin_count)
  1778. continue;
  1779. /* i915 uses fences for GPU access to tiled buffers */
  1780. if (IS_I965G(dev) || !old_obj_priv->active)
  1781. break;
  1782. /* find the seqno of the first available fence */
  1783. this_seqno = old_obj_priv->last_rendering_seqno;
  1784. if (this_seqno != 0 &&
  1785. reg->obj->write_domain == 0 &&
  1786. i915_seqno_passed(seqno, this_seqno))
  1787. seqno = this_seqno;
  1788. }
  1789. /*
  1790. * Now things get ugly... we have to wait for one of the
  1791. * objects to finish before trying again.
  1792. */
  1793. if (i == dev_priv->num_fence_regs) {
  1794. if (seqno == dev_priv->mm.next_gem_seqno) {
  1795. i915_gem_flush(dev,
  1796. I915_GEM_GPU_DOMAINS,
  1797. I915_GEM_GPU_DOMAINS);
  1798. seqno = i915_add_request(dev,
  1799. I915_GEM_GPU_DOMAINS);
  1800. if (seqno == 0)
  1801. return -ENOMEM;
  1802. }
  1803. ret = i915_wait_request(dev, seqno);
  1804. if (ret)
  1805. return ret;
  1806. goto try_again;
  1807. }
  1808. BUG_ON(old_obj_priv->active ||
  1809. (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
  1810. /*
  1811. * Zap this virtual mapping so we can set up a fence again
  1812. * for this object next time we need it.
  1813. */
  1814. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1815. if (dev->dev_mapping)
  1816. unmap_mapping_range(dev->dev_mapping, offset,
  1817. reg->obj->size, 1);
  1818. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1819. }
  1820. obj_priv->fence_reg = i;
  1821. reg->obj = obj;
  1822. if (IS_I965G(dev))
  1823. i965_write_fence_reg(reg);
  1824. else if (IS_I9XX(dev))
  1825. i915_write_fence_reg(reg);
  1826. else
  1827. i830_write_fence_reg(reg);
  1828. return 0;
  1829. }
  1830. /**
  1831. * i915_gem_clear_fence_reg - clear out fence register info
  1832. * @obj: object to clear
  1833. *
  1834. * Zeroes out the fence register itself and clears out the associated
  1835. * data structures in dev_priv and obj_priv.
  1836. */
  1837. static void
  1838. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1839. {
  1840. struct drm_device *dev = obj->dev;
  1841. drm_i915_private_t *dev_priv = dev->dev_private;
  1842. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1843. if (IS_I965G(dev))
  1844. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1845. else {
  1846. uint32_t fence_reg;
  1847. if (obj_priv->fence_reg < 8)
  1848. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1849. else
  1850. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1851. 8) * 4;
  1852. I915_WRITE(fence_reg, 0);
  1853. }
  1854. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1855. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1856. }
  1857. /**
  1858. * Finds free space in the GTT aperture and binds the object there.
  1859. */
  1860. static int
  1861. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1862. {
  1863. struct drm_device *dev = obj->dev;
  1864. drm_i915_private_t *dev_priv = dev->dev_private;
  1865. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1866. struct drm_mm_node *free_space;
  1867. int page_count, ret;
  1868. if (dev_priv->mm.suspended)
  1869. return -EBUSY;
  1870. if (alignment == 0)
  1871. alignment = i915_gem_get_gtt_alignment(obj);
  1872. if (alignment & (PAGE_SIZE - 1)) {
  1873. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  1874. return -EINVAL;
  1875. }
  1876. search_free:
  1877. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  1878. obj->size, alignment, 0);
  1879. if (free_space != NULL) {
  1880. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  1881. alignment);
  1882. if (obj_priv->gtt_space != NULL) {
  1883. obj_priv->gtt_space->private = obj;
  1884. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  1885. }
  1886. }
  1887. if (obj_priv->gtt_space == NULL) {
  1888. /* If the gtt is empty and we're still having trouble
  1889. * fitting our object in, we're out of memory.
  1890. */
  1891. #if WATCH_LRU
  1892. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  1893. #endif
  1894. if (list_empty(&dev_priv->mm.inactive_list) &&
  1895. list_empty(&dev_priv->mm.flushing_list) &&
  1896. list_empty(&dev_priv->mm.active_list)) {
  1897. DRM_ERROR("GTT full, but LRU list empty\n");
  1898. return -ENOMEM;
  1899. }
  1900. ret = i915_gem_evict_something(dev);
  1901. if (ret != 0) {
  1902. if (ret != -ERESTARTSYS)
  1903. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  1904. return ret;
  1905. }
  1906. goto search_free;
  1907. }
  1908. #if WATCH_BUF
  1909. DRM_INFO("Binding object of size %d at 0x%08x\n",
  1910. obj->size, obj_priv->gtt_offset);
  1911. #endif
  1912. ret = i915_gem_object_get_pages(obj);
  1913. if (ret) {
  1914. drm_mm_put_block(obj_priv->gtt_space);
  1915. obj_priv->gtt_space = NULL;
  1916. return ret;
  1917. }
  1918. page_count = obj->size / PAGE_SIZE;
  1919. /* Create an AGP memory structure pointing at our pages, and bind it
  1920. * into the GTT.
  1921. */
  1922. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  1923. obj_priv->pages,
  1924. page_count,
  1925. obj_priv->gtt_offset,
  1926. obj_priv->agp_type);
  1927. if (obj_priv->agp_mem == NULL) {
  1928. i915_gem_object_put_pages(obj);
  1929. drm_mm_put_block(obj_priv->gtt_space);
  1930. obj_priv->gtt_space = NULL;
  1931. return -ENOMEM;
  1932. }
  1933. atomic_inc(&dev->gtt_count);
  1934. atomic_add(obj->size, &dev->gtt_memory);
  1935. /* Assert that the object is not currently in any GPU domain. As it
  1936. * wasn't in the GTT, there shouldn't be any way it could have been in
  1937. * a GPU cache
  1938. */
  1939. BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1940. BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1941. return 0;
  1942. }
  1943. void
  1944. i915_gem_clflush_object(struct drm_gem_object *obj)
  1945. {
  1946. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1947. /* If we don't have a page list set up, then we're not pinned
  1948. * to GPU, and we can ignore the cache flush because it'll happen
  1949. * again at bind time.
  1950. */
  1951. if (obj_priv->pages == NULL)
  1952. return;
  1953. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  1954. }
  1955. /** Flushes any GPU write domain for the object if it's dirty. */
  1956. static void
  1957. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  1958. {
  1959. struct drm_device *dev = obj->dev;
  1960. uint32_t seqno;
  1961. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  1962. return;
  1963. /* Queue the GPU write cache flushing we need. */
  1964. i915_gem_flush(dev, 0, obj->write_domain);
  1965. seqno = i915_add_request(dev, obj->write_domain);
  1966. obj->write_domain = 0;
  1967. i915_gem_object_move_to_active(obj, seqno);
  1968. }
  1969. /** Flushes the GTT write domain for the object if it's dirty. */
  1970. static void
  1971. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  1972. {
  1973. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  1974. return;
  1975. /* No actual flushing is required for the GTT write domain. Writes
  1976. * to it immediately go to main memory as far as we know, so there's
  1977. * no chipset flush. It also doesn't land in render cache.
  1978. */
  1979. obj->write_domain = 0;
  1980. }
  1981. /** Flushes the CPU write domain for the object if it's dirty. */
  1982. static void
  1983. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  1984. {
  1985. struct drm_device *dev = obj->dev;
  1986. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  1987. return;
  1988. i915_gem_clflush_object(obj);
  1989. drm_agp_chipset_flush(dev);
  1990. obj->write_domain = 0;
  1991. }
  1992. /**
  1993. * Moves a single object to the GTT read, and possibly write domain.
  1994. *
  1995. * This function returns when the move is complete, including waiting on
  1996. * flushes to occur.
  1997. */
  1998. int
  1999. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2000. {
  2001. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2002. int ret;
  2003. /* Not valid to be called on unbound objects. */
  2004. if (obj_priv->gtt_space == NULL)
  2005. return -EINVAL;
  2006. i915_gem_object_flush_gpu_write_domain(obj);
  2007. /* Wait on any GPU rendering and flushing to occur. */
  2008. ret = i915_gem_object_wait_rendering(obj);
  2009. if (ret != 0)
  2010. return ret;
  2011. /* If we're writing through the GTT domain, then CPU and GPU caches
  2012. * will need to be invalidated at next use.
  2013. */
  2014. if (write)
  2015. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2016. i915_gem_object_flush_cpu_write_domain(obj);
  2017. /* It should now be out of any other write domains, and we can update
  2018. * the domain values for our changes.
  2019. */
  2020. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2021. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2022. if (write) {
  2023. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2024. obj_priv->dirty = 1;
  2025. }
  2026. return 0;
  2027. }
  2028. /**
  2029. * Moves a single object to the CPU read, and possibly write domain.
  2030. *
  2031. * This function returns when the move is complete, including waiting on
  2032. * flushes to occur.
  2033. */
  2034. static int
  2035. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2036. {
  2037. int ret;
  2038. i915_gem_object_flush_gpu_write_domain(obj);
  2039. /* Wait on any GPU rendering and flushing to occur. */
  2040. ret = i915_gem_object_wait_rendering(obj);
  2041. if (ret != 0)
  2042. return ret;
  2043. i915_gem_object_flush_gtt_write_domain(obj);
  2044. /* If we have a partially-valid cache of the object in the CPU,
  2045. * finish invalidating it and free the per-page flags.
  2046. */
  2047. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2048. /* Flush the CPU cache if it's still invalid. */
  2049. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2050. i915_gem_clflush_object(obj);
  2051. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2052. }
  2053. /* It should now be out of any other write domains, and we can update
  2054. * the domain values for our changes.
  2055. */
  2056. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2057. /* If we're writing through the CPU, then the GPU read domains will
  2058. * need to be invalidated at next use.
  2059. */
  2060. if (write) {
  2061. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2062. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2063. }
  2064. return 0;
  2065. }
  2066. /*
  2067. * Set the next domain for the specified object. This
  2068. * may not actually perform the necessary flushing/invaliding though,
  2069. * as that may want to be batched with other set_domain operations
  2070. *
  2071. * This is (we hope) the only really tricky part of gem. The goal
  2072. * is fairly simple -- track which caches hold bits of the object
  2073. * and make sure they remain coherent. A few concrete examples may
  2074. * help to explain how it works. For shorthand, we use the notation
  2075. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2076. * a pair of read and write domain masks.
  2077. *
  2078. * Case 1: the batch buffer
  2079. *
  2080. * 1. Allocated
  2081. * 2. Written by CPU
  2082. * 3. Mapped to GTT
  2083. * 4. Read by GPU
  2084. * 5. Unmapped from GTT
  2085. * 6. Freed
  2086. *
  2087. * Let's take these a step at a time
  2088. *
  2089. * 1. Allocated
  2090. * Pages allocated from the kernel may still have
  2091. * cache contents, so we set them to (CPU, CPU) always.
  2092. * 2. Written by CPU (using pwrite)
  2093. * The pwrite function calls set_domain (CPU, CPU) and
  2094. * this function does nothing (as nothing changes)
  2095. * 3. Mapped by GTT
  2096. * This function asserts that the object is not
  2097. * currently in any GPU-based read or write domains
  2098. * 4. Read by GPU
  2099. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2100. * As write_domain is zero, this function adds in the
  2101. * current read domains (CPU+COMMAND, 0).
  2102. * flush_domains is set to CPU.
  2103. * invalidate_domains is set to COMMAND
  2104. * clflush is run to get data out of the CPU caches
  2105. * then i915_dev_set_domain calls i915_gem_flush to
  2106. * emit an MI_FLUSH and drm_agp_chipset_flush
  2107. * 5. Unmapped from GTT
  2108. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2109. * flush_domains and invalidate_domains end up both zero
  2110. * so no flushing/invalidating happens
  2111. * 6. Freed
  2112. * yay, done
  2113. *
  2114. * Case 2: The shared render buffer
  2115. *
  2116. * 1. Allocated
  2117. * 2. Mapped to GTT
  2118. * 3. Read/written by GPU
  2119. * 4. set_domain to (CPU,CPU)
  2120. * 5. Read/written by CPU
  2121. * 6. Read/written by GPU
  2122. *
  2123. * 1. Allocated
  2124. * Same as last example, (CPU, CPU)
  2125. * 2. Mapped to GTT
  2126. * Nothing changes (assertions find that it is not in the GPU)
  2127. * 3. Read/written by GPU
  2128. * execbuffer calls set_domain (RENDER, RENDER)
  2129. * flush_domains gets CPU
  2130. * invalidate_domains gets GPU
  2131. * clflush (obj)
  2132. * MI_FLUSH and drm_agp_chipset_flush
  2133. * 4. set_domain (CPU, CPU)
  2134. * flush_domains gets GPU
  2135. * invalidate_domains gets CPU
  2136. * wait_rendering (obj) to make sure all drawing is complete.
  2137. * This will include an MI_FLUSH to get the data from GPU
  2138. * to memory
  2139. * clflush (obj) to invalidate the CPU cache
  2140. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2141. * 5. Read/written by CPU
  2142. * cache lines are loaded and dirtied
  2143. * 6. Read written by GPU
  2144. * Same as last GPU access
  2145. *
  2146. * Case 3: The constant buffer
  2147. *
  2148. * 1. Allocated
  2149. * 2. Written by CPU
  2150. * 3. Read by GPU
  2151. * 4. Updated (written) by CPU again
  2152. * 5. Read by GPU
  2153. *
  2154. * 1. Allocated
  2155. * (CPU, CPU)
  2156. * 2. Written by CPU
  2157. * (CPU, CPU)
  2158. * 3. Read by GPU
  2159. * (CPU+RENDER, 0)
  2160. * flush_domains = CPU
  2161. * invalidate_domains = RENDER
  2162. * clflush (obj)
  2163. * MI_FLUSH
  2164. * drm_agp_chipset_flush
  2165. * 4. Updated (written) by CPU again
  2166. * (CPU, CPU)
  2167. * flush_domains = 0 (no previous write domain)
  2168. * invalidate_domains = 0 (no new read domains)
  2169. * 5. Read by GPU
  2170. * (CPU+RENDER, 0)
  2171. * flush_domains = CPU
  2172. * invalidate_domains = RENDER
  2173. * clflush (obj)
  2174. * MI_FLUSH
  2175. * drm_agp_chipset_flush
  2176. */
  2177. static void
  2178. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2179. {
  2180. struct drm_device *dev = obj->dev;
  2181. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2182. uint32_t invalidate_domains = 0;
  2183. uint32_t flush_domains = 0;
  2184. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2185. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2186. #if WATCH_BUF
  2187. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2188. __func__, obj,
  2189. obj->read_domains, obj->pending_read_domains,
  2190. obj->write_domain, obj->pending_write_domain);
  2191. #endif
  2192. /*
  2193. * If the object isn't moving to a new write domain,
  2194. * let the object stay in multiple read domains
  2195. */
  2196. if (obj->pending_write_domain == 0)
  2197. obj->pending_read_domains |= obj->read_domains;
  2198. else
  2199. obj_priv->dirty = 1;
  2200. /*
  2201. * Flush the current write domain if
  2202. * the new read domains don't match. Invalidate
  2203. * any read domains which differ from the old
  2204. * write domain
  2205. */
  2206. if (obj->write_domain &&
  2207. obj->write_domain != obj->pending_read_domains) {
  2208. flush_domains |= obj->write_domain;
  2209. invalidate_domains |=
  2210. obj->pending_read_domains & ~obj->write_domain;
  2211. }
  2212. /*
  2213. * Invalidate any read caches which may have
  2214. * stale data. That is, any new read domains.
  2215. */
  2216. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2217. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2218. #if WATCH_BUF
  2219. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2220. __func__, flush_domains, invalidate_domains);
  2221. #endif
  2222. i915_gem_clflush_object(obj);
  2223. }
  2224. /* The actual obj->write_domain will be updated with
  2225. * pending_write_domain after we emit the accumulated flush for all
  2226. * of our domain changes in execbuffers (which clears objects'
  2227. * write_domains). So if we have a current write domain that we
  2228. * aren't changing, set pending_write_domain to that.
  2229. */
  2230. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2231. obj->pending_write_domain = obj->write_domain;
  2232. obj->read_domains = obj->pending_read_domains;
  2233. dev->invalidate_domains |= invalidate_domains;
  2234. dev->flush_domains |= flush_domains;
  2235. #if WATCH_BUF
  2236. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2237. __func__,
  2238. obj->read_domains, obj->write_domain,
  2239. dev->invalidate_domains, dev->flush_domains);
  2240. #endif
  2241. }
  2242. /**
  2243. * Moves the object from a partially CPU read to a full one.
  2244. *
  2245. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2246. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2247. */
  2248. static void
  2249. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2250. {
  2251. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2252. if (!obj_priv->page_cpu_valid)
  2253. return;
  2254. /* If we're partially in the CPU read domain, finish moving it in.
  2255. */
  2256. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2257. int i;
  2258. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2259. if (obj_priv->page_cpu_valid[i])
  2260. continue;
  2261. drm_clflush_pages(obj_priv->pages + i, 1);
  2262. }
  2263. }
  2264. /* Free the page_cpu_valid mappings which are now stale, whether
  2265. * or not we've got I915_GEM_DOMAIN_CPU.
  2266. */
  2267. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2268. DRM_MEM_DRIVER);
  2269. obj_priv->page_cpu_valid = NULL;
  2270. }
  2271. /**
  2272. * Set the CPU read domain on a range of the object.
  2273. *
  2274. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2275. * not entirely valid. The page_cpu_valid member of the object flags which
  2276. * pages have been flushed, and will be respected by
  2277. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2278. * of the whole object.
  2279. *
  2280. * This function returns when the move is complete, including waiting on
  2281. * flushes to occur.
  2282. */
  2283. static int
  2284. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2285. uint64_t offset, uint64_t size)
  2286. {
  2287. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2288. int i, ret;
  2289. if (offset == 0 && size == obj->size)
  2290. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2291. i915_gem_object_flush_gpu_write_domain(obj);
  2292. /* Wait on any GPU rendering and flushing to occur. */
  2293. ret = i915_gem_object_wait_rendering(obj);
  2294. if (ret != 0)
  2295. return ret;
  2296. i915_gem_object_flush_gtt_write_domain(obj);
  2297. /* If we're already fully in the CPU read domain, we're done. */
  2298. if (obj_priv->page_cpu_valid == NULL &&
  2299. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2300. return 0;
  2301. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2302. * newly adding I915_GEM_DOMAIN_CPU
  2303. */
  2304. if (obj_priv->page_cpu_valid == NULL) {
  2305. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2306. DRM_MEM_DRIVER);
  2307. if (obj_priv->page_cpu_valid == NULL)
  2308. return -ENOMEM;
  2309. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2310. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2311. /* Flush the cache on any pages that are still invalid from the CPU's
  2312. * perspective.
  2313. */
  2314. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2315. i++) {
  2316. if (obj_priv->page_cpu_valid[i])
  2317. continue;
  2318. drm_clflush_pages(obj_priv->pages + i, 1);
  2319. obj_priv->page_cpu_valid[i] = 1;
  2320. }
  2321. /* It should now be out of any other write domains, and we can update
  2322. * the domain values for our changes.
  2323. */
  2324. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2325. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2326. return 0;
  2327. }
  2328. /**
  2329. * Pin an object to the GTT and evaluate the relocations landing in it.
  2330. */
  2331. static int
  2332. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2333. struct drm_file *file_priv,
  2334. struct drm_i915_gem_exec_object *entry,
  2335. struct drm_i915_gem_relocation_entry *relocs)
  2336. {
  2337. struct drm_device *dev = obj->dev;
  2338. drm_i915_private_t *dev_priv = dev->dev_private;
  2339. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2340. int i, ret;
  2341. void __iomem *reloc_page;
  2342. /* Choose the GTT offset for our buffer and put it there. */
  2343. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2344. if (ret)
  2345. return ret;
  2346. entry->offset = obj_priv->gtt_offset;
  2347. /* Apply the relocations, using the GTT aperture to avoid cache
  2348. * flushing requirements.
  2349. */
  2350. for (i = 0; i < entry->relocation_count; i++) {
  2351. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2352. struct drm_gem_object *target_obj;
  2353. struct drm_i915_gem_object *target_obj_priv;
  2354. uint32_t reloc_val, reloc_offset;
  2355. uint32_t __iomem *reloc_entry;
  2356. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2357. reloc->target_handle);
  2358. if (target_obj == NULL) {
  2359. i915_gem_object_unpin(obj);
  2360. return -EBADF;
  2361. }
  2362. target_obj_priv = target_obj->driver_private;
  2363. /* The target buffer should have appeared before us in the
  2364. * exec_object list, so it should have a GTT space bound by now.
  2365. */
  2366. if (target_obj_priv->gtt_space == NULL) {
  2367. DRM_ERROR("No GTT space found for object %d\n",
  2368. reloc->target_handle);
  2369. drm_gem_object_unreference(target_obj);
  2370. i915_gem_object_unpin(obj);
  2371. return -EINVAL;
  2372. }
  2373. if (reloc->offset > obj->size - 4) {
  2374. DRM_ERROR("Relocation beyond object bounds: "
  2375. "obj %p target %d offset %d size %d.\n",
  2376. obj, reloc->target_handle,
  2377. (int) reloc->offset, (int) obj->size);
  2378. drm_gem_object_unreference(target_obj);
  2379. i915_gem_object_unpin(obj);
  2380. return -EINVAL;
  2381. }
  2382. if (reloc->offset & 3) {
  2383. DRM_ERROR("Relocation not 4-byte aligned: "
  2384. "obj %p target %d offset %d.\n",
  2385. obj, reloc->target_handle,
  2386. (int) reloc->offset);
  2387. drm_gem_object_unreference(target_obj);
  2388. i915_gem_object_unpin(obj);
  2389. return -EINVAL;
  2390. }
  2391. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2392. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2393. DRM_ERROR("reloc with read/write CPU domains: "
  2394. "obj %p target %d offset %d "
  2395. "read %08x write %08x",
  2396. obj, reloc->target_handle,
  2397. (int) reloc->offset,
  2398. reloc->read_domains,
  2399. reloc->write_domain);
  2400. drm_gem_object_unreference(target_obj);
  2401. i915_gem_object_unpin(obj);
  2402. return -EINVAL;
  2403. }
  2404. if (reloc->write_domain && target_obj->pending_write_domain &&
  2405. reloc->write_domain != target_obj->pending_write_domain) {
  2406. DRM_ERROR("Write domain conflict: "
  2407. "obj %p target %d offset %d "
  2408. "new %08x old %08x\n",
  2409. obj, reloc->target_handle,
  2410. (int) reloc->offset,
  2411. reloc->write_domain,
  2412. target_obj->pending_write_domain);
  2413. drm_gem_object_unreference(target_obj);
  2414. i915_gem_object_unpin(obj);
  2415. return -EINVAL;
  2416. }
  2417. #if WATCH_RELOC
  2418. DRM_INFO("%s: obj %p offset %08x target %d "
  2419. "read %08x write %08x gtt %08x "
  2420. "presumed %08x delta %08x\n",
  2421. __func__,
  2422. obj,
  2423. (int) reloc->offset,
  2424. (int) reloc->target_handle,
  2425. (int) reloc->read_domains,
  2426. (int) reloc->write_domain,
  2427. (int) target_obj_priv->gtt_offset,
  2428. (int) reloc->presumed_offset,
  2429. reloc->delta);
  2430. #endif
  2431. target_obj->pending_read_domains |= reloc->read_domains;
  2432. target_obj->pending_write_domain |= reloc->write_domain;
  2433. /* If the relocation already has the right value in it, no
  2434. * more work needs to be done.
  2435. */
  2436. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2437. drm_gem_object_unreference(target_obj);
  2438. continue;
  2439. }
  2440. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2441. if (ret != 0) {
  2442. drm_gem_object_unreference(target_obj);
  2443. i915_gem_object_unpin(obj);
  2444. return -EINVAL;
  2445. }
  2446. /* Map the page containing the relocation we're going to
  2447. * perform.
  2448. */
  2449. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2450. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2451. (reloc_offset &
  2452. ~(PAGE_SIZE - 1)));
  2453. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2454. (reloc_offset & (PAGE_SIZE - 1)));
  2455. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2456. #if WATCH_BUF
  2457. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2458. obj, (unsigned int) reloc->offset,
  2459. readl(reloc_entry), reloc_val);
  2460. #endif
  2461. writel(reloc_val, reloc_entry);
  2462. io_mapping_unmap_atomic(reloc_page);
  2463. /* The updated presumed offset for this entry will be
  2464. * copied back out to the user.
  2465. */
  2466. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2467. drm_gem_object_unreference(target_obj);
  2468. }
  2469. #if WATCH_BUF
  2470. if (0)
  2471. i915_gem_dump_object(obj, 128, __func__, ~0);
  2472. #endif
  2473. return 0;
  2474. }
  2475. /** Dispatch a batchbuffer to the ring
  2476. */
  2477. static int
  2478. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2479. struct drm_i915_gem_execbuffer *exec,
  2480. struct drm_clip_rect *cliprects,
  2481. uint64_t exec_offset)
  2482. {
  2483. drm_i915_private_t *dev_priv = dev->dev_private;
  2484. int nbox = exec->num_cliprects;
  2485. int i = 0, count;
  2486. uint32_t exec_start, exec_len;
  2487. RING_LOCALS;
  2488. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2489. exec_len = (uint32_t) exec->batch_len;
  2490. if ((exec_start | exec_len) & 0x7) {
  2491. DRM_ERROR("alignment\n");
  2492. return -EINVAL;
  2493. }
  2494. if (!exec_start)
  2495. return -EINVAL;
  2496. count = nbox ? nbox : 1;
  2497. for (i = 0; i < count; i++) {
  2498. if (i < nbox) {
  2499. int ret = i915_emit_box(dev, cliprects, i,
  2500. exec->DR1, exec->DR4);
  2501. if (ret)
  2502. return ret;
  2503. }
  2504. if (IS_I830(dev) || IS_845G(dev)) {
  2505. BEGIN_LP_RING(4);
  2506. OUT_RING(MI_BATCH_BUFFER);
  2507. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2508. OUT_RING(exec_start + exec_len - 4);
  2509. OUT_RING(0);
  2510. ADVANCE_LP_RING();
  2511. } else {
  2512. BEGIN_LP_RING(2);
  2513. if (IS_I965G(dev)) {
  2514. OUT_RING(MI_BATCH_BUFFER_START |
  2515. (2 << 6) |
  2516. MI_BATCH_NON_SECURE_I965);
  2517. OUT_RING(exec_start);
  2518. } else {
  2519. OUT_RING(MI_BATCH_BUFFER_START |
  2520. (2 << 6));
  2521. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2522. }
  2523. ADVANCE_LP_RING();
  2524. }
  2525. }
  2526. /* XXX breadcrumb */
  2527. return 0;
  2528. }
  2529. /* Throttle our rendering by waiting until the ring has completed our requests
  2530. * emitted over 20 msec ago.
  2531. *
  2532. * This should get us reasonable parallelism between CPU and GPU but also
  2533. * relatively low latency when blocking on a particular request to finish.
  2534. */
  2535. static int
  2536. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2537. {
  2538. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2539. int ret = 0;
  2540. uint32_t seqno;
  2541. mutex_lock(&dev->struct_mutex);
  2542. seqno = i915_file_priv->mm.last_gem_throttle_seqno;
  2543. i915_file_priv->mm.last_gem_throttle_seqno =
  2544. i915_file_priv->mm.last_gem_seqno;
  2545. if (seqno)
  2546. ret = i915_wait_request(dev, seqno);
  2547. mutex_unlock(&dev->struct_mutex);
  2548. return ret;
  2549. }
  2550. static int
  2551. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2552. uint32_t buffer_count,
  2553. struct drm_i915_gem_relocation_entry **relocs)
  2554. {
  2555. uint32_t reloc_count = 0, reloc_index = 0, i;
  2556. int ret;
  2557. *relocs = NULL;
  2558. for (i = 0; i < buffer_count; i++) {
  2559. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2560. return -EINVAL;
  2561. reloc_count += exec_list[i].relocation_count;
  2562. }
  2563. *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
  2564. if (*relocs == NULL)
  2565. return -ENOMEM;
  2566. for (i = 0; i < buffer_count; i++) {
  2567. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2568. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2569. ret = copy_from_user(&(*relocs)[reloc_index],
  2570. user_relocs,
  2571. exec_list[i].relocation_count *
  2572. sizeof(**relocs));
  2573. if (ret != 0) {
  2574. drm_free(*relocs, reloc_count * sizeof(**relocs),
  2575. DRM_MEM_DRIVER);
  2576. *relocs = NULL;
  2577. return ret;
  2578. }
  2579. reloc_index += exec_list[i].relocation_count;
  2580. }
  2581. return ret;
  2582. }
  2583. static int
  2584. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2585. uint32_t buffer_count,
  2586. struct drm_i915_gem_relocation_entry *relocs)
  2587. {
  2588. uint32_t reloc_count = 0, i;
  2589. int ret;
  2590. for (i = 0; i < buffer_count; i++) {
  2591. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2592. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2593. if (ret == 0) {
  2594. ret = copy_to_user(user_relocs,
  2595. &relocs[reloc_count],
  2596. exec_list[i].relocation_count *
  2597. sizeof(*relocs));
  2598. }
  2599. reloc_count += exec_list[i].relocation_count;
  2600. }
  2601. drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
  2602. return ret;
  2603. }
  2604. int
  2605. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2606. struct drm_file *file_priv)
  2607. {
  2608. drm_i915_private_t *dev_priv = dev->dev_private;
  2609. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2610. struct drm_i915_gem_execbuffer *args = data;
  2611. struct drm_i915_gem_exec_object *exec_list = NULL;
  2612. struct drm_gem_object **object_list = NULL;
  2613. struct drm_gem_object *batch_obj;
  2614. struct drm_i915_gem_object *obj_priv;
  2615. struct drm_clip_rect *cliprects = NULL;
  2616. struct drm_i915_gem_relocation_entry *relocs;
  2617. int ret, ret2, i, pinned = 0;
  2618. uint64_t exec_offset;
  2619. uint32_t seqno, flush_domains, reloc_index;
  2620. int pin_tries;
  2621. #if WATCH_EXEC
  2622. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2623. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2624. #endif
  2625. if (args->buffer_count < 1) {
  2626. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2627. return -EINVAL;
  2628. }
  2629. /* Copy in the exec list from userland */
  2630. exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
  2631. DRM_MEM_DRIVER);
  2632. object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
  2633. DRM_MEM_DRIVER);
  2634. if (exec_list == NULL || object_list == NULL) {
  2635. DRM_ERROR("Failed to allocate exec or object list "
  2636. "for %d buffers\n",
  2637. args->buffer_count);
  2638. ret = -ENOMEM;
  2639. goto pre_mutex_err;
  2640. }
  2641. ret = copy_from_user(exec_list,
  2642. (struct drm_i915_relocation_entry __user *)
  2643. (uintptr_t) args->buffers_ptr,
  2644. sizeof(*exec_list) * args->buffer_count);
  2645. if (ret != 0) {
  2646. DRM_ERROR("copy %d exec entries failed %d\n",
  2647. args->buffer_count, ret);
  2648. goto pre_mutex_err;
  2649. }
  2650. if (args->num_cliprects != 0) {
  2651. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2652. DRM_MEM_DRIVER);
  2653. if (cliprects == NULL)
  2654. goto pre_mutex_err;
  2655. ret = copy_from_user(cliprects,
  2656. (struct drm_clip_rect __user *)
  2657. (uintptr_t) args->cliprects_ptr,
  2658. sizeof(*cliprects) * args->num_cliprects);
  2659. if (ret != 0) {
  2660. DRM_ERROR("copy %d cliprects failed: %d\n",
  2661. args->num_cliprects, ret);
  2662. goto pre_mutex_err;
  2663. }
  2664. }
  2665. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2666. &relocs);
  2667. if (ret != 0)
  2668. goto pre_mutex_err;
  2669. mutex_lock(&dev->struct_mutex);
  2670. i915_verify_inactive(dev, __FILE__, __LINE__);
  2671. if (dev_priv->mm.wedged) {
  2672. DRM_ERROR("Execbuf while wedged\n");
  2673. mutex_unlock(&dev->struct_mutex);
  2674. ret = -EIO;
  2675. goto pre_mutex_err;
  2676. }
  2677. if (dev_priv->mm.suspended) {
  2678. DRM_ERROR("Execbuf while VT-switched.\n");
  2679. mutex_unlock(&dev->struct_mutex);
  2680. ret = -EBUSY;
  2681. goto pre_mutex_err;
  2682. }
  2683. /* Look up object handles */
  2684. for (i = 0; i < args->buffer_count; i++) {
  2685. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2686. exec_list[i].handle);
  2687. if (object_list[i] == NULL) {
  2688. DRM_ERROR("Invalid object handle %d at index %d\n",
  2689. exec_list[i].handle, i);
  2690. ret = -EBADF;
  2691. goto err;
  2692. }
  2693. obj_priv = object_list[i]->driver_private;
  2694. if (obj_priv->in_execbuffer) {
  2695. DRM_ERROR("Object %p appears more than once in object list\n",
  2696. object_list[i]);
  2697. ret = -EBADF;
  2698. goto err;
  2699. }
  2700. obj_priv->in_execbuffer = true;
  2701. }
  2702. /* Pin and relocate */
  2703. for (pin_tries = 0; ; pin_tries++) {
  2704. ret = 0;
  2705. reloc_index = 0;
  2706. for (i = 0; i < args->buffer_count; i++) {
  2707. object_list[i]->pending_read_domains = 0;
  2708. object_list[i]->pending_write_domain = 0;
  2709. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2710. file_priv,
  2711. &exec_list[i],
  2712. &relocs[reloc_index]);
  2713. if (ret)
  2714. break;
  2715. pinned = i + 1;
  2716. reloc_index += exec_list[i].relocation_count;
  2717. }
  2718. /* success */
  2719. if (ret == 0)
  2720. break;
  2721. /* error other than GTT full, or we've already tried again */
  2722. if (ret != -ENOMEM || pin_tries >= 1) {
  2723. if (ret != -ERESTARTSYS)
  2724. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2725. goto err;
  2726. }
  2727. /* unpin all of our buffers */
  2728. for (i = 0; i < pinned; i++)
  2729. i915_gem_object_unpin(object_list[i]);
  2730. pinned = 0;
  2731. /* evict everyone we can from the aperture */
  2732. ret = i915_gem_evict_everything(dev);
  2733. if (ret)
  2734. goto err;
  2735. }
  2736. /* Set the pending read domains for the batch buffer to COMMAND */
  2737. batch_obj = object_list[args->buffer_count-1];
  2738. batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
  2739. batch_obj->pending_write_domain = 0;
  2740. i915_verify_inactive(dev, __FILE__, __LINE__);
  2741. /* Zero the global flush/invalidate flags. These
  2742. * will be modified as new domains are computed
  2743. * for each object
  2744. */
  2745. dev->invalidate_domains = 0;
  2746. dev->flush_domains = 0;
  2747. for (i = 0; i < args->buffer_count; i++) {
  2748. struct drm_gem_object *obj = object_list[i];
  2749. /* Compute new gpu domains and update invalidate/flush */
  2750. i915_gem_object_set_to_gpu_domain(obj);
  2751. }
  2752. i915_verify_inactive(dev, __FILE__, __LINE__);
  2753. if (dev->invalidate_domains | dev->flush_domains) {
  2754. #if WATCH_EXEC
  2755. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2756. __func__,
  2757. dev->invalidate_domains,
  2758. dev->flush_domains);
  2759. #endif
  2760. i915_gem_flush(dev,
  2761. dev->invalidate_domains,
  2762. dev->flush_domains);
  2763. if (dev->flush_domains)
  2764. (void)i915_add_request(dev, dev->flush_domains);
  2765. }
  2766. for (i = 0; i < args->buffer_count; i++) {
  2767. struct drm_gem_object *obj = object_list[i];
  2768. obj->write_domain = obj->pending_write_domain;
  2769. }
  2770. i915_verify_inactive(dev, __FILE__, __LINE__);
  2771. #if WATCH_COHERENCY
  2772. for (i = 0; i < args->buffer_count; i++) {
  2773. i915_gem_object_check_coherency(object_list[i],
  2774. exec_list[i].handle);
  2775. }
  2776. #endif
  2777. exec_offset = exec_list[args->buffer_count - 1].offset;
  2778. #if WATCH_EXEC
  2779. i915_gem_dump_object(object_list[args->buffer_count - 1],
  2780. args->batch_len,
  2781. __func__,
  2782. ~0);
  2783. #endif
  2784. /* Exec the batchbuffer */
  2785. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2786. if (ret) {
  2787. DRM_ERROR("dispatch failed %d\n", ret);
  2788. goto err;
  2789. }
  2790. /*
  2791. * Ensure that the commands in the batch buffer are
  2792. * finished before the interrupt fires
  2793. */
  2794. flush_domains = i915_retire_commands(dev);
  2795. i915_verify_inactive(dev, __FILE__, __LINE__);
  2796. /*
  2797. * Get a seqno representing the execution of the current buffer,
  2798. * which we can wait on. We would like to mitigate these interrupts,
  2799. * likely by only creating seqnos occasionally (so that we have
  2800. * *some* interrupts representing completion of buffers that we can
  2801. * wait on when trying to clear up gtt space).
  2802. */
  2803. seqno = i915_add_request(dev, flush_domains);
  2804. BUG_ON(seqno == 0);
  2805. i915_file_priv->mm.last_gem_seqno = seqno;
  2806. for (i = 0; i < args->buffer_count; i++) {
  2807. struct drm_gem_object *obj = object_list[i];
  2808. i915_gem_object_move_to_active(obj, seqno);
  2809. #if WATCH_LRU
  2810. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2811. #endif
  2812. }
  2813. #if WATCH_LRU
  2814. i915_dump_lru(dev, __func__);
  2815. #endif
  2816. i915_verify_inactive(dev, __FILE__, __LINE__);
  2817. err:
  2818. for (i = 0; i < pinned; i++)
  2819. i915_gem_object_unpin(object_list[i]);
  2820. for (i = 0; i < args->buffer_count; i++) {
  2821. if (object_list[i]) {
  2822. obj_priv = object_list[i]->driver_private;
  2823. obj_priv->in_execbuffer = false;
  2824. }
  2825. drm_gem_object_unreference(object_list[i]);
  2826. }
  2827. mutex_unlock(&dev->struct_mutex);
  2828. if (!ret) {
  2829. /* Copy the new buffer offsets back to the user's exec list. */
  2830. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  2831. (uintptr_t) args->buffers_ptr,
  2832. exec_list,
  2833. sizeof(*exec_list) * args->buffer_count);
  2834. if (ret)
  2835. DRM_ERROR("failed to copy %d exec entries "
  2836. "back to user (%d)\n",
  2837. args->buffer_count, ret);
  2838. }
  2839. /* Copy the updated relocations out regardless of current error
  2840. * state. Failure to update the relocs would mean that the next
  2841. * time userland calls execbuf, it would do so with presumed offset
  2842. * state that didn't match the actual object state.
  2843. */
  2844. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  2845. relocs);
  2846. if (ret2 != 0) {
  2847. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  2848. if (ret == 0)
  2849. ret = ret2;
  2850. }
  2851. pre_mutex_err:
  2852. drm_free(object_list, sizeof(*object_list) * args->buffer_count,
  2853. DRM_MEM_DRIVER);
  2854. drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
  2855. DRM_MEM_DRIVER);
  2856. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  2857. DRM_MEM_DRIVER);
  2858. return ret;
  2859. }
  2860. int
  2861. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  2862. {
  2863. struct drm_device *dev = obj->dev;
  2864. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2865. int ret;
  2866. i915_verify_inactive(dev, __FILE__, __LINE__);
  2867. if (obj_priv->gtt_space == NULL) {
  2868. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  2869. if (ret != 0) {
  2870. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2871. DRM_ERROR("Failure to bind: %d\n", ret);
  2872. return ret;
  2873. }
  2874. }
  2875. /*
  2876. * Pre-965 chips need a fence register set up in order to
  2877. * properly handle tiled surfaces.
  2878. */
  2879. if (!IS_I965G(dev) &&
  2880. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  2881. obj_priv->tiling_mode != I915_TILING_NONE) {
  2882. ret = i915_gem_object_get_fence_reg(obj, true);
  2883. if (ret != 0) {
  2884. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2885. DRM_ERROR("Failure to install fence: %d\n",
  2886. ret);
  2887. return ret;
  2888. }
  2889. }
  2890. obj_priv->pin_count++;
  2891. /* If the object is not active and not pending a flush,
  2892. * remove it from the inactive list
  2893. */
  2894. if (obj_priv->pin_count == 1) {
  2895. atomic_inc(&dev->pin_count);
  2896. atomic_add(obj->size, &dev->pin_memory);
  2897. if (!obj_priv->active &&
  2898. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2899. I915_GEM_DOMAIN_GTT)) == 0 &&
  2900. !list_empty(&obj_priv->list))
  2901. list_del_init(&obj_priv->list);
  2902. }
  2903. i915_verify_inactive(dev, __FILE__, __LINE__);
  2904. return 0;
  2905. }
  2906. void
  2907. i915_gem_object_unpin(struct drm_gem_object *obj)
  2908. {
  2909. struct drm_device *dev = obj->dev;
  2910. drm_i915_private_t *dev_priv = dev->dev_private;
  2911. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2912. i915_verify_inactive(dev, __FILE__, __LINE__);
  2913. obj_priv->pin_count--;
  2914. BUG_ON(obj_priv->pin_count < 0);
  2915. BUG_ON(obj_priv->gtt_space == NULL);
  2916. /* If the object is no longer pinned, and is
  2917. * neither active nor being flushed, then stick it on
  2918. * the inactive list
  2919. */
  2920. if (obj_priv->pin_count == 0) {
  2921. if (!obj_priv->active &&
  2922. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2923. I915_GEM_DOMAIN_GTT)) == 0)
  2924. list_move_tail(&obj_priv->list,
  2925. &dev_priv->mm.inactive_list);
  2926. atomic_dec(&dev->pin_count);
  2927. atomic_sub(obj->size, &dev->pin_memory);
  2928. }
  2929. i915_verify_inactive(dev, __FILE__, __LINE__);
  2930. }
  2931. int
  2932. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2933. struct drm_file *file_priv)
  2934. {
  2935. struct drm_i915_gem_pin *args = data;
  2936. struct drm_gem_object *obj;
  2937. struct drm_i915_gem_object *obj_priv;
  2938. int ret;
  2939. mutex_lock(&dev->struct_mutex);
  2940. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2941. if (obj == NULL) {
  2942. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  2943. args->handle);
  2944. mutex_unlock(&dev->struct_mutex);
  2945. return -EBADF;
  2946. }
  2947. obj_priv = obj->driver_private;
  2948. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  2949. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2950. args->handle);
  2951. drm_gem_object_unreference(obj);
  2952. mutex_unlock(&dev->struct_mutex);
  2953. return -EINVAL;
  2954. }
  2955. obj_priv->user_pin_count++;
  2956. obj_priv->pin_filp = file_priv;
  2957. if (obj_priv->user_pin_count == 1) {
  2958. ret = i915_gem_object_pin(obj, args->alignment);
  2959. if (ret != 0) {
  2960. drm_gem_object_unreference(obj);
  2961. mutex_unlock(&dev->struct_mutex);
  2962. return ret;
  2963. }
  2964. }
  2965. /* XXX - flush the CPU caches for pinned objects
  2966. * as the X server doesn't manage domains yet
  2967. */
  2968. i915_gem_object_flush_cpu_write_domain(obj);
  2969. args->offset = obj_priv->gtt_offset;
  2970. drm_gem_object_unreference(obj);
  2971. mutex_unlock(&dev->struct_mutex);
  2972. return 0;
  2973. }
  2974. int
  2975. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2976. struct drm_file *file_priv)
  2977. {
  2978. struct drm_i915_gem_pin *args = data;
  2979. struct drm_gem_object *obj;
  2980. struct drm_i915_gem_object *obj_priv;
  2981. mutex_lock(&dev->struct_mutex);
  2982. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2983. if (obj == NULL) {
  2984. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  2985. args->handle);
  2986. mutex_unlock(&dev->struct_mutex);
  2987. return -EBADF;
  2988. }
  2989. obj_priv = obj->driver_private;
  2990. if (obj_priv->pin_filp != file_priv) {
  2991. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2992. args->handle);
  2993. drm_gem_object_unreference(obj);
  2994. mutex_unlock(&dev->struct_mutex);
  2995. return -EINVAL;
  2996. }
  2997. obj_priv->user_pin_count--;
  2998. if (obj_priv->user_pin_count == 0) {
  2999. obj_priv->pin_filp = NULL;
  3000. i915_gem_object_unpin(obj);
  3001. }
  3002. drm_gem_object_unreference(obj);
  3003. mutex_unlock(&dev->struct_mutex);
  3004. return 0;
  3005. }
  3006. int
  3007. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3008. struct drm_file *file_priv)
  3009. {
  3010. struct drm_i915_gem_busy *args = data;
  3011. struct drm_gem_object *obj;
  3012. struct drm_i915_gem_object *obj_priv;
  3013. mutex_lock(&dev->struct_mutex);
  3014. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3015. if (obj == NULL) {
  3016. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3017. args->handle);
  3018. mutex_unlock(&dev->struct_mutex);
  3019. return -EBADF;
  3020. }
  3021. /* Update the active list for the hardware's current position.
  3022. * Otherwise this only updates on a delayed timer or when irqs are
  3023. * actually unmasked, and our working set ends up being larger than
  3024. * required.
  3025. */
  3026. i915_gem_retire_requests(dev);
  3027. obj_priv = obj->driver_private;
  3028. /* Don't count being on the flushing list against the object being
  3029. * done. Otherwise, a buffer left on the flushing list but not getting
  3030. * flushed (because nobody's flushing that domain) won't ever return
  3031. * unbusy and get reused by libdrm's bo cache. The other expected
  3032. * consumer of this interface, OpenGL's occlusion queries, also specs
  3033. * that the objects get unbusy "eventually" without any interference.
  3034. */
  3035. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3036. drm_gem_object_unreference(obj);
  3037. mutex_unlock(&dev->struct_mutex);
  3038. return 0;
  3039. }
  3040. int
  3041. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3042. struct drm_file *file_priv)
  3043. {
  3044. return i915_gem_ring_throttle(dev, file_priv);
  3045. }
  3046. int i915_gem_init_object(struct drm_gem_object *obj)
  3047. {
  3048. struct drm_i915_gem_object *obj_priv;
  3049. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3050. if (obj_priv == NULL)
  3051. return -ENOMEM;
  3052. /*
  3053. * We've just allocated pages from the kernel,
  3054. * so they've just been written by the CPU with
  3055. * zeros. They'll need to be clflushed before we
  3056. * use them with the GPU.
  3057. */
  3058. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3059. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3060. obj_priv->agp_type = AGP_USER_MEMORY;
  3061. obj->driver_private = obj_priv;
  3062. obj_priv->obj = obj;
  3063. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3064. INIT_LIST_HEAD(&obj_priv->list);
  3065. return 0;
  3066. }
  3067. void i915_gem_free_object(struct drm_gem_object *obj)
  3068. {
  3069. struct drm_device *dev = obj->dev;
  3070. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3071. while (obj_priv->pin_count > 0)
  3072. i915_gem_object_unpin(obj);
  3073. if (obj_priv->phys_obj)
  3074. i915_gem_detach_phys_object(dev, obj);
  3075. i915_gem_object_unbind(obj);
  3076. i915_gem_free_mmap_offset(obj);
  3077. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3078. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3079. }
  3080. /** Unbinds all objects that are on the given buffer list. */
  3081. static int
  3082. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3083. {
  3084. struct drm_gem_object *obj;
  3085. struct drm_i915_gem_object *obj_priv;
  3086. int ret;
  3087. while (!list_empty(head)) {
  3088. obj_priv = list_first_entry(head,
  3089. struct drm_i915_gem_object,
  3090. list);
  3091. obj = obj_priv->obj;
  3092. if (obj_priv->pin_count != 0) {
  3093. DRM_ERROR("Pinned object in unbind list\n");
  3094. mutex_unlock(&dev->struct_mutex);
  3095. return -EINVAL;
  3096. }
  3097. ret = i915_gem_object_unbind(obj);
  3098. if (ret != 0) {
  3099. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3100. ret);
  3101. mutex_unlock(&dev->struct_mutex);
  3102. return ret;
  3103. }
  3104. }
  3105. return 0;
  3106. }
  3107. int
  3108. i915_gem_idle(struct drm_device *dev)
  3109. {
  3110. drm_i915_private_t *dev_priv = dev->dev_private;
  3111. uint32_t seqno, cur_seqno, last_seqno;
  3112. int stuck, ret;
  3113. mutex_lock(&dev->struct_mutex);
  3114. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3115. mutex_unlock(&dev->struct_mutex);
  3116. return 0;
  3117. }
  3118. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3119. * We need to replace this with a semaphore, or something.
  3120. */
  3121. dev_priv->mm.suspended = 1;
  3122. /* Cancel the retire work handler, wait for it to finish if running
  3123. */
  3124. mutex_unlock(&dev->struct_mutex);
  3125. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3126. mutex_lock(&dev->struct_mutex);
  3127. i915_kernel_lost_context(dev);
  3128. /* Flush the GPU along with all non-CPU write domains
  3129. */
  3130. i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
  3131. ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  3132. seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
  3133. if (seqno == 0) {
  3134. mutex_unlock(&dev->struct_mutex);
  3135. return -ENOMEM;
  3136. }
  3137. dev_priv->mm.waiting_gem_seqno = seqno;
  3138. last_seqno = 0;
  3139. stuck = 0;
  3140. for (;;) {
  3141. cur_seqno = i915_get_gem_seqno(dev);
  3142. if (i915_seqno_passed(cur_seqno, seqno))
  3143. break;
  3144. if (last_seqno == cur_seqno) {
  3145. if (stuck++ > 100) {
  3146. DRM_ERROR("hardware wedged\n");
  3147. dev_priv->mm.wedged = 1;
  3148. DRM_WAKEUP(&dev_priv->irq_queue);
  3149. break;
  3150. }
  3151. }
  3152. msleep(10);
  3153. last_seqno = cur_seqno;
  3154. }
  3155. dev_priv->mm.waiting_gem_seqno = 0;
  3156. i915_gem_retire_requests(dev);
  3157. if (!dev_priv->mm.wedged) {
  3158. /* Active and flushing should now be empty as we've
  3159. * waited for a sequence higher than any pending execbuffer
  3160. */
  3161. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3162. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3163. /* Request should now be empty as we've also waited
  3164. * for the last request in the list
  3165. */
  3166. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3167. }
  3168. /* Empty the active and flushing lists to inactive. If there's
  3169. * anything left at this point, it means that we're wedged and
  3170. * nothing good's going to happen by leaving them there. So strip
  3171. * the GPU domains and just stuff them onto inactive.
  3172. */
  3173. while (!list_empty(&dev_priv->mm.active_list)) {
  3174. struct drm_i915_gem_object *obj_priv;
  3175. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3176. struct drm_i915_gem_object,
  3177. list);
  3178. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3179. i915_gem_object_move_to_inactive(obj_priv->obj);
  3180. }
  3181. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3182. struct drm_i915_gem_object *obj_priv;
  3183. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3184. struct drm_i915_gem_object,
  3185. list);
  3186. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3187. i915_gem_object_move_to_inactive(obj_priv->obj);
  3188. }
  3189. /* Move all inactive buffers out of the GTT. */
  3190. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3191. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3192. if (ret) {
  3193. mutex_unlock(&dev->struct_mutex);
  3194. return ret;
  3195. }
  3196. i915_gem_cleanup_ringbuffer(dev);
  3197. mutex_unlock(&dev->struct_mutex);
  3198. return 0;
  3199. }
  3200. static int
  3201. i915_gem_init_hws(struct drm_device *dev)
  3202. {
  3203. drm_i915_private_t *dev_priv = dev->dev_private;
  3204. struct drm_gem_object *obj;
  3205. struct drm_i915_gem_object *obj_priv;
  3206. int ret;
  3207. /* If we need a physical address for the status page, it's already
  3208. * initialized at driver load time.
  3209. */
  3210. if (!I915_NEED_GFX_HWS(dev))
  3211. return 0;
  3212. obj = drm_gem_object_alloc(dev, 4096);
  3213. if (obj == NULL) {
  3214. DRM_ERROR("Failed to allocate status page\n");
  3215. return -ENOMEM;
  3216. }
  3217. obj_priv = obj->driver_private;
  3218. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3219. ret = i915_gem_object_pin(obj, 4096);
  3220. if (ret != 0) {
  3221. drm_gem_object_unreference(obj);
  3222. return ret;
  3223. }
  3224. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3225. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3226. if (dev_priv->hw_status_page == NULL) {
  3227. DRM_ERROR("Failed to map status page.\n");
  3228. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3229. i915_gem_object_unpin(obj);
  3230. drm_gem_object_unreference(obj);
  3231. return -EINVAL;
  3232. }
  3233. dev_priv->hws_obj = obj;
  3234. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3235. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3236. I915_READ(HWS_PGA); /* posting read */
  3237. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3238. return 0;
  3239. }
  3240. static void
  3241. i915_gem_cleanup_hws(struct drm_device *dev)
  3242. {
  3243. drm_i915_private_t *dev_priv = dev->dev_private;
  3244. struct drm_gem_object *obj;
  3245. struct drm_i915_gem_object *obj_priv;
  3246. if (dev_priv->hws_obj == NULL)
  3247. return;
  3248. obj = dev_priv->hws_obj;
  3249. obj_priv = obj->driver_private;
  3250. kunmap(obj_priv->pages[0]);
  3251. i915_gem_object_unpin(obj);
  3252. drm_gem_object_unreference(obj);
  3253. dev_priv->hws_obj = NULL;
  3254. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3255. dev_priv->hw_status_page = NULL;
  3256. /* Write high address into HWS_PGA when disabling. */
  3257. I915_WRITE(HWS_PGA, 0x1ffff000);
  3258. }
  3259. int
  3260. i915_gem_init_ringbuffer(struct drm_device *dev)
  3261. {
  3262. drm_i915_private_t *dev_priv = dev->dev_private;
  3263. struct drm_gem_object *obj;
  3264. struct drm_i915_gem_object *obj_priv;
  3265. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3266. int ret;
  3267. u32 head;
  3268. ret = i915_gem_init_hws(dev);
  3269. if (ret != 0)
  3270. return ret;
  3271. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3272. if (obj == NULL) {
  3273. DRM_ERROR("Failed to allocate ringbuffer\n");
  3274. i915_gem_cleanup_hws(dev);
  3275. return -ENOMEM;
  3276. }
  3277. obj_priv = obj->driver_private;
  3278. ret = i915_gem_object_pin(obj, 4096);
  3279. if (ret != 0) {
  3280. drm_gem_object_unreference(obj);
  3281. i915_gem_cleanup_hws(dev);
  3282. return ret;
  3283. }
  3284. /* Set up the kernel mapping for the ring. */
  3285. ring->Size = obj->size;
  3286. ring->tail_mask = obj->size - 1;
  3287. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3288. ring->map.size = obj->size;
  3289. ring->map.type = 0;
  3290. ring->map.flags = 0;
  3291. ring->map.mtrr = 0;
  3292. drm_core_ioremap_wc(&ring->map, dev);
  3293. if (ring->map.handle == NULL) {
  3294. DRM_ERROR("Failed to map ringbuffer.\n");
  3295. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3296. i915_gem_object_unpin(obj);
  3297. drm_gem_object_unreference(obj);
  3298. i915_gem_cleanup_hws(dev);
  3299. return -EINVAL;
  3300. }
  3301. ring->ring_obj = obj;
  3302. ring->virtual_start = ring->map.handle;
  3303. /* Stop the ring if it's running. */
  3304. I915_WRITE(PRB0_CTL, 0);
  3305. I915_WRITE(PRB0_TAIL, 0);
  3306. I915_WRITE(PRB0_HEAD, 0);
  3307. /* Initialize the ring. */
  3308. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3309. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3310. /* G45 ring initialization fails to reset head to zero */
  3311. if (head != 0) {
  3312. DRM_ERROR("Ring head not reset to zero "
  3313. "ctl %08x head %08x tail %08x start %08x\n",
  3314. I915_READ(PRB0_CTL),
  3315. I915_READ(PRB0_HEAD),
  3316. I915_READ(PRB0_TAIL),
  3317. I915_READ(PRB0_START));
  3318. I915_WRITE(PRB0_HEAD, 0);
  3319. DRM_ERROR("Ring head forced to zero "
  3320. "ctl %08x head %08x tail %08x start %08x\n",
  3321. I915_READ(PRB0_CTL),
  3322. I915_READ(PRB0_HEAD),
  3323. I915_READ(PRB0_TAIL),
  3324. I915_READ(PRB0_START));
  3325. }
  3326. I915_WRITE(PRB0_CTL,
  3327. ((obj->size - 4096) & RING_NR_PAGES) |
  3328. RING_NO_REPORT |
  3329. RING_VALID);
  3330. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3331. /* If the head is still not zero, the ring is dead */
  3332. if (head != 0) {
  3333. DRM_ERROR("Ring initialization failed "
  3334. "ctl %08x head %08x tail %08x start %08x\n",
  3335. I915_READ(PRB0_CTL),
  3336. I915_READ(PRB0_HEAD),
  3337. I915_READ(PRB0_TAIL),
  3338. I915_READ(PRB0_START));
  3339. return -EIO;
  3340. }
  3341. /* Update our cache of the ring state */
  3342. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3343. i915_kernel_lost_context(dev);
  3344. else {
  3345. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3346. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3347. ring->space = ring->head - (ring->tail + 8);
  3348. if (ring->space < 0)
  3349. ring->space += ring->Size;
  3350. }
  3351. return 0;
  3352. }
  3353. void
  3354. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3355. {
  3356. drm_i915_private_t *dev_priv = dev->dev_private;
  3357. if (dev_priv->ring.ring_obj == NULL)
  3358. return;
  3359. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3360. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3361. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3362. dev_priv->ring.ring_obj = NULL;
  3363. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3364. i915_gem_cleanup_hws(dev);
  3365. }
  3366. int
  3367. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3368. struct drm_file *file_priv)
  3369. {
  3370. drm_i915_private_t *dev_priv = dev->dev_private;
  3371. int ret;
  3372. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3373. return 0;
  3374. if (dev_priv->mm.wedged) {
  3375. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3376. dev_priv->mm.wedged = 0;
  3377. }
  3378. mutex_lock(&dev->struct_mutex);
  3379. dev_priv->mm.suspended = 0;
  3380. ret = i915_gem_init_ringbuffer(dev);
  3381. if (ret != 0)
  3382. return ret;
  3383. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3384. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3385. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3386. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3387. mutex_unlock(&dev->struct_mutex);
  3388. drm_irq_install(dev);
  3389. return 0;
  3390. }
  3391. int
  3392. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3393. struct drm_file *file_priv)
  3394. {
  3395. int ret;
  3396. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3397. return 0;
  3398. ret = i915_gem_idle(dev);
  3399. drm_irq_uninstall(dev);
  3400. return ret;
  3401. }
  3402. void
  3403. i915_gem_lastclose(struct drm_device *dev)
  3404. {
  3405. int ret;
  3406. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3407. return;
  3408. ret = i915_gem_idle(dev);
  3409. if (ret)
  3410. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3411. }
  3412. void
  3413. i915_gem_load(struct drm_device *dev)
  3414. {
  3415. drm_i915_private_t *dev_priv = dev->dev_private;
  3416. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3417. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3418. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3419. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3420. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3421. i915_gem_retire_work_handler);
  3422. dev_priv->mm.next_gem_seqno = 1;
  3423. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3424. dev_priv->fence_reg_start = 3;
  3425. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3426. dev_priv->num_fence_regs = 16;
  3427. else
  3428. dev_priv->num_fence_regs = 8;
  3429. i915_gem_detect_bit_6_swizzle(dev);
  3430. }
  3431. /*
  3432. * Create a physically contiguous memory object for this object
  3433. * e.g. for cursor + overlay regs
  3434. */
  3435. int i915_gem_init_phys_object(struct drm_device *dev,
  3436. int id, int size)
  3437. {
  3438. drm_i915_private_t *dev_priv = dev->dev_private;
  3439. struct drm_i915_gem_phys_object *phys_obj;
  3440. int ret;
  3441. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3442. return 0;
  3443. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3444. if (!phys_obj)
  3445. return -ENOMEM;
  3446. phys_obj->id = id;
  3447. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3448. if (!phys_obj->handle) {
  3449. ret = -ENOMEM;
  3450. goto kfree_obj;
  3451. }
  3452. #ifdef CONFIG_X86
  3453. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3454. #endif
  3455. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3456. return 0;
  3457. kfree_obj:
  3458. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3459. return ret;
  3460. }
  3461. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3462. {
  3463. drm_i915_private_t *dev_priv = dev->dev_private;
  3464. struct drm_i915_gem_phys_object *phys_obj;
  3465. if (!dev_priv->mm.phys_objs[id - 1])
  3466. return;
  3467. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3468. if (phys_obj->cur_obj) {
  3469. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3470. }
  3471. #ifdef CONFIG_X86
  3472. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3473. #endif
  3474. drm_pci_free(dev, phys_obj->handle);
  3475. kfree(phys_obj);
  3476. dev_priv->mm.phys_objs[id - 1] = NULL;
  3477. }
  3478. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3479. {
  3480. int i;
  3481. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3482. i915_gem_free_phys_object(dev, i);
  3483. }
  3484. void i915_gem_detach_phys_object(struct drm_device *dev,
  3485. struct drm_gem_object *obj)
  3486. {
  3487. struct drm_i915_gem_object *obj_priv;
  3488. int i;
  3489. int ret;
  3490. int page_count;
  3491. obj_priv = obj->driver_private;
  3492. if (!obj_priv->phys_obj)
  3493. return;
  3494. ret = i915_gem_object_get_pages(obj);
  3495. if (ret)
  3496. goto out;
  3497. page_count = obj->size / PAGE_SIZE;
  3498. for (i = 0; i < page_count; i++) {
  3499. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3500. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3501. memcpy(dst, src, PAGE_SIZE);
  3502. kunmap_atomic(dst, KM_USER0);
  3503. }
  3504. drm_clflush_pages(obj_priv->pages, page_count);
  3505. drm_agp_chipset_flush(dev);
  3506. out:
  3507. obj_priv->phys_obj->cur_obj = NULL;
  3508. obj_priv->phys_obj = NULL;
  3509. }
  3510. int
  3511. i915_gem_attach_phys_object(struct drm_device *dev,
  3512. struct drm_gem_object *obj, int id)
  3513. {
  3514. drm_i915_private_t *dev_priv = dev->dev_private;
  3515. struct drm_i915_gem_object *obj_priv;
  3516. int ret = 0;
  3517. int page_count;
  3518. int i;
  3519. if (id > I915_MAX_PHYS_OBJECT)
  3520. return -EINVAL;
  3521. obj_priv = obj->driver_private;
  3522. if (obj_priv->phys_obj) {
  3523. if (obj_priv->phys_obj->id == id)
  3524. return 0;
  3525. i915_gem_detach_phys_object(dev, obj);
  3526. }
  3527. /* create a new object */
  3528. if (!dev_priv->mm.phys_objs[id - 1]) {
  3529. ret = i915_gem_init_phys_object(dev, id,
  3530. obj->size);
  3531. if (ret) {
  3532. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3533. goto out;
  3534. }
  3535. }
  3536. /* bind to the object */
  3537. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3538. obj_priv->phys_obj->cur_obj = obj;
  3539. ret = i915_gem_object_get_pages(obj);
  3540. if (ret) {
  3541. DRM_ERROR("failed to get page list\n");
  3542. goto out;
  3543. }
  3544. page_count = obj->size / PAGE_SIZE;
  3545. for (i = 0; i < page_count; i++) {
  3546. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3547. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3548. memcpy(dst, src, PAGE_SIZE);
  3549. kunmap_atomic(src, KM_USER0);
  3550. }
  3551. return 0;
  3552. out:
  3553. return ret;
  3554. }
  3555. static int
  3556. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3557. struct drm_i915_gem_pwrite *args,
  3558. struct drm_file *file_priv)
  3559. {
  3560. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3561. void *obj_addr;
  3562. int ret;
  3563. char __user *user_data;
  3564. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3565. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3566. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3567. ret = copy_from_user(obj_addr, user_data, args->size);
  3568. if (ret)
  3569. return -EFAULT;
  3570. drm_agp_chipset_flush(dev);
  3571. return 0;
  3572. }