process.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. /*
  2. * This file handles the architecture dependent parts of process handling.
  3. *
  4. * Copyright IBM Corp. 1999,2009
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6. * Hartmut Penner <hp@de.ibm.com>,
  7. * Denis Joseph Barrow,
  8. */
  9. #include <linux/compiler.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <linux/kernel.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/smp.h>
  16. #include <linux/slab.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/tick.h>
  19. #include <linux/personality.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/compat.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/random.h>
  24. #include <linux/module.h>
  25. #include <asm/system.h>
  26. #include <asm/io.h>
  27. #include <asm/processor.h>
  28. #include <asm/irq.h>
  29. #include <asm/timer.h>
  30. #include <asm/nmi.h>
  31. #include <asm/compat.h>
  32. #include <asm/smp.h>
  33. #include "entry.h"
  34. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  35. /*
  36. * Return saved PC of a blocked thread. used in kernel/sched.
  37. * resume in entry.S does not create a new stack frame, it
  38. * just stores the registers %r6-%r15 to the frame given by
  39. * schedule. We want to return the address of the caller of
  40. * schedule, so we have to walk the backchain one time to
  41. * find the frame schedule() store its return address.
  42. */
  43. unsigned long thread_saved_pc(struct task_struct *tsk)
  44. {
  45. struct stack_frame *sf, *low, *high;
  46. if (!tsk || !task_stack_page(tsk))
  47. return 0;
  48. low = task_stack_page(tsk);
  49. high = (struct stack_frame *) task_pt_regs(tsk);
  50. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  51. if (sf <= low || sf > high)
  52. return 0;
  53. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  54. if (sf <= low || sf > high)
  55. return 0;
  56. return sf->gprs[8];
  57. }
  58. /*
  59. * The idle loop on a S390...
  60. */
  61. static void default_idle(void)
  62. {
  63. if (cpu_is_offline(smp_processor_id()))
  64. cpu_die();
  65. local_irq_disable();
  66. if (need_resched()) {
  67. local_irq_enable();
  68. return;
  69. }
  70. local_mcck_disable();
  71. if (test_thread_flag(TIF_MCCK_PENDING)) {
  72. local_mcck_enable();
  73. local_irq_enable();
  74. return;
  75. }
  76. trace_hardirqs_on();
  77. /* Don't trace preempt off for idle. */
  78. stop_critical_timings();
  79. /* Stop virtual timer and halt the cpu. */
  80. vtime_stop_cpu();
  81. /* Reenable preemption tracer. */
  82. start_critical_timings();
  83. }
  84. void cpu_idle(void)
  85. {
  86. for (;;) {
  87. tick_nohz_idle_enter();
  88. rcu_idle_enter();
  89. while (!need_resched() && !test_thread_flag(TIF_MCCK_PENDING))
  90. default_idle();
  91. rcu_idle_exit();
  92. tick_nohz_idle_exit();
  93. if (test_thread_flag(TIF_MCCK_PENDING))
  94. s390_handle_mcck();
  95. preempt_enable_no_resched();
  96. schedule();
  97. preempt_disable();
  98. }
  99. }
  100. extern void __kprobes kernel_thread_starter(void);
  101. asm(
  102. ".section .kprobes.text, \"ax\"\n"
  103. ".global kernel_thread_starter\n"
  104. "kernel_thread_starter:\n"
  105. " la 2,0(10)\n"
  106. " basr 14,9\n"
  107. " la 2,0\n"
  108. " br 11\n"
  109. ".previous\n");
  110. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  111. {
  112. struct pt_regs regs;
  113. memset(&regs, 0, sizeof(regs));
  114. regs.psw.mask = psw_kernel_bits |
  115. PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
  116. regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
  117. regs.gprs[9] = (unsigned long) fn;
  118. regs.gprs[10] = (unsigned long) arg;
  119. regs.gprs[11] = (unsigned long) do_exit;
  120. regs.orig_gpr2 = -1;
  121. /* Ok, create the new process.. */
  122. return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
  123. 0, &regs, 0, NULL, NULL);
  124. }
  125. EXPORT_SYMBOL(kernel_thread);
  126. /*
  127. * Free current thread data structures etc..
  128. */
  129. void exit_thread(void)
  130. {
  131. }
  132. void flush_thread(void)
  133. {
  134. }
  135. void release_thread(struct task_struct *dead_task)
  136. {
  137. }
  138. int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
  139. unsigned long unused,
  140. struct task_struct *p, struct pt_regs *regs)
  141. {
  142. struct thread_info *ti;
  143. struct fake_frame
  144. {
  145. struct stack_frame sf;
  146. struct pt_regs childregs;
  147. } *frame;
  148. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  149. p->thread.ksp = (unsigned long) frame;
  150. /* Store access registers to kernel stack of new process. */
  151. frame->childregs = *regs;
  152. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  153. frame->childregs.gprs[15] = new_stackp;
  154. frame->sf.back_chain = 0;
  155. /* new return point is ret_from_fork */
  156. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  157. /* fake return stack for resume(), don't go back to schedule */
  158. frame->sf.gprs[9] = (unsigned long) frame;
  159. /* Save access registers to new thread structure. */
  160. save_access_regs(&p->thread.acrs[0]);
  161. #ifndef CONFIG_64BIT
  162. /*
  163. * save fprs to current->thread.fp_regs to merge them with
  164. * the emulated registers and then copy the result to the child.
  165. */
  166. save_fp_regs(&current->thread.fp_regs);
  167. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  168. sizeof(s390_fp_regs));
  169. /* Set a new TLS ? */
  170. if (clone_flags & CLONE_SETTLS)
  171. p->thread.acrs[0] = regs->gprs[6];
  172. #else /* CONFIG_64BIT */
  173. /* Save the fpu registers to new thread structure. */
  174. save_fp_regs(&p->thread.fp_regs);
  175. /* Set a new TLS ? */
  176. if (clone_flags & CLONE_SETTLS) {
  177. if (is_compat_task()) {
  178. p->thread.acrs[0] = (unsigned int) regs->gprs[6];
  179. } else {
  180. p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
  181. p->thread.acrs[1] = (unsigned int) regs->gprs[6];
  182. }
  183. }
  184. #endif /* CONFIG_64BIT */
  185. /* start new process with ar4 pointing to the correct address space */
  186. p->thread.mm_segment = get_fs();
  187. /* Don't copy debug registers */
  188. memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
  189. memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
  190. clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
  191. clear_tsk_thread_flag(p, TIF_PER_TRAP);
  192. /* Initialize per thread user and system timer values */
  193. ti = task_thread_info(p);
  194. ti->user_timer = 0;
  195. ti->system_timer = 0;
  196. return 0;
  197. }
  198. SYSCALL_DEFINE0(fork)
  199. {
  200. struct pt_regs *regs = task_pt_regs(current);
  201. return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
  202. }
  203. SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
  204. int __user *, parent_tidptr, int __user *, child_tidptr)
  205. {
  206. struct pt_regs *regs = task_pt_regs(current);
  207. if (!newsp)
  208. newsp = regs->gprs[15];
  209. return do_fork(clone_flags, newsp, regs, 0,
  210. parent_tidptr, child_tidptr);
  211. }
  212. /*
  213. * This is trivial, and on the face of it looks like it
  214. * could equally well be done in user mode.
  215. *
  216. * Not so, for quite unobvious reasons - register pressure.
  217. * In user mode vfork() cannot have a stack frame, and if
  218. * done by calling the "clone()" system call directly, you
  219. * do not have enough call-clobbered registers to hold all
  220. * the information you need.
  221. */
  222. SYSCALL_DEFINE0(vfork)
  223. {
  224. struct pt_regs *regs = task_pt_regs(current);
  225. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
  226. regs->gprs[15], regs, 0, NULL, NULL);
  227. }
  228. asmlinkage void execve_tail(void)
  229. {
  230. current->thread.fp_regs.fpc = 0;
  231. if (MACHINE_HAS_IEEE)
  232. asm volatile("sfpc %0,%0" : : "d" (0));
  233. }
  234. /*
  235. * sys_execve() executes a new program.
  236. */
  237. SYSCALL_DEFINE3(execve, const char __user *, name,
  238. const char __user *const __user *, argv,
  239. const char __user *const __user *, envp)
  240. {
  241. struct pt_regs *regs = task_pt_regs(current);
  242. char *filename;
  243. long rc;
  244. filename = getname(name);
  245. rc = PTR_ERR(filename);
  246. if (IS_ERR(filename))
  247. return rc;
  248. rc = do_execve(filename, argv, envp, regs);
  249. if (rc)
  250. goto out;
  251. execve_tail();
  252. rc = regs->gprs[2];
  253. out:
  254. putname(filename);
  255. return rc;
  256. }
  257. /*
  258. * fill in the FPU structure for a core dump.
  259. */
  260. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  261. {
  262. #ifndef CONFIG_64BIT
  263. /*
  264. * save fprs to current->thread.fp_regs to merge them with
  265. * the emulated registers and then copy the result to the dump.
  266. */
  267. save_fp_regs(&current->thread.fp_regs);
  268. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  269. #else /* CONFIG_64BIT */
  270. save_fp_regs(fpregs);
  271. #endif /* CONFIG_64BIT */
  272. return 1;
  273. }
  274. EXPORT_SYMBOL(dump_fpu);
  275. unsigned long get_wchan(struct task_struct *p)
  276. {
  277. struct stack_frame *sf, *low, *high;
  278. unsigned long return_address;
  279. int count;
  280. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  281. return 0;
  282. low = task_stack_page(p);
  283. high = (struct stack_frame *) task_pt_regs(p);
  284. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  285. if (sf <= low || sf > high)
  286. return 0;
  287. for (count = 0; count < 16; count++) {
  288. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  289. if (sf <= low || sf > high)
  290. return 0;
  291. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  292. if (!in_sched_functions(return_address))
  293. return return_address;
  294. }
  295. return 0;
  296. }
  297. unsigned long arch_align_stack(unsigned long sp)
  298. {
  299. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  300. sp -= get_random_int() & ~PAGE_MASK;
  301. return sp & ~0xf;
  302. }
  303. static inline unsigned long brk_rnd(void)
  304. {
  305. /* 8MB for 32bit, 1GB for 64bit */
  306. if (is_32bit_task())
  307. return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
  308. else
  309. return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
  310. }
  311. unsigned long arch_randomize_brk(struct mm_struct *mm)
  312. {
  313. unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
  314. if (ret < mm->brk)
  315. return mm->brk;
  316. return ret;
  317. }
  318. unsigned long randomize_et_dyn(unsigned long base)
  319. {
  320. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  321. if (!(current->flags & PF_RANDOMIZE))
  322. return base;
  323. if (ret < base)
  324. return base;
  325. return ret;
  326. }