ide-cris.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084
  1. /* $Id: cris-ide-driver.patch,v 1.1 2005/06/29 21:39:07 akpm Exp $
  2. *
  3. * Etrax specific IDE functions, like init and PIO-mode setting etc.
  4. * Almost the entire ide.c is used for the rest of the Etrax ATA driver.
  5. * Copyright (c) 2000-2005 Axis Communications AB
  6. *
  7. * Authors: Bjorn Wesen (initial version)
  8. * Mikael Starvik (crisv32 port)
  9. */
  10. /* Regarding DMA:
  11. *
  12. * There are two forms of DMA - "DMA handshaking" between the interface and the drive,
  13. * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
  14. * something built-in in the Etrax. However only some drives support the DMA-mode handshaking
  15. * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
  16. * device can't do DMA handshaking for some stupid reason. We don't need to do that.
  17. */
  18. #include <linux/types.h>
  19. #include <linux/kernel.h>
  20. #include <linux/timer.h>
  21. #include <linux/mm.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/delay.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/hdreg.h>
  26. #include <linux/ide.h>
  27. #include <linux/init.h>
  28. #include <asm/io.h>
  29. #include <asm/dma.h>
  30. /* number of DMA descriptors */
  31. #define MAX_DMA_DESCRS 64
  32. /* number of times to retry busy-flags when reading/writing IDE-registers
  33. * this can't be too high because a hung harddisk might cause the watchdog
  34. * to trigger (sometimes INB and OUTB are called with irq's disabled)
  35. */
  36. #define IDE_REGISTER_TIMEOUT 300
  37. #define LOWDB(x)
  38. #define D(x)
  39. enum /* Transfer types */
  40. {
  41. TYPE_PIO,
  42. TYPE_DMA,
  43. TYPE_UDMA
  44. };
  45. /* CRISv32 specifics */
  46. #ifdef CONFIG_ETRAX_ARCH_V32
  47. #include <asm/arch/hwregs/ata_defs.h>
  48. #include <asm/arch/hwregs/dma_defs.h>
  49. #include <asm/arch/hwregs/dma.h>
  50. #include <asm/arch/pinmux.h>
  51. #define ATA_UDMA2_CYC 2
  52. #define ATA_UDMA2_DVS 3
  53. #define ATA_UDMA1_CYC 2
  54. #define ATA_UDMA1_DVS 4
  55. #define ATA_UDMA0_CYC 4
  56. #define ATA_UDMA0_DVS 6
  57. #define ATA_DMA2_STROBE 7
  58. #define ATA_DMA2_HOLD 1
  59. #define ATA_DMA1_STROBE 8
  60. #define ATA_DMA1_HOLD 3
  61. #define ATA_DMA0_STROBE 25
  62. #define ATA_DMA0_HOLD 19
  63. #define ATA_PIO4_SETUP 3
  64. #define ATA_PIO4_STROBE 7
  65. #define ATA_PIO4_HOLD 1
  66. #define ATA_PIO3_SETUP 3
  67. #define ATA_PIO3_STROBE 9
  68. #define ATA_PIO3_HOLD 3
  69. #define ATA_PIO2_SETUP 3
  70. #define ATA_PIO2_STROBE 13
  71. #define ATA_PIO2_HOLD 5
  72. #define ATA_PIO1_SETUP 5
  73. #define ATA_PIO1_STROBE 23
  74. #define ATA_PIO1_HOLD 9
  75. #define ATA_PIO0_SETUP 9
  76. #define ATA_PIO0_STROBE 39
  77. #define ATA_PIO0_HOLD 9
  78. int
  79. cris_ide_ack_intr(ide_hwif_t* hwif)
  80. {
  81. reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2,
  82. int, hwif->io_ports[0]);
  83. REG_WR_INT(ata, regi_ata, rw_ack_intr, 1 << ctrl2.sel);
  84. return 1;
  85. }
  86. static inline int
  87. cris_ide_busy(void)
  88. {
  89. reg_ata_rs_stat_data stat_data;
  90. stat_data = REG_RD(ata, regi_ata, rs_stat_data);
  91. return stat_data.busy;
  92. }
  93. static inline int
  94. cris_ide_ready(void)
  95. {
  96. return !cris_ide_busy();
  97. }
  98. static inline int
  99. cris_ide_data_available(unsigned short* data)
  100. {
  101. reg_ata_rs_stat_data stat_data;
  102. stat_data = REG_RD(ata, regi_ata, rs_stat_data);
  103. *data = stat_data.data;
  104. return stat_data.dav;
  105. }
  106. static void
  107. cris_ide_write_command(unsigned long command)
  108. {
  109. REG_WR_INT(ata, regi_ata, rw_ctrl2, command); /* write data to the drive's register */
  110. }
  111. static void
  112. cris_ide_set_speed(int type, int setup, int strobe, int hold)
  113. {
  114. reg_ata_rw_ctrl0 ctrl0 = REG_RD(ata, regi_ata, rw_ctrl0);
  115. reg_ata_rw_ctrl1 ctrl1 = REG_RD(ata, regi_ata, rw_ctrl1);
  116. if (type == TYPE_PIO) {
  117. ctrl0.pio_setup = setup;
  118. ctrl0.pio_strb = strobe;
  119. ctrl0.pio_hold = hold;
  120. } else if (type == TYPE_DMA) {
  121. ctrl0.dma_strb = strobe;
  122. ctrl0.dma_hold = hold;
  123. } else if (type == TYPE_UDMA) {
  124. ctrl1.udma_tcyc = setup;
  125. ctrl1.udma_tdvs = strobe;
  126. }
  127. REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
  128. REG_WR(ata, regi_ata, rw_ctrl1, ctrl1);
  129. }
  130. static unsigned long
  131. cris_ide_base_address(int bus)
  132. {
  133. reg_ata_rw_ctrl2 ctrl2 = {0};
  134. ctrl2.sel = bus;
  135. return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
  136. }
  137. static unsigned long
  138. cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
  139. {
  140. reg_ata_rw_ctrl2 ctrl2 = {0};
  141. ctrl2.addr = addr;
  142. ctrl2.cs1 = cs1;
  143. ctrl2.cs0 = cs0;
  144. return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
  145. }
  146. static __init void
  147. cris_ide_reset(unsigned val)
  148. {
  149. reg_ata_rw_ctrl0 ctrl0 = {0};
  150. ctrl0.rst = val ? regk_ata_active : regk_ata_inactive;
  151. REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
  152. }
  153. static __init void
  154. cris_ide_init(void)
  155. {
  156. reg_ata_rw_ctrl0 ctrl0 = {0};
  157. reg_ata_rw_intr_mask intr_mask = {0};
  158. ctrl0.en = regk_ata_yes;
  159. REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
  160. intr_mask.bus0 = regk_ata_yes;
  161. intr_mask.bus1 = regk_ata_yes;
  162. intr_mask.bus2 = regk_ata_yes;
  163. intr_mask.bus3 = regk_ata_yes;
  164. REG_WR(ata, regi_ata, rw_intr_mask, intr_mask);
  165. crisv32_request_dma(2, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
  166. crisv32_request_dma(3, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
  167. crisv32_pinmux_alloc_fixed(pinmux_ata);
  168. crisv32_pinmux_alloc_fixed(pinmux_ata0);
  169. crisv32_pinmux_alloc_fixed(pinmux_ata1);
  170. crisv32_pinmux_alloc_fixed(pinmux_ata2);
  171. crisv32_pinmux_alloc_fixed(pinmux_ata3);
  172. DMA_RESET(regi_dma2);
  173. DMA_ENABLE(regi_dma2);
  174. DMA_RESET(regi_dma3);
  175. DMA_ENABLE(regi_dma3);
  176. DMA_WR_CMD (regi_dma2, regk_dma_set_w_size2);
  177. DMA_WR_CMD (regi_dma3, regk_dma_set_w_size2);
  178. }
  179. static dma_descr_context mycontext __attribute__ ((__aligned__(32)));
  180. #define cris_dma_descr_type dma_descr_data
  181. #define cris_pio_read regk_ata_rd
  182. #define cris_ultra_mask 0x7
  183. #define MAX_DESCR_SIZE 0xffffffffUL
  184. static unsigned long
  185. cris_ide_get_reg(unsigned long reg)
  186. {
  187. return (reg & 0x0e000000) >> 25;
  188. }
  189. static void
  190. cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
  191. {
  192. d->buf = (char*)virt_to_phys(buf);
  193. d->after = d->buf + len;
  194. d->eol = last;
  195. }
  196. static void
  197. cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir,int type,int len)
  198. {
  199. reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
  200. reg_ata_rw_trf_cnt trf_cnt = {0};
  201. mycontext.saved_data = (dma_descr_data*)virt_to_phys(d);
  202. mycontext.saved_data_buf = d->buf;
  203. /* start the dma channel */
  204. DMA_START_CONTEXT(dir ? regi_dma3 : regi_dma2, virt_to_phys(&mycontext));
  205. /* initiate a multi word dma read using PIO handshaking */
  206. trf_cnt.cnt = len >> 1;
  207. /* Due to a "feature" the transfer count has to be one extra word for UDMA. */
  208. if (type == TYPE_UDMA)
  209. trf_cnt.cnt++;
  210. REG_WR(ata, regi_ata, rw_trf_cnt, trf_cnt);
  211. ctrl2.rw = dir ? regk_ata_rd : regk_ata_wr;
  212. ctrl2.trf_mode = regk_ata_dma;
  213. ctrl2.hsh = type == TYPE_PIO ? regk_ata_pio :
  214. type == TYPE_DMA ? regk_ata_dma : regk_ata_udma;
  215. ctrl2.multi = regk_ata_yes;
  216. ctrl2.dma_size = regk_ata_word;
  217. REG_WR(ata, regi_ata, rw_ctrl2, ctrl2);
  218. }
  219. static void
  220. cris_ide_wait_dma(int dir)
  221. {
  222. reg_dma_rw_stat status;
  223. do
  224. {
  225. status = REG_RD(dma, dir ? regi_dma3 : regi_dma2, rw_stat);
  226. } while(status.list_state != regk_dma_data_at_eol);
  227. }
  228. static int cris_dma_test_irq(ide_drive_t *drive)
  229. {
  230. int intr = REG_RD_INT(ata, regi_ata, r_intr);
  231. reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
  232. return intr & (1 << ctrl2.sel) ? 1 : 0;
  233. }
  234. static void cris_ide_initialize_dma(int dir)
  235. {
  236. }
  237. #else
  238. /* CRISv10 specifics */
  239. #include <asm/arch/svinto.h>
  240. #include <asm/arch/io_interface_mux.h>
  241. /* PIO timing (in R_ATA_CONFIG)
  242. *
  243. * _____________________________
  244. * ADDRESS : ________/
  245. *
  246. * _______________
  247. * DIOR : ____________/ \__________
  248. *
  249. * _______________
  250. * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX
  251. *
  252. *
  253. * DIOR is unbuffered while address and data is buffered.
  254. * This creates two problems:
  255. * 1. The DIOR pulse is to early (because it is unbuffered)
  256. * 2. The rise time of DIOR is long
  257. *
  258. * There are at least three different plausible solutions
  259. * 1. Use a pad capable of larger currents in Etrax
  260. * 2. Use an external buffer
  261. * 3. Make the strobe pulse longer
  262. *
  263. * Some of the strobe timings below are modified to compensate
  264. * for this. This implies a slight performance decrease.
  265. *
  266. * THIS SHOULD NEVER BE CHANGED!
  267. *
  268. * TODO: Is this true for the latest LX boards still ?
  269. */
  270. #define ATA_UDMA2_CYC 0 /* No UDMA supported, just to make it compile. */
  271. #define ATA_UDMA2_DVS 0
  272. #define ATA_UDMA1_CYC 0
  273. #define ATA_UDMA1_DVS 0
  274. #define ATA_UDMA0_CYC 0
  275. #define ATA_UDMA0_DVS 0
  276. #define ATA_DMA2_STROBE 4
  277. #define ATA_DMA2_HOLD 0
  278. #define ATA_DMA1_STROBE 4
  279. #define ATA_DMA1_HOLD 1
  280. #define ATA_DMA0_STROBE 12
  281. #define ATA_DMA0_HOLD 9
  282. #define ATA_PIO4_SETUP 1
  283. #define ATA_PIO4_STROBE 5
  284. #define ATA_PIO4_HOLD 0
  285. #define ATA_PIO3_SETUP 1
  286. #define ATA_PIO3_STROBE 5
  287. #define ATA_PIO3_HOLD 1
  288. #define ATA_PIO2_SETUP 1
  289. #define ATA_PIO2_STROBE 6
  290. #define ATA_PIO2_HOLD 2
  291. #define ATA_PIO1_SETUP 2
  292. #define ATA_PIO1_STROBE 11
  293. #define ATA_PIO1_HOLD 4
  294. #define ATA_PIO0_SETUP 4
  295. #define ATA_PIO0_STROBE 19
  296. #define ATA_PIO0_HOLD 4
  297. int
  298. cris_ide_ack_intr(ide_hwif_t* hwif)
  299. {
  300. return 1;
  301. }
  302. static inline int
  303. cris_ide_busy(void)
  304. {
  305. return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy) ;
  306. }
  307. static inline int
  308. cris_ide_ready(void)
  309. {
  310. return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy) ;
  311. }
  312. static inline int
  313. cris_ide_data_available(unsigned short* data)
  314. {
  315. unsigned long status = *R_ATA_STATUS_DATA;
  316. *data = (unsigned short)status;
  317. return status & IO_MASK(R_ATA_STATUS_DATA, dav);
  318. }
  319. static void
  320. cris_ide_write_command(unsigned long command)
  321. {
  322. *R_ATA_CTRL_DATA = command;
  323. }
  324. static void
  325. cris_ide_set_speed(int type, int setup, int strobe, int hold)
  326. {
  327. static int pio_setup = ATA_PIO4_SETUP;
  328. static int pio_strobe = ATA_PIO4_STROBE;
  329. static int pio_hold = ATA_PIO4_HOLD;
  330. static int dma_strobe = ATA_DMA2_STROBE;
  331. static int dma_hold = ATA_DMA2_HOLD;
  332. if (type == TYPE_PIO) {
  333. pio_setup = setup;
  334. pio_strobe = strobe;
  335. pio_hold = hold;
  336. } else if (type == TYPE_DMA) {
  337. dma_strobe = strobe;
  338. dma_hold = hold;
  339. }
  340. *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
  341. IO_FIELD( R_ATA_CONFIG, dma_strobe, dma_strobe ) |
  342. IO_FIELD( R_ATA_CONFIG, dma_hold, dma_hold ) |
  343. IO_FIELD( R_ATA_CONFIG, pio_setup, pio_setup ) |
  344. IO_FIELD( R_ATA_CONFIG, pio_strobe, pio_strobe ) |
  345. IO_FIELD( R_ATA_CONFIG, pio_hold, pio_hold ) );
  346. }
  347. static unsigned long
  348. cris_ide_base_address(int bus)
  349. {
  350. return IO_FIELD(R_ATA_CTRL_DATA, sel, bus);
  351. }
  352. static unsigned long
  353. cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
  354. {
  355. return IO_FIELD(R_ATA_CTRL_DATA, addr, addr) |
  356. IO_FIELD(R_ATA_CTRL_DATA, cs0, cs0) |
  357. IO_FIELD(R_ATA_CTRL_DATA, cs1, cs1);
  358. }
  359. static __init void
  360. cris_ide_reset(unsigned val)
  361. {
  362. #ifdef CONFIG_ETRAX_IDE_G27_RESET
  363. REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, val);
  364. #endif
  365. #ifdef CONFIG_ETRAX_IDE_PB7_RESET
  366. port_pb_dir_shadow = port_pb_dir_shadow |
  367. IO_STATE(R_PORT_PB_DIR, dir7, output);
  368. *R_PORT_PB_DIR = port_pb_dir_shadow;
  369. REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, val);
  370. #endif
  371. }
  372. static __init void
  373. cris_ide_init(void)
  374. {
  375. volatile unsigned int dummy;
  376. *R_ATA_CTRL_DATA = 0;
  377. *R_ATA_TRANSFER_CNT = 0;
  378. *R_ATA_CONFIG = 0;
  379. if (cris_request_io_interface(if_ata, "ETRAX100LX IDE")) {
  380. printk(KERN_CRIT "ide: Failed to get IO interface\n");
  381. return;
  382. } else if (cris_request_dma(ATA_TX_DMA_NBR,
  383. "ETRAX100LX IDE TX",
  384. DMA_VERBOSE_ON_ERROR,
  385. dma_ata)) {
  386. cris_free_io_interface(if_ata);
  387. printk(KERN_CRIT "ide: Failed to get Tx DMA channel\n");
  388. return;
  389. } else if (cris_request_dma(ATA_RX_DMA_NBR,
  390. "ETRAX100LX IDE RX",
  391. DMA_VERBOSE_ON_ERROR,
  392. dma_ata)) {
  393. cris_free_dma(ATA_TX_DMA_NBR, "ETRAX100LX IDE Tx");
  394. cris_free_io_interface(if_ata);
  395. printk(KERN_CRIT "ide: Failed to get Rx DMA channel\n");
  396. return;
  397. }
  398. /* make a dummy read to set the ata controller in a proper state */
  399. dummy = *R_ATA_STATUS_DATA;
  400. *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ));
  401. *R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) |
  402. IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) );
  403. while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/
  404. *R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) |
  405. IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) |
  406. IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) |
  407. IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) );
  408. /* reset the dma channels we will use */
  409. RESET_DMA(ATA_TX_DMA_NBR);
  410. RESET_DMA(ATA_RX_DMA_NBR);
  411. WAIT_DMA(ATA_TX_DMA_NBR);
  412. WAIT_DMA(ATA_RX_DMA_NBR);
  413. }
  414. #define cris_dma_descr_type etrax_dma_descr
  415. #define cris_pio_read IO_STATE(R_ATA_CTRL_DATA, rw, read)
  416. #define cris_ultra_mask 0x0
  417. #define MAX_DESCR_SIZE 0x10000UL
  418. static unsigned long
  419. cris_ide_get_reg(unsigned long reg)
  420. {
  421. return (reg & 0x0e000000) >> 25;
  422. }
  423. static void
  424. cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
  425. {
  426. d->buf = virt_to_phys(buf);
  427. d->sw_len = len == MAX_DESCR_SIZE ? 0 : len;
  428. if (last)
  429. d->ctrl |= d_eol;
  430. }
  431. static void cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir, int type, int len)
  432. {
  433. unsigned long cmd;
  434. if (dir) {
  435. /* need to do this before RX DMA due to a chip bug
  436. * it is enough to just flush the part of the cache that
  437. * corresponds to the buffers we start, but since HD transfers
  438. * usually are more than 8 kB, it is easier to optimize for the
  439. * normal case and just flush the entire cache. its the only
  440. * way to be sure! (OB movie quote)
  441. */
  442. flush_etrax_cache();
  443. *R_DMA_CH3_FIRST = virt_to_phys(d);
  444. *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start);
  445. } else {
  446. *R_DMA_CH2_FIRST = virt_to_phys(d);
  447. *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start);
  448. }
  449. /* initiate a multi word dma read using DMA handshaking */
  450. *R_ATA_TRANSFER_CNT =
  451. IO_FIELD(R_ATA_TRANSFER_CNT, count, len >> 1);
  452. cmd = dir ? IO_STATE(R_ATA_CTRL_DATA, rw, read) : IO_STATE(R_ATA_CTRL_DATA, rw, write);
  453. cmd |= type == TYPE_PIO ? IO_STATE(R_ATA_CTRL_DATA, handsh, pio) :
  454. IO_STATE(R_ATA_CTRL_DATA, handsh, dma);
  455. *R_ATA_CTRL_DATA =
  456. cmd |
  457. IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
  458. IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) |
  459. IO_STATE(R_ATA_CTRL_DATA, multi, on) |
  460. IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
  461. }
  462. static void
  463. cris_ide_wait_dma(int dir)
  464. {
  465. if (dir)
  466. WAIT_DMA(ATA_RX_DMA_NBR);
  467. else
  468. WAIT_DMA(ATA_TX_DMA_NBR);
  469. }
  470. static int cris_dma_test_irq(ide_drive_t *drive)
  471. {
  472. int intr = *R_IRQ_MASK0_RD;
  473. int bus = IO_EXTRACT(R_ATA_CTRL_DATA, sel, IDE_DATA_REG);
  474. return intr & (1 << (bus + IO_BITNR(R_IRQ_MASK0_RD, ata_irq0))) ? 1 : 0;
  475. }
  476. static void cris_ide_initialize_dma(int dir)
  477. {
  478. if (dir)
  479. {
  480. RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
  481. WAIT_DMA(ATA_RX_DMA_NBR);
  482. }
  483. else
  484. {
  485. RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
  486. WAIT_DMA(ATA_TX_DMA_NBR);
  487. }
  488. }
  489. #endif
  490. void
  491. cris_ide_outw(unsigned short data, unsigned long reg) {
  492. int timeleft;
  493. LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg));
  494. /* note the lack of handling any timeouts. we stop waiting, but we don't
  495. * really notify anybody.
  496. */
  497. timeleft = IDE_REGISTER_TIMEOUT;
  498. /* wait for busy flag */
  499. do {
  500. timeleft--;
  501. } while(timeleft && cris_ide_busy());
  502. /*
  503. * Fall through at a timeout, so the ongoing command will be
  504. * aborted by the write below, which is expected to be a dummy
  505. * command to the command register. This happens when a faulty
  506. * drive times out on a command. See comment on timeout in
  507. * INB.
  508. */
  509. if(!timeleft)
  510. printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data);
  511. cris_ide_write_command(reg|data); /* write data to the drive's register */
  512. timeleft = IDE_REGISTER_TIMEOUT;
  513. /* wait for transmitter ready */
  514. do {
  515. timeleft--;
  516. } while(timeleft && !cris_ide_ready());
  517. }
  518. void
  519. cris_ide_outb(unsigned char data, unsigned long reg)
  520. {
  521. cris_ide_outw(data, reg);
  522. }
  523. void
  524. cris_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port)
  525. {
  526. cris_ide_outw(addr, port);
  527. }
  528. unsigned short
  529. cris_ide_inw(unsigned long reg) {
  530. int timeleft;
  531. unsigned short val;
  532. timeleft = IDE_REGISTER_TIMEOUT;
  533. /* wait for busy flag */
  534. do {
  535. timeleft--;
  536. } while(timeleft && cris_ide_busy());
  537. if(!timeleft) {
  538. /*
  539. * If we're asked to read the status register, like for
  540. * example when a command does not complete for an
  541. * extended time, but the ATA interface is stuck in a
  542. * busy state at the *ETRAX* ATA interface level (as has
  543. * happened repeatedly with at least one bad disk), then
  544. * the best thing to do is to pretend that we read
  545. * "busy" in the status register, so the IDE driver will
  546. * time-out, abort the ongoing command and perform a
  547. * reset sequence. Note that the subsequent OUT_BYTE
  548. * call will also timeout on busy, but as long as the
  549. * write is still performed, everything will be fine.
  550. */
  551. if (cris_ide_get_reg(reg) == IDE_STATUS_OFFSET)
  552. return BUSY_STAT;
  553. else
  554. /* For other rare cases we assume 0 is good enough. */
  555. return 0;
  556. }
  557. cris_ide_write_command(reg | cris_pio_read);
  558. timeleft = IDE_REGISTER_TIMEOUT;
  559. /* wait for available */
  560. do {
  561. timeleft--;
  562. } while(timeleft && !cris_ide_data_available(&val));
  563. if(!timeleft)
  564. return 0;
  565. LOWDB(printk("inb: 0x%x from reg 0x%x\n", val & 0xff, reg));
  566. return val;
  567. }
  568. unsigned char
  569. cris_ide_inb(unsigned long reg)
  570. {
  571. return (unsigned char)cris_ide_inw(reg);
  572. }
  573. static int cris_dma_check (ide_drive_t *drive);
  574. static int cris_dma_end (ide_drive_t *drive);
  575. static int cris_dma_setup (ide_drive_t *drive);
  576. static void cris_dma_exec_cmd (ide_drive_t *drive, u8 command);
  577. static int cris_dma_test_irq(ide_drive_t *drive);
  578. static void cris_dma_start(ide_drive_t *drive);
  579. static void cris_ide_input_data (ide_drive_t *drive, void *, unsigned int);
  580. static void cris_ide_output_data (ide_drive_t *drive, void *, unsigned int);
  581. static void cris_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int);
  582. static void cris_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int);
  583. static int cris_dma_on (ide_drive_t *drive);
  584. static void cris_dma_off(ide_drive_t *drive)
  585. {
  586. }
  587. static void tune_cris_ide(ide_drive_t *drive, u8 pio)
  588. {
  589. int setup, strobe, hold;
  590. pio = ide_get_best_pio_mode(drive, pio, 4);
  591. switch(pio)
  592. {
  593. case 0:
  594. setup = ATA_PIO0_SETUP;
  595. strobe = ATA_PIO0_STROBE;
  596. hold = ATA_PIO0_HOLD;
  597. break;
  598. case 1:
  599. setup = ATA_PIO1_SETUP;
  600. strobe = ATA_PIO1_STROBE;
  601. hold = ATA_PIO1_HOLD;
  602. break;
  603. case 2:
  604. setup = ATA_PIO2_SETUP;
  605. strobe = ATA_PIO2_STROBE;
  606. hold = ATA_PIO2_HOLD;
  607. break;
  608. case 3:
  609. setup = ATA_PIO3_SETUP;
  610. strobe = ATA_PIO3_STROBE;
  611. hold = ATA_PIO3_HOLD;
  612. break;
  613. case 4:
  614. setup = ATA_PIO4_SETUP;
  615. strobe = ATA_PIO4_STROBE;
  616. hold = ATA_PIO4_HOLD;
  617. break;
  618. default:
  619. return;
  620. }
  621. cris_ide_set_speed(TYPE_PIO, setup, strobe, hold);
  622. (void)ide_config_drive_speed(drive, XFER_PIO_0 + pio);
  623. }
  624. static int speed_cris_ide(ide_drive_t *drive, const u8 speed)
  625. {
  626. int cyc = 0, dvs = 0, strobe = 0, hold = 0;
  627. if (speed >= XFER_PIO_0 && speed <= XFER_PIO_4) {
  628. tune_cris_ide(drive, speed - XFER_PIO_0);
  629. return ide_config_drive_speed(drive, speed);
  630. }
  631. switch(speed)
  632. {
  633. case XFER_UDMA_0:
  634. cyc = ATA_UDMA0_CYC;
  635. dvs = ATA_UDMA0_DVS;
  636. break;
  637. case XFER_UDMA_1:
  638. cyc = ATA_UDMA1_CYC;
  639. dvs = ATA_UDMA1_DVS;
  640. break;
  641. case XFER_UDMA_2:
  642. cyc = ATA_UDMA2_CYC;
  643. dvs = ATA_UDMA2_DVS;
  644. break;
  645. case XFER_MW_DMA_0:
  646. strobe = ATA_DMA0_STROBE;
  647. hold = ATA_DMA0_HOLD;
  648. break;
  649. case XFER_MW_DMA_1:
  650. strobe = ATA_DMA1_STROBE;
  651. hold = ATA_DMA1_HOLD;
  652. break;
  653. case XFER_MW_DMA_2:
  654. strobe = ATA_DMA2_STROBE;
  655. hold = ATA_DMA2_HOLD;
  656. break;
  657. default:
  658. BUG();
  659. break;
  660. }
  661. if (speed >= XFER_UDMA_0)
  662. cris_ide_set_speed(TYPE_UDMA, cyc, dvs, 0);
  663. else
  664. cris_ide_set_speed(TYPE_DMA, 0, strobe, hold);
  665. return ide_config_drive_speed(drive, speed);
  666. }
  667. void __init
  668. init_e100_ide (void)
  669. {
  670. hw_regs_t hw;
  671. int ide_offsets[IDE_NR_PORTS];
  672. int h;
  673. int i;
  674. printk("ide: ETRAX FS built-in ATA DMA controller\n");
  675. for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++)
  676. ide_offsets[i] = cris_ide_reg_addr(i, 0, 1);
  677. /* the IDE control register is at ATA address 6, with CS1 active instead of CS0 */
  678. ide_offsets[IDE_CONTROL_OFFSET] = cris_ide_reg_addr(6, 1, 0);
  679. /* first fill in some stuff in the ide_hwifs fields */
  680. for(h = 0; h < MAX_HWIFS; h++) {
  681. ide_hwif_t *hwif = &ide_hwifs[h];
  682. ide_setup_ports(&hw, cris_ide_base_address(h),
  683. ide_offsets,
  684. 0, 0, cris_ide_ack_intr,
  685. ide_default_irq(0));
  686. ide_register_hw(&hw, 1, &hwif);
  687. hwif->mmio = 1;
  688. hwif->chipset = ide_etrax100;
  689. hwif->tuneproc = &tune_cris_ide;
  690. hwif->speedproc = &speed_cris_ide;
  691. hwif->ata_input_data = &cris_ide_input_data;
  692. hwif->ata_output_data = &cris_ide_output_data;
  693. hwif->atapi_input_bytes = &cris_atapi_input_bytes;
  694. hwif->atapi_output_bytes = &cris_atapi_output_bytes;
  695. hwif->ide_dma_check = &cris_dma_check;
  696. hwif->ide_dma_end = &cris_dma_end;
  697. hwif->dma_setup = &cris_dma_setup;
  698. hwif->dma_exec_cmd = &cris_dma_exec_cmd;
  699. hwif->ide_dma_test_irq = &cris_dma_test_irq;
  700. hwif->dma_start = &cris_dma_start;
  701. hwif->OUTB = &cris_ide_outb;
  702. hwif->OUTW = &cris_ide_outw;
  703. hwif->OUTBSYNC = &cris_ide_outbsync;
  704. hwif->INB = &cris_ide_inb;
  705. hwif->INW = &cris_ide_inw;
  706. hwif->dma_host_off = &cris_dma_off;
  707. hwif->dma_host_on = &cris_dma_on;
  708. hwif->dma_off_quietly = &cris_dma_off;
  709. hwif->cbl = ATA_CBL_PATA40;
  710. hwif->pio_mask = ATA_PIO4,
  711. hwif->ultra_mask = cris_ultra_mask;
  712. hwif->mwdma_mask = 0x07; /* Multiword DMA 0-2 */
  713. hwif->autodma = 1;
  714. hwif->drives[0].autodma = 1;
  715. hwif->drives[1].autodma = 1;
  716. }
  717. /* Reset pulse */
  718. cris_ide_reset(0);
  719. udelay(25);
  720. cris_ide_reset(1);
  721. cris_ide_init();
  722. cris_ide_set_speed(TYPE_PIO, ATA_PIO4_SETUP, ATA_PIO4_STROBE, ATA_PIO4_HOLD);
  723. cris_ide_set_speed(TYPE_DMA, 0, ATA_DMA2_STROBE, ATA_DMA2_HOLD);
  724. cris_ide_set_speed(TYPE_UDMA, ATA_UDMA2_CYC, ATA_UDMA2_DVS, 0);
  725. }
  726. static int cris_dma_on (ide_drive_t *drive)
  727. {
  728. return 0;
  729. }
  730. static cris_dma_descr_type mydescr __attribute__ ((__aligned__(16)));
  731. /*
  732. * The following routines are mainly used by the ATAPI drivers.
  733. *
  734. * These routines will round up any request for an odd number of bytes,
  735. * so if an odd bytecount is specified, be sure that there's at least one
  736. * extra byte allocated for the buffer.
  737. */
  738. static void
  739. cris_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
  740. {
  741. D(printk("atapi_input_bytes, buffer 0x%x, count %d\n",
  742. buffer, bytecount));
  743. if(bytecount & 1) {
  744. printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount);
  745. bytecount++; /* to round off */
  746. }
  747. /* setup DMA and start transfer */
  748. cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
  749. cris_ide_start_dma(drive, &mydescr, 1, TYPE_PIO, bytecount);
  750. /* wait for completion */
  751. LED_DISK_READ(1);
  752. cris_ide_wait_dma(1);
  753. LED_DISK_READ(0);
  754. }
  755. static void
  756. cris_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
  757. {
  758. D(printk("atapi_output_bytes, buffer 0x%x, count %d\n",
  759. buffer, bytecount));
  760. if(bytecount & 1) {
  761. printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);
  762. bytecount++;
  763. }
  764. cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
  765. cris_ide_start_dma(drive, &mydescr, 0, TYPE_PIO, bytecount);
  766. /* wait for completion */
  767. LED_DISK_WRITE(1);
  768. LED_DISK_READ(1);
  769. cris_ide_wait_dma(0);
  770. LED_DISK_WRITE(0);
  771. }
  772. /*
  773. * This is used for most PIO data transfers *from* the IDE interface
  774. */
  775. static void
  776. cris_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
  777. {
  778. cris_atapi_input_bytes(drive, buffer, wcount << 2);
  779. }
  780. /*
  781. * This is used for most PIO data transfers *to* the IDE interface
  782. */
  783. static void
  784. cris_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
  785. {
  786. cris_atapi_output_bytes(drive, buffer, wcount << 2);
  787. }
  788. /* we only have one DMA channel on the chip for ATA, so we can keep these statically */
  789. static cris_dma_descr_type ata_descrs[MAX_DMA_DESCRS] __attribute__ ((__aligned__(16)));
  790. static unsigned int ata_tot_size;
  791. /*
  792. * cris_ide_build_dmatable() prepares a dma request.
  793. * Returns 0 if all went okay, returns 1 otherwise.
  794. */
  795. static int cris_ide_build_dmatable (ide_drive_t *drive)
  796. {
  797. ide_hwif_t *hwif = drive->hwif;
  798. struct scatterlist* sg;
  799. struct request *rq = drive->hwif->hwgroup->rq;
  800. unsigned long size, addr;
  801. unsigned int count = 0;
  802. int i = 0;
  803. sg = hwif->sg_table;
  804. ata_tot_size = 0;
  805. ide_map_sg(drive, rq);
  806. i = hwif->sg_nents;
  807. while(i) {
  808. /*
  809. * Determine addr and size of next buffer area. We assume that
  810. * individual virtual buffers are always composed linearly in
  811. * physical memory. For example, we assume that any 8kB buffer
  812. * is always composed of two adjacent physical 4kB pages rather
  813. * than two possibly non-adjacent physical 4kB pages.
  814. */
  815. /* group sequential buffers into one large buffer */
  816. addr = page_to_phys(sg->page) + sg->offset;
  817. size = sg_dma_len(sg);
  818. while (sg++, --i) {
  819. if ((addr + size) != page_to_phys(sg->page) + sg->offset)
  820. break;
  821. size += sg_dma_len(sg);
  822. }
  823. /* did we run out of descriptors? */
  824. if(count >= MAX_DMA_DESCRS) {
  825. printk("%s: too few DMA descriptors\n", drive->name);
  826. return 1;
  827. }
  828. /* however, this case is more difficult - rw_trf_cnt cannot be more
  829. than 65536 words per transfer, so in that case we need to either
  830. 1) use a DMA interrupt to re-trigger rw_trf_cnt and continue with
  831. the descriptors, or
  832. 2) simply do the request here, and get dma_intr to only ide_end_request on
  833. those blocks that were actually set-up for transfer.
  834. */
  835. if(ata_tot_size + size > 131072) {
  836. printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size);
  837. return 1;
  838. }
  839. /* If size > MAX_DESCR_SIZE it has to be splitted into new descriptors. Since we
  840. don't handle size > 131072 only one split is necessary */
  841. if(size > MAX_DESCR_SIZE) {
  842. cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, MAX_DESCR_SIZE, 0);
  843. count++;
  844. ata_tot_size += MAX_DESCR_SIZE;
  845. size -= MAX_DESCR_SIZE;
  846. addr += MAX_DESCR_SIZE;
  847. }
  848. cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, size,i ? 0 : 1);
  849. count++;
  850. ata_tot_size += size;
  851. }
  852. if (count) {
  853. /* return and say all is ok */
  854. return 0;
  855. }
  856. printk("%s: empty DMA table?\n", drive->name);
  857. return 1; /* let the PIO routines handle this weirdness */
  858. }
  859. /*
  860. * cris_dma_intr() is the handler for disk read/write DMA interrupts
  861. */
  862. static ide_startstop_t cris_dma_intr (ide_drive_t *drive)
  863. {
  864. LED_DISK_READ(0);
  865. LED_DISK_WRITE(0);
  866. return ide_dma_intr(drive);
  867. }
  868. /*
  869. * Functions below initiates/aborts DMA read/write operations on a drive.
  870. *
  871. * The caller is assumed to have selected the drive and programmed the drive's
  872. * sector address using CHS or LBA. All that remains is to prepare for DMA
  873. * and then issue the actual read/write DMA/PIO command to the drive.
  874. *
  875. * For ATAPI devices, we just prepare for DMA and return. The caller should
  876. * then issue the packet command to the drive and call us again with
  877. * cris_dma_start afterwards.
  878. *
  879. * Returns 0 if all went well.
  880. * Returns 1 if DMA read/write could not be started, in which case
  881. * the caller should revert to PIO for the current request.
  882. */
  883. static int cris_dma_check(ide_drive_t *drive)
  884. {
  885. if (ide_tune_dma(drive))
  886. return 0;
  887. return -1;
  888. }
  889. static int cris_dma_end(ide_drive_t *drive)
  890. {
  891. drive->waiting_for_dma = 0;
  892. return 0;
  893. }
  894. static int cris_dma_setup(ide_drive_t *drive)
  895. {
  896. struct request *rq = drive->hwif->hwgroup->rq;
  897. cris_ide_initialize_dma(!rq_data_dir(rq));
  898. if (cris_ide_build_dmatable (drive)) {
  899. ide_map_sg(drive, rq);
  900. return 1;
  901. }
  902. drive->waiting_for_dma = 1;
  903. return 0;
  904. }
  905. static void cris_dma_exec_cmd(ide_drive_t *drive, u8 command)
  906. {
  907. /* set the irq handler which will finish the request when DMA is done */
  908. ide_set_handler(drive, &cris_dma_intr, WAIT_CMD, NULL);
  909. /* issue cmd to drive */
  910. cris_ide_outb(command, IDE_COMMAND_REG);
  911. }
  912. static void cris_dma_start(ide_drive_t *drive)
  913. {
  914. struct request *rq = drive->hwif->hwgroup->rq;
  915. int writing = rq_data_dir(rq);
  916. int type = TYPE_DMA;
  917. if (drive->current_speed >= XFER_UDMA_0)
  918. type = TYPE_UDMA;
  919. cris_ide_start_dma(drive, &ata_descrs[0], writing ? 0 : 1, type, ata_tot_size);
  920. if (writing) {
  921. LED_DISK_WRITE(1);
  922. } else {
  923. LED_DISK_READ(1);
  924. }
  925. }