time.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/security.h>
  35. #include <linux/fs.h>
  36. #include <linux/module.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/unistd.h>
  39. /*
  40. * The timezone where the local system is located. Used as a default by some
  41. * programs who obtain this value by using gettimeofday.
  42. */
  43. struct timezone sys_tz;
  44. EXPORT_SYMBOL(sys_tz);
  45. #ifdef __ARCH_WANT_SYS_TIME
  46. /*
  47. * sys_time() can be implemented in user-level using
  48. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  49. * why not move it into the appropriate arch directory (for those
  50. * architectures that need it).
  51. */
  52. asmlinkage long sys_time(time_t __user * tloc)
  53. {
  54. time_t i = get_seconds();
  55. if (tloc) {
  56. if (put_user(i,tloc))
  57. i = -EFAULT;
  58. }
  59. return i;
  60. }
  61. /*
  62. * sys_stime() can be implemented in user-level using
  63. * sys_settimeofday(). Is this for backwards compatibility? If so,
  64. * why not move it into the appropriate arch directory (for those
  65. * architectures that need it).
  66. */
  67. asmlinkage long sys_stime(time_t __user *tptr)
  68. {
  69. struct timespec tv;
  70. int err;
  71. if (get_user(tv.tv_sec, tptr))
  72. return -EFAULT;
  73. tv.tv_nsec = 0;
  74. err = security_settime(&tv, NULL);
  75. if (err)
  76. return err;
  77. do_settimeofday(&tv);
  78. return 0;
  79. }
  80. #endif /* __ARCH_WANT_SYS_TIME */
  81. asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  82. {
  83. if (likely(tv != NULL)) {
  84. struct timeval ktv;
  85. do_gettimeofday(&ktv);
  86. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  87. return -EFAULT;
  88. }
  89. if (unlikely(tz != NULL)) {
  90. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  91. return -EFAULT;
  92. }
  93. return 0;
  94. }
  95. /*
  96. * Adjust the time obtained from the CMOS to be UTC time instead of
  97. * local time.
  98. *
  99. * This is ugly, but preferable to the alternatives. Otherwise we
  100. * would either need to write a program to do it in /etc/rc (and risk
  101. * confusion if the program gets run more than once; it would also be
  102. * hard to make the program warp the clock precisely n hours) or
  103. * compile in the timezone information into the kernel. Bad, bad....
  104. *
  105. * - TYT, 1992-01-01
  106. *
  107. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  108. * as real UNIX machines always do it. This avoids all headaches about
  109. * daylight saving times and warping kernel clocks.
  110. */
  111. static inline void warp_clock(void)
  112. {
  113. write_seqlock_irq(&xtime_lock);
  114. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  115. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  116. write_sequnlock_irq(&xtime_lock);
  117. clock_was_set();
  118. }
  119. /*
  120. * In case for some reason the CMOS clock has not already been running
  121. * in UTC, but in some local time: The first time we set the timezone,
  122. * we will warp the clock so that it is ticking UTC time instead of
  123. * local time. Presumably, if someone is setting the timezone then we
  124. * are running in an environment where the programs understand about
  125. * timezones. This should be done at boot time in the /etc/rc script,
  126. * as soon as possible, so that the clock can be set right. Otherwise,
  127. * various programs will get confused when the clock gets warped.
  128. */
  129. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  130. {
  131. static int firsttime = 1;
  132. int error = 0;
  133. if (tv && !timespec_valid(tv))
  134. return -EINVAL;
  135. error = security_settime(tv, tz);
  136. if (error)
  137. return error;
  138. if (tz) {
  139. /* SMP safe, global irq locking makes it work. */
  140. sys_tz = *tz;
  141. if (firsttime) {
  142. firsttime = 0;
  143. if (!tv)
  144. warp_clock();
  145. }
  146. }
  147. if (tv)
  148. {
  149. /* SMP safe, again the code in arch/foo/time.c should
  150. * globally block out interrupts when it runs.
  151. */
  152. return do_settimeofday(tv);
  153. }
  154. return 0;
  155. }
  156. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  157. struct timezone __user *tz)
  158. {
  159. struct timeval user_tv;
  160. struct timespec new_ts;
  161. struct timezone new_tz;
  162. if (tv) {
  163. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  164. return -EFAULT;
  165. new_ts.tv_sec = user_tv.tv_sec;
  166. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  167. }
  168. if (tz) {
  169. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  170. return -EFAULT;
  171. }
  172. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  173. }
  174. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  175. {
  176. struct timex txc; /* Local copy of parameter */
  177. int ret;
  178. /* Copy the user data space into the kernel copy
  179. * structure. But bear in mind that the structures
  180. * may change
  181. */
  182. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  183. return -EFAULT;
  184. ret = do_adjtimex(&txc);
  185. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  186. }
  187. /**
  188. * current_fs_time - Return FS time
  189. * @sb: Superblock.
  190. *
  191. * Return the current time truncated to the time granularity supported by
  192. * the fs.
  193. */
  194. struct timespec current_fs_time(struct super_block *sb)
  195. {
  196. struct timespec now = current_kernel_time();
  197. return timespec_trunc(now, sb->s_time_gran);
  198. }
  199. EXPORT_SYMBOL(current_fs_time);
  200. /*
  201. * Convert jiffies to milliseconds and back.
  202. *
  203. * Avoid unnecessary multiplications/divisions in the
  204. * two most common HZ cases:
  205. */
  206. unsigned int inline jiffies_to_msecs(const unsigned long j)
  207. {
  208. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  209. return (MSEC_PER_SEC / HZ) * j;
  210. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  211. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  212. #else
  213. return (j * MSEC_PER_SEC) / HZ;
  214. #endif
  215. }
  216. EXPORT_SYMBOL(jiffies_to_msecs);
  217. unsigned int inline jiffies_to_usecs(const unsigned long j)
  218. {
  219. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  220. return (USEC_PER_SEC / HZ) * j;
  221. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  222. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  223. #else
  224. return (j * USEC_PER_SEC) / HZ;
  225. #endif
  226. }
  227. EXPORT_SYMBOL(jiffies_to_usecs);
  228. /**
  229. * timespec_trunc - Truncate timespec to a granularity
  230. * @t: Timespec
  231. * @gran: Granularity in ns.
  232. *
  233. * Truncate a timespec to a granularity. gran must be smaller than a second.
  234. * Always rounds down.
  235. *
  236. * This function should be only used for timestamps returned by
  237. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  238. * it doesn't handle the better resolution of the later.
  239. */
  240. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  241. {
  242. /*
  243. * Division is pretty slow so avoid it for common cases.
  244. * Currently current_kernel_time() never returns better than
  245. * jiffies resolution. Exploit that.
  246. */
  247. if (gran <= jiffies_to_usecs(1) * 1000) {
  248. /* nothing */
  249. } else if (gran == 1000000000) {
  250. t.tv_nsec = 0;
  251. } else {
  252. t.tv_nsec -= t.tv_nsec % gran;
  253. }
  254. return t;
  255. }
  256. EXPORT_SYMBOL(timespec_trunc);
  257. #ifndef CONFIG_GENERIC_TIME
  258. /*
  259. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  260. * and therefore only yields usec accuracy
  261. */
  262. void getnstimeofday(struct timespec *tv)
  263. {
  264. struct timeval x;
  265. do_gettimeofday(&x);
  266. tv->tv_sec = x.tv_sec;
  267. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  268. }
  269. EXPORT_SYMBOL_GPL(getnstimeofday);
  270. #endif
  271. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  272. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  273. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  274. *
  275. * [For the Julian calendar (which was used in Russia before 1917,
  276. * Britain & colonies before 1752, anywhere else before 1582,
  277. * and is still in use by some communities) leave out the
  278. * -year/100+year/400 terms, and add 10.]
  279. *
  280. * This algorithm was first published by Gauss (I think).
  281. *
  282. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  283. * machines were long is 32-bit! (However, as time_t is signed, we
  284. * will already get problems at other places on 2038-01-19 03:14:08)
  285. */
  286. unsigned long
  287. mktime(const unsigned int year0, const unsigned int mon0,
  288. const unsigned int day, const unsigned int hour,
  289. const unsigned int min, const unsigned int sec)
  290. {
  291. unsigned int mon = mon0, year = year0;
  292. /* 1..12 -> 11,12,1..10 */
  293. if (0 >= (int) (mon -= 2)) {
  294. mon += 12; /* Puts Feb last since it has leap day */
  295. year -= 1;
  296. }
  297. return ((((unsigned long)
  298. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  299. year*365 - 719499
  300. )*24 + hour /* now have hours */
  301. )*60 + min /* now have minutes */
  302. )*60 + sec; /* finally seconds */
  303. }
  304. EXPORT_SYMBOL(mktime);
  305. /**
  306. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  307. *
  308. * @ts: pointer to timespec variable to be set
  309. * @sec: seconds to set
  310. * @nsec: nanoseconds to set
  311. *
  312. * Set seconds and nanoseconds field of a timespec variable and
  313. * normalize to the timespec storage format
  314. *
  315. * Note: The tv_nsec part is always in the range of
  316. * 0 <= tv_nsec < NSEC_PER_SEC
  317. * For negative values only the tv_sec field is negative !
  318. */
  319. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  320. {
  321. while (nsec >= NSEC_PER_SEC) {
  322. nsec -= NSEC_PER_SEC;
  323. ++sec;
  324. }
  325. while (nsec < 0) {
  326. nsec += NSEC_PER_SEC;
  327. --sec;
  328. }
  329. ts->tv_sec = sec;
  330. ts->tv_nsec = nsec;
  331. }
  332. /**
  333. * ns_to_timespec - Convert nanoseconds to timespec
  334. * @nsec: the nanoseconds value to be converted
  335. *
  336. * Returns the timespec representation of the nsec parameter.
  337. */
  338. struct timespec ns_to_timespec(const s64 nsec)
  339. {
  340. struct timespec ts;
  341. if (!nsec)
  342. return (struct timespec) {0, 0};
  343. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  344. if (unlikely(nsec < 0))
  345. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  346. return ts;
  347. }
  348. EXPORT_SYMBOL(ns_to_timespec);
  349. /**
  350. * ns_to_timeval - Convert nanoseconds to timeval
  351. * @nsec: the nanoseconds value to be converted
  352. *
  353. * Returns the timeval representation of the nsec parameter.
  354. */
  355. struct timeval ns_to_timeval(const s64 nsec)
  356. {
  357. struct timespec ts = ns_to_timespec(nsec);
  358. struct timeval tv;
  359. tv.tv_sec = ts.tv_sec;
  360. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  361. return tv;
  362. }
  363. EXPORT_SYMBOL(ns_to_timeval);
  364. /*
  365. * When we convert to jiffies then we interpret incoming values
  366. * the following way:
  367. *
  368. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  369. *
  370. * - 'too large' values [that would result in larger than
  371. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  372. *
  373. * - all other values are converted to jiffies by either multiplying
  374. * the input value by a factor or dividing it with a factor
  375. *
  376. * We must also be careful about 32-bit overflows.
  377. */
  378. unsigned long msecs_to_jiffies(const unsigned int m)
  379. {
  380. /*
  381. * Negative value, means infinite timeout:
  382. */
  383. if ((int)m < 0)
  384. return MAX_JIFFY_OFFSET;
  385. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  386. /*
  387. * HZ is equal to or smaller than 1000, and 1000 is a nice
  388. * round multiple of HZ, divide with the factor between them,
  389. * but round upwards:
  390. */
  391. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  392. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  393. /*
  394. * HZ is larger than 1000, and HZ is a nice round multiple of
  395. * 1000 - simply multiply with the factor between them.
  396. *
  397. * But first make sure the multiplication result cannot
  398. * overflow:
  399. */
  400. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  401. return MAX_JIFFY_OFFSET;
  402. return m * (HZ / MSEC_PER_SEC);
  403. #else
  404. /*
  405. * Generic case - multiply, round and divide. But first
  406. * check that if we are doing a net multiplication, that
  407. * we wouldnt overflow:
  408. */
  409. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  410. return MAX_JIFFY_OFFSET;
  411. return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
  412. #endif
  413. }
  414. EXPORT_SYMBOL(msecs_to_jiffies);
  415. unsigned long usecs_to_jiffies(const unsigned int u)
  416. {
  417. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  418. return MAX_JIFFY_OFFSET;
  419. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  420. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  421. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  422. return u * (HZ / USEC_PER_SEC);
  423. #else
  424. return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
  425. #endif
  426. }
  427. EXPORT_SYMBOL(usecs_to_jiffies);
  428. /*
  429. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  430. * that a remainder subtract here would not do the right thing as the
  431. * resolution values don't fall on second boundries. I.e. the line:
  432. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  433. *
  434. * Rather, we just shift the bits off the right.
  435. *
  436. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  437. * value to a scaled second value.
  438. */
  439. unsigned long
  440. timespec_to_jiffies(const struct timespec *value)
  441. {
  442. unsigned long sec = value->tv_sec;
  443. long nsec = value->tv_nsec + TICK_NSEC - 1;
  444. if (sec >= MAX_SEC_IN_JIFFIES){
  445. sec = MAX_SEC_IN_JIFFIES;
  446. nsec = 0;
  447. }
  448. return (((u64)sec * SEC_CONVERSION) +
  449. (((u64)nsec * NSEC_CONVERSION) >>
  450. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  451. }
  452. EXPORT_SYMBOL(timespec_to_jiffies);
  453. void
  454. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  455. {
  456. /*
  457. * Convert jiffies to nanoseconds and separate with
  458. * one divide.
  459. */
  460. u64 nsec = (u64)jiffies * TICK_NSEC;
  461. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  462. }
  463. EXPORT_SYMBOL(jiffies_to_timespec);
  464. /* Same for "timeval"
  465. *
  466. * Well, almost. The problem here is that the real system resolution is
  467. * in nanoseconds and the value being converted is in micro seconds.
  468. * Also for some machines (those that use HZ = 1024, in-particular),
  469. * there is a LARGE error in the tick size in microseconds.
  470. * The solution we use is to do the rounding AFTER we convert the
  471. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  472. * Instruction wise, this should cost only an additional add with carry
  473. * instruction above the way it was done above.
  474. */
  475. unsigned long
  476. timeval_to_jiffies(const struct timeval *value)
  477. {
  478. unsigned long sec = value->tv_sec;
  479. long usec = value->tv_usec;
  480. if (sec >= MAX_SEC_IN_JIFFIES){
  481. sec = MAX_SEC_IN_JIFFIES;
  482. usec = 0;
  483. }
  484. return (((u64)sec * SEC_CONVERSION) +
  485. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  486. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  487. }
  488. EXPORT_SYMBOL(timeval_to_jiffies);
  489. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  490. {
  491. /*
  492. * Convert jiffies to nanoseconds and separate with
  493. * one divide.
  494. */
  495. u64 nsec = (u64)jiffies * TICK_NSEC;
  496. long tv_usec;
  497. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
  498. tv_usec /= NSEC_PER_USEC;
  499. value->tv_usec = tv_usec;
  500. }
  501. EXPORT_SYMBOL(jiffies_to_timeval);
  502. /*
  503. * Convert jiffies/jiffies_64 to clock_t and back.
  504. */
  505. clock_t jiffies_to_clock_t(long x)
  506. {
  507. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  508. return x / (HZ / USER_HZ);
  509. #else
  510. u64 tmp = (u64)x * TICK_NSEC;
  511. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  512. return (long)tmp;
  513. #endif
  514. }
  515. EXPORT_SYMBOL(jiffies_to_clock_t);
  516. unsigned long clock_t_to_jiffies(unsigned long x)
  517. {
  518. #if (HZ % USER_HZ)==0
  519. if (x >= ~0UL / (HZ / USER_HZ))
  520. return ~0UL;
  521. return x * (HZ / USER_HZ);
  522. #else
  523. u64 jif;
  524. /* Don't worry about loss of precision here .. */
  525. if (x >= ~0UL / HZ * USER_HZ)
  526. return ~0UL;
  527. /* .. but do try to contain it here */
  528. jif = x * (u64) HZ;
  529. do_div(jif, USER_HZ);
  530. return jif;
  531. #endif
  532. }
  533. EXPORT_SYMBOL(clock_t_to_jiffies);
  534. u64 jiffies_64_to_clock_t(u64 x)
  535. {
  536. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  537. do_div(x, HZ / USER_HZ);
  538. #else
  539. /*
  540. * There are better ways that don't overflow early,
  541. * but even this doesn't overflow in hundreds of years
  542. * in 64 bits, so..
  543. */
  544. x *= TICK_NSEC;
  545. do_div(x, (NSEC_PER_SEC / USER_HZ));
  546. #endif
  547. return x;
  548. }
  549. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  550. u64 nsec_to_clock_t(u64 x)
  551. {
  552. #if (NSEC_PER_SEC % USER_HZ) == 0
  553. do_div(x, (NSEC_PER_SEC / USER_HZ));
  554. #elif (USER_HZ % 512) == 0
  555. x *= USER_HZ/512;
  556. do_div(x, (NSEC_PER_SEC / 512));
  557. #else
  558. /*
  559. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  560. * overflow after 64.99 years.
  561. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  562. */
  563. x *= 9;
  564. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
  565. USER_HZ));
  566. #endif
  567. return x;
  568. }
  569. #if (BITS_PER_LONG < 64)
  570. u64 get_jiffies_64(void)
  571. {
  572. unsigned long seq;
  573. u64 ret;
  574. do {
  575. seq = read_seqbegin(&xtime_lock);
  576. ret = jiffies_64;
  577. } while (read_seqretry(&xtime_lock, seq));
  578. return ret;
  579. }
  580. EXPORT_SYMBOL(get_jiffies_64);
  581. #endif
  582. EXPORT_SYMBOL(jiffies);