amd64_edac.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /* Per-node driver instances */
  14. static struct mem_ctl_info **mcis;
  15. static struct amd64_pvt **pvts;
  16. /*
  17. * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
  18. * later.
  19. */
  20. static int ddr2_dbam_revCG[] = {
  21. [0] = 32,
  22. [1] = 64,
  23. [2] = 128,
  24. [3] = 256,
  25. [4] = 512,
  26. [5] = 1024,
  27. [6] = 2048,
  28. };
  29. static int ddr2_dbam_revD[] = {
  30. [0] = 32,
  31. [1] = 64,
  32. [2 ... 3] = 128,
  33. [4] = 256,
  34. [5] = 512,
  35. [6] = 256,
  36. [7] = 512,
  37. [8 ... 9] = 1024,
  38. [10] = 2048,
  39. };
  40. static int ddr2_dbam[] = { [0] = 128,
  41. [1] = 256,
  42. [2 ... 4] = 512,
  43. [5 ... 6] = 1024,
  44. [7 ... 8] = 2048,
  45. [9 ... 10] = 4096,
  46. [11] = 8192,
  47. };
  48. static int ddr3_dbam[] = { [0] = -1,
  49. [1] = 256,
  50. [2] = 512,
  51. [3 ... 4] = -1,
  52. [5 ... 6] = 1024,
  53. [7 ... 8] = 2048,
  54. [9 ... 10] = 4096,
  55. [11] = 8192,
  56. };
  57. /*
  58. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  59. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  60. * or higher value'.
  61. *
  62. *FIXME: Produce a better mapping/linearisation.
  63. */
  64. struct scrubrate scrubrates[] = {
  65. { 0x01, 1600000000UL},
  66. { 0x02, 800000000UL},
  67. { 0x03, 400000000UL},
  68. { 0x04, 200000000UL},
  69. { 0x05, 100000000UL},
  70. { 0x06, 50000000UL},
  71. { 0x07, 25000000UL},
  72. { 0x08, 12284069UL},
  73. { 0x09, 6274509UL},
  74. { 0x0A, 3121951UL},
  75. { 0x0B, 1560975UL},
  76. { 0x0C, 781440UL},
  77. { 0x0D, 390720UL},
  78. { 0x0E, 195300UL},
  79. { 0x0F, 97650UL},
  80. { 0x10, 48854UL},
  81. { 0x11, 24427UL},
  82. { 0x12, 12213UL},
  83. { 0x13, 6101UL},
  84. { 0x14, 3051UL},
  85. { 0x15, 1523UL},
  86. { 0x16, 761UL},
  87. { 0x00, 0UL}, /* scrubbing off */
  88. };
  89. /*
  90. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  91. * hardware and can involve L2 cache, dcache as well as the main memory. With
  92. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  93. * functionality.
  94. *
  95. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  96. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  97. * bytes/sec for the setting.
  98. *
  99. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  100. * other archs, we might not have access to the caches directly.
  101. */
  102. /*
  103. * scan the scrub rate mapping table for a close or matching bandwidth value to
  104. * issue. If requested is too big, then use last maximum value found.
  105. */
  106. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  107. {
  108. u32 scrubval;
  109. int i;
  110. /*
  111. * map the configured rate (new_bw) to a value specific to the AMD64
  112. * memory controller and apply to register. Search for the first
  113. * bandwidth entry that is greater or equal than the setting requested
  114. * and program that. If at last entry, turn off DRAM scrubbing.
  115. */
  116. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  117. /*
  118. * skip scrub rates which aren't recommended
  119. * (see F10 BKDG, F3x58)
  120. */
  121. if (scrubrates[i].scrubval < min_rate)
  122. continue;
  123. if (scrubrates[i].bandwidth <= new_bw)
  124. break;
  125. /*
  126. * if no suitable bandwidth found, turn off DRAM scrubbing
  127. * entirely by falling back to the last element in the
  128. * scrubrates array.
  129. */
  130. }
  131. scrubval = scrubrates[i].scrubval;
  132. if (scrubval)
  133. amd64_info("Setting scrub rate bandwidth: %u\n",
  134. scrubrates[i].bandwidth);
  135. else
  136. amd64_info("Turning scrubbing off.\n");
  137. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  138. return 0;
  139. }
  140. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  141. {
  142. struct amd64_pvt *pvt = mci->pvt_info;
  143. return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
  144. }
  145. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  146. {
  147. struct amd64_pvt *pvt = mci->pvt_info;
  148. u32 scrubval = 0;
  149. int status = -1, i;
  150. amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
  151. scrubval = scrubval & 0x001F;
  152. amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
  153. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  154. if (scrubrates[i].scrubval == scrubval) {
  155. *bw = scrubrates[i].bandwidth;
  156. status = 0;
  157. break;
  158. }
  159. }
  160. return status;
  161. }
  162. /* Map from a CSROW entry to the mask entry that operates on it */
  163. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  164. {
  165. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
  166. return csrow;
  167. else
  168. return csrow >> 1;
  169. }
  170. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  171. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  172. {
  173. if (dct == 0)
  174. return pvt->dcsb0[csrow];
  175. else
  176. return pvt->dcsb1[csrow];
  177. }
  178. /*
  179. * Return the 'mask' address the i'th CS entry. This function is needed because
  180. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  181. * different.
  182. */
  183. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  184. {
  185. if (dct == 0)
  186. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  187. else
  188. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  189. }
  190. /*
  191. * In *base and *limit, pass back the full 40-bit base and limit physical
  192. * addresses for the node given by node_id. This information is obtained from
  193. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  194. * base and limit addresses are of type SysAddr, as defined at the start of
  195. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  196. * in the address range they represent.
  197. */
  198. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  199. u64 *base, u64 *limit)
  200. {
  201. *base = pvt->dram_base[node_id];
  202. *limit = pvt->dram_limit[node_id];
  203. }
  204. /*
  205. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  206. * with node_id
  207. */
  208. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  209. u64 sys_addr, int node_id)
  210. {
  211. u64 base, limit, addr;
  212. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  213. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  214. * all ones if the most significant implemented address bit is 1.
  215. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  216. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  217. * Application Programming.
  218. */
  219. addr = sys_addr & 0x000000ffffffffffull;
  220. return (addr >= base) && (addr <= limit);
  221. }
  222. /*
  223. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  224. * mem_ctl_info structure for the node that the SysAddr maps to.
  225. *
  226. * On failure, return NULL.
  227. */
  228. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  229. u64 sys_addr)
  230. {
  231. struct amd64_pvt *pvt;
  232. int node_id;
  233. u32 intlv_en, bits;
  234. /*
  235. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  236. * 3.4.4.2) registers to map the SysAddr to a node ID.
  237. */
  238. pvt = mci->pvt_info;
  239. /*
  240. * The value of this field should be the same for all DRAM Base
  241. * registers. Therefore we arbitrarily choose to read it from the
  242. * register for node 0.
  243. */
  244. intlv_en = pvt->dram_IntlvEn[0];
  245. if (intlv_en == 0) {
  246. for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
  247. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  248. goto found;
  249. }
  250. goto err_no_match;
  251. }
  252. if (unlikely((intlv_en != 0x01) &&
  253. (intlv_en != 0x03) &&
  254. (intlv_en != 0x07))) {
  255. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  256. return NULL;
  257. }
  258. bits = (((u32) sys_addr) >> 12) & intlv_en;
  259. for (node_id = 0; ; ) {
  260. if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
  261. break; /* intlv_sel field matches */
  262. if (++node_id >= DRAM_REG_COUNT)
  263. goto err_no_match;
  264. }
  265. /* sanity test for sys_addr */
  266. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  267. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  268. "range for node %d with node interleaving enabled.\n",
  269. __func__, sys_addr, node_id);
  270. return NULL;
  271. }
  272. found:
  273. return edac_mc_find(node_id);
  274. err_no_match:
  275. debugf2("sys_addr 0x%lx doesn't match any node\n",
  276. (unsigned long)sys_addr);
  277. return NULL;
  278. }
  279. /*
  280. * Extract the DRAM CS base address from selected csrow register.
  281. */
  282. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  283. {
  284. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  285. pvt->dcs_shift;
  286. }
  287. /*
  288. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  289. */
  290. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  291. {
  292. u64 dcsm_bits, other_bits;
  293. u64 mask;
  294. /* Extract bits from DRAM CS Mask. */
  295. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  296. other_bits = pvt->dcsm_mask;
  297. other_bits = ~(other_bits << pvt->dcs_shift);
  298. /*
  299. * The extracted bits from DCSM belong in the spaces represented by
  300. * the cleared bits in other_bits.
  301. */
  302. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  303. return mask;
  304. }
  305. /*
  306. * @input_addr is an InputAddr associated with the node given by mci. Return the
  307. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  308. */
  309. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  310. {
  311. struct amd64_pvt *pvt;
  312. int csrow;
  313. u64 base, mask;
  314. pvt = mci->pvt_info;
  315. /*
  316. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  317. * base/mask register pair, test the condition shown near the start of
  318. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  319. */
  320. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  321. /* This DRAM chip select is disabled on this node */
  322. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  323. continue;
  324. base = base_from_dct_base(pvt, csrow);
  325. mask = ~mask_from_dct_mask(pvt, csrow);
  326. if ((input_addr & mask) == (base & mask)) {
  327. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  328. (unsigned long)input_addr, csrow,
  329. pvt->mc_node_id);
  330. return csrow;
  331. }
  332. }
  333. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  334. (unsigned long)input_addr, pvt->mc_node_id);
  335. return -1;
  336. }
  337. /*
  338. * Return the base value defined by the DRAM Base register for the node
  339. * represented by mci. This function returns the full 40-bit value despite the
  340. * fact that the register only stores bits 39-24 of the value. See section
  341. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  342. */
  343. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  344. {
  345. struct amd64_pvt *pvt = mci->pvt_info;
  346. return pvt->dram_base[pvt->mc_node_id];
  347. }
  348. /*
  349. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  350. * for the node represented by mci. Info is passed back in *hole_base,
  351. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  352. * info is invalid. Info may be invalid for either of the following reasons:
  353. *
  354. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  355. * Address Register does not exist.
  356. *
  357. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  358. * indicating that its contents are not valid.
  359. *
  360. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  361. * complete 32-bit values despite the fact that the bitfields in the DHAR
  362. * only represent bits 31-24 of the base and offset values.
  363. */
  364. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  365. u64 *hole_offset, u64 *hole_size)
  366. {
  367. struct amd64_pvt *pvt = mci->pvt_info;
  368. u64 base;
  369. /* only revE and later have the DRAM Hole Address Register */
  370. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  371. debugf1(" revision %d for node %d does not support DHAR\n",
  372. pvt->ext_model, pvt->mc_node_id);
  373. return 1;
  374. }
  375. /* only valid for Fam10h */
  376. if (boot_cpu_data.x86 == 0x10 &&
  377. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  378. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  379. return 1;
  380. }
  381. if ((pvt->dhar & DHAR_VALID) == 0) {
  382. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  383. pvt->mc_node_id);
  384. return 1;
  385. }
  386. /* This node has Memory Hoisting */
  387. /* +------------------+--------------------+--------------------+-----
  388. * | memory | DRAM hole | relocated |
  389. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  390. * | | | DRAM hole |
  391. * | | | [0x100000000, |
  392. * | | | (0x100000000+ |
  393. * | | | (0xffffffff-x))] |
  394. * +------------------+--------------------+--------------------+-----
  395. *
  396. * Above is a diagram of physical memory showing the DRAM hole and the
  397. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  398. * starts at address x (the base address) and extends through address
  399. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  400. * addresses in the hole so that they start at 0x100000000.
  401. */
  402. base = dhar_base(pvt->dhar);
  403. *hole_base = base;
  404. *hole_size = (0x1ull << 32) - base;
  405. if (boot_cpu_data.x86 > 0xf)
  406. *hole_offset = f10_dhar_offset(pvt->dhar);
  407. else
  408. *hole_offset = k8_dhar_offset(pvt->dhar);
  409. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  410. pvt->mc_node_id, (unsigned long)*hole_base,
  411. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  412. return 0;
  413. }
  414. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  415. /*
  416. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  417. * assumed that sys_addr maps to the node given by mci.
  418. *
  419. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  420. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  421. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  422. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  423. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  424. * These parts of the documentation are unclear. I interpret them as follows:
  425. *
  426. * When node n receives a SysAddr, it processes the SysAddr as follows:
  427. *
  428. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  429. * Limit registers for node n. If the SysAddr is not within the range
  430. * specified by the base and limit values, then node n ignores the Sysaddr
  431. * (since it does not map to node n). Otherwise continue to step 2 below.
  432. *
  433. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  434. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  435. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  436. * hole. If not, skip to step 3 below. Else get the value of the
  437. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  438. * offset defined by this value from the SysAddr.
  439. *
  440. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  441. * Base register for node n. To obtain the DramAddr, subtract the base
  442. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  443. */
  444. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  445. {
  446. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  447. int ret = 0;
  448. dram_base = get_dram_base(mci);
  449. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  450. &hole_size);
  451. if (!ret) {
  452. if ((sys_addr >= (1ull << 32)) &&
  453. (sys_addr < ((1ull << 32) + hole_size))) {
  454. /* use DHAR to translate SysAddr to DramAddr */
  455. dram_addr = sys_addr - hole_offset;
  456. debugf2("using DHAR to translate SysAddr 0x%lx to "
  457. "DramAddr 0x%lx\n",
  458. (unsigned long)sys_addr,
  459. (unsigned long)dram_addr);
  460. return dram_addr;
  461. }
  462. }
  463. /*
  464. * Translate the SysAddr to a DramAddr as shown near the start of
  465. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  466. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  467. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  468. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  469. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  470. * Programmer's Manual Volume 1 Application Programming.
  471. */
  472. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  473. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  474. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  475. (unsigned long)dram_addr);
  476. return dram_addr;
  477. }
  478. /*
  479. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  480. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  481. * for node interleaving.
  482. */
  483. static int num_node_interleave_bits(unsigned intlv_en)
  484. {
  485. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  486. int n;
  487. BUG_ON(intlv_en > 7);
  488. n = intlv_shift_table[intlv_en];
  489. return n;
  490. }
  491. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  492. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  493. {
  494. struct amd64_pvt *pvt;
  495. int intlv_shift;
  496. u64 input_addr;
  497. pvt = mci->pvt_info;
  498. /*
  499. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  500. * concerning translating a DramAddr to an InputAddr.
  501. */
  502. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  503. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  504. (dram_addr & 0xfff);
  505. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  506. intlv_shift, (unsigned long)dram_addr,
  507. (unsigned long)input_addr);
  508. return input_addr;
  509. }
  510. /*
  511. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  512. * assumed that @sys_addr maps to the node given by mci.
  513. */
  514. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  515. {
  516. u64 input_addr;
  517. input_addr =
  518. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  519. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  520. (unsigned long)sys_addr, (unsigned long)input_addr);
  521. return input_addr;
  522. }
  523. /*
  524. * @input_addr is an InputAddr associated with the node represented by mci.
  525. * Translate @input_addr to a DramAddr and return the result.
  526. */
  527. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  528. {
  529. struct amd64_pvt *pvt;
  530. int node_id, intlv_shift;
  531. u64 bits, dram_addr;
  532. u32 intlv_sel;
  533. /*
  534. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  535. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  536. * this procedure. When translating from a DramAddr to an InputAddr, the
  537. * bits used for node interleaving are discarded. Here we recover these
  538. * bits from the IntlvSel field of the DRAM Limit register (section
  539. * 3.4.4.2) for the node that input_addr is associated with.
  540. */
  541. pvt = mci->pvt_info;
  542. node_id = pvt->mc_node_id;
  543. BUG_ON((node_id < 0) || (node_id > 7));
  544. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  545. if (intlv_shift == 0) {
  546. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  547. "same value\n", (unsigned long)input_addr);
  548. return input_addr;
  549. }
  550. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  551. (input_addr & 0xfff);
  552. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  553. dram_addr = bits + (intlv_sel << 12);
  554. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  555. "(%d node interleave bits)\n", (unsigned long)input_addr,
  556. (unsigned long)dram_addr, intlv_shift);
  557. return dram_addr;
  558. }
  559. /*
  560. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  561. * @dram_addr to a SysAddr.
  562. */
  563. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  564. {
  565. struct amd64_pvt *pvt = mci->pvt_info;
  566. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  567. int ret = 0;
  568. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  569. &hole_size);
  570. if (!ret) {
  571. if ((dram_addr >= hole_base) &&
  572. (dram_addr < (hole_base + hole_size))) {
  573. sys_addr = dram_addr + hole_offset;
  574. debugf1("using DHAR to translate DramAddr 0x%lx to "
  575. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  576. (unsigned long)sys_addr);
  577. return sys_addr;
  578. }
  579. }
  580. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  581. sys_addr = dram_addr + base;
  582. /*
  583. * The sys_addr we have computed up to this point is a 40-bit value
  584. * because the k8 deals with 40-bit values. However, the value we are
  585. * supposed to return is a full 64-bit physical address. The AMD
  586. * x86-64 architecture specifies that the most significant implemented
  587. * address bit through bit 63 of a physical address must be either all
  588. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  589. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  590. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  591. * Programming.
  592. */
  593. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  594. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  595. pvt->mc_node_id, (unsigned long)dram_addr,
  596. (unsigned long)sys_addr);
  597. return sys_addr;
  598. }
  599. /*
  600. * @input_addr is an InputAddr associated with the node given by mci. Translate
  601. * @input_addr to a SysAddr.
  602. */
  603. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  604. u64 input_addr)
  605. {
  606. return dram_addr_to_sys_addr(mci,
  607. input_addr_to_dram_addr(mci, input_addr));
  608. }
  609. /*
  610. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  611. * Pass back these values in *input_addr_min and *input_addr_max.
  612. */
  613. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  614. u64 *input_addr_min, u64 *input_addr_max)
  615. {
  616. struct amd64_pvt *pvt;
  617. u64 base, mask;
  618. pvt = mci->pvt_info;
  619. BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
  620. base = base_from_dct_base(pvt, csrow);
  621. mask = mask_from_dct_mask(pvt, csrow);
  622. *input_addr_min = base & ~mask;
  623. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  624. }
  625. /* Map the Error address to a PAGE and PAGE OFFSET. */
  626. static inline void error_address_to_page_and_offset(u64 error_address,
  627. u32 *page, u32 *offset)
  628. {
  629. *page = (u32) (error_address >> PAGE_SHIFT);
  630. *offset = ((u32) error_address) & ~PAGE_MASK;
  631. }
  632. /*
  633. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  634. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  635. * of a node that detected an ECC memory error. mci represents the node that
  636. * the error address maps to (possibly different from the node that detected
  637. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  638. * error.
  639. */
  640. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  641. {
  642. int csrow;
  643. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  644. if (csrow == -1)
  645. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  646. "address 0x%lx\n", (unsigned long)sys_addr);
  647. return csrow;
  648. }
  649. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  650. static u16 extract_syndrome(struct err_regs *err)
  651. {
  652. return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
  653. }
  654. /*
  655. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  656. * are ECC capable.
  657. */
  658. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  659. {
  660. int bit;
  661. enum dev_type edac_cap = EDAC_FLAG_NONE;
  662. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  663. ? 19
  664. : 17;
  665. if (pvt->dclr0 & BIT(bit))
  666. edac_cap = EDAC_FLAG_SECDED;
  667. return edac_cap;
  668. }
  669. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
  670. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  671. {
  672. debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  673. debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  674. (dclr & BIT(16)) ? "un" : "",
  675. (dclr & BIT(19)) ? "yes" : "no");
  676. debugf1(" PAR/ERR parity: %s\n",
  677. (dclr & BIT(8)) ? "enabled" : "disabled");
  678. debugf1(" DCT 128bit mode width: %s\n",
  679. (dclr & BIT(11)) ? "128b" : "64b");
  680. debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  681. (dclr & BIT(12)) ? "yes" : "no",
  682. (dclr & BIT(13)) ? "yes" : "no",
  683. (dclr & BIT(14)) ? "yes" : "no",
  684. (dclr & BIT(15)) ? "yes" : "no");
  685. }
  686. /* Display and decode various NB registers for debug purposes. */
  687. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  688. {
  689. int ganged;
  690. debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  691. debugf1(" NB two channel DRAM capable: %s\n",
  692. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
  693. debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
  694. (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
  695. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
  696. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  697. debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  698. debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
  699. "offset: 0x%08x\n",
  700. pvt->dhar,
  701. dhar_base(pvt->dhar),
  702. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
  703. : f10_dhar_offset(pvt->dhar));
  704. debugf1(" DramHoleValid: %s\n",
  705. (pvt->dhar & DHAR_VALID) ? "yes" : "no");
  706. /* everything below this point is Fam10h and above */
  707. if (boot_cpu_data.x86 == 0xf) {
  708. amd64_debug_display_dimm_sizes(0, pvt);
  709. return;
  710. }
  711. amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
  712. /* Only if NOT ganged does dclr1 have valid info */
  713. if (!dct_ganging_enabled(pvt))
  714. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  715. /*
  716. * Determine if ganged and then dump memory sizes for first controller,
  717. * and if NOT ganged dump info for 2nd controller.
  718. */
  719. ganged = dct_ganging_enabled(pvt);
  720. amd64_debug_display_dimm_sizes(0, pvt);
  721. if (!ganged)
  722. amd64_debug_display_dimm_sizes(1, pvt);
  723. }
  724. /* Read in both of DBAM registers */
  725. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  726. {
  727. amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
  728. if (boot_cpu_data.x86 >= 0x10)
  729. amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
  730. }
  731. /*
  732. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  733. *
  734. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  735. * set the shift factor for the DCSB and DCSM values.
  736. *
  737. * ->dcs_mask_notused, RevE:
  738. *
  739. * To find the max InputAddr for the csrow, start with the base address and set
  740. * all bits that are "don't care" bits in the test at the start of section
  741. * 3.5.4 (p. 84).
  742. *
  743. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  744. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  745. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  746. * gaps.
  747. *
  748. * ->dcs_mask_notused, RevF and later:
  749. *
  750. * To find the max InputAddr for the csrow, start with the base address and set
  751. * all bits that are "don't care" bits in the test at the start of NPT section
  752. * 4.5.4 (p. 87).
  753. *
  754. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  755. * between bit ranges [36:27] and [21:13].
  756. *
  757. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  758. * which are all bits in the above-mentioned gaps.
  759. */
  760. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  761. {
  762. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  763. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  764. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  765. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  766. pvt->dcs_shift = REV_E_DCS_SHIFT;
  767. pvt->cs_count = 8;
  768. pvt->num_dcsm = 8;
  769. } else {
  770. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  771. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  772. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  773. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  774. pvt->cs_count = 8;
  775. pvt->num_dcsm = 4;
  776. }
  777. }
  778. /*
  779. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  780. */
  781. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  782. {
  783. int cs, reg;
  784. amd64_set_dct_base_and_mask(pvt);
  785. for (cs = 0; cs < pvt->cs_count; cs++) {
  786. reg = K8_DCSB0 + (cs * 4);
  787. if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
  788. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  789. cs, pvt->dcsb0[cs], reg);
  790. /* If DCT are NOT ganged, then read in DCT1's base */
  791. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  792. reg = F10_DCSB1 + (cs * 4);
  793. if (!amd64_read_pci_cfg(pvt->F2, reg,
  794. &pvt->dcsb1[cs]))
  795. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  796. cs, pvt->dcsb1[cs], reg);
  797. } else {
  798. pvt->dcsb1[cs] = 0;
  799. }
  800. }
  801. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  802. reg = K8_DCSM0 + (cs * 4);
  803. if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
  804. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  805. cs, pvt->dcsm0[cs], reg);
  806. /* If DCT are NOT ganged, then read in DCT1's mask */
  807. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  808. reg = F10_DCSM1 + (cs * 4);
  809. if (!amd64_read_pci_cfg(pvt->F2, reg,
  810. &pvt->dcsm1[cs]))
  811. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  812. cs, pvt->dcsm1[cs], reg);
  813. } else {
  814. pvt->dcsm1[cs] = 0;
  815. }
  816. }
  817. }
  818. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  819. {
  820. enum mem_type type;
  821. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
  822. if (pvt->dchr0 & DDR3_MODE)
  823. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  824. else
  825. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  826. } else {
  827. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  828. }
  829. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  830. return type;
  831. }
  832. /*
  833. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  834. * and the later RevF memory controllers (DDR vs DDR2)
  835. *
  836. * Return:
  837. * number of memory channels in operation
  838. * Pass back:
  839. * contents of the DCL0_LOW register
  840. */
  841. static int k8_early_channel_count(struct amd64_pvt *pvt)
  842. {
  843. int flag, err = 0;
  844. err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
  845. if (err)
  846. return err;
  847. if (pvt->ext_model >= K8_REV_F)
  848. /* RevF (NPT) and later */
  849. flag = pvt->dclr0 & F10_WIDTH_128;
  850. else
  851. /* RevE and earlier */
  852. flag = pvt->dclr0 & REVE_WIDTH_128;
  853. /* not used */
  854. pvt->dclr1 = 0;
  855. return (flag) ? 2 : 1;
  856. }
  857. /* extract the ERROR ADDRESS for the K8 CPUs */
  858. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  859. struct err_regs *info)
  860. {
  861. return (((u64) (info->nbeah & 0xff)) << 32) +
  862. (info->nbeal & ~0x03);
  863. }
  864. /*
  865. * Read the Base and Limit registers for K8 based Memory controllers; extract
  866. * fields from the 'raw' reg into separate data fields
  867. *
  868. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  869. */
  870. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  871. {
  872. u32 low;
  873. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  874. amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
  875. /* Extract parts into separate data entries */
  876. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  877. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  878. pvt->dram_rw_en[dram] = (low & 0x3);
  879. amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
  880. /*
  881. * Extract parts into separate data entries. Limit is the HIGHEST memory
  882. * location of the region, so lower 24 bits need to be all ones
  883. */
  884. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  885. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  886. pvt->dram_DstNode[dram] = (low & 0x7);
  887. }
  888. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  889. struct err_regs *err_info, u64 sys_addr)
  890. {
  891. struct mem_ctl_info *src_mci;
  892. int channel, csrow;
  893. u32 page, offset;
  894. u16 syndrome;
  895. syndrome = extract_syndrome(err_info);
  896. /* CHIPKILL enabled */
  897. if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
  898. channel = get_channel_from_ecc_syndrome(mci, syndrome);
  899. if (channel < 0) {
  900. /*
  901. * Syndrome didn't map, so we don't know which of the
  902. * 2 DIMMs is in error. So we need to ID 'both' of them
  903. * as suspect.
  904. */
  905. amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
  906. "error reporting race\n", syndrome);
  907. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  908. return;
  909. }
  910. } else {
  911. /*
  912. * non-chipkill ecc mode
  913. *
  914. * The k8 documentation is unclear about how to determine the
  915. * channel number when using non-chipkill memory. This method
  916. * was obtained from email communication with someone at AMD.
  917. * (Wish the email was placed in this comment - norsk)
  918. */
  919. channel = ((sys_addr & BIT(3)) != 0);
  920. }
  921. /*
  922. * Find out which node the error address belongs to. This may be
  923. * different from the node that detected the error.
  924. */
  925. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  926. if (!src_mci) {
  927. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  928. (unsigned long)sys_addr);
  929. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  930. return;
  931. }
  932. /* Now map the sys_addr to a CSROW */
  933. csrow = sys_addr_to_csrow(src_mci, sys_addr);
  934. if (csrow < 0) {
  935. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  936. } else {
  937. error_address_to_page_and_offset(sys_addr, &page, &offset);
  938. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  939. channel, EDAC_MOD_STR);
  940. }
  941. }
  942. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  943. {
  944. int *dbam_map;
  945. if (pvt->ext_model >= K8_REV_F)
  946. dbam_map = ddr2_dbam;
  947. else if (pvt->ext_model >= K8_REV_D)
  948. dbam_map = ddr2_dbam_revD;
  949. else
  950. dbam_map = ddr2_dbam_revCG;
  951. return dbam_map[cs_mode];
  952. }
  953. /*
  954. * Get the number of DCT channels in use.
  955. *
  956. * Return:
  957. * number of Memory Channels in operation
  958. * Pass back:
  959. * contents of the DCL0_LOW register
  960. */
  961. static int f10_early_channel_count(struct amd64_pvt *pvt)
  962. {
  963. int dbams[] = { DBAM0, DBAM1 };
  964. int i, j, channels = 0;
  965. u32 dbam;
  966. /* If we are in 128 bit mode, then we are using 2 channels */
  967. if (pvt->dclr0 & F10_WIDTH_128) {
  968. channels = 2;
  969. return channels;
  970. }
  971. /*
  972. * Need to check if in unganged mode: In such, there are 2 channels,
  973. * but they are not in 128 bit mode and thus the above 'dclr0' status
  974. * bit will be OFF.
  975. *
  976. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  977. * their CSEnable bit on. If so, then SINGLE DIMM case.
  978. */
  979. debugf0("Data width is not 128 bits - need more decoding\n");
  980. /*
  981. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  982. * is more than just one DIMM present in unganged mode. Need to check
  983. * both controllers since DIMMs can be placed in either one.
  984. */
  985. for (i = 0; i < ARRAY_SIZE(dbams); i++) {
  986. if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
  987. goto err_reg;
  988. for (j = 0; j < 4; j++) {
  989. if (DBAM_DIMM(j, dbam) > 0) {
  990. channels++;
  991. break;
  992. }
  993. }
  994. }
  995. if (channels > 2)
  996. channels = 2;
  997. amd64_info("MCT channel count: %d\n", channels);
  998. return channels;
  999. err_reg:
  1000. return -1;
  1001. }
  1002. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
  1003. {
  1004. int *dbam_map;
  1005. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  1006. dbam_map = ddr3_dbam;
  1007. else
  1008. dbam_map = ddr2_dbam;
  1009. return dbam_map[cs_mode];
  1010. }
  1011. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1012. struct err_regs *info)
  1013. {
  1014. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1015. (info->nbeal & ~0x01);
  1016. }
  1017. /*
  1018. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1019. * fields from the 'raw' reg into separate data fields.
  1020. *
  1021. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1022. */
  1023. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1024. {
  1025. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1026. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1027. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1028. /* read the 'raw' DRAM BASE Address register */
  1029. amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
  1030. amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
  1031. /* Extract parts into separate data entries */
  1032. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1033. if (pvt->dram_rw_en[dram] == 0)
  1034. return;
  1035. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1036. pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
  1037. (((u64)low_base & 0xFFFF0000) << 8);
  1038. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1039. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1040. /* read the 'raw' LIMIT registers */
  1041. amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
  1042. amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
  1043. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1044. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1045. /*
  1046. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1047. * memory location of the region, so low 24 bits need to be all ones.
  1048. */
  1049. pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
  1050. (((u64) low_limit & 0xFFFF0000) << 8) |
  1051. 0x00FFFFFF;
  1052. }
  1053. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1054. {
  1055. if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
  1056. &pvt->dram_ctl_select_low)) {
  1057. debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
  1058. "High range addresses at: 0x%x\n",
  1059. pvt->dram_ctl_select_low,
  1060. dct_sel_baseaddr(pvt));
  1061. debugf0(" DCT mode: %s, All DCTs on: %s\n",
  1062. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
  1063. (dct_dram_enabled(pvt) ? "yes" : "no"));
  1064. if (!dct_ganging_enabled(pvt))
  1065. debugf0(" Address range split per DCT: %s\n",
  1066. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  1067. debugf0(" DCT data interleave for ECC: %s, "
  1068. "DRAM cleared since last warm reset: %s\n",
  1069. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  1070. (dct_memory_cleared(pvt) ? "yes" : "no"));
  1071. debugf0(" DCT channel interleave: %s, "
  1072. "DCT interleave bits selector: 0x%x\n",
  1073. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  1074. dct_sel_interleave_addr(pvt));
  1075. }
  1076. amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
  1077. &pvt->dram_ctl_select_high);
  1078. }
  1079. /*
  1080. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1081. * Interleaving Modes.
  1082. */
  1083. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1084. int hi_range_sel, u32 intlv_en)
  1085. {
  1086. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1087. if (dct_ganging_enabled(pvt))
  1088. cs = 0;
  1089. else if (hi_range_sel)
  1090. cs = dct_sel_high;
  1091. else if (dct_interleave_enabled(pvt)) {
  1092. /*
  1093. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1094. */
  1095. if (dct_sel_interleave_addr(pvt) == 0)
  1096. cs = sys_addr >> 6 & 1;
  1097. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1098. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1099. if (dct_sel_interleave_addr(pvt) & 1)
  1100. cs = (sys_addr >> 9 & 1) ^ temp;
  1101. else
  1102. cs = (sys_addr >> 6 & 1) ^ temp;
  1103. } else if (intlv_en & 4)
  1104. cs = sys_addr >> 15 & 1;
  1105. else if (intlv_en & 2)
  1106. cs = sys_addr >> 14 & 1;
  1107. else if (intlv_en & 1)
  1108. cs = sys_addr >> 13 & 1;
  1109. else
  1110. cs = sys_addr >> 12 & 1;
  1111. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1112. cs = ~dct_sel_high & 1;
  1113. else
  1114. cs = 0;
  1115. return cs;
  1116. }
  1117. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1118. {
  1119. if (intlv_en == 1)
  1120. return 1;
  1121. else if (intlv_en == 3)
  1122. return 2;
  1123. else if (intlv_en == 7)
  1124. return 3;
  1125. return 0;
  1126. }
  1127. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1128. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1129. u32 dct_sel_base_addr,
  1130. u64 dct_sel_base_off,
  1131. u32 hole_valid, u32 hole_off,
  1132. u64 dram_base)
  1133. {
  1134. u64 chan_off;
  1135. if (hi_range_sel) {
  1136. if (!(dct_sel_base_addr & 0xFFFF0000) &&
  1137. hole_valid && (sys_addr >= 0x100000000ULL))
  1138. chan_off = hole_off << 16;
  1139. else
  1140. chan_off = dct_sel_base_off;
  1141. } else {
  1142. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1143. chan_off = hole_off << 16;
  1144. else
  1145. chan_off = dram_base & 0xFFFFF8000000ULL;
  1146. }
  1147. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1148. (chan_off & 0x0000FFFFFF800000ULL);
  1149. }
  1150. /* Hack for the time being - Can we get this from BIOS?? */
  1151. #define CH0SPARE_RANK 0
  1152. #define CH1SPARE_RANK 1
  1153. /*
  1154. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1155. * spare row
  1156. */
  1157. static inline int f10_process_possible_spare(int csrow,
  1158. u32 cs, struct amd64_pvt *pvt)
  1159. {
  1160. u32 swap_done;
  1161. u32 bad_dram_cs;
  1162. /* Depending on channel, isolate respective SPARING info */
  1163. if (cs) {
  1164. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1165. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1166. if (swap_done && (csrow == bad_dram_cs))
  1167. csrow = CH1SPARE_RANK;
  1168. } else {
  1169. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1170. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1171. if (swap_done && (csrow == bad_dram_cs))
  1172. csrow = CH0SPARE_RANK;
  1173. }
  1174. return csrow;
  1175. }
  1176. /*
  1177. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1178. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1179. *
  1180. * Return:
  1181. * -EINVAL: NOT FOUND
  1182. * 0..csrow = Chip-Select Row
  1183. */
  1184. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1185. {
  1186. struct mem_ctl_info *mci;
  1187. struct amd64_pvt *pvt;
  1188. u32 cs_base, cs_mask;
  1189. int cs_found = -EINVAL;
  1190. int csrow;
  1191. mci = mcis[nid];
  1192. if (!mci)
  1193. return cs_found;
  1194. pvt = mci->pvt_info;
  1195. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1196. for (csrow = 0; csrow < pvt->cs_count; csrow++) {
  1197. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1198. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1199. continue;
  1200. /*
  1201. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1202. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1203. * of the actual address.
  1204. */
  1205. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1206. /*
  1207. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1208. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1209. */
  1210. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1211. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1212. csrow, cs_base, cs_mask);
  1213. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1214. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1215. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1216. "(CSBase & ~CSMask)=0x%x\n",
  1217. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1218. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1219. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1220. debugf1(" MATCH csrow=%d\n", cs_found);
  1221. break;
  1222. }
  1223. }
  1224. return cs_found;
  1225. }
  1226. /* For a given @dram_range, check if @sys_addr falls within it. */
  1227. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1228. u64 sys_addr, int *nid, int *chan_sel)
  1229. {
  1230. int node_id, cs_found = -EINVAL, high_range = 0;
  1231. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1232. u32 hole_valid, tmp, dct_sel_base, channel;
  1233. u64 dram_base, chan_addr, dct_sel_base_off;
  1234. dram_base = pvt->dram_base[dram_range];
  1235. intlv_en = pvt->dram_IntlvEn[dram_range];
  1236. node_id = pvt->dram_DstNode[dram_range];
  1237. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1238. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1239. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1240. /*
  1241. * This assumes that one node's DHAR is the same as all the other
  1242. * nodes' DHAR.
  1243. */
  1244. hole_off = (pvt->dhar & 0x0000FF80);
  1245. hole_valid = (pvt->dhar & 0x1);
  1246. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1247. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1248. hole_off, hole_valid, intlv_sel);
  1249. if (intlv_en &&
  1250. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1251. return -EINVAL;
  1252. dct_sel_base = dct_sel_baseaddr(pvt);
  1253. /*
  1254. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1255. * select between DCT0 and DCT1.
  1256. */
  1257. if (dct_high_range_enabled(pvt) &&
  1258. !dct_ganging_enabled(pvt) &&
  1259. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1260. high_range = 1;
  1261. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1262. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1263. dct_sel_base_off, hole_valid,
  1264. hole_off, dram_base);
  1265. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1266. /* remove Node ID (in case of memory interleaving) */
  1267. tmp = chan_addr & 0xFC0;
  1268. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1269. /* remove channel interleave and hash */
  1270. if (dct_interleave_enabled(pvt) &&
  1271. !dct_high_range_enabled(pvt) &&
  1272. !dct_ganging_enabled(pvt)) {
  1273. if (dct_sel_interleave_addr(pvt) != 1)
  1274. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1275. else {
  1276. tmp = chan_addr & 0xFC0;
  1277. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1278. | tmp;
  1279. }
  1280. }
  1281. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1282. chan_addr, (u32)(chan_addr >> 8));
  1283. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1284. if (cs_found >= 0) {
  1285. *nid = node_id;
  1286. *chan_sel = channel;
  1287. }
  1288. return cs_found;
  1289. }
  1290. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1291. int *node, int *chan_sel)
  1292. {
  1293. int dram_range, cs_found = -EINVAL;
  1294. u64 dram_base, dram_limit;
  1295. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1296. if (!pvt->dram_rw_en[dram_range])
  1297. continue;
  1298. dram_base = pvt->dram_base[dram_range];
  1299. dram_limit = pvt->dram_limit[dram_range];
  1300. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1301. cs_found = f10_match_to_this_node(pvt, dram_range,
  1302. sys_addr, node,
  1303. chan_sel);
  1304. if (cs_found >= 0)
  1305. break;
  1306. }
  1307. }
  1308. return cs_found;
  1309. }
  1310. /*
  1311. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1312. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1313. *
  1314. * The @sys_addr is usually an error address received from the hardware
  1315. * (MCX_ADDR).
  1316. */
  1317. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1318. struct err_regs *err_info,
  1319. u64 sys_addr)
  1320. {
  1321. struct amd64_pvt *pvt = mci->pvt_info;
  1322. u32 page, offset;
  1323. int nid, csrow, chan = 0;
  1324. u16 syndrome;
  1325. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1326. if (csrow < 0) {
  1327. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1328. return;
  1329. }
  1330. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1331. syndrome = extract_syndrome(err_info);
  1332. /*
  1333. * We need the syndromes for channel detection only when we're
  1334. * ganged. Otherwise @chan should already contain the channel at
  1335. * this point.
  1336. */
  1337. if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
  1338. chan = get_channel_from_ecc_syndrome(mci, syndrome);
  1339. if (chan >= 0)
  1340. edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
  1341. EDAC_MOD_STR);
  1342. else
  1343. /*
  1344. * Channel unknown, report all channels on this CSROW as failed.
  1345. */
  1346. for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
  1347. edac_mc_handle_ce(mci, page, offset, syndrome,
  1348. csrow, chan, EDAC_MOD_STR);
  1349. }
  1350. /*
  1351. * debug routine to display the memory sizes of all logical DIMMs and its
  1352. * CSROWs as well
  1353. */
  1354. static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
  1355. {
  1356. int dimm, size0, size1, factor = 0;
  1357. u32 dbam;
  1358. u32 *dcsb;
  1359. if (boot_cpu_data.x86 == 0xf) {
  1360. if (pvt->dclr0 & F10_WIDTH_128)
  1361. factor = 1;
  1362. /* K8 families < revF not supported yet */
  1363. if (pvt->ext_model < K8_REV_F)
  1364. return;
  1365. else
  1366. WARN_ON(ctrl != 0);
  1367. }
  1368. debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1369. ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
  1370. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1371. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1372. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1373. /* Dump memory sizes for DIMM and its CSROWs */
  1374. for (dimm = 0; dimm < 4; dimm++) {
  1375. size0 = 0;
  1376. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1377. size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1378. size1 = 0;
  1379. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1380. size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
  1381. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1382. dimm * 2, size0 << factor,
  1383. dimm * 2 + 1, size1 << factor);
  1384. }
  1385. }
  1386. static struct amd64_family_type amd64_family_types[] = {
  1387. [K8_CPUS] = {
  1388. .ctl_name = "K8",
  1389. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1390. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1391. .ops = {
  1392. .early_channel_count = k8_early_channel_count,
  1393. .get_error_address = k8_get_error_address,
  1394. .read_dram_base_limit = k8_read_dram_base_limit,
  1395. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1396. .dbam_to_cs = k8_dbam_to_chip_select,
  1397. }
  1398. },
  1399. [F10_CPUS] = {
  1400. .ctl_name = "F10h",
  1401. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1402. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1403. .ops = {
  1404. .early_channel_count = f10_early_channel_count,
  1405. .get_error_address = f10_get_error_address,
  1406. .read_dram_base_limit = f10_read_dram_base_limit,
  1407. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1408. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1409. .dbam_to_cs = f10_dbam_to_chip_select,
  1410. }
  1411. },
  1412. };
  1413. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1414. unsigned int device,
  1415. struct pci_dev *related)
  1416. {
  1417. struct pci_dev *dev = NULL;
  1418. dev = pci_get_device(vendor, device, dev);
  1419. while (dev) {
  1420. if ((dev->bus->number == related->bus->number) &&
  1421. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1422. break;
  1423. dev = pci_get_device(vendor, device, dev);
  1424. }
  1425. return dev;
  1426. }
  1427. /*
  1428. * These are tables of eigenvectors (one per line) which can be used for the
  1429. * construction of the syndrome tables. The modified syndrome search algorithm
  1430. * uses those to find the symbol in error and thus the DIMM.
  1431. *
  1432. * Algorithm courtesy of Ross LaFetra from AMD.
  1433. */
  1434. static u16 x4_vectors[] = {
  1435. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1436. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1437. 0x0001, 0x0002, 0x0004, 0x0008,
  1438. 0x1013, 0x3032, 0x4044, 0x8088,
  1439. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1440. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1441. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1442. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1443. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1444. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1445. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1446. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1447. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1448. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1449. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1450. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1451. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1452. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1453. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1454. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1455. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1456. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1457. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1458. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1459. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1460. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1461. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1462. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1463. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1464. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1465. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1466. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1467. 0x4807, 0xc40e, 0x130c, 0x3208,
  1468. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1469. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1470. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1471. };
  1472. static u16 x8_vectors[] = {
  1473. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1474. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1475. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1476. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1477. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1478. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1479. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1480. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1481. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1482. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1483. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1484. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1485. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1486. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1487. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1488. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1489. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1490. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1491. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1492. };
  1493. static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
  1494. int v_dim)
  1495. {
  1496. unsigned int i, err_sym;
  1497. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1498. u16 s = syndrome;
  1499. int v_idx = err_sym * v_dim;
  1500. int v_end = (err_sym + 1) * v_dim;
  1501. /* walk over all 16 bits of the syndrome */
  1502. for (i = 1; i < (1U << 16); i <<= 1) {
  1503. /* if bit is set in that eigenvector... */
  1504. if (v_idx < v_end && vectors[v_idx] & i) {
  1505. u16 ev_comp = vectors[v_idx++];
  1506. /* ... and bit set in the modified syndrome, */
  1507. if (s & i) {
  1508. /* remove it. */
  1509. s ^= ev_comp;
  1510. if (!s)
  1511. return err_sym;
  1512. }
  1513. } else if (s & i)
  1514. /* can't get to zero, move to next symbol */
  1515. break;
  1516. }
  1517. }
  1518. debugf0("syndrome(%x) not found\n", syndrome);
  1519. return -1;
  1520. }
  1521. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1522. {
  1523. if (sym_size == 4)
  1524. switch (err_sym) {
  1525. case 0x20:
  1526. case 0x21:
  1527. return 0;
  1528. break;
  1529. case 0x22:
  1530. case 0x23:
  1531. return 1;
  1532. break;
  1533. default:
  1534. return err_sym >> 4;
  1535. break;
  1536. }
  1537. /* x8 symbols */
  1538. else
  1539. switch (err_sym) {
  1540. /* imaginary bits not in a DIMM */
  1541. case 0x10:
  1542. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1543. err_sym);
  1544. return -1;
  1545. break;
  1546. case 0x11:
  1547. return 0;
  1548. break;
  1549. case 0x12:
  1550. return 1;
  1551. break;
  1552. default:
  1553. return err_sym >> 3;
  1554. break;
  1555. }
  1556. return -1;
  1557. }
  1558. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1559. {
  1560. struct amd64_pvt *pvt = mci->pvt_info;
  1561. int err_sym = -1;
  1562. if (pvt->syn_type == 8)
  1563. err_sym = decode_syndrome(syndrome, x8_vectors,
  1564. ARRAY_SIZE(x8_vectors),
  1565. pvt->syn_type);
  1566. else if (pvt->syn_type == 4)
  1567. err_sym = decode_syndrome(syndrome, x4_vectors,
  1568. ARRAY_SIZE(x4_vectors),
  1569. pvt->syn_type);
  1570. else {
  1571. amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
  1572. return err_sym;
  1573. }
  1574. return map_err_sym_to_channel(err_sym, pvt->syn_type);
  1575. }
  1576. /*
  1577. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1578. * ADDRESS and process.
  1579. */
  1580. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1581. struct err_regs *info)
  1582. {
  1583. struct amd64_pvt *pvt = mci->pvt_info;
  1584. u64 sys_addr;
  1585. /* Ensure that the Error Address is VALID */
  1586. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1587. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1588. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1589. return;
  1590. }
  1591. sys_addr = pvt->ops->get_error_address(mci, info);
  1592. amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
  1593. pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
  1594. }
  1595. /* Handle any Un-correctable Errors (UEs) */
  1596. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1597. struct err_regs *info)
  1598. {
  1599. struct amd64_pvt *pvt = mci->pvt_info;
  1600. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1601. int csrow;
  1602. u64 sys_addr;
  1603. u32 page, offset;
  1604. log_mci = mci;
  1605. if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
  1606. amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
  1607. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1608. return;
  1609. }
  1610. sys_addr = pvt->ops->get_error_address(mci, info);
  1611. /*
  1612. * Find out which node the error address belongs to. This may be
  1613. * different from the node that detected the error.
  1614. */
  1615. src_mci = find_mc_by_sys_addr(mci, sys_addr);
  1616. if (!src_mci) {
  1617. amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
  1618. (unsigned long)sys_addr);
  1619. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1620. return;
  1621. }
  1622. log_mci = src_mci;
  1623. csrow = sys_addr_to_csrow(log_mci, sys_addr);
  1624. if (csrow < 0) {
  1625. amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
  1626. (unsigned long)sys_addr);
  1627. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1628. } else {
  1629. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1630. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1631. }
  1632. }
  1633. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1634. struct err_regs *info)
  1635. {
  1636. u32 ec = ERROR_CODE(info->nbsl);
  1637. u32 xec = EXT_ERROR_CODE(info->nbsl);
  1638. int ecc_type = (info->nbsh >> 13) & 0x3;
  1639. /* Bail early out if this was an 'observed' error */
  1640. if (PP(ec) == K8_NBSL_PP_OBS)
  1641. return;
  1642. /* Do only ECC errors */
  1643. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1644. return;
  1645. if (ecc_type == 2)
  1646. amd64_handle_ce(mci, info);
  1647. else if (ecc_type == 1)
  1648. amd64_handle_ue(mci, info);
  1649. }
  1650. void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
  1651. {
  1652. struct mem_ctl_info *mci = mcis[node_id];
  1653. struct err_regs regs;
  1654. regs.nbsl = (u32) m->status;
  1655. regs.nbsh = (u32)(m->status >> 32);
  1656. regs.nbeal = (u32) m->addr;
  1657. regs.nbeah = (u32)(m->addr >> 32);
  1658. regs.nbcfg = nbcfg;
  1659. __amd64_decode_bus_error(mci, &regs);
  1660. /*
  1661. * Check the UE bit of the NB status high register, if set generate some
  1662. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  1663. * If it was a GART error, skip that process.
  1664. *
  1665. * FIXME: this should go somewhere else, if at all.
  1666. */
  1667. if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
  1668. edac_mc_handle_ue_no_info(mci, "UE bit is set");
  1669. }
  1670. /*
  1671. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1672. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1673. */
  1674. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, u16 f1_id,
  1675. u16 f3_id)
  1676. {
  1677. /* Reserve the ADDRESS MAP Device */
  1678. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1679. if (!pvt->F1) {
  1680. amd64_err("error address map device not found: "
  1681. "vendor %x device 0x%x (broken BIOS?)\n",
  1682. PCI_VENDOR_ID_AMD, f1_id);
  1683. return -ENODEV;
  1684. }
  1685. /* Reserve the MISC Device */
  1686. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1687. if (!pvt->F3) {
  1688. pci_dev_put(pvt->F1);
  1689. pvt->F1 = NULL;
  1690. amd64_err("error F3 device not found: "
  1691. "vendor %x device 0x%x (broken BIOS?)\n",
  1692. PCI_VENDOR_ID_AMD, f3_id);
  1693. return -ENODEV;
  1694. }
  1695. debugf1("F1: %s\n", pci_name(pvt->F1));
  1696. debugf1("F2: %s\n", pci_name(pvt->F2));
  1697. debugf1("F3: %s\n", pci_name(pvt->F3));
  1698. return 0;
  1699. }
  1700. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  1701. {
  1702. pci_dev_put(pvt->F1);
  1703. pci_dev_put(pvt->F3);
  1704. }
  1705. /*
  1706. * Retrieve the hardware registers of the memory controller (this includes the
  1707. * 'Address Map' and 'Misc' device regs)
  1708. */
  1709. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  1710. {
  1711. u64 msr_val;
  1712. u32 tmp;
  1713. int dram;
  1714. /*
  1715. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1716. * those are Read-As-Zero
  1717. */
  1718. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1719. debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1720. /* check first whether TOP_MEM2 is enabled */
  1721. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1722. if (msr_val & (1U << 21)) {
  1723. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1724. debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1725. } else
  1726. debugf0(" TOP_MEM2 disabled.\n");
  1727. amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
  1728. if (pvt->ops->read_dram_ctl_register)
  1729. pvt->ops->read_dram_ctl_register(pvt);
  1730. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  1731. /*
  1732. * Call CPU specific READ function to get the DRAM Base and
  1733. * Limit values from the DCT.
  1734. */
  1735. pvt->ops->read_dram_base_limit(pvt, dram);
  1736. /*
  1737. * Only print out debug info on rows with both R and W Enabled.
  1738. * Normal processing, compiler should optimize this whole 'if'
  1739. * debug output block away.
  1740. */
  1741. if (pvt->dram_rw_en[dram] != 0) {
  1742. debugf1(" DRAM-BASE[%d]: 0x%016llx "
  1743. "DRAM-LIMIT: 0x%016llx\n",
  1744. dram,
  1745. pvt->dram_base[dram],
  1746. pvt->dram_limit[dram]);
  1747. debugf1(" IntlvEn=%s %s %s "
  1748. "IntlvSel=%d DstNode=%d\n",
  1749. pvt->dram_IntlvEn[dram] ?
  1750. "Enabled" : "Disabled",
  1751. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  1752. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  1753. pvt->dram_IntlvSel[dram],
  1754. pvt->dram_DstNode[dram]);
  1755. }
  1756. }
  1757. amd64_read_dct_base_mask(pvt);
  1758. amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
  1759. amd64_read_dbam_reg(pvt);
  1760. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1761. amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
  1762. amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
  1763. if (boot_cpu_data.x86 >= 0x10) {
  1764. if (!dct_ganging_enabled(pvt)) {
  1765. amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
  1766. amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
  1767. }
  1768. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1769. }
  1770. if (boot_cpu_data.x86 == 0x10 &&
  1771. boot_cpu_data.x86_model > 7 &&
  1772. /* F3x180[EccSymbolSize]=1 => x8 symbols */
  1773. tmp & BIT(25))
  1774. pvt->syn_type = 8;
  1775. else
  1776. pvt->syn_type = 4;
  1777. amd64_dump_misc_regs(pvt);
  1778. }
  1779. /*
  1780. * NOTE: CPU Revision Dependent code
  1781. *
  1782. * Input:
  1783. * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
  1784. * k8 private pointer to -->
  1785. * DRAM Bank Address mapping register
  1786. * node_id
  1787. * DCL register where dual_channel_active is
  1788. *
  1789. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1790. *
  1791. * Bits: CSROWs
  1792. * 0-3 CSROWs 0 and 1
  1793. * 4-7 CSROWs 2 and 3
  1794. * 8-11 CSROWs 4 and 5
  1795. * 12-15 CSROWs 6 and 7
  1796. *
  1797. * Values range from: 0 to 15
  1798. * The meaning of the values depends on CPU revision and dual-channel state,
  1799. * see relevant BKDG more info.
  1800. *
  1801. * The memory controller provides for total of only 8 CSROWs in its current
  1802. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1803. * single channel or two (2) DIMMs in dual channel mode.
  1804. *
  1805. * The following code logic collapses the various tables for CSROW based on CPU
  1806. * revision.
  1807. *
  1808. * Returns:
  1809. * The number of PAGE_SIZE pages on the specified CSROW number it
  1810. * encompasses
  1811. *
  1812. */
  1813. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  1814. {
  1815. u32 cs_mode, nr_pages;
  1816. /*
  1817. * The math on this doesn't look right on the surface because x/2*4 can
  1818. * be simplified to x*2 but this expression makes use of the fact that
  1819. * it is integral math where 1/2=0. This intermediate value becomes the
  1820. * number of bits to shift the DBAM register to extract the proper CSROW
  1821. * field.
  1822. */
  1823. cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  1824. nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
  1825. /*
  1826. * If dual channel then double the memory size of single channel.
  1827. * Channel count is 1 or 2
  1828. */
  1829. nr_pages <<= (pvt->channel_count - 1);
  1830. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
  1831. debugf0(" nr_pages= %u channel-count = %d\n",
  1832. nr_pages, pvt->channel_count);
  1833. return nr_pages;
  1834. }
  1835. /*
  1836. * Initialize the array of csrow attribute instances, based on the values
  1837. * from pci config hardware registers.
  1838. */
  1839. static int amd64_init_csrows(struct mem_ctl_info *mci)
  1840. {
  1841. struct csrow_info *csrow;
  1842. struct amd64_pvt *pvt;
  1843. u64 input_addr_min, input_addr_max, sys_addr;
  1844. int i, empty = 1;
  1845. pvt = mci->pvt_info;
  1846. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &pvt->nbcfg);
  1847. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  1848. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  1849. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  1850. );
  1851. for (i = 0; i < pvt->cs_count; i++) {
  1852. csrow = &mci->csrows[i];
  1853. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  1854. debugf1("----CSROW %d EMPTY for node %d\n", i,
  1855. pvt->mc_node_id);
  1856. continue;
  1857. }
  1858. debugf1("----CSROW %d VALID for MC node %d\n",
  1859. i, pvt->mc_node_id);
  1860. empty = 0;
  1861. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  1862. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  1863. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  1864. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  1865. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  1866. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  1867. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  1868. /* 8 bytes of resolution */
  1869. csrow->mtype = amd64_determine_memory_type(pvt, i);
  1870. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  1871. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  1872. (unsigned long)input_addr_min,
  1873. (unsigned long)input_addr_max);
  1874. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  1875. (unsigned long)sys_addr, csrow->page_mask);
  1876. debugf1(" nr_pages: %u first_page: 0x%lx "
  1877. "last_page: 0x%lx\n",
  1878. (unsigned)csrow->nr_pages,
  1879. csrow->first_page, csrow->last_page);
  1880. /*
  1881. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1882. */
  1883. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  1884. csrow->edac_mode =
  1885. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  1886. EDAC_S4ECD4ED : EDAC_SECDED;
  1887. else
  1888. csrow->edac_mode = EDAC_NONE;
  1889. }
  1890. return empty;
  1891. }
  1892. /* get all cores on this DCT */
  1893. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
  1894. {
  1895. int cpu;
  1896. for_each_online_cpu(cpu)
  1897. if (amd_get_nb_id(cpu) == nid)
  1898. cpumask_set_cpu(cpu, mask);
  1899. }
  1900. /* check MCG_CTL on all the cpus on this node */
  1901. static bool amd64_nb_mce_bank_enabled_on_node(int nid)
  1902. {
  1903. cpumask_var_t mask;
  1904. int cpu, nbe;
  1905. bool ret = false;
  1906. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1907. amd64_warn("%s: Error allocating mask\n", __func__);
  1908. return false;
  1909. }
  1910. get_cpus_on_this_dct_cpumask(mask, nid);
  1911. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1912. for_each_cpu(cpu, mask) {
  1913. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1914. nbe = reg->l & K8_MSR_MCGCTL_NBE;
  1915. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1916. cpu, reg->q,
  1917. (nbe ? "enabled" : "disabled"));
  1918. if (!nbe)
  1919. goto out;
  1920. }
  1921. ret = true;
  1922. out:
  1923. free_cpumask_var(mask);
  1924. return ret;
  1925. }
  1926. static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
  1927. {
  1928. cpumask_var_t cmask;
  1929. int cpu;
  1930. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1931. amd64_warn("%s: error allocating mask\n", __func__);
  1932. return false;
  1933. }
  1934. get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
  1935. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1936. for_each_cpu(cpu, cmask) {
  1937. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1938. if (on) {
  1939. if (reg->l & K8_MSR_MCGCTL_NBE)
  1940. pvt->flags.nb_mce_enable = 1;
  1941. reg->l |= K8_MSR_MCGCTL_NBE;
  1942. } else {
  1943. /*
  1944. * Turn off NB MCE reporting only when it was off before
  1945. */
  1946. if (!pvt->flags.nb_mce_enable)
  1947. reg->l &= ~K8_MSR_MCGCTL_NBE;
  1948. }
  1949. }
  1950. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1951. free_cpumask_var(cmask);
  1952. return 0;
  1953. }
  1954. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  1955. {
  1956. struct amd64_pvt *pvt = mci->pvt_info;
  1957. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  1958. amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
  1959. /* turn on UECCn and CECCEn bits */
  1960. pvt->old_nbctl = value & mask;
  1961. pvt->nbctl_mcgctl_saved = 1;
  1962. value |= mask;
  1963. pci_write_config_dword(pvt->F3, K8_NBCTL, value);
  1964. if (amd64_toggle_ecc_err_reporting(pvt, ON))
  1965. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1966. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
  1967. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  1968. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  1969. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  1970. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1971. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1972. pvt->flags.nb_ecc_prev = 0;
  1973. /* Attempt to turn on DRAM ECC Enable */
  1974. value |= K8_NBCFG_ECC_ENABLE;
  1975. pci_write_config_dword(pvt->F3, K8_NBCFG, value);
  1976. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
  1977. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  1978. amd64_warn("Hardware rejected DRAM ECC enable,"
  1979. "check memory DIMM configuration.\n");
  1980. } else {
  1981. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1982. }
  1983. } else {
  1984. pvt->flags.nb_ecc_prev = 1;
  1985. }
  1986. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  1987. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  1988. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  1989. pvt->ctl_error_info.nbcfg = value;
  1990. }
  1991. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  1992. {
  1993. u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  1994. if (!pvt->nbctl_mcgctl_saved)
  1995. return;
  1996. amd64_read_pci_cfg(pvt->F3, K8_NBCTL, &value);
  1997. value &= ~mask;
  1998. value |= pvt->old_nbctl;
  1999. pci_write_config_dword(pvt->F3, K8_NBCTL, value);
  2000. /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
  2001. if (!pvt->flags.nb_ecc_prev) {
  2002. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
  2003. value &= ~K8_NBCFG_ECC_ENABLE;
  2004. pci_write_config_dword(pvt->F3, K8_NBCFG, value);
  2005. }
  2006. /* restore the NB Enable MCGCTL bit */
  2007. if (amd64_toggle_ecc_err_reporting(pvt, OFF))
  2008. amd64_warn("Error restoring NB MCGCTL settings!\n");
  2009. }
  2010. /*
  2011. * EDAC requires that the BIOS have ECC enabled before taking over the
  2012. * processing of ECC errors. This is because the BIOS can properly initialize
  2013. * the memory system completely. A command line option allows to force-enable
  2014. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2015. */
  2016. static const char *ecc_msg =
  2017. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  2018. " Either enable ECC checking or force module loading by setting "
  2019. "'ecc_enable_override'.\n"
  2020. " (Note that use of the override may cause unknown side effects.)\n";
  2021. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2022. {
  2023. u32 value;
  2024. u8 ecc_enabled = 0;
  2025. bool nb_mce_en = false;
  2026. amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &value);
  2027. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2028. amd64_info("DRAM ECC %s.\n", (ecc_enabled ? "enabled" : "disabled"));
  2029. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
  2030. if (!nb_mce_en)
  2031. amd64_notice("NB MCE bank disabled, "
  2032. "set MSR 0x%08x[4] on node %d to enable.\n",
  2033. MSR_IA32_MCG_CTL, pvt->mc_node_id);
  2034. if (!ecc_enabled || !nb_mce_en) {
  2035. if (!ecc_enable_override) {
  2036. amd64_notice("%s", ecc_msg);
  2037. return -ENODEV;
  2038. } else {
  2039. amd64_warn("Forcing ECC on!\n");
  2040. }
  2041. }
  2042. return 0;
  2043. }
  2044. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2045. ARRAY_SIZE(amd64_inj_attrs) +
  2046. 1];
  2047. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2048. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2049. {
  2050. unsigned int i = 0, j = 0;
  2051. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2052. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2053. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2054. sysfs_attrs[i] = amd64_inj_attrs[j];
  2055. sysfs_attrs[i] = terminator;
  2056. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2057. }
  2058. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2059. {
  2060. struct amd64_pvt *pvt = mci->pvt_info;
  2061. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2062. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2063. if (pvt->nbcap & K8_NBCAP_SECDED)
  2064. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2065. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2066. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2067. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2068. mci->mod_name = EDAC_MOD_STR;
  2069. mci->mod_ver = EDAC_AMD64_VERSION;
  2070. mci->ctl_name = pvt->ctl_name;
  2071. mci->dev_name = pci_name(pvt->F2);
  2072. mci->ctl_page_to_phys = NULL;
  2073. /* memory scrubber interface */
  2074. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2075. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2076. }
  2077. /*
  2078. * returns a pointer to the family descriptor on success, NULL otherwise.
  2079. */
  2080. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  2081. {
  2082. u8 fam = boot_cpu_data.x86;
  2083. struct amd64_family_type *fam_type = NULL;
  2084. switch (fam) {
  2085. case 0xf:
  2086. fam_type = &amd64_family_types[K8_CPUS];
  2087. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  2088. pvt->ctl_name = fam_type->ctl_name;
  2089. pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  2090. break;
  2091. case 0x10:
  2092. fam_type = &amd64_family_types[F10_CPUS];
  2093. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  2094. pvt->ctl_name = fam_type->ctl_name;
  2095. pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  2096. break;
  2097. default:
  2098. amd64_err("Unsupported family!\n");
  2099. return NULL;
  2100. }
  2101. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2102. amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
  2103. (fam == 0xf ?
  2104. (pvt->ext_model >= K8_REV_F ? "revF or later "
  2105. : "revE or earlier ")
  2106. : ""), pvt->mc_node_id);
  2107. return fam_type;
  2108. }
  2109. static int amd64_probe_one_instance(struct pci_dev *F2)
  2110. {
  2111. struct amd64_pvt *pvt = NULL;
  2112. struct amd64_family_type *fam_type = NULL;
  2113. int err = 0, ret;
  2114. ret = -ENOMEM;
  2115. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2116. if (!pvt)
  2117. goto err_exit;
  2118. pvt->mc_node_id = get_node_id(F2);
  2119. pvt->F2 = F2;
  2120. ret = -EINVAL;
  2121. fam_type = amd64_per_family_init(pvt);
  2122. if (!fam_type)
  2123. goto err_free;
  2124. ret = -ENODEV;
  2125. err = amd64_reserve_mc_sibling_devices(pvt, fam_type->f1_id,
  2126. fam_type->f3_id);
  2127. if (err)
  2128. goto err_free;
  2129. ret = -EINVAL;
  2130. err = amd64_check_ecc_enabled(pvt);
  2131. if (err)
  2132. goto err_put;
  2133. /*
  2134. * Save the pointer to the private data for use in 2nd initialization
  2135. * stage
  2136. */
  2137. pvts[pvt->mc_node_id] = pvt;
  2138. return 0;
  2139. err_put:
  2140. amd64_free_mc_sibling_devices(pvt);
  2141. err_free:
  2142. kfree(pvt);
  2143. err_exit:
  2144. return ret;
  2145. }
  2146. /*
  2147. * This is the finishing stage of the init code. Needs to be performed after all
  2148. * MCs' hardware have been prepped for accessing extended config space.
  2149. */
  2150. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2151. {
  2152. int node_id = pvt->mc_node_id;
  2153. struct mem_ctl_info *mci;
  2154. int ret = -ENODEV;
  2155. amd64_read_mc_registers(pvt);
  2156. /*
  2157. * We need to determine how many memory channels there are. Then use
  2158. * that information for calculating the size of the dynamic instance
  2159. * tables in the 'mci' structure
  2160. */
  2161. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2162. if (pvt->channel_count < 0)
  2163. goto err_exit;
  2164. ret = -ENOMEM;
  2165. mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
  2166. if (!mci)
  2167. goto err_exit;
  2168. mci->pvt_info = pvt;
  2169. mci->dev = &pvt->F2->dev;
  2170. amd64_setup_mci_misc_attributes(mci);
  2171. if (amd64_init_csrows(mci))
  2172. mci->edac_cap = EDAC_FLAG_NONE;
  2173. amd64_enable_ecc_error_reporting(mci);
  2174. amd64_set_mc_sysfs_attributes(mci);
  2175. ret = -ENODEV;
  2176. if (edac_mc_add_mc(mci)) {
  2177. debugf1("failed edac_mc_add_mc()\n");
  2178. goto err_add_mc;
  2179. }
  2180. mcis[node_id] = mci;
  2181. pvts[node_id] = NULL;
  2182. /* register stuff with EDAC MCE */
  2183. if (report_gart_errors)
  2184. amd_report_gart_errors(true);
  2185. amd_register_ecc_decoder(amd64_decode_bus_error);
  2186. return 0;
  2187. err_add_mc:
  2188. edac_mc_free(mci);
  2189. err_exit:
  2190. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2191. amd64_restore_ecc_error_reporting(pvt);
  2192. amd64_free_mc_sibling_devices(pvt);
  2193. kfree(pvts[pvt->mc_node_id]);
  2194. pvts[node_id] = NULL;
  2195. return ret;
  2196. }
  2197. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2198. const struct pci_device_id *mc_type)
  2199. {
  2200. int ret = 0;
  2201. ret = pci_enable_device(pdev);
  2202. if (ret < 0) {
  2203. debugf0("ret=%d\n", ret);
  2204. return -EIO;
  2205. }
  2206. ret = amd64_probe_one_instance(pdev);
  2207. if (ret < 0)
  2208. amd64_err("Error probing instance: %d\n", get_node_id(pdev));
  2209. return ret;
  2210. }
  2211. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2212. {
  2213. struct mem_ctl_info *mci;
  2214. struct amd64_pvt *pvt;
  2215. /* Remove from EDAC CORE tracking list */
  2216. mci = edac_mc_del_mc(&pdev->dev);
  2217. if (!mci)
  2218. return;
  2219. pvt = mci->pvt_info;
  2220. amd64_restore_ecc_error_reporting(pvt);
  2221. amd64_free_mc_sibling_devices(pvt);
  2222. /* unregister from EDAC MCE */
  2223. amd_report_gart_errors(false);
  2224. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2225. /* Free the EDAC CORE resources */
  2226. mci->pvt_info = NULL;
  2227. mcis[pvt->mc_node_id] = NULL;
  2228. kfree(pvt);
  2229. edac_mc_free(mci);
  2230. }
  2231. /*
  2232. * This table is part of the interface for loading drivers for PCI devices. The
  2233. * PCI core identifies what devices are on a system during boot, and then
  2234. * inquiry this table to see if this driver is for a given device found.
  2235. */
  2236. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2237. {
  2238. .vendor = PCI_VENDOR_ID_AMD,
  2239. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2240. .subvendor = PCI_ANY_ID,
  2241. .subdevice = PCI_ANY_ID,
  2242. .class = 0,
  2243. .class_mask = 0,
  2244. },
  2245. {
  2246. .vendor = PCI_VENDOR_ID_AMD,
  2247. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2248. .subvendor = PCI_ANY_ID,
  2249. .subdevice = PCI_ANY_ID,
  2250. .class = 0,
  2251. .class_mask = 0,
  2252. },
  2253. {0, }
  2254. };
  2255. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2256. static struct pci_driver amd64_pci_driver = {
  2257. .name = EDAC_MOD_STR,
  2258. .probe = amd64_init_one_instance,
  2259. .remove = __devexit_p(amd64_remove_one_instance),
  2260. .id_table = amd64_pci_table,
  2261. };
  2262. static void amd64_setup_pci_device(void)
  2263. {
  2264. struct mem_ctl_info *mci;
  2265. struct amd64_pvt *pvt;
  2266. if (amd64_ctl_pci)
  2267. return;
  2268. mci = mcis[0];
  2269. if (mci) {
  2270. pvt = mci->pvt_info;
  2271. amd64_ctl_pci =
  2272. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2273. if (!amd64_ctl_pci) {
  2274. pr_warning("%s(): Unable to create PCI control\n",
  2275. __func__);
  2276. pr_warning("%s(): PCI error report via EDAC not set\n",
  2277. __func__);
  2278. }
  2279. }
  2280. }
  2281. static int __init amd64_edac_init(void)
  2282. {
  2283. int nb, err = -ENODEV;
  2284. bool load_ok = false;
  2285. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2286. opstate_init();
  2287. if (amd_cache_northbridges() < 0)
  2288. goto err_ret;
  2289. err = -ENOMEM;
  2290. pvts = kzalloc(amd_nb_num() * sizeof(pvts[0]), GFP_KERNEL);
  2291. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2292. if (!(pvts && mcis))
  2293. goto err_ret;
  2294. msrs = msrs_alloc();
  2295. if (!msrs)
  2296. goto err_ret;
  2297. err = pci_register_driver(&amd64_pci_driver);
  2298. if (err)
  2299. goto err_pci;
  2300. /*
  2301. * At this point, the array 'pvts[]' contains pointers to alloc'd
  2302. * amd64_pvt structs. These will be used in the 2nd stage init function
  2303. * to finish initialization of the MC instances.
  2304. */
  2305. err = -ENODEV;
  2306. for (nb = 0; nb < amd_nb_num(); nb++) {
  2307. if (!pvts[nb])
  2308. continue;
  2309. err = amd64_init_2nd_stage(pvts[nb]);
  2310. if (err)
  2311. goto err_2nd_stage;
  2312. load_ok = true;
  2313. }
  2314. if (load_ok) {
  2315. amd64_setup_pci_device();
  2316. return 0;
  2317. }
  2318. err_2nd_stage:
  2319. pci_unregister_driver(&amd64_pci_driver);
  2320. err_pci:
  2321. msrs_free(msrs);
  2322. msrs = NULL;
  2323. err_ret:
  2324. return err;
  2325. }
  2326. static void __exit amd64_edac_exit(void)
  2327. {
  2328. if (amd64_ctl_pci)
  2329. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2330. pci_unregister_driver(&amd64_pci_driver);
  2331. kfree(mcis);
  2332. mcis = NULL;
  2333. kfree(pvts);
  2334. pvts = NULL;
  2335. msrs_free(msrs);
  2336. msrs = NULL;
  2337. }
  2338. module_init(amd64_edac_init);
  2339. module_exit(amd64_edac_exit);
  2340. MODULE_LICENSE("GPL");
  2341. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2342. "Dave Peterson, Thayne Harbaugh");
  2343. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2344. EDAC_AMD64_VERSION);
  2345. module_param(edac_op_state, int, 0444);
  2346. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");