ktime.h 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301
  1. /*
  2. * include/linux/ktime.h
  3. *
  4. * ktime_t - nanosecond-resolution time format.
  5. *
  6. * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
  7. * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
  8. *
  9. * data type definitions, declarations, prototypes and macros.
  10. *
  11. * Started by: Thomas Gleixner and Ingo Molnar
  12. *
  13. * Credits:
  14. *
  15. * Roman Zippel provided the ideas and primary code snippets of
  16. * the ktime_t union and further simplifications of the original
  17. * code.
  18. *
  19. * For licencing details see kernel-base/COPYING
  20. */
  21. #ifndef _LINUX_KTIME_H
  22. #define _LINUX_KTIME_H
  23. #include <linux/time.h>
  24. #include <linux/jiffies.h>
  25. /*
  26. * ktime_t:
  27. *
  28. * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers
  29. * internal representation of time values in scalar nanoseconds. The
  30. * design plays out best on 64-bit CPUs, where most conversions are
  31. * NOPs and most arithmetic ktime_t operations are plain arithmetic
  32. * operations.
  33. *
  34. * On 32-bit CPUs an optimized representation of the timespec structure
  35. * is used to avoid expensive conversions from and to timespecs. The
  36. * endian-aware order of the tv struct members is choosen to allow
  37. * mathematical operations on the tv64 member of the union too, which
  38. * for certain operations produces better code.
  39. *
  40. * For architectures with efficient support for 64/32-bit conversions the
  41. * plain scalar nanosecond based representation can be selected by the
  42. * config switch CONFIG_KTIME_SCALAR.
  43. */
  44. union ktime {
  45. s64 tv64;
  46. #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
  47. struct {
  48. # ifdef __BIG_ENDIAN
  49. s32 sec, nsec;
  50. # else
  51. s32 nsec, sec;
  52. # endif
  53. } tv;
  54. #endif
  55. };
  56. typedef union ktime ktime_t; /* Kill this */
  57. #define KTIME_MAX ((s64)~((u64)1 << 63))
  58. #if (BITS_PER_LONG == 64)
  59. # define KTIME_SEC_MAX (KTIME_MAX / NSEC_PER_SEC)
  60. #else
  61. # define KTIME_SEC_MAX LONG_MAX
  62. #endif
  63. /*
  64. * ktime_t definitions when using the 64-bit scalar representation:
  65. */
  66. #if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR)
  67. /**
  68. * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
  69. * @secs: seconds to set
  70. * @nsecs: nanoseconds to set
  71. *
  72. * Return the ktime_t representation of the value
  73. */
  74. static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
  75. {
  76. #if (BITS_PER_LONG == 64)
  77. if (unlikely(secs >= KTIME_SEC_MAX))
  78. return (ktime_t){ .tv64 = KTIME_MAX };
  79. #endif
  80. return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs };
  81. }
  82. /* Subtract two ktime_t variables. rem = lhs -rhs: */
  83. #define ktime_sub(lhs, rhs) \
  84. ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
  85. /* Add two ktime_t variables. res = lhs + rhs: */
  86. #define ktime_add(lhs, rhs) \
  87. ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
  88. /*
  89. * Add a ktime_t variable and a scalar nanosecond value.
  90. * res = kt + nsval:
  91. */
  92. #define ktime_add_ns(kt, nsval) \
  93. ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
  94. /* convert a timespec to ktime_t format: */
  95. static inline ktime_t timespec_to_ktime(struct timespec ts)
  96. {
  97. return ktime_set(ts.tv_sec, ts.tv_nsec);
  98. }
  99. /* convert a timeval to ktime_t format: */
  100. static inline ktime_t timeval_to_ktime(struct timeval tv)
  101. {
  102. return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
  103. }
  104. /* Map the ktime_t to timespec conversion to ns_to_timespec function */
  105. #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
  106. /* Map the ktime_t to timeval conversion to ns_to_timeval function */
  107. #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
  108. /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
  109. #define ktime_to_ns(kt) ((kt).tv64)
  110. #else
  111. /*
  112. * Helper macros/inlines to get the ktime_t math right in the timespec
  113. * representation. The macros are sometimes ugly - their actual use is
  114. * pretty okay-ish, given the circumstances. We do all this for
  115. * performance reasons. The pure scalar nsec_t based code was nice and
  116. * simple, but created too many 64-bit / 32-bit conversions and divisions.
  117. *
  118. * Be especially aware that negative values are represented in a way
  119. * that the tv.sec field is negative and the tv.nsec field is greater
  120. * or equal to zero but less than nanoseconds per second. This is the
  121. * same representation which is used by timespecs.
  122. *
  123. * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC
  124. */
  125. /* Set a ktime_t variable to a value in sec/nsec representation: */
  126. static inline ktime_t ktime_set(const long secs, const unsigned long nsecs)
  127. {
  128. return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } };
  129. }
  130. /**
  131. * ktime_sub - subtract two ktime_t variables
  132. * @lhs: minuend
  133. * @rhs: subtrahend
  134. *
  135. * Returns the remainder of the substraction
  136. */
  137. static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs)
  138. {
  139. ktime_t res;
  140. res.tv64 = lhs.tv64 - rhs.tv64;
  141. if (res.tv.nsec < 0)
  142. res.tv.nsec += NSEC_PER_SEC;
  143. return res;
  144. }
  145. /**
  146. * ktime_add - add two ktime_t variables
  147. * @add1: addend1
  148. * @add2: addend2
  149. *
  150. * Returns the sum of @add1 and @add2.
  151. */
  152. static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2)
  153. {
  154. ktime_t res;
  155. res.tv64 = add1.tv64 + add2.tv64;
  156. /*
  157. * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx
  158. * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit.
  159. *
  160. * it's equivalent to:
  161. * tv.nsec -= NSEC_PER_SEC
  162. * tv.sec ++;
  163. */
  164. if (res.tv.nsec >= NSEC_PER_SEC)
  165. res.tv64 += (u32)-NSEC_PER_SEC;
  166. return res;
  167. }
  168. /**
  169. * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
  170. * @kt: addend
  171. * @nsec: the scalar nsec value to add
  172. *
  173. * Returns the sum of @kt and @nsec in ktime_t format
  174. */
  175. extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec);
  176. /**
  177. * timespec_to_ktime - convert a timespec to ktime_t format
  178. * @ts: the timespec variable to convert
  179. *
  180. * Returns a ktime_t variable with the converted timespec value
  181. */
  182. static inline ktime_t timespec_to_ktime(const struct timespec ts)
  183. {
  184. return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec,
  185. .nsec = (s32)ts.tv_nsec } };
  186. }
  187. /**
  188. * timeval_to_ktime - convert a timeval to ktime_t format
  189. * @tv: the timeval variable to convert
  190. *
  191. * Returns a ktime_t variable with the converted timeval value
  192. */
  193. static inline ktime_t timeval_to_ktime(const struct timeval tv)
  194. {
  195. return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec,
  196. .nsec = (s32)tv.tv_usec * 1000 } };
  197. }
  198. /**
  199. * ktime_to_timespec - convert a ktime_t variable to timespec format
  200. * @kt: the ktime_t variable to convert
  201. *
  202. * Returns the timespec representation of the ktime value
  203. */
  204. static inline struct timespec ktime_to_timespec(const ktime_t kt)
  205. {
  206. return (struct timespec) { .tv_sec = (time_t) kt.tv.sec,
  207. .tv_nsec = (long) kt.tv.nsec };
  208. }
  209. /**
  210. * ktime_to_timeval - convert a ktime_t variable to timeval format
  211. * @kt: the ktime_t variable to convert
  212. *
  213. * Returns the timeval representation of the ktime value
  214. */
  215. static inline struct timeval ktime_to_timeval(const ktime_t kt)
  216. {
  217. return (struct timeval) {
  218. .tv_sec = (time_t) kt.tv.sec,
  219. .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) };
  220. }
  221. /**
  222. * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds
  223. * @kt: the ktime_t variable to convert
  224. *
  225. * Returns the scalar nanoseconds representation of @kt
  226. */
  227. static inline s64 ktime_to_ns(const ktime_t kt)
  228. {
  229. return (s64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec;
  230. }
  231. #endif
  232. /**
  233. * ktime_equal - Compares two ktime_t variables to see if they are equal
  234. * @cmp1: comparable1
  235. * @cmp2: comparable2
  236. *
  237. * Compare two ktime_t variables, returns 1 if equal
  238. */
  239. static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
  240. {
  241. return cmp1.tv64 == cmp2.tv64;
  242. }
  243. static inline s64 ktime_to_us(const ktime_t kt)
  244. {
  245. struct timeval tv = ktime_to_timeval(kt);
  246. return (s64) tv.tv_sec * USEC_PER_SEC + tv.tv_usec;
  247. }
  248. static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
  249. {
  250. return ktime_to_us(ktime_sub(later, earlier));
  251. }
  252. /*
  253. * The resolution of the clocks. The resolution value is returned in
  254. * the clock_getres() system call to give application programmers an
  255. * idea of the (in)accuracy of timers. Timer values are rounded up to
  256. * this resolution values.
  257. */
  258. #define KTIME_LOW_RES (ktime_t){ .tv64 = TICK_NSEC }
  259. /* Get the monotonic time in timespec format: */
  260. extern void ktime_get_ts(struct timespec *ts);
  261. /* Get the real (wall-) time in timespec format: */
  262. #define ktime_get_real_ts(ts) getnstimeofday(ts)
  263. #endif