slub.c 126 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  121. {
  122. #ifdef CONFIG_SLUB_CPU_PARTIAL
  123. return !kmem_cache_debug(s);
  124. #else
  125. return false;
  126. #endif
  127. }
  128. /*
  129. * Issues still to be resolved:
  130. *
  131. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  132. *
  133. * - Variable sizing of the per node arrays
  134. */
  135. /* Enable to test recovery from slab corruption on boot */
  136. #undef SLUB_RESILIENCY_TEST
  137. /* Enable to log cmpxchg failures */
  138. #undef SLUB_DEBUG_CMPXCHG
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in the.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Debugging flags that require metadata to be stored in the slab. These get
  154. * disabled when slub_debug=O is used and a cache's min order increases with
  155. * metadata.
  156. */
  157. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  158. /*
  159. * Set of flags that will prevent slab merging
  160. */
  161. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  162. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  163. SLAB_FAILSLAB)
  164. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  165. SLAB_CACHE_DMA | SLAB_NOTRACK)
  166. #define OO_SHIFT 16
  167. #define OO_MASK ((1 << OO_SHIFT) - 1)
  168. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  169. /* Internal SLUB flags */
  170. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  171. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  172. #ifdef CONFIG_SMP
  173. static struct notifier_block slab_notifier;
  174. #endif
  175. /*
  176. * Tracking user of a slab.
  177. */
  178. #define TRACK_ADDRS_COUNT 16
  179. struct track {
  180. unsigned long addr; /* Called from address */
  181. #ifdef CONFIG_STACKTRACE
  182. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  183. #endif
  184. int cpu; /* Was running on cpu */
  185. int pid; /* Pid context */
  186. unsigned long when; /* When did the operation occur */
  187. };
  188. enum track_item { TRACK_ALLOC, TRACK_FREE };
  189. #ifdef CONFIG_SYSFS
  190. static int sysfs_slab_add(struct kmem_cache *);
  191. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  192. static void sysfs_slab_remove(struct kmem_cache *);
  193. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  194. #else
  195. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  196. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  197. { return 0; }
  198. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  199. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  200. #endif
  201. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  202. {
  203. #ifdef CONFIG_SLUB_STATS
  204. __this_cpu_inc(s->cpu_slab->stat[si]);
  205. #endif
  206. }
  207. /********************************************************************
  208. * Core slab cache functions
  209. *******************************************************************/
  210. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  211. {
  212. return s->node[node];
  213. }
  214. /* Verify that a pointer has an address that is valid within a slab page */
  215. static inline int check_valid_pointer(struct kmem_cache *s,
  216. struct page *page, const void *object)
  217. {
  218. void *base;
  219. if (!object)
  220. return 1;
  221. base = page_address(page);
  222. if (object < base || object >= base + page->objects * s->size ||
  223. (object - base) % s->size) {
  224. return 0;
  225. }
  226. return 1;
  227. }
  228. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  229. {
  230. return *(void **)(object + s->offset);
  231. }
  232. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  233. {
  234. prefetch(object + s->offset);
  235. }
  236. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  237. {
  238. void *p;
  239. #ifdef CONFIG_DEBUG_PAGEALLOC
  240. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  241. #else
  242. p = get_freepointer(s, object);
  243. #endif
  244. return p;
  245. }
  246. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  247. {
  248. *(void **)(object + s->offset) = fp;
  249. }
  250. /* Loop over all objects in a slab */
  251. #define for_each_object(__p, __s, __addr, __objects) \
  252. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  253. __p += (__s)->size)
  254. /* Determine object index from a given position */
  255. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  256. {
  257. return (p - addr) / s->size;
  258. }
  259. static inline size_t slab_ksize(const struct kmem_cache *s)
  260. {
  261. #ifdef CONFIG_SLUB_DEBUG
  262. /*
  263. * Debugging requires use of the padding between object
  264. * and whatever may come after it.
  265. */
  266. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  267. return s->object_size;
  268. #endif
  269. /*
  270. * If we have the need to store the freelist pointer
  271. * back there or track user information then we can
  272. * only use the space before that information.
  273. */
  274. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  275. return s->inuse;
  276. /*
  277. * Else we can use all the padding etc for the allocation
  278. */
  279. return s->size;
  280. }
  281. static inline int order_objects(int order, unsigned long size, int reserved)
  282. {
  283. return ((PAGE_SIZE << order) - reserved) / size;
  284. }
  285. static inline struct kmem_cache_order_objects oo_make(int order,
  286. unsigned long size, int reserved)
  287. {
  288. struct kmem_cache_order_objects x = {
  289. (order << OO_SHIFT) + order_objects(order, size, reserved)
  290. };
  291. return x;
  292. }
  293. static inline int oo_order(struct kmem_cache_order_objects x)
  294. {
  295. return x.x >> OO_SHIFT;
  296. }
  297. static inline int oo_objects(struct kmem_cache_order_objects x)
  298. {
  299. return x.x & OO_MASK;
  300. }
  301. /*
  302. * Per slab locking using the pagelock
  303. */
  304. static __always_inline void slab_lock(struct page *page)
  305. {
  306. bit_spin_lock(PG_locked, &page->flags);
  307. }
  308. static __always_inline void slab_unlock(struct page *page)
  309. {
  310. __bit_spin_unlock(PG_locked, &page->flags);
  311. }
  312. /* Interrupts must be disabled (for the fallback code to work right) */
  313. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  314. void *freelist_old, unsigned long counters_old,
  315. void *freelist_new, unsigned long counters_new,
  316. const char *n)
  317. {
  318. VM_BUG_ON(!irqs_disabled());
  319. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  320. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  321. if (s->flags & __CMPXCHG_DOUBLE) {
  322. if (cmpxchg_double(&page->freelist, &page->counters,
  323. freelist_old, counters_old,
  324. freelist_new, counters_new))
  325. return 1;
  326. } else
  327. #endif
  328. {
  329. slab_lock(page);
  330. if (page->freelist == freelist_old &&
  331. page->counters == counters_old) {
  332. page->freelist = freelist_new;
  333. page->counters = counters_new;
  334. slab_unlock(page);
  335. return 1;
  336. }
  337. slab_unlock(page);
  338. }
  339. cpu_relax();
  340. stat(s, CMPXCHG_DOUBLE_FAIL);
  341. #ifdef SLUB_DEBUG_CMPXCHG
  342. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  343. #endif
  344. return 0;
  345. }
  346. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  347. void *freelist_old, unsigned long counters_old,
  348. void *freelist_new, unsigned long counters_new,
  349. const char *n)
  350. {
  351. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  352. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  353. if (s->flags & __CMPXCHG_DOUBLE) {
  354. if (cmpxchg_double(&page->freelist, &page->counters,
  355. freelist_old, counters_old,
  356. freelist_new, counters_new))
  357. return 1;
  358. } else
  359. #endif
  360. {
  361. unsigned long flags;
  362. local_irq_save(flags);
  363. slab_lock(page);
  364. if (page->freelist == freelist_old &&
  365. page->counters == counters_old) {
  366. page->freelist = freelist_new;
  367. page->counters = counters_new;
  368. slab_unlock(page);
  369. local_irq_restore(flags);
  370. return 1;
  371. }
  372. slab_unlock(page);
  373. local_irq_restore(flags);
  374. }
  375. cpu_relax();
  376. stat(s, CMPXCHG_DOUBLE_FAIL);
  377. #ifdef SLUB_DEBUG_CMPXCHG
  378. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  379. #endif
  380. return 0;
  381. }
  382. #ifdef CONFIG_SLUB_DEBUG
  383. /*
  384. * Determine a map of object in use on a page.
  385. *
  386. * Node listlock must be held to guarantee that the page does
  387. * not vanish from under us.
  388. */
  389. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  390. {
  391. void *p;
  392. void *addr = page_address(page);
  393. for (p = page->freelist; p; p = get_freepointer(s, p))
  394. set_bit(slab_index(p, s, addr), map);
  395. }
  396. /*
  397. * Debug settings:
  398. */
  399. #ifdef CONFIG_SLUB_DEBUG_ON
  400. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  401. #else
  402. static int slub_debug;
  403. #endif
  404. static char *slub_debug_slabs;
  405. static int disable_higher_order_debug;
  406. /*
  407. * Object debugging
  408. */
  409. static void print_section(char *text, u8 *addr, unsigned int length)
  410. {
  411. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  412. length, 1);
  413. }
  414. static struct track *get_track(struct kmem_cache *s, void *object,
  415. enum track_item alloc)
  416. {
  417. struct track *p;
  418. if (s->offset)
  419. p = object + s->offset + sizeof(void *);
  420. else
  421. p = object + s->inuse;
  422. return p + alloc;
  423. }
  424. static void set_track(struct kmem_cache *s, void *object,
  425. enum track_item alloc, unsigned long addr)
  426. {
  427. struct track *p = get_track(s, object, alloc);
  428. if (addr) {
  429. #ifdef CONFIG_STACKTRACE
  430. struct stack_trace trace;
  431. int i;
  432. trace.nr_entries = 0;
  433. trace.max_entries = TRACK_ADDRS_COUNT;
  434. trace.entries = p->addrs;
  435. trace.skip = 3;
  436. save_stack_trace(&trace);
  437. /* See rant in lockdep.c */
  438. if (trace.nr_entries != 0 &&
  439. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  440. trace.nr_entries--;
  441. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  442. p->addrs[i] = 0;
  443. #endif
  444. p->addr = addr;
  445. p->cpu = smp_processor_id();
  446. p->pid = current->pid;
  447. p->when = jiffies;
  448. } else
  449. memset(p, 0, sizeof(struct track));
  450. }
  451. static void init_tracking(struct kmem_cache *s, void *object)
  452. {
  453. if (!(s->flags & SLAB_STORE_USER))
  454. return;
  455. set_track(s, object, TRACK_FREE, 0UL);
  456. set_track(s, object, TRACK_ALLOC, 0UL);
  457. }
  458. static void print_track(const char *s, struct track *t)
  459. {
  460. if (!t->addr)
  461. return;
  462. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  463. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  464. #ifdef CONFIG_STACKTRACE
  465. {
  466. int i;
  467. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  468. if (t->addrs[i])
  469. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  470. else
  471. break;
  472. }
  473. #endif
  474. }
  475. static void print_tracking(struct kmem_cache *s, void *object)
  476. {
  477. if (!(s->flags & SLAB_STORE_USER))
  478. return;
  479. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  480. print_track("Freed", get_track(s, object, TRACK_FREE));
  481. }
  482. static void print_page_info(struct page *page)
  483. {
  484. printk(KERN_ERR
  485. "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  486. page, page->objects, page->inuse, page->freelist, page->flags);
  487. }
  488. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  489. {
  490. va_list args;
  491. char buf[100];
  492. va_start(args, fmt);
  493. vsnprintf(buf, sizeof(buf), fmt, args);
  494. va_end(args);
  495. printk(KERN_ERR "========================================"
  496. "=====================================\n");
  497. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  498. printk(KERN_ERR "----------------------------------------"
  499. "-------------------------------------\n\n");
  500. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  501. }
  502. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  503. {
  504. va_list args;
  505. char buf[100];
  506. va_start(args, fmt);
  507. vsnprintf(buf, sizeof(buf), fmt, args);
  508. va_end(args);
  509. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  510. }
  511. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  512. {
  513. unsigned int off; /* Offset of last byte */
  514. u8 *addr = page_address(page);
  515. print_tracking(s, p);
  516. print_page_info(page);
  517. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  518. p, p - addr, get_freepointer(s, p));
  519. if (p > addr + 16)
  520. print_section("Bytes b4 ", p - 16, 16);
  521. print_section("Object ", p, min_t(unsigned long, s->object_size,
  522. PAGE_SIZE));
  523. if (s->flags & SLAB_RED_ZONE)
  524. print_section("Redzone ", p + s->object_size,
  525. s->inuse - s->object_size);
  526. if (s->offset)
  527. off = s->offset + sizeof(void *);
  528. else
  529. off = s->inuse;
  530. if (s->flags & SLAB_STORE_USER)
  531. off += 2 * sizeof(struct track);
  532. if (off != s->size)
  533. /* Beginning of the filler is the free pointer */
  534. print_section("Padding ", p + off, s->size - off);
  535. dump_stack();
  536. }
  537. static void object_err(struct kmem_cache *s, struct page *page,
  538. u8 *object, char *reason)
  539. {
  540. slab_bug(s, "%s", reason);
  541. print_trailer(s, page, object);
  542. }
  543. static void slab_err(struct kmem_cache *s, struct page *page,
  544. const char *fmt, ...)
  545. {
  546. va_list args;
  547. char buf[100];
  548. va_start(args, fmt);
  549. vsnprintf(buf, sizeof(buf), fmt, args);
  550. va_end(args);
  551. slab_bug(s, "%s", buf);
  552. print_page_info(page);
  553. dump_stack();
  554. }
  555. static void init_object(struct kmem_cache *s, void *object, u8 val)
  556. {
  557. u8 *p = object;
  558. if (s->flags & __OBJECT_POISON) {
  559. memset(p, POISON_FREE, s->object_size - 1);
  560. p[s->object_size - 1] = POISON_END;
  561. }
  562. if (s->flags & SLAB_RED_ZONE)
  563. memset(p + s->object_size, val, s->inuse - s->object_size);
  564. }
  565. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  566. void *from, void *to)
  567. {
  568. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  569. memset(from, data, to - from);
  570. }
  571. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  572. u8 *object, char *what,
  573. u8 *start, unsigned int value, unsigned int bytes)
  574. {
  575. u8 *fault;
  576. u8 *end;
  577. fault = memchr_inv(start, value, bytes);
  578. if (!fault)
  579. return 1;
  580. end = start + bytes;
  581. while (end > fault && end[-1] == value)
  582. end--;
  583. slab_bug(s, "%s overwritten", what);
  584. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  585. fault, end - 1, fault[0], value);
  586. print_trailer(s, page, object);
  587. restore_bytes(s, what, value, fault, end);
  588. return 0;
  589. }
  590. /*
  591. * Object layout:
  592. *
  593. * object address
  594. * Bytes of the object to be managed.
  595. * If the freepointer may overlay the object then the free
  596. * pointer is the first word of the object.
  597. *
  598. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  599. * 0xa5 (POISON_END)
  600. *
  601. * object + s->object_size
  602. * Padding to reach word boundary. This is also used for Redzoning.
  603. * Padding is extended by another word if Redzoning is enabled and
  604. * object_size == inuse.
  605. *
  606. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  607. * 0xcc (RED_ACTIVE) for objects in use.
  608. *
  609. * object + s->inuse
  610. * Meta data starts here.
  611. *
  612. * A. Free pointer (if we cannot overwrite object on free)
  613. * B. Tracking data for SLAB_STORE_USER
  614. * C. Padding to reach required alignment boundary or at mininum
  615. * one word if debugging is on to be able to detect writes
  616. * before the word boundary.
  617. *
  618. * Padding is done using 0x5a (POISON_INUSE)
  619. *
  620. * object + s->size
  621. * Nothing is used beyond s->size.
  622. *
  623. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  624. * ignored. And therefore no slab options that rely on these boundaries
  625. * may be used with merged slabcaches.
  626. */
  627. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  628. {
  629. unsigned long off = s->inuse; /* The end of info */
  630. if (s->offset)
  631. /* Freepointer is placed after the object. */
  632. off += sizeof(void *);
  633. if (s->flags & SLAB_STORE_USER)
  634. /* We also have user information there */
  635. off += 2 * sizeof(struct track);
  636. if (s->size == off)
  637. return 1;
  638. return check_bytes_and_report(s, page, p, "Object padding",
  639. p + off, POISON_INUSE, s->size - off);
  640. }
  641. /* Check the pad bytes at the end of a slab page */
  642. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  643. {
  644. u8 *start;
  645. u8 *fault;
  646. u8 *end;
  647. int length;
  648. int remainder;
  649. if (!(s->flags & SLAB_POISON))
  650. return 1;
  651. start = page_address(page);
  652. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  653. end = start + length;
  654. remainder = length % s->size;
  655. if (!remainder)
  656. return 1;
  657. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  658. if (!fault)
  659. return 1;
  660. while (end > fault && end[-1] == POISON_INUSE)
  661. end--;
  662. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  663. print_section("Padding ", end - remainder, remainder);
  664. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  665. return 0;
  666. }
  667. static int check_object(struct kmem_cache *s, struct page *page,
  668. void *object, u8 val)
  669. {
  670. u8 *p = object;
  671. u8 *endobject = object + s->object_size;
  672. if (s->flags & SLAB_RED_ZONE) {
  673. if (!check_bytes_and_report(s, page, object, "Redzone",
  674. endobject, val, s->inuse - s->object_size))
  675. return 0;
  676. } else {
  677. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  678. check_bytes_and_report(s, page, p, "Alignment padding",
  679. endobject, POISON_INUSE,
  680. s->inuse - s->object_size);
  681. }
  682. }
  683. if (s->flags & SLAB_POISON) {
  684. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  685. (!check_bytes_and_report(s, page, p, "Poison", p,
  686. POISON_FREE, s->object_size - 1) ||
  687. !check_bytes_and_report(s, page, p, "Poison",
  688. p + s->object_size - 1, POISON_END, 1)))
  689. return 0;
  690. /*
  691. * check_pad_bytes cleans up on its own.
  692. */
  693. check_pad_bytes(s, page, p);
  694. }
  695. if (!s->offset && val == SLUB_RED_ACTIVE)
  696. /*
  697. * Object and freepointer overlap. Cannot check
  698. * freepointer while object is allocated.
  699. */
  700. return 1;
  701. /* Check free pointer validity */
  702. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  703. object_err(s, page, p, "Freepointer corrupt");
  704. /*
  705. * No choice but to zap it and thus lose the remainder
  706. * of the free objects in this slab. May cause
  707. * another error because the object count is now wrong.
  708. */
  709. set_freepointer(s, p, NULL);
  710. return 0;
  711. }
  712. return 1;
  713. }
  714. static int check_slab(struct kmem_cache *s, struct page *page)
  715. {
  716. int maxobj;
  717. VM_BUG_ON(!irqs_disabled());
  718. if (!PageSlab(page)) {
  719. slab_err(s, page, "Not a valid slab page");
  720. return 0;
  721. }
  722. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  723. if (page->objects > maxobj) {
  724. slab_err(s, page, "objects %u > max %u",
  725. s->name, page->objects, maxobj);
  726. return 0;
  727. }
  728. if (page->inuse > page->objects) {
  729. slab_err(s, page, "inuse %u > max %u",
  730. s->name, page->inuse, page->objects);
  731. return 0;
  732. }
  733. /* Slab_pad_check fixes things up after itself */
  734. slab_pad_check(s, page);
  735. return 1;
  736. }
  737. /*
  738. * Determine if a certain object on a page is on the freelist. Must hold the
  739. * slab lock to guarantee that the chains are in a consistent state.
  740. */
  741. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  742. {
  743. int nr = 0;
  744. void *fp;
  745. void *object = NULL;
  746. unsigned long max_objects;
  747. fp = page->freelist;
  748. while (fp && nr <= page->objects) {
  749. if (fp == search)
  750. return 1;
  751. if (!check_valid_pointer(s, page, fp)) {
  752. if (object) {
  753. object_err(s, page, object,
  754. "Freechain corrupt");
  755. set_freepointer(s, object, NULL);
  756. } else {
  757. slab_err(s, page, "Freepointer corrupt");
  758. page->freelist = NULL;
  759. page->inuse = page->objects;
  760. slab_fix(s, "Freelist cleared");
  761. return 0;
  762. }
  763. break;
  764. }
  765. object = fp;
  766. fp = get_freepointer(s, object);
  767. nr++;
  768. }
  769. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  770. if (max_objects > MAX_OBJS_PER_PAGE)
  771. max_objects = MAX_OBJS_PER_PAGE;
  772. if (page->objects != max_objects) {
  773. slab_err(s, page, "Wrong number of objects. Found %d but "
  774. "should be %d", page->objects, max_objects);
  775. page->objects = max_objects;
  776. slab_fix(s, "Number of objects adjusted.");
  777. }
  778. if (page->inuse != page->objects - nr) {
  779. slab_err(s, page, "Wrong object count. Counter is %d but "
  780. "counted were %d", page->inuse, page->objects - nr);
  781. page->inuse = page->objects - nr;
  782. slab_fix(s, "Object count adjusted.");
  783. }
  784. return search == NULL;
  785. }
  786. static void trace(struct kmem_cache *s, struct page *page, void *object,
  787. int alloc)
  788. {
  789. if (s->flags & SLAB_TRACE) {
  790. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  791. s->name,
  792. alloc ? "alloc" : "free",
  793. object, page->inuse,
  794. page->freelist);
  795. if (!alloc)
  796. print_section("Object ", (void *)object,
  797. s->object_size);
  798. dump_stack();
  799. }
  800. }
  801. /*
  802. * Hooks for other subsystems that check memory allocations. In a typical
  803. * production configuration these hooks all should produce no code at all.
  804. */
  805. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  806. {
  807. flags &= gfp_allowed_mask;
  808. lockdep_trace_alloc(flags);
  809. might_sleep_if(flags & __GFP_WAIT);
  810. return should_failslab(s->object_size, flags, s->flags);
  811. }
  812. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  813. gfp_t flags, void *object)
  814. {
  815. flags &= gfp_allowed_mask;
  816. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  817. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  818. }
  819. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  820. {
  821. kmemleak_free_recursive(x, s->flags);
  822. /*
  823. * Trouble is that we may no longer disable interupts in the fast path
  824. * So in order to make the debug calls that expect irqs to be
  825. * disabled we need to disable interrupts temporarily.
  826. */
  827. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  828. {
  829. unsigned long flags;
  830. local_irq_save(flags);
  831. kmemcheck_slab_free(s, x, s->object_size);
  832. debug_check_no_locks_freed(x, s->object_size);
  833. local_irq_restore(flags);
  834. }
  835. #endif
  836. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  837. debug_check_no_obj_freed(x, s->object_size);
  838. }
  839. /*
  840. * Tracking of fully allocated slabs for debugging purposes.
  841. *
  842. * list_lock must be held.
  843. */
  844. static void add_full(struct kmem_cache *s,
  845. struct kmem_cache_node *n, struct page *page)
  846. {
  847. if (!(s->flags & SLAB_STORE_USER))
  848. return;
  849. list_add(&page->lru, &n->full);
  850. }
  851. /*
  852. * list_lock must be held.
  853. */
  854. static void remove_full(struct kmem_cache *s, struct page *page)
  855. {
  856. if (!(s->flags & SLAB_STORE_USER))
  857. return;
  858. list_del(&page->lru);
  859. }
  860. /* Tracking of the number of slabs for debugging purposes */
  861. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  862. {
  863. struct kmem_cache_node *n = get_node(s, node);
  864. return atomic_long_read(&n->nr_slabs);
  865. }
  866. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  867. {
  868. return atomic_long_read(&n->nr_slabs);
  869. }
  870. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  871. {
  872. struct kmem_cache_node *n = get_node(s, node);
  873. /*
  874. * May be called early in order to allocate a slab for the
  875. * kmem_cache_node structure. Solve the chicken-egg
  876. * dilemma by deferring the increment of the count during
  877. * bootstrap (see early_kmem_cache_node_alloc).
  878. */
  879. if (likely(n)) {
  880. atomic_long_inc(&n->nr_slabs);
  881. atomic_long_add(objects, &n->total_objects);
  882. }
  883. }
  884. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  885. {
  886. struct kmem_cache_node *n = get_node(s, node);
  887. atomic_long_dec(&n->nr_slabs);
  888. atomic_long_sub(objects, &n->total_objects);
  889. }
  890. /* Object debug checks for alloc/free paths */
  891. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  892. void *object)
  893. {
  894. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  895. return;
  896. init_object(s, object, SLUB_RED_INACTIVE);
  897. init_tracking(s, object);
  898. }
  899. static noinline int alloc_debug_processing(struct kmem_cache *s,
  900. struct page *page,
  901. void *object, unsigned long addr)
  902. {
  903. if (!check_slab(s, page))
  904. goto bad;
  905. if (!check_valid_pointer(s, page, object)) {
  906. object_err(s, page, object, "Freelist Pointer check fails");
  907. goto bad;
  908. }
  909. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  910. goto bad;
  911. /* Success perform special debug activities for allocs */
  912. if (s->flags & SLAB_STORE_USER)
  913. set_track(s, object, TRACK_ALLOC, addr);
  914. trace(s, page, object, 1);
  915. init_object(s, object, SLUB_RED_ACTIVE);
  916. return 1;
  917. bad:
  918. if (PageSlab(page)) {
  919. /*
  920. * If this is a slab page then lets do the best we can
  921. * to avoid issues in the future. Marking all objects
  922. * as used avoids touching the remaining objects.
  923. */
  924. slab_fix(s, "Marking all objects used");
  925. page->inuse = page->objects;
  926. page->freelist = NULL;
  927. }
  928. return 0;
  929. }
  930. static noinline struct kmem_cache_node *free_debug_processing(
  931. struct kmem_cache *s, struct page *page, void *object,
  932. unsigned long addr, unsigned long *flags)
  933. {
  934. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  935. spin_lock_irqsave(&n->list_lock, *flags);
  936. slab_lock(page);
  937. if (!check_slab(s, page))
  938. goto fail;
  939. if (!check_valid_pointer(s, page, object)) {
  940. slab_err(s, page, "Invalid object pointer 0x%p", object);
  941. goto fail;
  942. }
  943. if (on_freelist(s, page, object)) {
  944. object_err(s, page, object, "Object already free");
  945. goto fail;
  946. }
  947. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  948. goto out;
  949. if (unlikely(s != page->slab_cache)) {
  950. if (!PageSlab(page)) {
  951. slab_err(s, page, "Attempt to free object(0x%p) "
  952. "outside of slab", object);
  953. } else if (!page->slab_cache) {
  954. printk(KERN_ERR
  955. "SLUB <none>: no slab for object 0x%p.\n",
  956. object);
  957. dump_stack();
  958. } else
  959. object_err(s, page, object,
  960. "page slab pointer corrupt.");
  961. goto fail;
  962. }
  963. if (s->flags & SLAB_STORE_USER)
  964. set_track(s, object, TRACK_FREE, addr);
  965. trace(s, page, object, 0);
  966. init_object(s, object, SLUB_RED_INACTIVE);
  967. out:
  968. slab_unlock(page);
  969. /*
  970. * Keep node_lock to preserve integrity
  971. * until the object is actually freed
  972. */
  973. return n;
  974. fail:
  975. slab_unlock(page);
  976. spin_unlock_irqrestore(&n->list_lock, *flags);
  977. slab_fix(s, "Object at 0x%p not freed", object);
  978. return NULL;
  979. }
  980. static int __init setup_slub_debug(char *str)
  981. {
  982. slub_debug = DEBUG_DEFAULT_FLAGS;
  983. if (*str++ != '=' || !*str)
  984. /*
  985. * No options specified. Switch on full debugging.
  986. */
  987. goto out;
  988. if (*str == ',')
  989. /*
  990. * No options but restriction on slabs. This means full
  991. * debugging for slabs matching a pattern.
  992. */
  993. goto check_slabs;
  994. if (tolower(*str) == 'o') {
  995. /*
  996. * Avoid enabling debugging on caches if its minimum order
  997. * would increase as a result.
  998. */
  999. disable_higher_order_debug = 1;
  1000. goto out;
  1001. }
  1002. slub_debug = 0;
  1003. if (*str == '-')
  1004. /*
  1005. * Switch off all debugging measures.
  1006. */
  1007. goto out;
  1008. /*
  1009. * Determine which debug features should be switched on
  1010. */
  1011. for (; *str && *str != ','; str++) {
  1012. switch (tolower(*str)) {
  1013. case 'f':
  1014. slub_debug |= SLAB_DEBUG_FREE;
  1015. break;
  1016. case 'z':
  1017. slub_debug |= SLAB_RED_ZONE;
  1018. break;
  1019. case 'p':
  1020. slub_debug |= SLAB_POISON;
  1021. break;
  1022. case 'u':
  1023. slub_debug |= SLAB_STORE_USER;
  1024. break;
  1025. case 't':
  1026. slub_debug |= SLAB_TRACE;
  1027. break;
  1028. case 'a':
  1029. slub_debug |= SLAB_FAILSLAB;
  1030. break;
  1031. default:
  1032. printk(KERN_ERR "slub_debug option '%c' "
  1033. "unknown. skipped\n", *str);
  1034. }
  1035. }
  1036. check_slabs:
  1037. if (*str == ',')
  1038. slub_debug_slabs = str + 1;
  1039. out:
  1040. return 1;
  1041. }
  1042. __setup("slub_debug", setup_slub_debug);
  1043. static unsigned long kmem_cache_flags(unsigned long object_size,
  1044. unsigned long flags, const char *name,
  1045. void (*ctor)(void *))
  1046. {
  1047. /*
  1048. * Enable debugging if selected on the kernel commandline.
  1049. */
  1050. if (slub_debug && (!slub_debug_slabs ||
  1051. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1052. flags |= slub_debug;
  1053. return flags;
  1054. }
  1055. #else
  1056. static inline void setup_object_debug(struct kmem_cache *s,
  1057. struct page *page, void *object) {}
  1058. static inline int alloc_debug_processing(struct kmem_cache *s,
  1059. struct page *page, void *object, unsigned long addr) { return 0; }
  1060. static inline struct kmem_cache_node *free_debug_processing(
  1061. struct kmem_cache *s, struct page *page, void *object,
  1062. unsigned long addr, unsigned long *flags) { return NULL; }
  1063. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1064. { return 1; }
  1065. static inline int check_object(struct kmem_cache *s, struct page *page,
  1066. void *object, u8 val) { return 1; }
  1067. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1068. struct page *page) {}
  1069. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1070. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1071. unsigned long flags, const char *name,
  1072. void (*ctor)(void *))
  1073. {
  1074. return flags;
  1075. }
  1076. #define slub_debug 0
  1077. #define disable_higher_order_debug 0
  1078. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1079. { return 0; }
  1080. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1081. { return 0; }
  1082. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1083. int objects) {}
  1084. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1085. int objects) {}
  1086. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1087. { return 0; }
  1088. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1089. void *object) {}
  1090. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1091. #endif /* CONFIG_SLUB_DEBUG */
  1092. /*
  1093. * Slab allocation and freeing
  1094. */
  1095. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1096. struct kmem_cache_order_objects oo)
  1097. {
  1098. int order = oo_order(oo);
  1099. flags |= __GFP_NOTRACK;
  1100. if (node == NUMA_NO_NODE)
  1101. return alloc_pages(flags, order);
  1102. else
  1103. return alloc_pages_exact_node(node, flags, order);
  1104. }
  1105. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1106. {
  1107. struct page *page;
  1108. struct kmem_cache_order_objects oo = s->oo;
  1109. gfp_t alloc_gfp;
  1110. flags &= gfp_allowed_mask;
  1111. if (flags & __GFP_WAIT)
  1112. local_irq_enable();
  1113. flags |= s->allocflags;
  1114. /*
  1115. * Let the initial higher-order allocation fail under memory pressure
  1116. * so we fall-back to the minimum order allocation.
  1117. */
  1118. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1119. page = alloc_slab_page(alloc_gfp, node, oo);
  1120. if (unlikely(!page)) {
  1121. oo = s->min;
  1122. /*
  1123. * Allocation may have failed due to fragmentation.
  1124. * Try a lower order alloc if possible
  1125. */
  1126. page = alloc_slab_page(flags, node, oo);
  1127. if (page)
  1128. stat(s, ORDER_FALLBACK);
  1129. }
  1130. if (kmemcheck_enabled && page
  1131. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1132. int pages = 1 << oo_order(oo);
  1133. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1134. /*
  1135. * Objects from caches that have a constructor don't get
  1136. * cleared when they're allocated, so we need to do it here.
  1137. */
  1138. if (s->ctor)
  1139. kmemcheck_mark_uninitialized_pages(page, pages);
  1140. else
  1141. kmemcheck_mark_unallocated_pages(page, pages);
  1142. }
  1143. if (flags & __GFP_WAIT)
  1144. local_irq_disable();
  1145. if (!page)
  1146. return NULL;
  1147. page->objects = oo_objects(oo);
  1148. mod_zone_page_state(page_zone(page),
  1149. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1150. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1151. 1 << oo_order(oo));
  1152. return page;
  1153. }
  1154. static void setup_object(struct kmem_cache *s, struct page *page,
  1155. void *object)
  1156. {
  1157. setup_object_debug(s, page, object);
  1158. if (unlikely(s->ctor))
  1159. s->ctor(object);
  1160. }
  1161. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1162. {
  1163. struct page *page;
  1164. void *start;
  1165. void *last;
  1166. void *p;
  1167. int order;
  1168. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1169. page = allocate_slab(s,
  1170. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1171. if (!page)
  1172. goto out;
  1173. order = compound_order(page);
  1174. inc_slabs_node(s, page_to_nid(page), page->objects);
  1175. memcg_bind_pages(s, order);
  1176. page->slab_cache = s;
  1177. __SetPageSlab(page);
  1178. if (page->pfmemalloc)
  1179. SetPageSlabPfmemalloc(page);
  1180. start = page_address(page);
  1181. if (unlikely(s->flags & SLAB_POISON))
  1182. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1183. last = start;
  1184. for_each_object(p, s, start, page->objects) {
  1185. setup_object(s, page, last);
  1186. set_freepointer(s, last, p);
  1187. last = p;
  1188. }
  1189. setup_object(s, page, last);
  1190. set_freepointer(s, last, NULL);
  1191. page->freelist = start;
  1192. page->inuse = page->objects;
  1193. page->frozen = 1;
  1194. out:
  1195. return page;
  1196. }
  1197. static void __free_slab(struct kmem_cache *s, struct page *page)
  1198. {
  1199. int order = compound_order(page);
  1200. int pages = 1 << order;
  1201. if (kmem_cache_debug(s)) {
  1202. void *p;
  1203. slab_pad_check(s, page);
  1204. for_each_object(p, s, page_address(page),
  1205. page->objects)
  1206. check_object(s, page, p, SLUB_RED_INACTIVE);
  1207. }
  1208. kmemcheck_free_shadow(page, compound_order(page));
  1209. mod_zone_page_state(page_zone(page),
  1210. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1211. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1212. -pages);
  1213. __ClearPageSlabPfmemalloc(page);
  1214. __ClearPageSlab(page);
  1215. memcg_release_pages(s, order);
  1216. page_mapcount_reset(page);
  1217. if (current->reclaim_state)
  1218. current->reclaim_state->reclaimed_slab += pages;
  1219. __free_memcg_kmem_pages(page, order);
  1220. }
  1221. #define need_reserve_slab_rcu \
  1222. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1223. static void rcu_free_slab(struct rcu_head *h)
  1224. {
  1225. struct page *page;
  1226. if (need_reserve_slab_rcu)
  1227. page = virt_to_head_page(h);
  1228. else
  1229. page = container_of((struct list_head *)h, struct page, lru);
  1230. __free_slab(page->slab_cache, page);
  1231. }
  1232. static void free_slab(struct kmem_cache *s, struct page *page)
  1233. {
  1234. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1235. struct rcu_head *head;
  1236. if (need_reserve_slab_rcu) {
  1237. int order = compound_order(page);
  1238. int offset = (PAGE_SIZE << order) - s->reserved;
  1239. VM_BUG_ON(s->reserved != sizeof(*head));
  1240. head = page_address(page) + offset;
  1241. } else {
  1242. /*
  1243. * RCU free overloads the RCU head over the LRU
  1244. */
  1245. head = (void *)&page->lru;
  1246. }
  1247. call_rcu(head, rcu_free_slab);
  1248. } else
  1249. __free_slab(s, page);
  1250. }
  1251. static void discard_slab(struct kmem_cache *s, struct page *page)
  1252. {
  1253. dec_slabs_node(s, page_to_nid(page), page->objects);
  1254. free_slab(s, page);
  1255. }
  1256. /*
  1257. * Management of partially allocated slabs.
  1258. *
  1259. * list_lock must be held.
  1260. */
  1261. static inline void add_partial(struct kmem_cache_node *n,
  1262. struct page *page, int tail)
  1263. {
  1264. n->nr_partial++;
  1265. if (tail == DEACTIVATE_TO_TAIL)
  1266. list_add_tail(&page->lru, &n->partial);
  1267. else
  1268. list_add(&page->lru, &n->partial);
  1269. }
  1270. /*
  1271. * list_lock must be held.
  1272. */
  1273. static inline void remove_partial(struct kmem_cache_node *n,
  1274. struct page *page)
  1275. {
  1276. list_del(&page->lru);
  1277. n->nr_partial--;
  1278. }
  1279. /*
  1280. * Remove slab from the partial list, freeze it and
  1281. * return the pointer to the freelist.
  1282. *
  1283. * Returns a list of objects or NULL if it fails.
  1284. *
  1285. * Must hold list_lock since we modify the partial list.
  1286. */
  1287. static inline void *acquire_slab(struct kmem_cache *s,
  1288. struct kmem_cache_node *n, struct page *page,
  1289. int mode, int *objects)
  1290. {
  1291. void *freelist;
  1292. unsigned long counters;
  1293. struct page new;
  1294. /*
  1295. * Zap the freelist and set the frozen bit.
  1296. * The old freelist is the list of objects for the
  1297. * per cpu allocation list.
  1298. */
  1299. freelist = page->freelist;
  1300. counters = page->counters;
  1301. new.counters = counters;
  1302. *objects = new.objects - new.inuse;
  1303. if (mode) {
  1304. new.inuse = page->objects;
  1305. new.freelist = NULL;
  1306. } else {
  1307. new.freelist = freelist;
  1308. }
  1309. VM_BUG_ON(new.frozen);
  1310. new.frozen = 1;
  1311. if (!__cmpxchg_double_slab(s, page,
  1312. freelist, counters,
  1313. new.freelist, new.counters,
  1314. "acquire_slab"))
  1315. return NULL;
  1316. remove_partial(n, page);
  1317. WARN_ON(!freelist);
  1318. return freelist;
  1319. }
  1320. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1321. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1322. /*
  1323. * Try to allocate a partial slab from a specific node.
  1324. */
  1325. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1326. struct kmem_cache_cpu *c, gfp_t flags)
  1327. {
  1328. struct page *page, *page2;
  1329. void *object = NULL;
  1330. int available = 0;
  1331. int objects;
  1332. /*
  1333. * Racy check. If we mistakenly see no partial slabs then we
  1334. * just allocate an empty slab. If we mistakenly try to get a
  1335. * partial slab and there is none available then get_partials()
  1336. * will return NULL.
  1337. */
  1338. if (!n || !n->nr_partial)
  1339. return NULL;
  1340. spin_lock(&n->list_lock);
  1341. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1342. void *t;
  1343. if (!pfmemalloc_match(page, flags))
  1344. continue;
  1345. t = acquire_slab(s, n, page, object == NULL, &objects);
  1346. if (!t)
  1347. break;
  1348. available += objects;
  1349. if (!object) {
  1350. c->page = page;
  1351. stat(s, ALLOC_FROM_PARTIAL);
  1352. object = t;
  1353. } else {
  1354. put_cpu_partial(s, page, 0);
  1355. stat(s, CPU_PARTIAL_NODE);
  1356. }
  1357. if (!kmem_cache_has_cpu_partial(s)
  1358. || available > s->cpu_partial / 2)
  1359. break;
  1360. }
  1361. spin_unlock(&n->list_lock);
  1362. return object;
  1363. }
  1364. /*
  1365. * Get a page from somewhere. Search in increasing NUMA distances.
  1366. */
  1367. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1368. struct kmem_cache_cpu *c)
  1369. {
  1370. #ifdef CONFIG_NUMA
  1371. struct zonelist *zonelist;
  1372. struct zoneref *z;
  1373. struct zone *zone;
  1374. enum zone_type high_zoneidx = gfp_zone(flags);
  1375. void *object;
  1376. unsigned int cpuset_mems_cookie;
  1377. /*
  1378. * The defrag ratio allows a configuration of the tradeoffs between
  1379. * inter node defragmentation and node local allocations. A lower
  1380. * defrag_ratio increases the tendency to do local allocations
  1381. * instead of attempting to obtain partial slabs from other nodes.
  1382. *
  1383. * If the defrag_ratio is set to 0 then kmalloc() always
  1384. * returns node local objects. If the ratio is higher then kmalloc()
  1385. * may return off node objects because partial slabs are obtained
  1386. * from other nodes and filled up.
  1387. *
  1388. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1389. * defrag_ratio = 1000) then every (well almost) allocation will
  1390. * first attempt to defrag slab caches on other nodes. This means
  1391. * scanning over all nodes to look for partial slabs which may be
  1392. * expensive if we do it every time we are trying to find a slab
  1393. * with available objects.
  1394. */
  1395. if (!s->remote_node_defrag_ratio ||
  1396. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1397. return NULL;
  1398. do {
  1399. cpuset_mems_cookie = get_mems_allowed();
  1400. zonelist = node_zonelist(slab_node(), flags);
  1401. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1402. struct kmem_cache_node *n;
  1403. n = get_node(s, zone_to_nid(zone));
  1404. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1405. n->nr_partial > s->min_partial) {
  1406. object = get_partial_node(s, n, c, flags);
  1407. if (object) {
  1408. /*
  1409. * Return the object even if
  1410. * put_mems_allowed indicated that
  1411. * the cpuset mems_allowed was
  1412. * updated in parallel. It's a
  1413. * harmless race between the alloc
  1414. * and the cpuset update.
  1415. */
  1416. put_mems_allowed(cpuset_mems_cookie);
  1417. return object;
  1418. }
  1419. }
  1420. }
  1421. } while (!put_mems_allowed(cpuset_mems_cookie));
  1422. #endif
  1423. return NULL;
  1424. }
  1425. /*
  1426. * Get a partial page, lock it and return it.
  1427. */
  1428. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1429. struct kmem_cache_cpu *c)
  1430. {
  1431. void *object;
  1432. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1433. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1434. if (object || node != NUMA_NO_NODE)
  1435. return object;
  1436. return get_any_partial(s, flags, c);
  1437. }
  1438. #ifdef CONFIG_PREEMPT
  1439. /*
  1440. * Calculate the next globally unique transaction for disambiguiation
  1441. * during cmpxchg. The transactions start with the cpu number and are then
  1442. * incremented by CONFIG_NR_CPUS.
  1443. */
  1444. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1445. #else
  1446. /*
  1447. * No preemption supported therefore also no need to check for
  1448. * different cpus.
  1449. */
  1450. #define TID_STEP 1
  1451. #endif
  1452. static inline unsigned long next_tid(unsigned long tid)
  1453. {
  1454. return tid + TID_STEP;
  1455. }
  1456. static inline unsigned int tid_to_cpu(unsigned long tid)
  1457. {
  1458. return tid % TID_STEP;
  1459. }
  1460. static inline unsigned long tid_to_event(unsigned long tid)
  1461. {
  1462. return tid / TID_STEP;
  1463. }
  1464. static inline unsigned int init_tid(int cpu)
  1465. {
  1466. return cpu;
  1467. }
  1468. static inline void note_cmpxchg_failure(const char *n,
  1469. const struct kmem_cache *s, unsigned long tid)
  1470. {
  1471. #ifdef SLUB_DEBUG_CMPXCHG
  1472. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1473. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1474. #ifdef CONFIG_PREEMPT
  1475. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1476. printk("due to cpu change %d -> %d\n",
  1477. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1478. else
  1479. #endif
  1480. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1481. printk("due to cpu running other code. Event %ld->%ld\n",
  1482. tid_to_event(tid), tid_to_event(actual_tid));
  1483. else
  1484. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1485. actual_tid, tid, next_tid(tid));
  1486. #endif
  1487. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1488. }
  1489. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1490. {
  1491. int cpu;
  1492. for_each_possible_cpu(cpu)
  1493. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1494. }
  1495. /*
  1496. * Remove the cpu slab
  1497. */
  1498. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1499. void *freelist)
  1500. {
  1501. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1502. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1503. int lock = 0;
  1504. enum slab_modes l = M_NONE, m = M_NONE;
  1505. void *nextfree;
  1506. int tail = DEACTIVATE_TO_HEAD;
  1507. struct page new;
  1508. struct page old;
  1509. if (page->freelist) {
  1510. stat(s, DEACTIVATE_REMOTE_FREES);
  1511. tail = DEACTIVATE_TO_TAIL;
  1512. }
  1513. /*
  1514. * Stage one: Free all available per cpu objects back
  1515. * to the page freelist while it is still frozen. Leave the
  1516. * last one.
  1517. *
  1518. * There is no need to take the list->lock because the page
  1519. * is still frozen.
  1520. */
  1521. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1522. void *prior;
  1523. unsigned long counters;
  1524. do {
  1525. prior = page->freelist;
  1526. counters = page->counters;
  1527. set_freepointer(s, freelist, prior);
  1528. new.counters = counters;
  1529. new.inuse--;
  1530. VM_BUG_ON(!new.frozen);
  1531. } while (!__cmpxchg_double_slab(s, page,
  1532. prior, counters,
  1533. freelist, new.counters,
  1534. "drain percpu freelist"));
  1535. freelist = nextfree;
  1536. }
  1537. /*
  1538. * Stage two: Ensure that the page is unfrozen while the
  1539. * list presence reflects the actual number of objects
  1540. * during unfreeze.
  1541. *
  1542. * We setup the list membership and then perform a cmpxchg
  1543. * with the count. If there is a mismatch then the page
  1544. * is not unfrozen but the page is on the wrong list.
  1545. *
  1546. * Then we restart the process which may have to remove
  1547. * the page from the list that we just put it on again
  1548. * because the number of objects in the slab may have
  1549. * changed.
  1550. */
  1551. redo:
  1552. old.freelist = page->freelist;
  1553. old.counters = page->counters;
  1554. VM_BUG_ON(!old.frozen);
  1555. /* Determine target state of the slab */
  1556. new.counters = old.counters;
  1557. if (freelist) {
  1558. new.inuse--;
  1559. set_freepointer(s, freelist, old.freelist);
  1560. new.freelist = freelist;
  1561. } else
  1562. new.freelist = old.freelist;
  1563. new.frozen = 0;
  1564. if (!new.inuse && n->nr_partial > s->min_partial)
  1565. m = M_FREE;
  1566. else if (new.freelist) {
  1567. m = M_PARTIAL;
  1568. if (!lock) {
  1569. lock = 1;
  1570. /*
  1571. * Taking the spinlock removes the possiblity
  1572. * that acquire_slab() will see a slab page that
  1573. * is frozen
  1574. */
  1575. spin_lock(&n->list_lock);
  1576. }
  1577. } else {
  1578. m = M_FULL;
  1579. if (kmem_cache_debug(s) && !lock) {
  1580. lock = 1;
  1581. /*
  1582. * This also ensures that the scanning of full
  1583. * slabs from diagnostic functions will not see
  1584. * any frozen slabs.
  1585. */
  1586. spin_lock(&n->list_lock);
  1587. }
  1588. }
  1589. if (l != m) {
  1590. if (l == M_PARTIAL)
  1591. remove_partial(n, page);
  1592. else if (l == M_FULL)
  1593. remove_full(s, page);
  1594. if (m == M_PARTIAL) {
  1595. add_partial(n, page, tail);
  1596. stat(s, tail);
  1597. } else if (m == M_FULL) {
  1598. stat(s, DEACTIVATE_FULL);
  1599. add_full(s, n, page);
  1600. }
  1601. }
  1602. l = m;
  1603. if (!__cmpxchg_double_slab(s, page,
  1604. old.freelist, old.counters,
  1605. new.freelist, new.counters,
  1606. "unfreezing slab"))
  1607. goto redo;
  1608. if (lock)
  1609. spin_unlock(&n->list_lock);
  1610. if (m == M_FREE) {
  1611. stat(s, DEACTIVATE_EMPTY);
  1612. discard_slab(s, page);
  1613. stat(s, FREE_SLAB);
  1614. }
  1615. }
  1616. /*
  1617. * Unfreeze all the cpu partial slabs.
  1618. *
  1619. * This function must be called with interrupts disabled
  1620. * for the cpu using c (or some other guarantee must be there
  1621. * to guarantee no concurrent accesses).
  1622. */
  1623. static void unfreeze_partials(struct kmem_cache *s,
  1624. struct kmem_cache_cpu *c)
  1625. {
  1626. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1627. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1628. struct page *page, *discard_page = NULL;
  1629. while ((page = c->partial)) {
  1630. struct page new;
  1631. struct page old;
  1632. c->partial = page->next;
  1633. n2 = get_node(s, page_to_nid(page));
  1634. if (n != n2) {
  1635. if (n)
  1636. spin_unlock(&n->list_lock);
  1637. n = n2;
  1638. spin_lock(&n->list_lock);
  1639. }
  1640. do {
  1641. old.freelist = page->freelist;
  1642. old.counters = page->counters;
  1643. VM_BUG_ON(!old.frozen);
  1644. new.counters = old.counters;
  1645. new.freelist = old.freelist;
  1646. new.frozen = 0;
  1647. } while (!__cmpxchg_double_slab(s, page,
  1648. old.freelist, old.counters,
  1649. new.freelist, new.counters,
  1650. "unfreezing slab"));
  1651. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1652. page->next = discard_page;
  1653. discard_page = page;
  1654. } else {
  1655. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1656. stat(s, FREE_ADD_PARTIAL);
  1657. }
  1658. }
  1659. if (n)
  1660. spin_unlock(&n->list_lock);
  1661. while (discard_page) {
  1662. page = discard_page;
  1663. discard_page = discard_page->next;
  1664. stat(s, DEACTIVATE_EMPTY);
  1665. discard_slab(s, page);
  1666. stat(s, FREE_SLAB);
  1667. }
  1668. #endif
  1669. }
  1670. /*
  1671. * Put a page that was just frozen (in __slab_free) into a partial page
  1672. * slot if available. This is done without interrupts disabled and without
  1673. * preemption disabled. The cmpxchg is racy and may put the partial page
  1674. * onto a random cpus partial slot.
  1675. *
  1676. * If we did not find a slot then simply move all the partials to the
  1677. * per node partial list.
  1678. */
  1679. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1680. {
  1681. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1682. struct page *oldpage;
  1683. int pages;
  1684. int pobjects;
  1685. if (!s->cpu_partial)
  1686. return;
  1687. do {
  1688. pages = 0;
  1689. pobjects = 0;
  1690. oldpage = this_cpu_read(s->cpu_slab->partial);
  1691. if (oldpage) {
  1692. pobjects = oldpage->pobjects;
  1693. pages = oldpage->pages;
  1694. if (drain && pobjects > s->cpu_partial) {
  1695. unsigned long flags;
  1696. /*
  1697. * partial array is full. Move the existing
  1698. * set to the per node partial list.
  1699. */
  1700. local_irq_save(flags);
  1701. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1702. local_irq_restore(flags);
  1703. oldpage = NULL;
  1704. pobjects = 0;
  1705. pages = 0;
  1706. stat(s, CPU_PARTIAL_DRAIN);
  1707. }
  1708. }
  1709. pages++;
  1710. pobjects += page->objects - page->inuse;
  1711. page->pages = pages;
  1712. page->pobjects = pobjects;
  1713. page->next = oldpage;
  1714. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1715. != oldpage);
  1716. #endif
  1717. }
  1718. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1719. {
  1720. stat(s, CPUSLAB_FLUSH);
  1721. deactivate_slab(s, c->page, c->freelist);
  1722. c->tid = next_tid(c->tid);
  1723. c->page = NULL;
  1724. c->freelist = NULL;
  1725. }
  1726. /*
  1727. * Flush cpu slab.
  1728. *
  1729. * Called from IPI handler with interrupts disabled.
  1730. */
  1731. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1732. {
  1733. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1734. if (likely(c)) {
  1735. if (c->page)
  1736. flush_slab(s, c);
  1737. unfreeze_partials(s, c);
  1738. }
  1739. }
  1740. static void flush_cpu_slab(void *d)
  1741. {
  1742. struct kmem_cache *s = d;
  1743. __flush_cpu_slab(s, smp_processor_id());
  1744. }
  1745. static bool has_cpu_slab(int cpu, void *info)
  1746. {
  1747. struct kmem_cache *s = info;
  1748. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1749. return c->page || c->partial;
  1750. }
  1751. static void flush_all(struct kmem_cache *s)
  1752. {
  1753. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1754. }
  1755. /*
  1756. * Check if the objects in a per cpu structure fit numa
  1757. * locality expectations.
  1758. */
  1759. static inline int node_match(struct page *page, int node)
  1760. {
  1761. #ifdef CONFIG_NUMA
  1762. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1763. return 0;
  1764. #endif
  1765. return 1;
  1766. }
  1767. static int count_free(struct page *page)
  1768. {
  1769. return page->objects - page->inuse;
  1770. }
  1771. static unsigned long count_partial(struct kmem_cache_node *n,
  1772. int (*get_count)(struct page *))
  1773. {
  1774. unsigned long flags;
  1775. unsigned long x = 0;
  1776. struct page *page;
  1777. spin_lock_irqsave(&n->list_lock, flags);
  1778. list_for_each_entry(page, &n->partial, lru)
  1779. x += get_count(page);
  1780. spin_unlock_irqrestore(&n->list_lock, flags);
  1781. return x;
  1782. }
  1783. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1784. {
  1785. #ifdef CONFIG_SLUB_DEBUG
  1786. return atomic_long_read(&n->total_objects);
  1787. #else
  1788. return 0;
  1789. #endif
  1790. }
  1791. static noinline void
  1792. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1793. {
  1794. int node;
  1795. printk(KERN_WARNING
  1796. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1797. nid, gfpflags);
  1798. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1799. "default order: %d, min order: %d\n", s->name, s->object_size,
  1800. s->size, oo_order(s->oo), oo_order(s->min));
  1801. if (oo_order(s->min) > get_order(s->object_size))
  1802. printk(KERN_WARNING " %s debugging increased min order, use "
  1803. "slub_debug=O to disable.\n", s->name);
  1804. for_each_online_node(node) {
  1805. struct kmem_cache_node *n = get_node(s, node);
  1806. unsigned long nr_slabs;
  1807. unsigned long nr_objs;
  1808. unsigned long nr_free;
  1809. if (!n)
  1810. continue;
  1811. nr_free = count_partial(n, count_free);
  1812. nr_slabs = node_nr_slabs(n);
  1813. nr_objs = node_nr_objs(n);
  1814. printk(KERN_WARNING
  1815. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1816. node, nr_slabs, nr_objs, nr_free);
  1817. }
  1818. }
  1819. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1820. int node, struct kmem_cache_cpu **pc)
  1821. {
  1822. void *freelist;
  1823. struct kmem_cache_cpu *c = *pc;
  1824. struct page *page;
  1825. freelist = get_partial(s, flags, node, c);
  1826. if (freelist)
  1827. return freelist;
  1828. page = new_slab(s, flags, node);
  1829. if (page) {
  1830. c = __this_cpu_ptr(s->cpu_slab);
  1831. if (c->page)
  1832. flush_slab(s, c);
  1833. /*
  1834. * No other reference to the page yet so we can
  1835. * muck around with it freely without cmpxchg
  1836. */
  1837. freelist = page->freelist;
  1838. page->freelist = NULL;
  1839. stat(s, ALLOC_SLAB);
  1840. c->page = page;
  1841. *pc = c;
  1842. } else
  1843. freelist = NULL;
  1844. return freelist;
  1845. }
  1846. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1847. {
  1848. if (unlikely(PageSlabPfmemalloc(page)))
  1849. return gfp_pfmemalloc_allowed(gfpflags);
  1850. return true;
  1851. }
  1852. /*
  1853. * Check the page->freelist of a page and either transfer the freelist to the
  1854. * per cpu freelist or deactivate the page.
  1855. *
  1856. * The page is still frozen if the return value is not NULL.
  1857. *
  1858. * If this function returns NULL then the page has been unfrozen.
  1859. *
  1860. * This function must be called with interrupt disabled.
  1861. */
  1862. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1863. {
  1864. struct page new;
  1865. unsigned long counters;
  1866. void *freelist;
  1867. do {
  1868. freelist = page->freelist;
  1869. counters = page->counters;
  1870. new.counters = counters;
  1871. VM_BUG_ON(!new.frozen);
  1872. new.inuse = page->objects;
  1873. new.frozen = freelist != NULL;
  1874. } while (!__cmpxchg_double_slab(s, page,
  1875. freelist, counters,
  1876. NULL, new.counters,
  1877. "get_freelist"));
  1878. return freelist;
  1879. }
  1880. /*
  1881. * Slow path. The lockless freelist is empty or we need to perform
  1882. * debugging duties.
  1883. *
  1884. * Processing is still very fast if new objects have been freed to the
  1885. * regular freelist. In that case we simply take over the regular freelist
  1886. * as the lockless freelist and zap the regular freelist.
  1887. *
  1888. * If that is not working then we fall back to the partial lists. We take the
  1889. * first element of the freelist as the object to allocate now and move the
  1890. * rest of the freelist to the lockless freelist.
  1891. *
  1892. * And if we were unable to get a new slab from the partial slab lists then
  1893. * we need to allocate a new slab. This is the slowest path since it involves
  1894. * a call to the page allocator and the setup of a new slab.
  1895. */
  1896. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1897. unsigned long addr, struct kmem_cache_cpu *c)
  1898. {
  1899. void *freelist;
  1900. struct page *page;
  1901. unsigned long flags;
  1902. local_irq_save(flags);
  1903. #ifdef CONFIG_PREEMPT
  1904. /*
  1905. * We may have been preempted and rescheduled on a different
  1906. * cpu before disabling interrupts. Need to reload cpu area
  1907. * pointer.
  1908. */
  1909. c = this_cpu_ptr(s->cpu_slab);
  1910. #endif
  1911. page = c->page;
  1912. if (!page)
  1913. goto new_slab;
  1914. redo:
  1915. if (unlikely(!node_match(page, node))) {
  1916. stat(s, ALLOC_NODE_MISMATCH);
  1917. deactivate_slab(s, page, c->freelist);
  1918. c->page = NULL;
  1919. c->freelist = NULL;
  1920. goto new_slab;
  1921. }
  1922. /*
  1923. * By rights, we should be searching for a slab page that was
  1924. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1925. * information when the page leaves the per-cpu allocator
  1926. */
  1927. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1928. deactivate_slab(s, page, c->freelist);
  1929. c->page = NULL;
  1930. c->freelist = NULL;
  1931. goto new_slab;
  1932. }
  1933. /* must check again c->freelist in case of cpu migration or IRQ */
  1934. freelist = c->freelist;
  1935. if (freelist)
  1936. goto load_freelist;
  1937. stat(s, ALLOC_SLOWPATH);
  1938. freelist = get_freelist(s, page);
  1939. if (!freelist) {
  1940. c->page = NULL;
  1941. stat(s, DEACTIVATE_BYPASS);
  1942. goto new_slab;
  1943. }
  1944. stat(s, ALLOC_REFILL);
  1945. load_freelist:
  1946. /*
  1947. * freelist is pointing to the list of objects to be used.
  1948. * page is pointing to the page from which the objects are obtained.
  1949. * That page must be frozen for per cpu allocations to work.
  1950. */
  1951. VM_BUG_ON(!c->page->frozen);
  1952. c->freelist = get_freepointer(s, freelist);
  1953. c->tid = next_tid(c->tid);
  1954. local_irq_restore(flags);
  1955. return freelist;
  1956. new_slab:
  1957. if (c->partial) {
  1958. page = c->page = c->partial;
  1959. c->partial = page->next;
  1960. stat(s, CPU_PARTIAL_ALLOC);
  1961. c->freelist = NULL;
  1962. goto redo;
  1963. }
  1964. freelist = new_slab_objects(s, gfpflags, node, &c);
  1965. if (unlikely(!freelist)) {
  1966. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1967. slab_out_of_memory(s, gfpflags, node);
  1968. local_irq_restore(flags);
  1969. return NULL;
  1970. }
  1971. page = c->page;
  1972. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1973. goto load_freelist;
  1974. /* Only entered in the debug case */
  1975. if (kmem_cache_debug(s) &&
  1976. !alloc_debug_processing(s, page, freelist, addr))
  1977. goto new_slab; /* Slab failed checks. Next slab needed */
  1978. deactivate_slab(s, page, get_freepointer(s, freelist));
  1979. c->page = NULL;
  1980. c->freelist = NULL;
  1981. local_irq_restore(flags);
  1982. return freelist;
  1983. }
  1984. /*
  1985. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1986. * have the fastpath folded into their functions. So no function call
  1987. * overhead for requests that can be satisfied on the fastpath.
  1988. *
  1989. * The fastpath works by first checking if the lockless freelist can be used.
  1990. * If not then __slab_alloc is called for slow processing.
  1991. *
  1992. * Otherwise we can simply pick the next object from the lockless free list.
  1993. */
  1994. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  1995. gfp_t gfpflags, int node, unsigned long addr)
  1996. {
  1997. void **object;
  1998. struct kmem_cache_cpu *c;
  1999. struct page *page;
  2000. unsigned long tid;
  2001. if (slab_pre_alloc_hook(s, gfpflags))
  2002. return NULL;
  2003. s = memcg_kmem_get_cache(s, gfpflags);
  2004. redo:
  2005. /*
  2006. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2007. * enabled. We may switch back and forth between cpus while
  2008. * reading from one cpu area. That does not matter as long
  2009. * as we end up on the original cpu again when doing the cmpxchg.
  2010. *
  2011. * Preemption is disabled for the retrieval of the tid because that
  2012. * must occur from the current processor. We cannot allow rescheduling
  2013. * on a different processor between the determination of the pointer
  2014. * and the retrieval of the tid.
  2015. */
  2016. preempt_disable();
  2017. c = __this_cpu_ptr(s->cpu_slab);
  2018. /*
  2019. * The transaction ids are globally unique per cpu and per operation on
  2020. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2021. * occurs on the right processor and that there was no operation on the
  2022. * linked list in between.
  2023. */
  2024. tid = c->tid;
  2025. preempt_enable();
  2026. object = c->freelist;
  2027. page = c->page;
  2028. if (unlikely(!object || !node_match(page, node)))
  2029. object = __slab_alloc(s, gfpflags, node, addr, c);
  2030. else {
  2031. void *next_object = get_freepointer_safe(s, object);
  2032. /*
  2033. * The cmpxchg will only match if there was no additional
  2034. * operation and if we are on the right processor.
  2035. *
  2036. * The cmpxchg does the following atomically (without lock
  2037. * semantics!)
  2038. * 1. Relocate first pointer to the current per cpu area.
  2039. * 2. Verify that tid and freelist have not been changed
  2040. * 3. If they were not changed replace tid and freelist
  2041. *
  2042. * Since this is without lock semantics the protection is only
  2043. * against code executing on this cpu *not* from access by
  2044. * other cpus.
  2045. */
  2046. if (unlikely(!this_cpu_cmpxchg_double(
  2047. s->cpu_slab->freelist, s->cpu_slab->tid,
  2048. object, tid,
  2049. next_object, next_tid(tid)))) {
  2050. note_cmpxchg_failure("slab_alloc", s, tid);
  2051. goto redo;
  2052. }
  2053. prefetch_freepointer(s, next_object);
  2054. stat(s, ALLOC_FASTPATH);
  2055. }
  2056. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2057. memset(object, 0, s->object_size);
  2058. slab_post_alloc_hook(s, gfpflags, object);
  2059. return object;
  2060. }
  2061. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2062. gfp_t gfpflags, unsigned long addr)
  2063. {
  2064. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2065. }
  2066. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2067. {
  2068. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2069. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2070. s->size, gfpflags);
  2071. return ret;
  2072. }
  2073. EXPORT_SYMBOL(kmem_cache_alloc);
  2074. #ifdef CONFIG_TRACING
  2075. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2076. {
  2077. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2078. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2079. return ret;
  2080. }
  2081. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2082. #endif
  2083. #ifdef CONFIG_NUMA
  2084. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2085. {
  2086. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2087. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2088. s->object_size, s->size, gfpflags, node);
  2089. return ret;
  2090. }
  2091. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2092. #ifdef CONFIG_TRACING
  2093. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2094. gfp_t gfpflags,
  2095. int node, size_t size)
  2096. {
  2097. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2098. trace_kmalloc_node(_RET_IP_, ret,
  2099. size, s->size, gfpflags, node);
  2100. return ret;
  2101. }
  2102. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2103. #endif
  2104. #endif
  2105. /*
  2106. * Slow patch handling. This may still be called frequently since objects
  2107. * have a longer lifetime than the cpu slabs in most processing loads.
  2108. *
  2109. * So we still attempt to reduce cache line usage. Just take the slab
  2110. * lock and free the item. If there is no additional partial page
  2111. * handling required then we can return immediately.
  2112. */
  2113. static void __slab_free(struct kmem_cache *s, struct page *page,
  2114. void *x, unsigned long addr)
  2115. {
  2116. void *prior;
  2117. void **object = (void *)x;
  2118. int was_frozen;
  2119. struct page new;
  2120. unsigned long counters;
  2121. struct kmem_cache_node *n = NULL;
  2122. unsigned long uninitialized_var(flags);
  2123. stat(s, FREE_SLOWPATH);
  2124. if (kmem_cache_debug(s) &&
  2125. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2126. return;
  2127. do {
  2128. if (unlikely(n)) {
  2129. spin_unlock_irqrestore(&n->list_lock, flags);
  2130. n = NULL;
  2131. }
  2132. prior = page->freelist;
  2133. counters = page->counters;
  2134. set_freepointer(s, object, prior);
  2135. new.counters = counters;
  2136. was_frozen = new.frozen;
  2137. new.inuse--;
  2138. if ((!new.inuse || !prior) && !was_frozen) {
  2139. if (kmem_cache_has_cpu_partial(s) && !prior)
  2140. /*
  2141. * Slab was on no list before and will be
  2142. * partially empty
  2143. * We can defer the list move and instead
  2144. * freeze it.
  2145. */
  2146. new.frozen = 1;
  2147. else { /* Needs to be taken off a list */
  2148. n = get_node(s, page_to_nid(page));
  2149. /*
  2150. * Speculatively acquire the list_lock.
  2151. * If the cmpxchg does not succeed then we may
  2152. * drop the list_lock without any processing.
  2153. *
  2154. * Otherwise the list_lock will synchronize with
  2155. * other processors updating the list of slabs.
  2156. */
  2157. spin_lock_irqsave(&n->list_lock, flags);
  2158. }
  2159. }
  2160. } while (!cmpxchg_double_slab(s, page,
  2161. prior, counters,
  2162. object, new.counters,
  2163. "__slab_free"));
  2164. if (likely(!n)) {
  2165. /*
  2166. * If we just froze the page then put it onto the
  2167. * per cpu partial list.
  2168. */
  2169. if (new.frozen && !was_frozen) {
  2170. put_cpu_partial(s, page, 1);
  2171. stat(s, CPU_PARTIAL_FREE);
  2172. }
  2173. /*
  2174. * The list lock was not taken therefore no list
  2175. * activity can be necessary.
  2176. */
  2177. if (was_frozen)
  2178. stat(s, FREE_FROZEN);
  2179. return;
  2180. }
  2181. if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
  2182. goto slab_empty;
  2183. /*
  2184. * Objects left in the slab. If it was not on the partial list before
  2185. * then add it.
  2186. */
  2187. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2188. if (kmem_cache_debug(s))
  2189. remove_full(s, page);
  2190. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2191. stat(s, FREE_ADD_PARTIAL);
  2192. }
  2193. spin_unlock_irqrestore(&n->list_lock, flags);
  2194. return;
  2195. slab_empty:
  2196. if (prior) {
  2197. /*
  2198. * Slab on the partial list.
  2199. */
  2200. remove_partial(n, page);
  2201. stat(s, FREE_REMOVE_PARTIAL);
  2202. } else
  2203. /* Slab must be on the full list */
  2204. remove_full(s, page);
  2205. spin_unlock_irqrestore(&n->list_lock, flags);
  2206. stat(s, FREE_SLAB);
  2207. discard_slab(s, page);
  2208. }
  2209. /*
  2210. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2211. * can perform fastpath freeing without additional function calls.
  2212. *
  2213. * The fastpath is only possible if we are freeing to the current cpu slab
  2214. * of this processor. This typically the case if we have just allocated
  2215. * the item before.
  2216. *
  2217. * If fastpath is not possible then fall back to __slab_free where we deal
  2218. * with all sorts of special processing.
  2219. */
  2220. static __always_inline void slab_free(struct kmem_cache *s,
  2221. struct page *page, void *x, unsigned long addr)
  2222. {
  2223. void **object = (void *)x;
  2224. struct kmem_cache_cpu *c;
  2225. unsigned long tid;
  2226. slab_free_hook(s, x);
  2227. redo:
  2228. /*
  2229. * Determine the currently cpus per cpu slab.
  2230. * The cpu may change afterward. However that does not matter since
  2231. * data is retrieved via this pointer. If we are on the same cpu
  2232. * during the cmpxchg then the free will succedd.
  2233. */
  2234. preempt_disable();
  2235. c = __this_cpu_ptr(s->cpu_slab);
  2236. tid = c->tid;
  2237. preempt_enable();
  2238. if (likely(page == c->page)) {
  2239. set_freepointer(s, object, c->freelist);
  2240. if (unlikely(!this_cpu_cmpxchg_double(
  2241. s->cpu_slab->freelist, s->cpu_slab->tid,
  2242. c->freelist, tid,
  2243. object, next_tid(tid)))) {
  2244. note_cmpxchg_failure("slab_free", s, tid);
  2245. goto redo;
  2246. }
  2247. stat(s, FREE_FASTPATH);
  2248. } else
  2249. __slab_free(s, page, x, addr);
  2250. }
  2251. void kmem_cache_free(struct kmem_cache *s, void *x)
  2252. {
  2253. s = cache_from_obj(s, x);
  2254. if (!s)
  2255. return;
  2256. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2257. trace_kmem_cache_free(_RET_IP_, x);
  2258. }
  2259. EXPORT_SYMBOL(kmem_cache_free);
  2260. /*
  2261. * Object placement in a slab is made very easy because we always start at
  2262. * offset 0. If we tune the size of the object to the alignment then we can
  2263. * get the required alignment by putting one properly sized object after
  2264. * another.
  2265. *
  2266. * Notice that the allocation order determines the sizes of the per cpu
  2267. * caches. Each processor has always one slab available for allocations.
  2268. * Increasing the allocation order reduces the number of times that slabs
  2269. * must be moved on and off the partial lists and is therefore a factor in
  2270. * locking overhead.
  2271. */
  2272. /*
  2273. * Mininum / Maximum order of slab pages. This influences locking overhead
  2274. * and slab fragmentation. A higher order reduces the number of partial slabs
  2275. * and increases the number of allocations possible without having to
  2276. * take the list_lock.
  2277. */
  2278. static int slub_min_order;
  2279. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2280. static int slub_min_objects;
  2281. /*
  2282. * Merge control. If this is set then no merging of slab caches will occur.
  2283. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2284. */
  2285. static int slub_nomerge;
  2286. /*
  2287. * Calculate the order of allocation given an slab object size.
  2288. *
  2289. * The order of allocation has significant impact on performance and other
  2290. * system components. Generally order 0 allocations should be preferred since
  2291. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2292. * be problematic to put into order 0 slabs because there may be too much
  2293. * unused space left. We go to a higher order if more than 1/16th of the slab
  2294. * would be wasted.
  2295. *
  2296. * In order to reach satisfactory performance we must ensure that a minimum
  2297. * number of objects is in one slab. Otherwise we may generate too much
  2298. * activity on the partial lists which requires taking the list_lock. This is
  2299. * less a concern for large slabs though which are rarely used.
  2300. *
  2301. * slub_max_order specifies the order where we begin to stop considering the
  2302. * number of objects in a slab as critical. If we reach slub_max_order then
  2303. * we try to keep the page order as low as possible. So we accept more waste
  2304. * of space in favor of a small page order.
  2305. *
  2306. * Higher order allocations also allow the placement of more objects in a
  2307. * slab and thereby reduce object handling overhead. If the user has
  2308. * requested a higher mininum order then we start with that one instead of
  2309. * the smallest order which will fit the object.
  2310. */
  2311. static inline int slab_order(int size, int min_objects,
  2312. int max_order, int fract_leftover, int reserved)
  2313. {
  2314. int order;
  2315. int rem;
  2316. int min_order = slub_min_order;
  2317. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2318. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2319. for (order = max(min_order,
  2320. fls(min_objects * size - 1) - PAGE_SHIFT);
  2321. order <= max_order; order++) {
  2322. unsigned long slab_size = PAGE_SIZE << order;
  2323. if (slab_size < min_objects * size + reserved)
  2324. continue;
  2325. rem = (slab_size - reserved) % size;
  2326. if (rem <= slab_size / fract_leftover)
  2327. break;
  2328. }
  2329. return order;
  2330. }
  2331. static inline int calculate_order(int size, int reserved)
  2332. {
  2333. int order;
  2334. int min_objects;
  2335. int fraction;
  2336. int max_objects;
  2337. /*
  2338. * Attempt to find best configuration for a slab. This
  2339. * works by first attempting to generate a layout with
  2340. * the best configuration and backing off gradually.
  2341. *
  2342. * First we reduce the acceptable waste in a slab. Then
  2343. * we reduce the minimum objects required in a slab.
  2344. */
  2345. min_objects = slub_min_objects;
  2346. if (!min_objects)
  2347. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2348. max_objects = order_objects(slub_max_order, size, reserved);
  2349. min_objects = min(min_objects, max_objects);
  2350. while (min_objects > 1) {
  2351. fraction = 16;
  2352. while (fraction >= 4) {
  2353. order = slab_order(size, min_objects,
  2354. slub_max_order, fraction, reserved);
  2355. if (order <= slub_max_order)
  2356. return order;
  2357. fraction /= 2;
  2358. }
  2359. min_objects--;
  2360. }
  2361. /*
  2362. * We were unable to place multiple objects in a slab. Now
  2363. * lets see if we can place a single object there.
  2364. */
  2365. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2366. if (order <= slub_max_order)
  2367. return order;
  2368. /*
  2369. * Doh this slab cannot be placed using slub_max_order.
  2370. */
  2371. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2372. if (order < MAX_ORDER)
  2373. return order;
  2374. return -ENOSYS;
  2375. }
  2376. static void
  2377. init_kmem_cache_node(struct kmem_cache_node *n)
  2378. {
  2379. n->nr_partial = 0;
  2380. spin_lock_init(&n->list_lock);
  2381. INIT_LIST_HEAD(&n->partial);
  2382. #ifdef CONFIG_SLUB_DEBUG
  2383. atomic_long_set(&n->nr_slabs, 0);
  2384. atomic_long_set(&n->total_objects, 0);
  2385. INIT_LIST_HEAD(&n->full);
  2386. #endif
  2387. }
  2388. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2389. {
  2390. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2391. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2392. /*
  2393. * Must align to double word boundary for the double cmpxchg
  2394. * instructions to work; see __pcpu_double_call_return_bool().
  2395. */
  2396. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2397. 2 * sizeof(void *));
  2398. if (!s->cpu_slab)
  2399. return 0;
  2400. init_kmem_cache_cpus(s);
  2401. return 1;
  2402. }
  2403. static struct kmem_cache *kmem_cache_node;
  2404. /*
  2405. * No kmalloc_node yet so do it by hand. We know that this is the first
  2406. * slab on the node for this slabcache. There are no concurrent accesses
  2407. * possible.
  2408. *
  2409. * Note that this function only works on the kmalloc_node_cache
  2410. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2411. * memory on a fresh node that has no slab structures yet.
  2412. */
  2413. static void early_kmem_cache_node_alloc(int node)
  2414. {
  2415. struct page *page;
  2416. struct kmem_cache_node *n;
  2417. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2418. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2419. BUG_ON(!page);
  2420. if (page_to_nid(page) != node) {
  2421. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2422. "node %d\n", node);
  2423. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2424. "in order to be able to continue\n");
  2425. }
  2426. n = page->freelist;
  2427. BUG_ON(!n);
  2428. page->freelist = get_freepointer(kmem_cache_node, n);
  2429. page->inuse = 1;
  2430. page->frozen = 0;
  2431. kmem_cache_node->node[node] = n;
  2432. #ifdef CONFIG_SLUB_DEBUG
  2433. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2434. init_tracking(kmem_cache_node, n);
  2435. #endif
  2436. init_kmem_cache_node(n);
  2437. inc_slabs_node(kmem_cache_node, node, page->objects);
  2438. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2439. }
  2440. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2441. {
  2442. int node;
  2443. for_each_node_state(node, N_NORMAL_MEMORY) {
  2444. struct kmem_cache_node *n = s->node[node];
  2445. if (n)
  2446. kmem_cache_free(kmem_cache_node, n);
  2447. s->node[node] = NULL;
  2448. }
  2449. }
  2450. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2451. {
  2452. int node;
  2453. for_each_node_state(node, N_NORMAL_MEMORY) {
  2454. struct kmem_cache_node *n;
  2455. if (slab_state == DOWN) {
  2456. early_kmem_cache_node_alloc(node);
  2457. continue;
  2458. }
  2459. n = kmem_cache_alloc_node(kmem_cache_node,
  2460. GFP_KERNEL, node);
  2461. if (!n) {
  2462. free_kmem_cache_nodes(s);
  2463. return 0;
  2464. }
  2465. s->node[node] = n;
  2466. init_kmem_cache_node(n);
  2467. }
  2468. return 1;
  2469. }
  2470. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2471. {
  2472. if (min < MIN_PARTIAL)
  2473. min = MIN_PARTIAL;
  2474. else if (min > MAX_PARTIAL)
  2475. min = MAX_PARTIAL;
  2476. s->min_partial = min;
  2477. }
  2478. /*
  2479. * calculate_sizes() determines the order and the distribution of data within
  2480. * a slab object.
  2481. */
  2482. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2483. {
  2484. unsigned long flags = s->flags;
  2485. unsigned long size = s->object_size;
  2486. int order;
  2487. /*
  2488. * Round up object size to the next word boundary. We can only
  2489. * place the free pointer at word boundaries and this determines
  2490. * the possible location of the free pointer.
  2491. */
  2492. size = ALIGN(size, sizeof(void *));
  2493. #ifdef CONFIG_SLUB_DEBUG
  2494. /*
  2495. * Determine if we can poison the object itself. If the user of
  2496. * the slab may touch the object after free or before allocation
  2497. * then we should never poison the object itself.
  2498. */
  2499. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2500. !s->ctor)
  2501. s->flags |= __OBJECT_POISON;
  2502. else
  2503. s->flags &= ~__OBJECT_POISON;
  2504. /*
  2505. * If we are Redzoning then check if there is some space between the
  2506. * end of the object and the free pointer. If not then add an
  2507. * additional word to have some bytes to store Redzone information.
  2508. */
  2509. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2510. size += sizeof(void *);
  2511. #endif
  2512. /*
  2513. * With that we have determined the number of bytes in actual use
  2514. * by the object. This is the potential offset to the free pointer.
  2515. */
  2516. s->inuse = size;
  2517. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2518. s->ctor)) {
  2519. /*
  2520. * Relocate free pointer after the object if it is not
  2521. * permitted to overwrite the first word of the object on
  2522. * kmem_cache_free.
  2523. *
  2524. * This is the case if we do RCU, have a constructor or
  2525. * destructor or are poisoning the objects.
  2526. */
  2527. s->offset = size;
  2528. size += sizeof(void *);
  2529. }
  2530. #ifdef CONFIG_SLUB_DEBUG
  2531. if (flags & SLAB_STORE_USER)
  2532. /*
  2533. * Need to store information about allocs and frees after
  2534. * the object.
  2535. */
  2536. size += 2 * sizeof(struct track);
  2537. if (flags & SLAB_RED_ZONE)
  2538. /*
  2539. * Add some empty padding so that we can catch
  2540. * overwrites from earlier objects rather than let
  2541. * tracking information or the free pointer be
  2542. * corrupted if a user writes before the start
  2543. * of the object.
  2544. */
  2545. size += sizeof(void *);
  2546. #endif
  2547. /*
  2548. * SLUB stores one object immediately after another beginning from
  2549. * offset 0. In order to align the objects we have to simply size
  2550. * each object to conform to the alignment.
  2551. */
  2552. size = ALIGN(size, s->align);
  2553. s->size = size;
  2554. if (forced_order >= 0)
  2555. order = forced_order;
  2556. else
  2557. order = calculate_order(size, s->reserved);
  2558. if (order < 0)
  2559. return 0;
  2560. s->allocflags = 0;
  2561. if (order)
  2562. s->allocflags |= __GFP_COMP;
  2563. if (s->flags & SLAB_CACHE_DMA)
  2564. s->allocflags |= GFP_DMA;
  2565. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2566. s->allocflags |= __GFP_RECLAIMABLE;
  2567. /*
  2568. * Determine the number of objects per slab
  2569. */
  2570. s->oo = oo_make(order, size, s->reserved);
  2571. s->min = oo_make(get_order(size), size, s->reserved);
  2572. if (oo_objects(s->oo) > oo_objects(s->max))
  2573. s->max = s->oo;
  2574. return !!oo_objects(s->oo);
  2575. }
  2576. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2577. {
  2578. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2579. s->reserved = 0;
  2580. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2581. s->reserved = sizeof(struct rcu_head);
  2582. if (!calculate_sizes(s, -1))
  2583. goto error;
  2584. if (disable_higher_order_debug) {
  2585. /*
  2586. * Disable debugging flags that store metadata if the min slab
  2587. * order increased.
  2588. */
  2589. if (get_order(s->size) > get_order(s->object_size)) {
  2590. s->flags &= ~DEBUG_METADATA_FLAGS;
  2591. s->offset = 0;
  2592. if (!calculate_sizes(s, -1))
  2593. goto error;
  2594. }
  2595. }
  2596. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2597. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2598. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2599. /* Enable fast mode */
  2600. s->flags |= __CMPXCHG_DOUBLE;
  2601. #endif
  2602. /*
  2603. * The larger the object size is, the more pages we want on the partial
  2604. * list to avoid pounding the page allocator excessively.
  2605. */
  2606. set_min_partial(s, ilog2(s->size) / 2);
  2607. /*
  2608. * cpu_partial determined the maximum number of objects kept in the
  2609. * per cpu partial lists of a processor.
  2610. *
  2611. * Per cpu partial lists mainly contain slabs that just have one
  2612. * object freed. If they are used for allocation then they can be
  2613. * filled up again with minimal effort. The slab will never hit the
  2614. * per node partial lists and therefore no locking will be required.
  2615. *
  2616. * This setting also determines
  2617. *
  2618. * A) The number of objects from per cpu partial slabs dumped to the
  2619. * per node list when we reach the limit.
  2620. * B) The number of objects in cpu partial slabs to extract from the
  2621. * per node list when we run out of per cpu objects. We only fetch
  2622. * 50% to keep some capacity around for frees.
  2623. */
  2624. if (!kmem_cache_has_cpu_partial(s))
  2625. s->cpu_partial = 0;
  2626. else if (s->size >= PAGE_SIZE)
  2627. s->cpu_partial = 2;
  2628. else if (s->size >= 1024)
  2629. s->cpu_partial = 6;
  2630. else if (s->size >= 256)
  2631. s->cpu_partial = 13;
  2632. else
  2633. s->cpu_partial = 30;
  2634. #ifdef CONFIG_NUMA
  2635. s->remote_node_defrag_ratio = 1000;
  2636. #endif
  2637. if (!init_kmem_cache_nodes(s))
  2638. goto error;
  2639. if (alloc_kmem_cache_cpus(s))
  2640. return 0;
  2641. free_kmem_cache_nodes(s);
  2642. error:
  2643. if (flags & SLAB_PANIC)
  2644. panic("Cannot create slab %s size=%lu realsize=%u "
  2645. "order=%u offset=%u flags=%lx\n",
  2646. s->name, (unsigned long)s->size, s->size,
  2647. oo_order(s->oo), s->offset, flags);
  2648. return -EINVAL;
  2649. }
  2650. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2651. const char *text)
  2652. {
  2653. #ifdef CONFIG_SLUB_DEBUG
  2654. void *addr = page_address(page);
  2655. void *p;
  2656. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2657. sizeof(long), GFP_ATOMIC);
  2658. if (!map)
  2659. return;
  2660. slab_err(s, page, text, s->name);
  2661. slab_lock(page);
  2662. get_map(s, page, map);
  2663. for_each_object(p, s, addr, page->objects) {
  2664. if (!test_bit(slab_index(p, s, addr), map)) {
  2665. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2666. p, p - addr);
  2667. print_tracking(s, p);
  2668. }
  2669. }
  2670. slab_unlock(page);
  2671. kfree(map);
  2672. #endif
  2673. }
  2674. /*
  2675. * Attempt to free all partial slabs on a node.
  2676. * This is called from kmem_cache_close(). We must be the last thread
  2677. * using the cache and therefore we do not need to lock anymore.
  2678. */
  2679. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2680. {
  2681. struct page *page, *h;
  2682. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2683. if (!page->inuse) {
  2684. remove_partial(n, page);
  2685. discard_slab(s, page);
  2686. } else {
  2687. list_slab_objects(s, page,
  2688. "Objects remaining in %s on kmem_cache_close()");
  2689. }
  2690. }
  2691. }
  2692. /*
  2693. * Release all resources used by a slab cache.
  2694. */
  2695. static inline int kmem_cache_close(struct kmem_cache *s)
  2696. {
  2697. int node;
  2698. flush_all(s);
  2699. /* Attempt to free all objects */
  2700. for_each_node_state(node, N_NORMAL_MEMORY) {
  2701. struct kmem_cache_node *n = get_node(s, node);
  2702. free_partial(s, n);
  2703. if (n->nr_partial || slabs_node(s, node))
  2704. return 1;
  2705. }
  2706. free_percpu(s->cpu_slab);
  2707. free_kmem_cache_nodes(s);
  2708. return 0;
  2709. }
  2710. int __kmem_cache_shutdown(struct kmem_cache *s)
  2711. {
  2712. int rc = kmem_cache_close(s);
  2713. if (!rc) {
  2714. /*
  2715. * We do the same lock strategy around sysfs_slab_add, see
  2716. * __kmem_cache_create. Because this is pretty much the last
  2717. * operation we do and the lock will be released shortly after
  2718. * that in slab_common.c, we could just move sysfs_slab_remove
  2719. * to a later point in common code. We should do that when we
  2720. * have a common sysfs framework for all allocators.
  2721. */
  2722. mutex_unlock(&slab_mutex);
  2723. sysfs_slab_remove(s);
  2724. mutex_lock(&slab_mutex);
  2725. }
  2726. return rc;
  2727. }
  2728. /********************************************************************
  2729. * Kmalloc subsystem
  2730. *******************************************************************/
  2731. static int __init setup_slub_min_order(char *str)
  2732. {
  2733. get_option(&str, &slub_min_order);
  2734. return 1;
  2735. }
  2736. __setup("slub_min_order=", setup_slub_min_order);
  2737. static int __init setup_slub_max_order(char *str)
  2738. {
  2739. get_option(&str, &slub_max_order);
  2740. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2741. return 1;
  2742. }
  2743. __setup("slub_max_order=", setup_slub_max_order);
  2744. static int __init setup_slub_min_objects(char *str)
  2745. {
  2746. get_option(&str, &slub_min_objects);
  2747. return 1;
  2748. }
  2749. __setup("slub_min_objects=", setup_slub_min_objects);
  2750. static int __init setup_slub_nomerge(char *str)
  2751. {
  2752. slub_nomerge = 1;
  2753. return 1;
  2754. }
  2755. __setup("slub_nomerge", setup_slub_nomerge);
  2756. void *__kmalloc(size_t size, gfp_t flags)
  2757. {
  2758. struct kmem_cache *s;
  2759. void *ret;
  2760. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2761. return kmalloc_large(size, flags);
  2762. s = kmalloc_slab(size, flags);
  2763. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2764. return s;
  2765. ret = slab_alloc(s, flags, _RET_IP_);
  2766. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2767. return ret;
  2768. }
  2769. EXPORT_SYMBOL(__kmalloc);
  2770. #ifdef CONFIG_NUMA
  2771. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2772. {
  2773. struct page *page;
  2774. void *ptr = NULL;
  2775. flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
  2776. page = alloc_pages_node(node, flags, get_order(size));
  2777. if (page)
  2778. ptr = page_address(page);
  2779. kmemleak_alloc(ptr, size, 1, flags);
  2780. return ptr;
  2781. }
  2782. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2783. {
  2784. struct kmem_cache *s;
  2785. void *ret;
  2786. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2787. ret = kmalloc_large_node(size, flags, node);
  2788. trace_kmalloc_node(_RET_IP_, ret,
  2789. size, PAGE_SIZE << get_order(size),
  2790. flags, node);
  2791. return ret;
  2792. }
  2793. s = kmalloc_slab(size, flags);
  2794. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2795. return s;
  2796. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2797. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2798. return ret;
  2799. }
  2800. EXPORT_SYMBOL(__kmalloc_node);
  2801. #endif
  2802. size_t ksize(const void *object)
  2803. {
  2804. struct page *page;
  2805. if (unlikely(object == ZERO_SIZE_PTR))
  2806. return 0;
  2807. page = virt_to_head_page(object);
  2808. if (unlikely(!PageSlab(page))) {
  2809. WARN_ON(!PageCompound(page));
  2810. return PAGE_SIZE << compound_order(page);
  2811. }
  2812. return slab_ksize(page->slab_cache);
  2813. }
  2814. EXPORT_SYMBOL(ksize);
  2815. #ifdef CONFIG_SLUB_DEBUG
  2816. bool verify_mem_not_deleted(const void *x)
  2817. {
  2818. struct page *page;
  2819. void *object = (void *)x;
  2820. unsigned long flags;
  2821. bool rv;
  2822. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2823. return false;
  2824. local_irq_save(flags);
  2825. page = virt_to_head_page(x);
  2826. if (unlikely(!PageSlab(page))) {
  2827. /* maybe it was from stack? */
  2828. rv = true;
  2829. goto out_unlock;
  2830. }
  2831. slab_lock(page);
  2832. if (on_freelist(page->slab_cache, page, object)) {
  2833. object_err(page->slab_cache, page, object,
  2834. "Object is on free-list");
  2835. rv = false;
  2836. } else {
  2837. rv = true;
  2838. }
  2839. slab_unlock(page);
  2840. out_unlock:
  2841. local_irq_restore(flags);
  2842. return rv;
  2843. }
  2844. EXPORT_SYMBOL(verify_mem_not_deleted);
  2845. #endif
  2846. void kfree(const void *x)
  2847. {
  2848. struct page *page;
  2849. void *object = (void *)x;
  2850. trace_kfree(_RET_IP_, x);
  2851. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2852. return;
  2853. page = virt_to_head_page(x);
  2854. if (unlikely(!PageSlab(page))) {
  2855. BUG_ON(!PageCompound(page));
  2856. kmemleak_free(x);
  2857. __free_memcg_kmem_pages(page, compound_order(page));
  2858. return;
  2859. }
  2860. slab_free(page->slab_cache, page, object, _RET_IP_);
  2861. }
  2862. EXPORT_SYMBOL(kfree);
  2863. /*
  2864. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2865. * the remaining slabs by the number of items in use. The slabs with the
  2866. * most items in use come first. New allocations will then fill those up
  2867. * and thus they can be removed from the partial lists.
  2868. *
  2869. * The slabs with the least items are placed last. This results in them
  2870. * being allocated from last increasing the chance that the last objects
  2871. * are freed in them.
  2872. */
  2873. int kmem_cache_shrink(struct kmem_cache *s)
  2874. {
  2875. int node;
  2876. int i;
  2877. struct kmem_cache_node *n;
  2878. struct page *page;
  2879. struct page *t;
  2880. int objects = oo_objects(s->max);
  2881. struct list_head *slabs_by_inuse =
  2882. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2883. unsigned long flags;
  2884. if (!slabs_by_inuse)
  2885. return -ENOMEM;
  2886. flush_all(s);
  2887. for_each_node_state(node, N_NORMAL_MEMORY) {
  2888. n = get_node(s, node);
  2889. if (!n->nr_partial)
  2890. continue;
  2891. for (i = 0; i < objects; i++)
  2892. INIT_LIST_HEAD(slabs_by_inuse + i);
  2893. spin_lock_irqsave(&n->list_lock, flags);
  2894. /*
  2895. * Build lists indexed by the items in use in each slab.
  2896. *
  2897. * Note that concurrent frees may occur while we hold the
  2898. * list_lock. page->inuse here is the upper limit.
  2899. */
  2900. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2901. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2902. if (!page->inuse)
  2903. n->nr_partial--;
  2904. }
  2905. /*
  2906. * Rebuild the partial list with the slabs filled up most
  2907. * first and the least used slabs at the end.
  2908. */
  2909. for (i = objects - 1; i > 0; i--)
  2910. list_splice(slabs_by_inuse + i, n->partial.prev);
  2911. spin_unlock_irqrestore(&n->list_lock, flags);
  2912. /* Release empty slabs */
  2913. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2914. discard_slab(s, page);
  2915. }
  2916. kfree(slabs_by_inuse);
  2917. return 0;
  2918. }
  2919. EXPORT_SYMBOL(kmem_cache_shrink);
  2920. static int slab_mem_going_offline_callback(void *arg)
  2921. {
  2922. struct kmem_cache *s;
  2923. mutex_lock(&slab_mutex);
  2924. list_for_each_entry(s, &slab_caches, list)
  2925. kmem_cache_shrink(s);
  2926. mutex_unlock(&slab_mutex);
  2927. return 0;
  2928. }
  2929. static void slab_mem_offline_callback(void *arg)
  2930. {
  2931. struct kmem_cache_node *n;
  2932. struct kmem_cache *s;
  2933. struct memory_notify *marg = arg;
  2934. int offline_node;
  2935. offline_node = marg->status_change_nid_normal;
  2936. /*
  2937. * If the node still has available memory. we need kmem_cache_node
  2938. * for it yet.
  2939. */
  2940. if (offline_node < 0)
  2941. return;
  2942. mutex_lock(&slab_mutex);
  2943. list_for_each_entry(s, &slab_caches, list) {
  2944. n = get_node(s, offline_node);
  2945. if (n) {
  2946. /*
  2947. * if n->nr_slabs > 0, slabs still exist on the node
  2948. * that is going down. We were unable to free them,
  2949. * and offline_pages() function shouldn't call this
  2950. * callback. So, we must fail.
  2951. */
  2952. BUG_ON(slabs_node(s, offline_node));
  2953. s->node[offline_node] = NULL;
  2954. kmem_cache_free(kmem_cache_node, n);
  2955. }
  2956. }
  2957. mutex_unlock(&slab_mutex);
  2958. }
  2959. static int slab_mem_going_online_callback(void *arg)
  2960. {
  2961. struct kmem_cache_node *n;
  2962. struct kmem_cache *s;
  2963. struct memory_notify *marg = arg;
  2964. int nid = marg->status_change_nid_normal;
  2965. int ret = 0;
  2966. /*
  2967. * If the node's memory is already available, then kmem_cache_node is
  2968. * already created. Nothing to do.
  2969. */
  2970. if (nid < 0)
  2971. return 0;
  2972. /*
  2973. * We are bringing a node online. No memory is available yet. We must
  2974. * allocate a kmem_cache_node structure in order to bring the node
  2975. * online.
  2976. */
  2977. mutex_lock(&slab_mutex);
  2978. list_for_each_entry(s, &slab_caches, list) {
  2979. /*
  2980. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2981. * since memory is not yet available from the node that
  2982. * is brought up.
  2983. */
  2984. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2985. if (!n) {
  2986. ret = -ENOMEM;
  2987. goto out;
  2988. }
  2989. init_kmem_cache_node(n);
  2990. s->node[nid] = n;
  2991. }
  2992. out:
  2993. mutex_unlock(&slab_mutex);
  2994. return ret;
  2995. }
  2996. static int slab_memory_callback(struct notifier_block *self,
  2997. unsigned long action, void *arg)
  2998. {
  2999. int ret = 0;
  3000. switch (action) {
  3001. case MEM_GOING_ONLINE:
  3002. ret = slab_mem_going_online_callback(arg);
  3003. break;
  3004. case MEM_GOING_OFFLINE:
  3005. ret = slab_mem_going_offline_callback(arg);
  3006. break;
  3007. case MEM_OFFLINE:
  3008. case MEM_CANCEL_ONLINE:
  3009. slab_mem_offline_callback(arg);
  3010. break;
  3011. case MEM_ONLINE:
  3012. case MEM_CANCEL_OFFLINE:
  3013. break;
  3014. }
  3015. if (ret)
  3016. ret = notifier_from_errno(ret);
  3017. else
  3018. ret = NOTIFY_OK;
  3019. return ret;
  3020. }
  3021. static struct notifier_block slab_memory_callback_nb = {
  3022. .notifier_call = slab_memory_callback,
  3023. .priority = SLAB_CALLBACK_PRI,
  3024. };
  3025. /********************************************************************
  3026. * Basic setup of slabs
  3027. *******************************************************************/
  3028. /*
  3029. * Used for early kmem_cache structures that were allocated using
  3030. * the page allocator. Allocate them properly then fix up the pointers
  3031. * that may be pointing to the wrong kmem_cache structure.
  3032. */
  3033. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3034. {
  3035. int node;
  3036. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3037. memcpy(s, static_cache, kmem_cache->object_size);
  3038. /*
  3039. * This runs very early, and only the boot processor is supposed to be
  3040. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3041. * IPIs around.
  3042. */
  3043. __flush_cpu_slab(s, smp_processor_id());
  3044. for_each_node_state(node, N_NORMAL_MEMORY) {
  3045. struct kmem_cache_node *n = get_node(s, node);
  3046. struct page *p;
  3047. if (n) {
  3048. list_for_each_entry(p, &n->partial, lru)
  3049. p->slab_cache = s;
  3050. #ifdef CONFIG_SLUB_DEBUG
  3051. list_for_each_entry(p, &n->full, lru)
  3052. p->slab_cache = s;
  3053. #endif
  3054. }
  3055. }
  3056. list_add(&s->list, &slab_caches);
  3057. return s;
  3058. }
  3059. void __init kmem_cache_init(void)
  3060. {
  3061. static __initdata struct kmem_cache boot_kmem_cache,
  3062. boot_kmem_cache_node;
  3063. if (debug_guardpage_minorder())
  3064. slub_max_order = 0;
  3065. kmem_cache_node = &boot_kmem_cache_node;
  3066. kmem_cache = &boot_kmem_cache;
  3067. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3068. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3069. register_hotmemory_notifier(&slab_memory_callback_nb);
  3070. /* Able to allocate the per node structures */
  3071. slab_state = PARTIAL;
  3072. create_boot_cache(kmem_cache, "kmem_cache",
  3073. offsetof(struct kmem_cache, node) +
  3074. nr_node_ids * sizeof(struct kmem_cache_node *),
  3075. SLAB_HWCACHE_ALIGN);
  3076. kmem_cache = bootstrap(&boot_kmem_cache);
  3077. /*
  3078. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3079. * kmem_cache_node is separately allocated so no need to
  3080. * update any list pointers.
  3081. */
  3082. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3083. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3084. create_kmalloc_caches(0);
  3085. #ifdef CONFIG_SMP
  3086. register_cpu_notifier(&slab_notifier);
  3087. #endif
  3088. printk(KERN_INFO
  3089. "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3090. " CPUs=%d, Nodes=%d\n",
  3091. cache_line_size(),
  3092. slub_min_order, slub_max_order, slub_min_objects,
  3093. nr_cpu_ids, nr_node_ids);
  3094. }
  3095. void __init kmem_cache_init_late(void)
  3096. {
  3097. }
  3098. /*
  3099. * Find a mergeable slab cache
  3100. */
  3101. static int slab_unmergeable(struct kmem_cache *s)
  3102. {
  3103. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3104. return 1;
  3105. if (s->ctor)
  3106. return 1;
  3107. /*
  3108. * We may have set a slab to be unmergeable during bootstrap.
  3109. */
  3110. if (s->refcount < 0)
  3111. return 1;
  3112. return 0;
  3113. }
  3114. static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
  3115. size_t align, unsigned long flags, const char *name,
  3116. void (*ctor)(void *))
  3117. {
  3118. struct kmem_cache *s;
  3119. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3120. return NULL;
  3121. if (ctor)
  3122. return NULL;
  3123. size = ALIGN(size, sizeof(void *));
  3124. align = calculate_alignment(flags, align, size);
  3125. size = ALIGN(size, align);
  3126. flags = kmem_cache_flags(size, flags, name, NULL);
  3127. list_for_each_entry(s, &slab_caches, list) {
  3128. if (slab_unmergeable(s))
  3129. continue;
  3130. if (size > s->size)
  3131. continue;
  3132. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3133. continue;
  3134. /*
  3135. * Check if alignment is compatible.
  3136. * Courtesy of Adrian Drzewiecki
  3137. */
  3138. if ((s->size & ~(align - 1)) != s->size)
  3139. continue;
  3140. if (s->size - size >= sizeof(void *))
  3141. continue;
  3142. if (!cache_match_memcg(s, memcg))
  3143. continue;
  3144. return s;
  3145. }
  3146. return NULL;
  3147. }
  3148. struct kmem_cache *
  3149. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  3150. size_t align, unsigned long flags, void (*ctor)(void *))
  3151. {
  3152. struct kmem_cache *s;
  3153. s = find_mergeable(memcg, size, align, flags, name, ctor);
  3154. if (s) {
  3155. s->refcount++;
  3156. /*
  3157. * Adjust the object sizes so that we clear
  3158. * the complete object on kzalloc.
  3159. */
  3160. s->object_size = max(s->object_size, (int)size);
  3161. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3162. if (sysfs_slab_alias(s, name)) {
  3163. s->refcount--;
  3164. s = NULL;
  3165. }
  3166. }
  3167. return s;
  3168. }
  3169. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3170. {
  3171. int err;
  3172. err = kmem_cache_open(s, flags);
  3173. if (err)
  3174. return err;
  3175. /* Mutex is not taken during early boot */
  3176. if (slab_state <= UP)
  3177. return 0;
  3178. memcg_propagate_slab_attrs(s);
  3179. mutex_unlock(&slab_mutex);
  3180. err = sysfs_slab_add(s);
  3181. mutex_lock(&slab_mutex);
  3182. if (err)
  3183. kmem_cache_close(s);
  3184. return err;
  3185. }
  3186. #ifdef CONFIG_SMP
  3187. /*
  3188. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3189. * necessary.
  3190. */
  3191. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3192. unsigned long action, void *hcpu)
  3193. {
  3194. long cpu = (long)hcpu;
  3195. struct kmem_cache *s;
  3196. unsigned long flags;
  3197. switch (action) {
  3198. case CPU_UP_CANCELED:
  3199. case CPU_UP_CANCELED_FROZEN:
  3200. case CPU_DEAD:
  3201. case CPU_DEAD_FROZEN:
  3202. mutex_lock(&slab_mutex);
  3203. list_for_each_entry(s, &slab_caches, list) {
  3204. local_irq_save(flags);
  3205. __flush_cpu_slab(s, cpu);
  3206. local_irq_restore(flags);
  3207. }
  3208. mutex_unlock(&slab_mutex);
  3209. break;
  3210. default:
  3211. break;
  3212. }
  3213. return NOTIFY_OK;
  3214. }
  3215. static struct notifier_block __cpuinitdata slab_notifier = {
  3216. .notifier_call = slab_cpuup_callback
  3217. };
  3218. #endif
  3219. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3220. {
  3221. struct kmem_cache *s;
  3222. void *ret;
  3223. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3224. return kmalloc_large(size, gfpflags);
  3225. s = kmalloc_slab(size, gfpflags);
  3226. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3227. return s;
  3228. ret = slab_alloc(s, gfpflags, caller);
  3229. /* Honor the call site pointer we received. */
  3230. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3231. return ret;
  3232. }
  3233. #ifdef CONFIG_NUMA
  3234. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3235. int node, unsigned long caller)
  3236. {
  3237. struct kmem_cache *s;
  3238. void *ret;
  3239. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3240. ret = kmalloc_large_node(size, gfpflags, node);
  3241. trace_kmalloc_node(caller, ret,
  3242. size, PAGE_SIZE << get_order(size),
  3243. gfpflags, node);
  3244. return ret;
  3245. }
  3246. s = kmalloc_slab(size, gfpflags);
  3247. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3248. return s;
  3249. ret = slab_alloc_node(s, gfpflags, node, caller);
  3250. /* Honor the call site pointer we received. */
  3251. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3252. return ret;
  3253. }
  3254. #endif
  3255. #ifdef CONFIG_SYSFS
  3256. static int count_inuse(struct page *page)
  3257. {
  3258. return page->inuse;
  3259. }
  3260. static int count_total(struct page *page)
  3261. {
  3262. return page->objects;
  3263. }
  3264. #endif
  3265. #ifdef CONFIG_SLUB_DEBUG
  3266. static int validate_slab(struct kmem_cache *s, struct page *page,
  3267. unsigned long *map)
  3268. {
  3269. void *p;
  3270. void *addr = page_address(page);
  3271. if (!check_slab(s, page) ||
  3272. !on_freelist(s, page, NULL))
  3273. return 0;
  3274. /* Now we know that a valid freelist exists */
  3275. bitmap_zero(map, page->objects);
  3276. get_map(s, page, map);
  3277. for_each_object(p, s, addr, page->objects) {
  3278. if (test_bit(slab_index(p, s, addr), map))
  3279. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3280. return 0;
  3281. }
  3282. for_each_object(p, s, addr, page->objects)
  3283. if (!test_bit(slab_index(p, s, addr), map))
  3284. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3285. return 0;
  3286. return 1;
  3287. }
  3288. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3289. unsigned long *map)
  3290. {
  3291. slab_lock(page);
  3292. validate_slab(s, page, map);
  3293. slab_unlock(page);
  3294. }
  3295. static int validate_slab_node(struct kmem_cache *s,
  3296. struct kmem_cache_node *n, unsigned long *map)
  3297. {
  3298. unsigned long count = 0;
  3299. struct page *page;
  3300. unsigned long flags;
  3301. spin_lock_irqsave(&n->list_lock, flags);
  3302. list_for_each_entry(page, &n->partial, lru) {
  3303. validate_slab_slab(s, page, map);
  3304. count++;
  3305. }
  3306. if (count != n->nr_partial)
  3307. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3308. "counter=%ld\n", s->name, count, n->nr_partial);
  3309. if (!(s->flags & SLAB_STORE_USER))
  3310. goto out;
  3311. list_for_each_entry(page, &n->full, lru) {
  3312. validate_slab_slab(s, page, map);
  3313. count++;
  3314. }
  3315. if (count != atomic_long_read(&n->nr_slabs))
  3316. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3317. "counter=%ld\n", s->name, count,
  3318. atomic_long_read(&n->nr_slabs));
  3319. out:
  3320. spin_unlock_irqrestore(&n->list_lock, flags);
  3321. return count;
  3322. }
  3323. static long validate_slab_cache(struct kmem_cache *s)
  3324. {
  3325. int node;
  3326. unsigned long count = 0;
  3327. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3328. sizeof(unsigned long), GFP_KERNEL);
  3329. if (!map)
  3330. return -ENOMEM;
  3331. flush_all(s);
  3332. for_each_node_state(node, N_NORMAL_MEMORY) {
  3333. struct kmem_cache_node *n = get_node(s, node);
  3334. count += validate_slab_node(s, n, map);
  3335. }
  3336. kfree(map);
  3337. return count;
  3338. }
  3339. /*
  3340. * Generate lists of code addresses where slabcache objects are allocated
  3341. * and freed.
  3342. */
  3343. struct location {
  3344. unsigned long count;
  3345. unsigned long addr;
  3346. long long sum_time;
  3347. long min_time;
  3348. long max_time;
  3349. long min_pid;
  3350. long max_pid;
  3351. DECLARE_BITMAP(cpus, NR_CPUS);
  3352. nodemask_t nodes;
  3353. };
  3354. struct loc_track {
  3355. unsigned long max;
  3356. unsigned long count;
  3357. struct location *loc;
  3358. };
  3359. static void free_loc_track(struct loc_track *t)
  3360. {
  3361. if (t->max)
  3362. free_pages((unsigned long)t->loc,
  3363. get_order(sizeof(struct location) * t->max));
  3364. }
  3365. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3366. {
  3367. struct location *l;
  3368. int order;
  3369. order = get_order(sizeof(struct location) * max);
  3370. l = (void *)__get_free_pages(flags, order);
  3371. if (!l)
  3372. return 0;
  3373. if (t->count) {
  3374. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3375. free_loc_track(t);
  3376. }
  3377. t->max = max;
  3378. t->loc = l;
  3379. return 1;
  3380. }
  3381. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3382. const struct track *track)
  3383. {
  3384. long start, end, pos;
  3385. struct location *l;
  3386. unsigned long caddr;
  3387. unsigned long age = jiffies - track->when;
  3388. start = -1;
  3389. end = t->count;
  3390. for ( ; ; ) {
  3391. pos = start + (end - start + 1) / 2;
  3392. /*
  3393. * There is nothing at "end". If we end up there
  3394. * we need to add something to before end.
  3395. */
  3396. if (pos == end)
  3397. break;
  3398. caddr = t->loc[pos].addr;
  3399. if (track->addr == caddr) {
  3400. l = &t->loc[pos];
  3401. l->count++;
  3402. if (track->when) {
  3403. l->sum_time += age;
  3404. if (age < l->min_time)
  3405. l->min_time = age;
  3406. if (age > l->max_time)
  3407. l->max_time = age;
  3408. if (track->pid < l->min_pid)
  3409. l->min_pid = track->pid;
  3410. if (track->pid > l->max_pid)
  3411. l->max_pid = track->pid;
  3412. cpumask_set_cpu(track->cpu,
  3413. to_cpumask(l->cpus));
  3414. }
  3415. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3416. return 1;
  3417. }
  3418. if (track->addr < caddr)
  3419. end = pos;
  3420. else
  3421. start = pos;
  3422. }
  3423. /*
  3424. * Not found. Insert new tracking element.
  3425. */
  3426. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3427. return 0;
  3428. l = t->loc + pos;
  3429. if (pos < t->count)
  3430. memmove(l + 1, l,
  3431. (t->count - pos) * sizeof(struct location));
  3432. t->count++;
  3433. l->count = 1;
  3434. l->addr = track->addr;
  3435. l->sum_time = age;
  3436. l->min_time = age;
  3437. l->max_time = age;
  3438. l->min_pid = track->pid;
  3439. l->max_pid = track->pid;
  3440. cpumask_clear(to_cpumask(l->cpus));
  3441. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3442. nodes_clear(l->nodes);
  3443. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3444. return 1;
  3445. }
  3446. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3447. struct page *page, enum track_item alloc,
  3448. unsigned long *map)
  3449. {
  3450. void *addr = page_address(page);
  3451. void *p;
  3452. bitmap_zero(map, page->objects);
  3453. get_map(s, page, map);
  3454. for_each_object(p, s, addr, page->objects)
  3455. if (!test_bit(slab_index(p, s, addr), map))
  3456. add_location(t, s, get_track(s, p, alloc));
  3457. }
  3458. static int list_locations(struct kmem_cache *s, char *buf,
  3459. enum track_item alloc)
  3460. {
  3461. int len = 0;
  3462. unsigned long i;
  3463. struct loc_track t = { 0, 0, NULL };
  3464. int node;
  3465. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3466. sizeof(unsigned long), GFP_KERNEL);
  3467. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3468. GFP_TEMPORARY)) {
  3469. kfree(map);
  3470. return sprintf(buf, "Out of memory\n");
  3471. }
  3472. /* Push back cpu slabs */
  3473. flush_all(s);
  3474. for_each_node_state(node, N_NORMAL_MEMORY) {
  3475. struct kmem_cache_node *n = get_node(s, node);
  3476. unsigned long flags;
  3477. struct page *page;
  3478. if (!atomic_long_read(&n->nr_slabs))
  3479. continue;
  3480. spin_lock_irqsave(&n->list_lock, flags);
  3481. list_for_each_entry(page, &n->partial, lru)
  3482. process_slab(&t, s, page, alloc, map);
  3483. list_for_each_entry(page, &n->full, lru)
  3484. process_slab(&t, s, page, alloc, map);
  3485. spin_unlock_irqrestore(&n->list_lock, flags);
  3486. }
  3487. for (i = 0; i < t.count; i++) {
  3488. struct location *l = &t.loc[i];
  3489. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3490. break;
  3491. len += sprintf(buf + len, "%7ld ", l->count);
  3492. if (l->addr)
  3493. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3494. else
  3495. len += sprintf(buf + len, "<not-available>");
  3496. if (l->sum_time != l->min_time) {
  3497. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3498. l->min_time,
  3499. (long)div_u64(l->sum_time, l->count),
  3500. l->max_time);
  3501. } else
  3502. len += sprintf(buf + len, " age=%ld",
  3503. l->min_time);
  3504. if (l->min_pid != l->max_pid)
  3505. len += sprintf(buf + len, " pid=%ld-%ld",
  3506. l->min_pid, l->max_pid);
  3507. else
  3508. len += sprintf(buf + len, " pid=%ld",
  3509. l->min_pid);
  3510. if (num_online_cpus() > 1 &&
  3511. !cpumask_empty(to_cpumask(l->cpus)) &&
  3512. len < PAGE_SIZE - 60) {
  3513. len += sprintf(buf + len, " cpus=");
  3514. len += cpulist_scnprintf(buf + len,
  3515. PAGE_SIZE - len - 50,
  3516. to_cpumask(l->cpus));
  3517. }
  3518. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3519. len < PAGE_SIZE - 60) {
  3520. len += sprintf(buf + len, " nodes=");
  3521. len += nodelist_scnprintf(buf + len,
  3522. PAGE_SIZE - len - 50,
  3523. l->nodes);
  3524. }
  3525. len += sprintf(buf + len, "\n");
  3526. }
  3527. free_loc_track(&t);
  3528. kfree(map);
  3529. if (!t.count)
  3530. len += sprintf(buf, "No data\n");
  3531. return len;
  3532. }
  3533. #endif
  3534. #ifdef SLUB_RESILIENCY_TEST
  3535. static void resiliency_test(void)
  3536. {
  3537. u8 *p;
  3538. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3539. printk(KERN_ERR "SLUB resiliency testing\n");
  3540. printk(KERN_ERR "-----------------------\n");
  3541. printk(KERN_ERR "A. Corruption after allocation\n");
  3542. p = kzalloc(16, GFP_KERNEL);
  3543. p[16] = 0x12;
  3544. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3545. " 0x12->0x%p\n\n", p + 16);
  3546. validate_slab_cache(kmalloc_caches[4]);
  3547. /* Hmmm... The next two are dangerous */
  3548. p = kzalloc(32, GFP_KERNEL);
  3549. p[32 + sizeof(void *)] = 0x34;
  3550. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3551. " 0x34 -> -0x%p\n", p);
  3552. printk(KERN_ERR
  3553. "If allocated object is overwritten then not detectable\n\n");
  3554. validate_slab_cache(kmalloc_caches[5]);
  3555. p = kzalloc(64, GFP_KERNEL);
  3556. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3557. *p = 0x56;
  3558. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3559. p);
  3560. printk(KERN_ERR
  3561. "If allocated object is overwritten then not detectable\n\n");
  3562. validate_slab_cache(kmalloc_caches[6]);
  3563. printk(KERN_ERR "\nB. Corruption after free\n");
  3564. p = kzalloc(128, GFP_KERNEL);
  3565. kfree(p);
  3566. *p = 0x78;
  3567. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3568. validate_slab_cache(kmalloc_caches[7]);
  3569. p = kzalloc(256, GFP_KERNEL);
  3570. kfree(p);
  3571. p[50] = 0x9a;
  3572. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3573. p);
  3574. validate_slab_cache(kmalloc_caches[8]);
  3575. p = kzalloc(512, GFP_KERNEL);
  3576. kfree(p);
  3577. p[512] = 0xab;
  3578. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3579. validate_slab_cache(kmalloc_caches[9]);
  3580. }
  3581. #else
  3582. #ifdef CONFIG_SYSFS
  3583. static void resiliency_test(void) {};
  3584. #endif
  3585. #endif
  3586. #ifdef CONFIG_SYSFS
  3587. enum slab_stat_type {
  3588. SL_ALL, /* All slabs */
  3589. SL_PARTIAL, /* Only partially allocated slabs */
  3590. SL_CPU, /* Only slabs used for cpu caches */
  3591. SL_OBJECTS, /* Determine allocated objects not slabs */
  3592. SL_TOTAL /* Determine object capacity not slabs */
  3593. };
  3594. #define SO_ALL (1 << SL_ALL)
  3595. #define SO_PARTIAL (1 << SL_PARTIAL)
  3596. #define SO_CPU (1 << SL_CPU)
  3597. #define SO_OBJECTS (1 << SL_OBJECTS)
  3598. #define SO_TOTAL (1 << SL_TOTAL)
  3599. static ssize_t show_slab_objects(struct kmem_cache *s,
  3600. char *buf, unsigned long flags)
  3601. {
  3602. unsigned long total = 0;
  3603. int node;
  3604. int x;
  3605. unsigned long *nodes;
  3606. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3607. if (!nodes)
  3608. return -ENOMEM;
  3609. if (flags & SO_CPU) {
  3610. int cpu;
  3611. for_each_possible_cpu(cpu) {
  3612. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3613. cpu);
  3614. int node;
  3615. struct page *page;
  3616. page = ACCESS_ONCE(c->page);
  3617. if (!page)
  3618. continue;
  3619. node = page_to_nid(page);
  3620. if (flags & SO_TOTAL)
  3621. x = page->objects;
  3622. else if (flags & SO_OBJECTS)
  3623. x = page->inuse;
  3624. else
  3625. x = 1;
  3626. total += x;
  3627. nodes[node] += x;
  3628. page = ACCESS_ONCE(c->partial);
  3629. if (page) {
  3630. x = page->pobjects;
  3631. total += x;
  3632. nodes[node] += x;
  3633. }
  3634. }
  3635. }
  3636. lock_memory_hotplug();
  3637. #ifdef CONFIG_SLUB_DEBUG
  3638. if (flags & SO_ALL) {
  3639. for_each_node_state(node, N_NORMAL_MEMORY) {
  3640. struct kmem_cache_node *n = get_node(s, node);
  3641. if (flags & SO_TOTAL)
  3642. x = atomic_long_read(&n->total_objects);
  3643. else if (flags & SO_OBJECTS)
  3644. x = atomic_long_read(&n->total_objects) -
  3645. count_partial(n, count_free);
  3646. else
  3647. x = atomic_long_read(&n->nr_slabs);
  3648. total += x;
  3649. nodes[node] += x;
  3650. }
  3651. } else
  3652. #endif
  3653. if (flags & SO_PARTIAL) {
  3654. for_each_node_state(node, N_NORMAL_MEMORY) {
  3655. struct kmem_cache_node *n = get_node(s, node);
  3656. if (flags & SO_TOTAL)
  3657. x = count_partial(n, count_total);
  3658. else if (flags & SO_OBJECTS)
  3659. x = count_partial(n, count_inuse);
  3660. else
  3661. x = n->nr_partial;
  3662. total += x;
  3663. nodes[node] += x;
  3664. }
  3665. }
  3666. x = sprintf(buf, "%lu", total);
  3667. #ifdef CONFIG_NUMA
  3668. for_each_node_state(node, N_NORMAL_MEMORY)
  3669. if (nodes[node])
  3670. x += sprintf(buf + x, " N%d=%lu",
  3671. node, nodes[node]);
  3672. #endif
  3673. unlock_memory_hotplug();
  3674. kfree(nodes);
  3675. return x + sprintf(buf + x, "\n");
  3676. }
  3677. #ifdef CONFIG_SLUB_DEBUG
  3678. static int any_slab_objects(struct kmem_cache *s)
  3679. {
  3680. int node;
  3681. for_each_online_node(node) {
  3682. struct kmem_cache_node *n = get_node(s, node);
  3683. if (!n)
  3684. continue;
  3685. if (atomic_long_read(&n->total_objects))
  3686. return 1;
  3687. }
  3688. return 0;
  3689. }
  3690. #endif
  3691. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3692. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3693. struct slab_attribute {
  3694. struct attribute attr;
  3695. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3696. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3697. };
  3698. #define SLAB_ATTR_RO(_name) \
  3699. static struct slab_attribute _name##_attr = \
  3700. __ATTR(_name, 0400, _name##_show, NULL)
  3701. #define SLAB_ATTR(_name) \
  3702. static struct slab_attribute _name##_attr = \
  3703. __ATTR(_name, 0600, _name##_show, _name##_store)
  3704. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3705. {
  3706. return sprintf(buf, "%d\n", s->size);
  3707. }
  3708. SLAB_ATTR_RO(slab_size);
  3709. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3710. {
  3711. return sprintf(buf, "%d\n", s->align);
  3712. }
  3713. SLAB_ATTR_RO(align);
  3714. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3715. {
  3716. return sprintf(buf, "%d\n", s->object_size);
  3717. }
  3718. SLAB_ATTR_RO(object_size);
  3719. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3720. {
  3721. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3722. }
  3723. SLAB_ATTR_RO(objs_per_slab);
  3724. static ssize_t order_store(struct kmem_cache *s,
  3725. const char *buf, size_t length)
  3726. {
  3727. unsigned long order;
  3728. int err;
  3729. err = strict_strtoul(buf, 10, &order);
  3730. if (err)
  3731. return err;
  3732. if (order > slub_max_order || order < slub_min_order)
  3733. return -EINVAL;
  3734. calculate_sizes(s, order);
  3735. return length;
  3736. }
  3737. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3738. {
  3739. return sprintf(buf, "%d\n", oo_order(s->oo));
  3740. }
  3741. SLAB_ATTR(order);
  3742. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3743. {
  3744. return sprintf(buf, "%lu\n", s->min_partial);
  3745. }
  3746. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3747. size_t length)
  3748. {
  3749. unsigned long min;
  3750. int err;
  3751. err = strict_strtoul(buf, 10, &min);
  3752. if (err)
  3753. return err;
  3754. set_min_partial(s, min);
  3755. return length;
  3756. }
  3757. SLAB_ATTR(min_partial);
  3758. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3759. {
  3760. return sprintf(buf, "%u\n", s->cpu_partial);
  3761. }
  3762. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3763. size_t length)
  3764. {
  3765. unsigned long objects;
  3766. int err;
  3767. err = strict_strtoul(buf, 10, &objects);
  3768. if (err)
  3769. return err;
  3770. if (objects && !kmem_cache_has_cpu_partial(s))
  3771. return -EINVAL;
  3772. s->cpu_partial = objects;
  3773. flush_all(s);
  3774. return length;
  3775. }
  3776. SLAB_ATTR(cpu_partial);
  3777. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3778. {
  3779. if (!s->ctor)
  3780. return 0;
  3781. return sprintf(buf, "%pS\n", s->ctor);
  3782. }
  3783. SLAB_ATTR_RO(ctor);
  3784. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3785. {
  3786. return sprintf(buf, "%d\n", s->refcount - 1);
  3787. }
  3788. SLAB_ATTR_RO(aliases);
  3789. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3790. {
  3791. return show_slab_objects(s, buf, SO_PARTIAL);
  3792. }
  3793. SLAB_ATTR_RO(partial);
  3794. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3795. {
  3796. return show_slab_objects(s, buf, SO_CPU);
  3797. }
  3798. SLAB_ATTR_RO(cpu_slabs);
  3799. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3800. {
  3801. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3802. }
  3803. SLAB_ATTR_RO(objects);
  3804. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3805. {
  3806. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3807. }
  3808. SLAB_ATTR_RO(objects_partial);
  3809. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3810. {
  3811. int objects = 0;
  3812. int pages = 0;
  3813. int cpu;
  3814. int len;
  3815. for_each_online_cpu(cpu) {
  3816. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3817. if (page) {
  3818. pages += page->pages;
  3819. objects += page->pobjects;
  3820. }
  3821. }
  3822. len = sprintf(buf, "%d(%d)", objects, pages);
  3823. #ifdef CONFIG_SMP
  3824. for_each_online_cpu(cpu) {
  3825. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3826. if (page && len < PAGE_SIZE - 20)
  3827. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3828. page->pobjects, page->pages);
  3829. }
  3830. #endif
  3831. return len + sprintf(buf + len, "\n");
  3832. }
  3833. SLAB_ATTR_RO(slabs_cpu_partial);
  3834. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3835. {
  3836. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3837. }
  3838. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3839. const char *buf, size_t length)
  3840. {
  3841. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3842. if (buf[0] == '1')
  3843. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3844. return length;
  3845. }
  3846. SLAB_ATTR(reclaim_account);
  3847. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3848. {
  3849. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3850. }
  3851. SLAB_ATTR_RO(hwcache_align);
  3852. #ifdef CONFIG_ZONE_DMA
  3853. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3856. }
  3857. SLAB_ATTR_RO(cache_dma);
  3858. #endif
  3859. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3860. {
  3861. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3862. }
  3863. SLAB_ATTR_RO(destroy_by_rcu);
  3864. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3865. {
  3866. return sprintf(buf, "%d\n", s->reserved);
  3867. }
  3868. SLAB_ATTR_RO(reserved);
  3869. #ifdef CONFIG_SLUB_DEBUG
  3870. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3871. {
  3872. return show_slab_objects(s, buf, SO_ALL);
  3873. }
  3874. SLAB_ATTR_RO(slabs);
  3875. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3876. {
  3877. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3878. }
  3879. SLAB_ATTR_RO(total_objects);
  3880. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3881. {
  3882. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3883. }
  3884. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3885. const char *buf, size_t length)
  3886. {
  3887. s->flags &= ~SLAB_DEBUG_FREE;
  3888. if (buf[0] == '1') {
  3889. s->flags &= ~__CMPXCHG_DOUBLE;
  3890. s->flags |= SLAB_DEBUG_FREE;
  3891. }
  3892. return length;
  3893. }
  3894. SLAB_ATTR(sanity_checks);
  3895. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3896. {
  3897. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3898. }
  3899. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3900. size_t length)
  3901. {
  3902. s->flags &= ~SLAB_TRACE;
  3903. if (buf[0] == '1') {
  3904. s->flags &= ~__CMPXCHG_DOUBLE;
  3905. s->flags |= SLAB_TRACE;
  3906. }
  3907. return length;
  3908. }
  3909. SLAB_ATTR(trace);
  3910. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3911. {
  3912. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3913. }
  3914. static ssize_t red_zone_store(struct kmem_cache *s,
  3915. const char *buf, size_t length)
  3916. {
  3917. if (any_slab_objects(s))
  3918. return -EBUSY;
  3919. s->flags &= ~SLAB_RED_ZONE;
  3920. if (buf[0] == '1') {
  3921. s->flags &= ~__CMPXCHG_DOUBLE;
  3922. s->flags |= SLAB_RED_ZONE;
  3923. }
  3924. calculate_sizes(s, -1);
  3925. return length;
  3926. }
  3927. SLAB_ATTR(red_zone);
  3928. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3929. {
  3930. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3931. }
  3932. static ssize_t poison_store(struct kmem_cache *s,
  3933. const char *buf, size_t length)
  3934. {
  3935. if (any_slab_objects(s))
  3936. return -EBUSY;
  3937. s->flags &= ~SLAB_POISON;
  3938. if (buf[0] == '1') {
  3939. s->flags &= ~__CMPXCHG_DOUBLE;
  3940. s->flags |= SLAB_POISON;
  3941. }
  3942. calculate_sizes(s, -1);
  3943. return length;
  3944. }
  3945. SLAB_ATTR(poison);
  3946. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3947. {
  3948. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3949. }
  3950. static ssize_t store_user_store(struct kmem_cache *s,
  3951. const char *buf, size_t length)
  3952. {
  3953. if (any_slab_objects(s))
  3954. return -EBUSY;
  3955. s->flags &= ~SLAB_STORE_USER;
  3956. if (buf[0] == '1') {
  3957. s->flags &= ~__CMPXCHG_DOUBLE;
  3958. s->flags |= SLAB_STORE_USER;
  3959. }
  3960. calculate_sizes(s, -1);
  3961. return length;
  3962. }
  3963. SLAB_ATTR(store_user);
  3964. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3965. {
  3966. return 0;
  3967. }
  3968. static ssize_t validate_store(struct kmem_cache *s,
  3969. const char *buf, size_t length)
  3970. {
  3971. int ret = -EINVAL;
  3972. if (buf[0] == '1') {
  3973. ret = validate_slab_cache(s);
  3974. if (ret >= 0)
  3975. ret = length;
  3976. }
  3977. return ret;
  3978. }
  3979. SLAB_ATTR(validate);
  3980. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3981. {
  3982. if (!(s->flags & SLAB_STORE_USER))
  3983. return -ENOSYS;
  3984. return list_locations(s, buf, TRACK_ALLOC);
  3985. }
  3986. SLAB_ATTR_RO(alloc_calls);
  3987. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3988. {
  3989. if (!(s->flags & SLAB_STORE_USER))
  3990. return -ENOSYS;
  3991. return list_locations(s, buf, TRACK_FREE);
  3992. }
  3993. SLAB_ATTR_RO(free_calls);
  3994. #endif /* CONFIG_SLUB_DEBUG */
  3995. #ifdef CONFIG_FAILSLAB
  3996. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3997. {
  3998. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3999. }
  4000. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4001. size_t length)
  4002. {
  4003. s->flags &= ~SLAB_FAILSLAB;
  4004. if (buf[0] == '1')
  4005. s->flags |= SLAB_FAILSLAB;
  4006. return length;
  4007. }
  4008. SLAB_ATTR(failslab);
  4009. #endif
  4010. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4011. {
  4012. return 0;
  4013. }
  4014. static ssize_t shrink_store(struct kmem_cache *s,
  4015. const char *buf, size_t length)
  4016. {
  4017. if (buf[0] == '1') {
  4018. int rc = kmem_cache_shrink(s);
  4019. if (rc)
  4020. return rc;
  4021. } else
  4022. return -EINVAL;
  4023. return length;
  4024. }
  4025. SLAB_ATTR(shrink);
  4026. #ifdef CONFIG_NUMA
  4027. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4028. {
  4029. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4030. }
  4031. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4032. const char *buf, size_t length)
  4033. {
  4034. unsigned long ratio;
  4035. int err;
  4036. err = strict_strtoul(buf, 10, &ratio);
  4037. if (err)
  4038. return err;
  4039. if (ratio <= 100)
  4040. s->remote_node_defrag_ratio = ratio * 10;
  4041. return length;
  4042. }
  4043. SLAB_ATTR(remote_node_defrag_ratio);
  4044. #endif
  4045. #ifdef CONFIG_SLUB_STATS
  4046. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4047. {
  4048. unsigned long sum = 0;
  4049. int cpu;
  4050. int len;
  4051. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4052. if (!data)
  4053. return -ENOMEM;
  4054. for_each_online_cpu(cpu) {
  4055. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4056. data[cpu] = x;
  4057. sum += x;
  4058. }
  4059. len = sprintf(buf, "%lu", sum);
  4060. #ifdef CONFIG_SMP
  4061. for_each_online_cpu(cpu) {
  4062. if (data[cpu] && len < PAGE_SIZE - 20)
  4063. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4064. }
  4065. #endif
  4066. kfree(data);
  4067. return len + sprintf(buf + len, "\n");
  4068. }
  4069. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4070. {
  4071. int cpu;
  4072. for_each_online_cpu(cpu)
  4073. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4074. }
  4075. #define STAT_ATTR(si, text) \
  4076. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4077. { \
  4078. return show_stat(s, buf, si); \
  4079. } \
  4080. static ssize_t text##_store(struct kmem_cache *s, \
  4081. const char *buf, size_t length) \
  4082. { \
  4083. if (buf[0] != '0') \
  4084. return -EINVAL; \
  4085. clear_stat(s, si); \
  4086. return length; \
  4087. } \
  4088. SLAB_ATTR(text); \
  4089. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4090. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4091. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4092. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4093. STAT_ATTR(FREE_FROZEN, free_frozen);
  4094. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4095. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4096. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4097. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4098. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4099. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4100. STAT_ATTR(FREE_SLAB, free_slab);
  4101. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4102. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4103. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4104. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4105. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4106. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4107. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4108. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4109. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4110. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4111. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4112. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4113. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4114. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4115. #endif
  4116. static struct attribute *slab_attrs[] = {
  4117. &slab_size_attr.attr,
  4118. &object_size_attr.attr,
  4119. &objs_per_slab_attr.attr,
  4120. &order_attr.attr,
  4121. &min_partial_attr.attr,
  4122. &cpu_partial_attr.attr,
  4123. &objects_attr.attr,
  4124. &objects_partial_attr.attr,
  4125. &partial_attr.attr,
  4126. &cpu_slabs_attr.attr,
  4127. &ctor_attr.attr,
  4128. &aliases_attr.attr,
  4129. &align_attr.attr,
  4130. &hwcache_align_attr.attr,
  4131. &reclaim_account_attr.attr,
  4132. &destroy_by_rcu_attr.attr,
  4133. &shrink_attr.attr,
  4134. &reserved_attr.attr,
  4135. &slabs_cpu_partial_attr.attr,
  4136. #ifdef CONFIG_SLUB_DEBUG
  4137. &total_objects_attr.attr,
  4138. &slabs_attr.attr,
  4139. &sanity_checks_attr.attr,
  4140. &trace_attr.attr,
  4141. &red_zone_attr.attr,
  4142. &poison_attr.attr,
  4143. &store_user_attr.attr,
  4144. &validate_attr.attr,
  4145. &alloc_calls_attr.attr,
  4146. &free_calls_attr.attr,
  4147. #endif
  4148. #ifdef CONFIG_ZONE_DMA
  4149. &cache_dma_attr.attr,
  4150. #endif
  4151. #ifdef CONFIG_NUMA
  4152. &remote_node_defrag_ratio_attr.attr,
  4153. #endif
  4154. #ifdef CONFIG_SLUB_STATS
  4155. &alloc_fastpath_attr.attr,
  4156. &alloc_slowpath_attr.attr,
  4157. &free_fastpath_attr.attr,
  4158. &free_slowpath_attr.attr,
  4159. &free_frozen_attr.attr,
  4160. &free_add_partial_attr.attr,
  4161. &free_remove_partial_attr.attr,
  4162. &alloc_from_partial_attr.attr,
  4163. &alloc_slab_attr.attr,
  4164. &alloc_refill_attr.attr,
  4165. &alloc_node_mismatch_attr.attr,
  4166. &free_slab_attr.attr,
  4167. &cpuslab_flush_attr.attr,
  4168. &deactivate_full_attr.attr,
  4169. &deactivate_empty_attr.attr,
  4170. &deactivate_to_head_attr.attr,
  4171. &deactivate_to_tail_attr.attr,
  4172. &deactivate_remote_frees_attr.attr,
  4173. &deactivate_bypass_attr.attr,
  4174. &order_fallback_attr.attr,
  4175. &cmpxchg_double_fail_attr.attr,
  4176. &cmpxchg_double_cpu_fail_attr.attr,
  4177. &cpu_partial_alloc_attr.attr,
  4178. &cpu_partial_free_attr.attr,
  4179. &cpu_partial_node_attr.attr,
  4180. &cpu_partial_drain_attr.attr,
  4181. #endif
  4182. #ifdef CONFIG_FAILSLAB
  4183. &failslab_attr.attr,
  4184. #endif
  4185. NULL
  4186. };
  4187. static struct attribute_group slab_attr_group = {
  4188. .attrs = slab_attrs,
  4189. };
  4190. static ssize_t slab_attr_show(struct kobject *kobj,
  4191. struct attribute *attr,
  4192. char *buf)
  4193. {
  4194. struct slab_attribute *attribute;
  4195. struct kmem_cache *s;
  4196. int err;
  4197. attribute = to_slab_attr(attr);
  4198. s = to_slab(kobj);
  4199. if (!attribute->show)
  4200. return -EIO;
  4201. err = attribute->show(s, buf);
  4202. return err;
  4203. }
  4204. static ssize_t slab_attr_store(struct kobject *kobj,
  4205. struct attribute *attr,
  4206. const char *buf, size_t len)
  4207. {
  4208. struct slab_attribute *attribute;
  4209. struct kmem_cache *s;
  4210. int err;
  4211. attribute = to_slab_attr(attr);
  4212. s = to_slab(kobj);
  4213. if (!attribute->store)
  4214. return -EIO;
  4215. err = attribute->store(s, buf, len);
  4216. #ifdef CONFIG_MEMCG_KMEM
  4217. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4218. int i;
  4219. mutex_lock(&slab_mutex);
  4220. if (s->max_attr_size < len)
  4221. s->max_attr_size = len;
  4222. /*
  4223. * This is a best effort propagation, so this function's return
  4224. * value will be determined by the parent cache only. This is
  4225. * basically because not all attributes will have a well
  4226. * defined semantics for rollbacks - most of the actions will
  4227. * have permanent effects.
  4228. *
  4229. * Returning the error value of any of the children that fail
  4230. * is not 100 % defined, in the sense that users seeing the
  4231. * error code won't be able to know anything about the state of
  4232. * the cache.
  4233. *
  4234. * Only returning the error code for the parent cache at least
  4235. * has well defined semantics. The cache being written to
  4236. * directly either failed or succeeded, in which case we loop
  4237. * through the descendants with best-effort propagation.
  4238. */
  4239. for_each_memcg_cache_index(i) {
  4240. struct kmem_cache *c = cache_from_memcg(s, i);
  4241. if (c)
  4242. attribute->store(c, buf, len);
  4243. }
  4244. mutex_unlock(&slab_mutex);
  4245. }
  4246. #endif
  4247. return err;
  4248. }
  4249. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4250. {
  4251. #ifdef CONFIG_MEMCG_KMEM
  4252. int i;
  4253. char *buffer = NULL;
  4254. if (!is_root_cache(s))
  4255. return;
  4256. /*
  4257. * This mean this cache had no attribute written. Therefore, no point
  4258. * in copying default values around
  4259. */
  4260. if (!s->max_attr_size)
  4261. return;
  4262. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4263. char mbuf[64];
  4264. char *buf;
  4265. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4266. if (!attr || !attr->store || !attr->show)
  4267. continue;
  4268. /*
  4269. * It is really bad that we have to allocate here, so we will
  4270. * do it only as a fallback. If we actually allocate, though,
  4271. * we can just use the allocated buffer until the end.
  4272. *
  4273. * Most of the slub attributes will tend to be very small in
  4274. * size, but sysfs allows buffers up to a page, so they can
  4275. * theoretically happen.
  4276. */
  4277. if (buffer)
  4278. buf = buffer;
  4279. else if (s->max_attr_size < ARRAY_SIZE(mbuf))
  4280. buf = mbuf;
  4281. else {
  4282. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4283. if (WARN_ON(!buffer))
  4284. continue;
  4285. buf = buffer;
  4286. }
  4287. attr->show(s->memcg_params->root_cache, buf);
  4288. attr->store(s, buf, strlen(buf));
  4289. }
  4290. if (buffer)
  4291. free_page((unsigned long)buffer);
  4292. #endif
  4293. }
  4294. static const struct sysfs_ops slab_sysfs_ops = {
  4295. .show = slab_attr_show,
  4296. .store = slab_attr_store,
  4297. };
  4298. static struct kobj_type slab_ktype = {
  4299. .sysfs_ops = &slab_sysfs_ops,
  4300. };
  4301. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4302. {
  4303. struct kobj_type *ktype = get_ktype(kobj);
  4304. if (ktype == &slab_ktype)
  4305. return 1;
  4306. return 0;
  4307. }
  4308. static const struct kset_uevent_ops slab_uevent_ops = {
  4309. .filter = uevent_filter,
  4310. };
  4311. static struct kset *slab_kset;
  4312. #define ID_STR_LENGTH 64
  4313. /* Create a unique string id for a slab cache:
  4314. *
  4315. * Format :[flags-]size
  4316. */
  4317. static char *create_unique_id(struct kmem_cache *s)
  4318. {
  4319. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4320. char *p = name;
  4321. BUG_ON(!name);
  4322. *p++ = ':';
  4323. /*
  4324. * First flags affecting slabcache operations. We will only
  4325. * get here for aliasable slabs so we do not need to support
  4326. * too many flags. The flags here must cover all flags that
  4327. * are matched during merging to guarantee that the id is
  4328. * unique.
  4329. */
  4330. if (s->flags & SLAB_CACHE_DMA)
  4331. *p++ = 'd';
  4332. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4333. *p++ = 'a';
  4334. if (s->flags & SLAB_DEBUG_FREE)
  4335. *p++ = 'F';
  4336. if (!(s->flags & SLAB_NOTRACK))
  4337. *p++ = 't';
  4338. if (p != name + 1)
  4339. *p++ = '-';
  4340. p += sprintf(p, "%07d", s->size);
  4341. #ifdef CONFIG_MEMCG_KMEM
  4342. if (!is_root_cache(s))
  4343. p += sprintf(p, "-%08d",
  4344. memcg_cache_id(s->memcg_params->memcg));
  4345. #endif
  4346. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4347. return name;
  4348. }
  4349. static int sysfs_slab_add(struct kmem_cache *s)
  4350. {
  4351. int err;
  4352. const char *name;
  4353. int unmergeable = slab_unmergeable(s);
  4354. if (unmergeable) {
  4355. /*
  4356. * Slabcache can never be merged so we can use the name proper.
  4357. * This is typically the case for debug situations. In that
  4358. * case we can catch duplicate names easily.
  4359. */
  4360. sysfs_remove_link(&slab_kset->kobj, s->name);
  4361. name = s->name;
  4362. } else {
  4363. /*
  4364. * Create a unique name for the slab as a target
  4365. * for the symlinks.
  4366. */
  4367. name = create_unique_id(s);
  4368. }
  4369. s->kobj.kset = slab_kset;
  4370. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4371. if (err) {
  4372. kobject_put(&s->kobj);
  4373. return err;
  4374. }
  4375. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4376. if (err) {
  4377. kobject_del(&s->kobj);
  4378. kobject_put(&s->kobj);
  4379. return err;
  4380. }
  4381. kobject_uevent(&s->kobj, KOBJ_ADD);
  4382. if (!unmergeable) {
  4383. /* Setup first alias */
  4384. sysfs_slab_alias(s, s->name);
  4385. kfree(name);
  4386. }
  4387. return 0;
  4388. }
  4389. static void sysfs_slab_remove(struct kmem_cache *s)
  4390. {
  4391. if (slab_state < FULL)
  4392. /*
  4393. * Sysfs has not been setup yet so no need to remove the
  4394. * cache from sysfs.
  4395. */
  4396. return;
  4397. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4398. kobject_del(&s->kobj);
  4399. kobject_put(&s->kobj);
  4400. }
  4401. /*
  4402. * Need to buffer aliases during bootup until sysfs becomes
  4403. * available lest we lose that information.
  4404. */
  4405. struct saved_alias {
  4406. struct kmem_cache *s;
  4407. const char *name;
  4408. struct saved_alias *next;
  4409. };
  4410. static struct saved_alias *alias_list;
  4411. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4412. {
  4413. struct saved_alias *al;
  4414. if (slab_state == FULL) {
  4415. /*
  4416. * If we have a leftover link then remove it.
  4417. */
  4418. sysfs_remove_link(&slab_kset->kobj, name);
  4419. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4420. }
  4421. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4422. if (!al)
  4423. return -ENOMEM;
  4424. al->s = s;
  4425. al->name = name;
  4426. al->next = alias_list;
  4427. alias_list = al;
  4428. return 0;
  4429. }
  4430. static int __init slab_sysfs_init(void)
  4431. {
  4432. struct kmem_cache *s;
  4433. int err;
  4434. mutex_lock(&slab_mutex);
  4435. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4436. if (!slab_kset) {
  4437. mutex_unlock(&slab_mutex);
  4438. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4439. return -ENOSYS;
  4440. }
  4441. slab_state = FULL;
  4442. list_for_each_entry(s, &slab_caches, list) {
  4443. err = sysfs_slab_add(s);
  4444. if (err)
  4445. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4446. " to sysfs\n", s->name);
  4447. }
  4448. while (alias_list) {
  4449. struct saved_alias *al = alias_list;
  4450. alias_list = alias_list->next;
  4451. err = sysfs_slab_alias(al->s, al->name);
  4452. if (err)
  4453. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4454. " %s to sysfs\n", al->name);
  4455. kfree(al);
  4456. }
  4457. mutex_unlock(&slab_mutex);
  4458. resiliency_test();
  4459. return 0;
  4460. }
  4461. __initcall(slab_sysfs_init);
  4462. #endif /* CONFIG_SYSFS */
  4463. /*
  4464. * The /proc/slabinfo ABI
  4465. */
  4466. #ifdef CONFIG_SLABINFO
  4467. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4468. {
  4469. unsigned long nr_slabs = 0;
  4470. unsigned long nr_objs = 0;
  4471. unsigned long nr_free = 0;
  4472. int node;
  4473. for_each_online_node(node) {
  4474. struct kmem_cache_node *n = get_node(s, node);
  4475. if (!n)
  4476. continue;
  4477. nr_slabs += node_nr_slabs(n);
  4478. nr_objs += node_nr_objs(n);
  4479. nr_free += count_partial(n, count_free);
  4480. }
  4481. sinfo->active_objs = nr_objs - nr_free;
  4482. sinfo->num_objs = nr_objs;
  4483. sinfo->active_slabs = nr_slabs;
  4484. sinfo->num_slabs = nr_slabs;
  4485. sinfo->objects_per_slab = oo_objects(s->oo);
  4486. sinfo->cache_order = oo_order(s->oo);
  4487. }
  4488. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4489. {
  4490. }
  4491. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4492. size_t count, loff_t *ppos)
  4493. {
  4494. return -EIO;
  4495. }
  4496. #endif /* CONFIG_SLABINFO */