cfq-iosched.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. /*
  20. * tunables
  21. */
  22. /* max queue in one round of service */
  23. static const int cfq_quantum = 8;
  24. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  25. /* maximum backwards seek, in KiB */
  26. static const int cfq_back_max = 16 * 1024;
  27. /* penalty of a backwards seek */
  28. static const int cfq_back_penalty = 2;
  29. static const int cfq_slice_sync = HZ / 10;
  30. static int cfq_slice_async = HZ / 25;
  31. static const int cfq_slice_async_rq = 2;
  32. static int cfq_slice_idle = HZ / 125;
  33. static int cfq_group_idle = HZ / 125;
  34. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  35. static const int cfq_hist_divisor = 4;
  36. /*
  37. * offset from end of service tree
  38. */
  39. #define CFQ_IDLE_DELAY (HZ / 5)
  40. /*
  41. * below this threshold, we consider thinktime immediate
  42. */
  43. #define CFQ_MIN_TT (2)
  44. #define CFQ_SLICE_SCALE (5)
  45. #define CFQ_HW_QUEUE_MIN (5)
  46. #define CFQ_SERVICE_SHIFT 12
  47. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  48. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  49. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  50. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  51. #define RQ_CIC(rq) \
  52. ((struct cfq_io_context *) (rq)->elevator_private[0])
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  55. static struct kmem_cache *cfq_pool;
  56. static struct kmem_cache *cfq_ioc_pool;
  57. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  58. static struct completion *ioc_gone;
  59. static DEFINE_SPINLOCK(ioc_gone_lock);
  60. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  61. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  62. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  63. #define sample_valid(samples) ((samples) > 80)
  64. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  65. /*
  66. * Most of our rbtree usage is for sorting with min extraction, so
  67. * if we cache the leftmost node we don't have to walk down the tree
  68. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  69. * move this into the elevator for the rq sorting as well.
  70. */
  71. struct cfq_rb_root {
  72. struct rb_root rb;
  73. struct rb_node *left;
  74. unsigned count;
  75. unsigned total_weight;
  76. u64 min_vdisktime;
  77. struct cfq_ttime ttime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  80. .ttime = {.last_end_request = jiffies,},}
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending priority requests */
  118. int prio_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queues average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. struct cfq_ttime ttime;
  190. };
  191. /*
  192. * Per block device queue structure
  193. */
  194. struct cfq_data {
  195. struct request_queue *queue;
  196. /* Root service tree for cfq_groups */
  197. struct cfq_rb_root grp_service_tree;
  198. struct cfq_group root_group;
  199. /*
  200. * The priority currently being served
  201. */
  202. enum wl_prio_t serving_prio;
  203. enum wl_type_t serving_type;
  204. unsigned long workload_expires;
  205. struct cfq_group *serving_group;
  206. /*
  207. * Each priority tree is sorted by next_request position. These
  208. * trees are used when determining if two or more queues are
  209. * interleaving requests (see cfq_close_cooperator).
  210. */
  211. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  212. unsigned int busy_queues;
  213. unsigned int busy_sync_queues;
  214. int rq_in_driver;
  215. int rq_in_flight[2];
  216. /*
  217. * queue-depth detection
  218. */
  219. int rq_queued;
  220. int hw_tag;
  221. /*
  222. * hw_tag can be
  223. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  224. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  225. * 0 => no NCQ
  226. */
  227. int hw_tag_est_depth;
  228. unsigned int hw_tag_samples;
  229. /*
  230. * idle window management
  231. */
  232. struct timer_list idle_slice_timer;
  233. struct work_struct unplug_work;
  234. struct cfq_queue *active_queue;
  235. struct cfq_io_context *active_cic;
  236. /*
  237. * async queue for each priority case
  238. */
  239. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  240. struct cfq_queue *async_idle_cfqq;
  241. sector_t last_position;
  242. /*
  243. * tunables, see top of file
  244. */
  245. unsigned int cfq_quantum;
  246. unsigned int cfq_fifo_expire[2];
  247. unsigned int cfq_back_penalty;
  248. unsigned int cfq_back_max;
  249. unsigned int cfq_slice[2];
  250. unsigned int cfq_slice_async_rq;
  251. unsigned int cfq_slice_idle;
  252. unsigned int cfq_group_idle;
  253. unsigned int cfq_latency;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. /* Number of groups which are on blkcg->blkg_list */
  263. unsigned int nr_blkcg_linked_grps;
  264. };
  265. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  266. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  267. enum wl_prio_t prio,
  268. enum wl_type_t type)
  269. {
  270. if (!cfqg)
  271. return NULL;
  272. if (prio == IDLE_WORKLOAD)
  273. return &cfqg->service_tree_idle;
  274. return &cfqg->service_trees[prio][type];
  275. }
  276. enum cfqq_state_flags {
  277. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  278. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  279. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  280. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  281. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  282. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  283. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  284. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  285. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  286. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  287. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  288. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  289. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  290. };
  291. #define CFQ_CFQQ_FNS(name) \
  292. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  293. { \
  294. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  295. } \
  296. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  297. { \
  298. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  299. } \
  300. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  301. { \
  302. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  303. }
  304. CFQ_CFQQ_FNS(on_rr);
  305. CFQ_CFQQ_FNS(wait_request);
  306. CFQ_CFQQ_FNS(must_dispatch);
  307. CFQ_CFQQ_FNS(must_alloc_slice);
  308. CFQ_CFQQ_FNS(fifo_expire);
  309. CFQ_CFQQ_FNS(idle_window);
  310. CFQ_CFQQ_FNS(prio_changed);
  311. CFQ_CFQQ_FNS(slice_new);
  312. CFQ_CFQQ_FNS(sync);
  313. CFQ_CFQQ_FNS(coop);
  314. CFQ_CFQQ_FNS(split_coop);
  315. CFQ_CFQQ_FNS(deep);
  316. CFQ_CFQQ_FNS(wait_busy);
  317. #undef CFQ_CFQQ_FNS
  318. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  319. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  321. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  322. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  323. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  324. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  325. blkg_path(&(cfqg)->blkg), ##args) \
  326. #else
  327. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  328. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  330. #endif
  331. #define cfq_log(cfqd, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  333. /* Traverses through cfq group service trees */
  334. #define for_each_cfqg_st(cfqg, i, j, st) \
  335. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  336. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  337. : &cfqg->service_tree_idle; \
  338. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  339. (i == IDLE_WORKLOAD && j == 0); \
  340. j++, st = i < IDLE_WORKLOAD ? \
  341. &cfqg->service_trees[i][j]: NULL) \
  342. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  343. struct cfq_ttime *ttime, bool group_idle)
  344. {
  345. unsigned long slice;
  346. if (!sample_valid(ttime->ttime_samples))
  347. return false;
  348. if (group_idle)
  349. slice = cfqd->cfq_group_idle;
  350. else
  351. slice = cfqd->cfq_slice_idle;
  352. return ttime->ttime_mean > slice;
  353. }
  354. static inline bool iops_mode(struct cfq_data *cfqd)
  355. {
  356. /*
  357. * If we are not idling on queues and it is a NCQ drive, parallel
  358. * execution of requests is on and measuring time is not possible
  359. * in most of the cases until and unless we drive shallower queue
  360. * depths and that becomes a performance bottleneck. In such cases
  361. * switch to start providing fairness in terms of number of IOs.
  362. */
  363. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  364. return true;
  365. else
  366. return false;
  367. }
  368. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  369. {
  370. if (cfq_class_idle(cfqq))
  371. return IDLE_WORKLOAD;
  372. if (cfq_class_rt(cfqq))
  373. return RT_WORKLOAD;
  374. return BE_WORKLOAD;
  375. }
  376. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  377. {
  378. if (!cfq_cfqq_sync(cfqq))
  379. return ASYNC_WORKLOAD;
  380. if (!cfq_cfqq_idle_window(cfqq))
  381. return SYNC_NOIDLE_WORKLOAD;
  382. return SYNC_WORKLOAD;
  383. }
  384. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  385. struct cfq_data *cfqd,
  386. struct cfq_group *cfqg)
  387. {
  388. if (wl == IDLE_WORKLOAD)
  389. return cfqg->service_tree_idle.count;
  390. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  391. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  392. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  393. }
  394. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  395. struct cfq_group *cfqg)
  396. {
  397. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  398. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  399. }
  400. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  401. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  402. struct io_context *, gfp_t);
  403. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  404. struct io_context *);
  405. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  406. bool is_sync)
  407. {
  408. return cic->cfqq[is_sync];
  409. }
  410. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  411. struct cfq_queue *cfqq, bool is_sync)
  412. {
  413. cic->cfqq[is_sync] = cfqq;
  414. }
  415. #define CIC_DEAD_KEY 1ul
  416. #define CIC_DEAD_INDEX_SHIFT 1
  417. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  418. {
  419. return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  420. }
  421. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  422. {
  423. struct cfq_data *cfqd = cic->key;
  424. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  425. return NULL;
  426. return cfqd;
  427. }
  428. /*
  429. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  430. * set (in which case it could also be direct WRITE).
  431. */
  432. static inline bool cfq_bio_sync(struct bio *bio)
  433. {
  434. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  435. }
  436. /*
  437. * scheduler run of queue, if there are requests pending and no one in the
  438. * driver that will restart queueing
  439. */
  440. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  441. {
  442. if (cfqd->busy_queues) {
  443. cfq_log(cfqd, "schedule dispatch");
  444. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  445. }
  446. }
  447. /*
  448. * Scale schedule slice based on io priority. Use the sync time slice only
  449. * if a queue is marked sync and has sync io queued. A sync queue with async
  450. * io only, should not get full sync slice length.
  451. */
  452. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  453. unsigned short prio)
  454. {
  455. const int base_slice = cfqd->cfq_slice[sync];
  456. WARN_ON(prio >= IOPRIO_BE_NR);
  457. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  458. }
  459. static inline int
  460. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  461. {
  462. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  463. }
  464. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  465. {
  466. u64 d = delta << CFQ_SERVICE_SHIFT;
  467. d = d * BLKIO_WEIGHT_DEFAULT;
  468. do_div(d, cfqg->weight);
  469. return d;
  470. }
  471. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  472. {
  473. s64 delta = (s64)(vdisktime - min_vdisktime);
  474. if (delta > 0)
  475. min_vdisktime = vdisktime;
  476. return min_vdisktime;
  477. }
  478. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  479. {
  480. s64 delta = (s64)(vdisktime - min_vdisktime);
  481. if (delta < 0)
  482. min_vdisktime = vdisktime;
  483. return min_vdisktime;
  484. }
  485. static void update_min_vdisktime(struct cfq_rb_root *st)
  486. {
  487. struct cfq_group *cfqg;
  488. if (st->left) {
  489. cfqg = rb_entry_cfqg(st->left);
  490. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  491. cfqg->vdisktime);
  492. }
  493. }
  494. /*
  495. * get averaged number of queues of RT/BE priority.
  496. * average is updated, with a formula that gives more weight to higher numbers,
  497. * to quickly follows sudden increases and decrease slowly
  498. */
  499. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  500. struct cfq_group *cfqg, bool rt)
  501. {
  502. unsigned min_q, max_q;
  503. unsigned mult = cfq_hist_divisor - 1;
  504. unsigned round = cfq_hist_divisor / 2;
  505. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  506. min_q = min(cfqg->busy_queues_avg[rt], busy);
  507. max_q = max(cfqg->busy_queues_avg[rt], busy);
  508. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  509. cfq_hist_divisor;
  510. return cfqg->busy_queues_avg[rt];
  511. }
  512. static inline unsigned
  513. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  514. {
  515. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  516. return cfq_target_latency * cfqg->weight / st->total_weight;
  517. }
  518. static inline unsigned
  519. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  520. {
  521. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  522. if (cfqd->cfq_latency) {
  523. /*
  524. * interested queues (we consider only the ones with the same
  525. * priority class in the cfq group)
  526. */
  527. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  528. cfq_class_rt(cfqq));
  529. unsigned sync_slice = cfqd->cfq_slice[1];
  530. unsigned expect_latency = sync_slice * iq;
  531. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  532. if (expect_latency > group_slice) {
  533. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  534. /* scale low_slice according to IO priority
  535. * and sync vs async */
  536. unsigned low_slice =
  537. min(slice, base_low_slice * slice / sync_slice);
  538. /* the adapted slice value is scaled to fit all iqs
  539. * into the target latency */
  540. slice = max(slice * group_slice / expect_latency,
  541. low_slice);
  542. }
  543. }
  544. return slice;
  545. }
  546. static inline void
  547. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  548. {
  549. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  550. cfqq->slice_start = jiffies;
  551. cfqq->slice_end = jiffies + slice;
  552. cfqq->allocated_slice = slice;
  553. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  554. }
  555. /*
  556. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  557. * isn't valid until the first request from the dispatch is activated
  558. * and the slice time set.
  559. */
  560. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  561. {
  562. if (cfq_cfqq_slice_new(cfqq))
  563. return false;
  564. if (time_before(jiffies, cfqq->slice_end))
  565. return false;
  566. return true;
  567. }
  568. /*
  569. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  570. * We choose the request that is closest to the head right now. Distance
  571. * behind the head is penalized and only allowed to a certain extent.
  572. */
  573. static struct request *
  574. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  575. {
  576. sector_t s1, s2, d1 = 0, d2 = 0;
  577. unsigned long back_max;
  578. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  579. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  580. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  581. if (rq1 == NULL || rq1 == rq2)
  582. return rq2;
  583. if (rq2 == NULL)
  584. return rq1;
  585. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  586. return rq_is_sync(rq1) ? rq1 : rq2;
  587. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  588. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  589. s1 = blk_rq_pos(rq1);
  590. s2 = blk_rq_pos(rq2);
  591. /*
  592. * by definition, 1KiB is 2 sectors
  593. */
  594. back_max = cfqd->cfq_back_max * 2;
  595. /*
  596. * Strict one way elevator _except_ in the case where we allow
  597. * short backward seeks which are biased as twice the cost of a
  598. * similar forward seek.
  599. */
  600. if (s1 >= last)
  601. d1 = s1 - last;
  602. else if (s1 + back_max >= last)
  603. d1 = (last - s1) * cfqd->cfq_back_penalty;
  604. else
  605. wrap |= CFQ_RQ1_WRAP;
  606. if (s2 >= last)
  607. d2 = s2 - last;
  608. else if (s2 + back_max >= last)
  609. d2 = (last - s2) * cfqd->cfq_back_penalty;
  610. else
  611. wrap |= CFQ_RQ2_WRAP;
  612. /* Found required data */
  613. /*
  614. * By doing switch() on the bit mask "wrap" we avoid having to
  615. * check two variables for all permutations: --> faster!
  616. */
  617. switch (wrap) {
  618. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  619. if (d1 < d2)
  620. return rq1;
  621. else if (d2 < d1)
  622. return rq2;
  623. else {
  624. if (s1 >= s2)
  625. return rq1;
  626. else
  627. return rq2;
  628. }
  629. case CFQ_RQ2_WRAP:
  630. return rq1;
  631. case CFQ_RQ1_WRAP:
  632. return rq2;
  633. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  634. default:
  635. /*
  636. * Since both rqs are wrapped,
  637. * start with the one that's further behind head
  638. * (--> only *one* back seek required),
  639. * since back seek takes more time than forward.
  640. */
  641. if (s1 <= s2)
  642. return rq1;
  643. else
  644. return rq2;
  645. }
  646. }
  647. /*
  648. * The below is leftmost cache rbtree addon
  649. */
  650. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  651. {
  652. /* Service tree is empty */
  653. if (!root->count)
  654. return NULL;
  655. if (!root->left)
  656. root->left = rb_first(&root->rb);
  657. if (root->left)
  658. return rb_entry(root->left, struct cfq_queue, rb_node);
  659. return NULL;
  660. }
  661. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  662. {
  663. if (!root->left)
  664. root->left = rb_first(&root->rb);
  665. if (root->left)
  666. return rb_entry_cfqg(root->left);
  667. return NULL;
  668. }
  669. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  670. {
  671. rb_erase(n, root);
  672. RB_CLEAR_NODE(n);
  673. }
  674. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  675. {
  676. if (root->left == n)
  677. root->left = NULL;
  678. rb_erase_init(n, &root->rb);
  679. --root->count;
  680. }
  681. /*
  682. * would be nice to take fifo expire time into account as well
  683. */
  684. static struct request *
  685. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  686. struct request *last)
  687. {
  688. struct rb_node *rbnext = rb_next(&last->rb_node);
  689. struct rb_node *rbprev = rb_prev(&last->rb_node);
  690. struct request *next = NULL, *prev = NULL;
  691. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  692. if (rbprev)
  693. prev = rb_entry_rq(rbprev);
  694. if (rbnext)
  695. next = rb_entry_rq(rbnext);
  696. else {
  697. rbnext = rb_first(&cfqq->sort_list);
  698. if (rbnext && rbnext != &last->rb_node)
  699. next = rb_entry_rq(rbnext);
  700. }
  701. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  702. }
  703. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  704. struct cfq_queue *cfqq)
  705. {
  706. /*
  707. * just an approximation, should be ok.
  708. */
  709. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  710. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  711. }
  712. static inline s64
  713. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  714. {
  715. return cfqg->vdisktime - st->min_vdisktime;
  716. }
  717. static void
  718. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  719. {
  720. struct rb_node **node = &st->rb.rb_node;
  721. struct rb_node *parent = NULL;
  722. struct cfq_group *__cfqg;
  723. s64 key = cfqg_key(st, cfqg);
  724. int left = 1;
  725. while (*node != NULL) {
  726. parent = *node;
  727. __cfqg = rb_entry_cfqg(parent);
  728. if (key < cfqg_key(st, __cfqg))
  729. node = &parent->rb_left;
  730. else {
  731. node = &parent->rb_right;
  732. left = 0;
  733. }
  734. }
  735. if (left)
  736. st->left = &cfqg->rb_node;
  737. rb_link_node(&cfqg->rb_node, parent, node);
  738. rb_insert_color(&cfqg->rb_node, &st->rb);
  739. }
  740. static void
  741. cfq_update_group_weight(struct cfq_group *cfqg)
  742. {
  743. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  744. if (cfqg->needs_update) {
  745. cfqg->weight = cfqg->new_weight;
  746. cfqg->needs_update = false;
  747. }
  748. }
  749. static void
  750. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  751. {
  752. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  753. cfq_update_group_weight(cfqg);
  754. __cfq_group_service_tree_add(st, cfqg);
  755. st->total_weight += cfqg->weight;
  756. }
  757. static void
  758. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  759. {
  760. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  761. struct cfq_group *__cfqg;
  762. struct rb_node *n;
  763. cfqg->nr_cfqq++;
  764. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  765. return;
  766. /*
  767. * Currently put the group at the end. Later implement something
  768. * so that groups get lesser vtime based on their weights, so that
  769. * if group does not loose all if it was not continuously backlogged.
  770. */
  771. n = rb_last(&st->rb);
  772. if (n) {
  773. __cfqg = rb_entry_cfqg(n);
  774. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  775. } else
  776. cfqg->vdisktime = st->min_vdisktime;
  777. cfq_group_service_tree_add(st, cfqg);
  778. }
  779. static void
  780. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  781. {
  782. st->total_weight -= cfqg->weight;
  783. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  784. cfq_rb_erase(&cfqg->rb_node, st);
  785. }
  786. static void
  787. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  788. {
  789. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  790. BUG_ON(cfqg->nr_cfqq < 1);
  791. cfqg->nr_cfqq--;
  792. /* If there are other cfq queues under this group, don't delete it */
  793. if (cfqg->nr_cfqq)
  794. return;
  795. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  796. cfq_group_service_tree_del(st, cfqg);
  797. cfqg->saved_workload_slice = 0;
  798. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  799. }
  800. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  801. unsigned int *unaccounted_time)
  802. {
  803. unsigned int slice_used;
  804. /*
  805. * Queue got expired before even a single request completed or
  806. * got expired immediately after first request completion.
  807. */
  808. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  809. /*
  810. * Also charge the seek time incurred to the group, otherwise
  811. * if there are mutiple queues in the group, each can dispatch
  812. * a single request on seeky media and cause lots of seek time
  813. * and group will never know it.
  814. */
  815. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  816. 1);
  817. } else {
  818. slice_used = jiffies - cfqq->slice_start;
  819. if (slice_used > cfqq->allocated_slice) {
  820. *unaccounted_time = slice_used - cfqq->allocated_slice;
  821. slice_used = cfqq->allocated_slice;
  822. }
  823. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  824. *unaccounted_time += cfqq->slice_start -
  825. cfqq->dispatch_start;
  826. }
  827. return slice_used;
  828. }
  829. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  830. struct cfq_queue *cfqq)
  831. {
  832. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  833. unsigned int used_sl, charge, unaccounted_sl = 0;
  834. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  835. - cfqg->service_tree_idle.count;
  836. BUG_ON(nr_sync < 0);
  837. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  838. if (iops_mode(cfqd))
  839. charge = cfqq->slice_dispatch;
  840. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  841. charge = cfqq->allocated_slice;
  842. /* Can't update vdisktime while group is on service tree */
  843. cfq_group_service_tree_del(st, cfqg);
  844. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  845. /* If a new weight was requested, update now, off tree */
  846. cfq_group_service_tree_add(st, cfqg);
  847. /* This group is being expired. Save the context */
  848. if (time_after(cfqd->workload_expires, jiffies)) {
  849. cfqg->saved_workload_slice = cfqd->workload_expires
  850. - jiffies;
  851. cfqg->saved_workload = cfqd->serving_type;
  852. cfqg->saved_serving_prio = cfqd->serving_prio;
  853. } else
  854. cfqg->saved_workload_slice = 0;
  855. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  856. st->min_vdisktime);
  857. cfq_log_cfqq(cfqq->cfqd, cfqq,
  858. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  859. used_sl, cfqq->slice_dispatch, charge,
  860. iops_mode(cfqd), cfqq->nr_sectors);
  861. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  862. unaccounted_sl);
  863. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  864. }
  865. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  866. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  867. {
  868. if (blkg)
  869. return container_of(blkg, struct cfq_group, blkg);
  870. return NULL;
  871. }
  872. static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  873. unsigned int weight)
  874. {
  875. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  876. cfqg->new_weight = weight;
  877. cfqg->needs_update = true;
  878. }
  879. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  880. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  881. {
  882. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  883. unsigned int major, minor;
  884. /*
  885. * Add group onto cgroup list. It might happen that bdi->dev is
  886. * not initialized yet. Initialize this new group without major
  887. * and minor info and this info will be filled in once a new thread
  888. * comes for IO.
  889. */
  890. if (bdi->dev) {
  891. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  892. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  893. (void *)cfqd, MKDEV(major, minor));
  894. } else
  895. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  896. (void *)cfqd, 0);
  897. cfqd->nr_blkcg_linked_grps++;
  898. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  899. /* Add group on cfqd list */
  900. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  901. }
  902. /*
  903. * Should be called from sleepable context. No request queue lock as per
  904. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  905. * from sleepable context.
  906. */
  907. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  908. {
  909. struct cfq_group *cfqg = NULL;
  910. int i, j, ret;
  911. struct cfq_rb_root *st;
  912. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  913. if (!cfqg)
  914. return NULL;
  915. for_each_cfqg_st(cfqg, i, j, st)
  916. *st = CFQ_RB_ROOT;
  917. RB_CLEAR_NODE(&cfqg->rb_node);
  918. cfqg->ttime.last_end_request = jiffies;
  919. /*
  920. * Take the initial reference that will be released on destroy
  921. * This can be thought of a joint reference by cgroup and
  922. * elevator which will be dropped by either elevator exit
  923. * or cgroup deletion path depending on who is exiting first.
  924. */
  925. cfqg->ref = 1;
  926. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  927. if (ret) {
  928. kfree(cfqg);
  929. return NULL;
  930. }
  931. return cfqg;
  932. }
  933. static struct cfq_group *
  934. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  935. {
  936. struct cfq_group *cfqg = NULL;
  937. void *key = cfqd;
  938. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  939. unsigned int major, minor;
  940. /*
  941. * This is the common case when there are no blkio cgroups.
  942. * Avoid lookup in this case
  943. */
  944. if (blkcg == &blkio_root_cgroup)
  945. cfqg = &cfqd->root_group;
  946. else
  947. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  948. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  949. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  950. cfqg->blkg.dev = MKDEV(major, minor);
  951. }
  952. return cfqg;
  953. }
  954. /*
  955. * Search for the cfq group current task belongs to. request_queue lock must
  956. * be held.
  957. */
  958. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  959. {
  960. struct blkio_cgroup *blkcg;
  961. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  962. struct request_queue *q = cfqd->queue;
  963. rcu_read_lock();
  964. blkcg = task_blkio_cgroup(current);
  965. cfqg = cfq_find_cfqg(cfqd, blkcg);
  966. if (cfqg) {
  967. rcu_read_unlock();
  968. return cfqg;
  969. }
  970. /*
  971. * Need to allocate a group. Allocation of group also needs allocation
  972. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  973. * we need to drop rcu lock and queue_lock before we call alloc.
  974. *
  975. * Not taking any queue reference here and assuming that queue is
  976. * around by the time we return. CFQ queue allocation code does
  977. * the same. It might be racy though.
  978. */
  979. rcu_read_unlock();
  980. spin_unlock_irq(q->queue_lock);
  981. cfqg = cfq_alloc_cfqg(cfqd);
  982. spin_lock_irq(q->queue_lock);
  983. rcu_read_lock();
  984. blkcg = task_blkio_cgroup(current);
  985. /*
  986. * If some other thread already allocated the group while we were
  987. * not holding queue lock, free up the group
  988. */
  989. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  990. if (__cfqg) {
  991. kfree(cfqg);
  992. rcu_read_unlock();
  993. return __cfqg;
  994. }
  995. if (!cfqg)
  996. cfqg = &cfqd->root_group;
  997. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  998. rcu_read_unlock();
  999. return cfqg;
  1000. }
  1001. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1002. {
  1003. cfqg->ref++;
  1004. return cfqg;
  1005. }
  1006. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  1007. {
  1008. /* Currently, all async queues are mapped to root group */
  1009. if (!cfq_cfqq_sync(cfqq))
  1010. cfqg = &cfqq->cfqd->root_group;
  1011. cfqq->cfqg = cfqg;
  1012. /* cfqq reference on cfqg */
  1013. cfqq->cfqg->ref++;
  1014. }
  1015. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1016. {
  1017. struct cfq_rb_root *st;
  1018. int i, j;
  1019. BUG_ON(cfqg->ref <= 0);
  1020. cfqg->ref--;
  1021. if (cfqg->ref)
  1022. return;
  1023. for_each_cfqg_st(cfqg, i, j, st)
  1024. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1025. free_percpu(cfqg->blkg.stats_cpu);
  1026. kfree(cfqg);
  1027. }
  1028. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1029. {
  1030. /* Something wrong if we are trying to remove same group twice */
  1031. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1032. hlist_del_init(&cfqg->cfqd_node);
  1033. BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
  1034. cfqd->nr_blkcg_linked_grps--;
  1035. /*
  1036. * Put the reference taken at the time of creation so that when all
  1037. * queues are gone, group can be destroyed.
  1038. */
  1039. cfq_put_cfqg(cfqg);
  1040. }
  1041. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1042. {
  1043. struct hlist_node *pos, *n;
  1044. struct cfq_group *cfqg;
  1045. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1046. /*
  1047. * If cgroup removal path got to blk_group first and removed
  1048. * it from cgroup list, then it will take care of destroying
  1049. * cfqg also.
  1050. */
  1051. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1052. cfq_destroy_cfqg(cfqd, cfqg);
  1053. }
  1054. }
  1055. /*
  1056. * Blk cgroup controller notification saying that blkio_group object is being
  1057. * delinked as associated cgroup object is going away. That also means that
  1058. * no new IO will come in this group. So get rid of this group as soon as
  1059. * any pending IO in the group is finished.
  1060. *
  1061. * This function is called under rcu_read_lock(). key is the rcu protected
  1062. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1063. * read lock.
  1064. *
  1065. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1066. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1067. * path got to it first.
  1068. */
  1069. static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1070. {
  1071. unsigned long flags;
  1072. struct cfq_data *cfqd = key;
  1073. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1074. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1075. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1076. }
  1077. #else /* GROUP_IOSCHED */
  1078. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1079. {
  1080. return &cfqd->root_group;
  1081. }
  1082. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1083. {
  1084. return cfqg;
  1085. }
  1086. static inline void
  1087. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1088. cfqq->cfqg = cfqg;
  1089. }
  1090. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1091. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1092. #endif /* GROUP_IOSCHED */
  1093. /*
  1094. * The cfqd->service_trees holds all pending cfq_queue's that have
  1095. * requests waiting to be processed. It is sorted in the order that
  1096. * we will service the queues.
  1097. */
  1098. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1099. bool add_front)
  1100. {
  1101. struct rb_node **p, *parent;
  1102. struct cfq_queue *__cfqq;
  1103. unsigned long rb_key;
  1104. struct cfq_rb_root *service_tree;
  1105. int left;
  1106. int new_cfqq = 1;
  1107. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1108. cfqq_type(cfqq));
  1109. if (cfq_class_idle(cfqq)) {
  1110. rb_key = CFQ_IDLE_DELAY;
  1111. parent = rb_last(&service_tree->rb);
  1112. if (parent && parent != &cfqq->rb_node) {
  1113. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1114. rb_key += __cfqq->rb_key;
  1115. } else
  1116. rb_key += jiffies;
  1117. } else if (!add_front) {
  1118. /*
  1119. * Get our rb key offset. Subtract any residual slice
  1120. * value carried from last service. A negative resid
  1121. * count indicates slice overrun, and this should position
  1122. * the next service time further away in the tree.
  1123. */
  1124. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1125. rb_key -= cfqq->slice_resid;
  1126. cfqq->slice_resid = 0;
  1127. } else {
  1128. rb_key = -HZ;
  1129. __cfqq = cfq_rb_first(service_tree);
  1130. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1131. }
  1132. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1133. new_cfqq = 0;
  1134. /*
  1135. * same position, nothing more to do
  1136. */
  1137. if (rb_key == cfqq->rb_key &&
  1138. cfqq->service_tree == service_tree)
  1139. return;
  1140. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1141. cfqq->service_tree = NULL;
  1142. }
  1143. left = 1;
  1144. parent = NULL;
  1145. cfqq->service_tree = service_tree;
  1146. p = &service_tree->rb.rb_node;
  1147. while (*p) {
  1148. struct rb_node **n;
  1149. parent = *p;
  1150. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1151. /*
  1152. * sort by key, that represents service time.
  1153. */
  1154. if (time_before(rb_key, __cfqq->rb_key))
  1155. n = &(*p)->rb_left;
  1156. else {
  1157. n = &(*p)->rb_right;
  1158. left = 0;
  1159. }
  1160. p = n;
  1161. }
  1162. if (left)
  1163. service_tree->left = &cfqq->rb_node;
  1164. cfqq->rb_key = rb_key;
  1165. rb_link_node(&cfqq->rb_node, parent, p);
  1166. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1167. service_tree->count++;
  1168. if (add_front || !new_cfqq)
  1169. return;
  1170. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1171. }
  1172. static struct cfq_queue *
  1173. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1174. sector_t sector, struct rb_node **ret_parent,
  1175. struct rb_node ***rb_link)
  1176. {
  1177. struct rb_node **p, *parent;
  1178. struct cfq_queue *cfqq = NULL;
  1179. parent = NULL;
  1180. p = &root->rb_node;
  1181. while (*p) {
  1182. struct rb_node **n;
  1183. parent = *p;
  1184. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1185. /*
  1186. * Sort strictly based on sector. Smallest to the left,
  1187. * largest to the right.
  1188. */
  1189. if (sector > blk_rq_pos(cfqq->next_rq))
  1190. n = &(*p)->rb_right;
  1191. else if (sector < blk_rq_pos(cfqq->next_rq))
  1192. n = &(*p)->rb_left;
  1193. else
  1194. break;
  1195. p = n;
  1196. cfqq = NULL;
  1197. }
  1198. *ret_parent = parent;
  1199. if (rb_link)
  1200. *rb_link = p;
  1201. return cfqq;
  1202. }
  1203. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1204. {
  1205. struct rb_node **p, *parent;
  1206. struct cfq_queue *__cfqq;
  1207. if (cfqq->p_root) {
  1208. rb_erase(&cfqq->p_node, cfqq->p_root);
  1209. cfqq->p_root = NULL;
  1210. }
  1211. if (cfq_class_idle(cfqq))
  1212. return;
  1213. if (!cfqq->next_rq)
  1214. return;
  1215. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1216. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1217. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1218. if (!__cfqq) {
  1219. rb_link_node(&cfqq->p_node, parent, p);
  1220. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1221. } else
  1222. cfqq->p_root = NULL;
  1223. }
  1224. /*
  1225. * Update cfqq's position in the service tree.
  1226. */
  1227. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1228. {
  1229. /*
  1230. * Resorting requires the cfqq to be on the RR list already.
  1231. */
  1232. if (cfq_cfqq_on_rr(cfqq)) {
  1233. cfq_service_tree_add(cfqd, cfqq, 0);
  1234. cfq_prio_tree_add(cfqd, cfqq);
  1235. }
  1236. }
  1237. /*
  1238. * add to busy list of queues for service, trying to be fair in ordering
  1239. * the pending list according to last request service
  1240. */
  1241. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1242. {
  1243. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1244. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1245. cfq_mark_cfqq_on_rr(cfqq);
  1246. cfqd->busy_queues++;
  1247. if (cfq_cfqq_sync(cfqq))
  1248. cfqd->busy_sync_queues++;
  1249. cfq_resort_rr_list(cfqd, cfqq);
  1250. }
  1251. /*
  1252. * Called when the cfqq no longer has requests pending, remove it from
  1253. * the service tree.
  1254. */
  1255. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1256. {
  1257. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1258. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1259. cfq_clear_cfqq_on_rr(cfqq);
  1260. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1261. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1262. cfqq->service_tree = NULL;
  1263. }
  1264. if (cfqq->p_root) {
  1265. rb_erase(&cfqq->p_node, cfqq->p_root);
  1266. cfqq->p_root = NULL;
  1267. }
  1268. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1269. BUG_ON(!cfqd->busy_queues);
  1270. cfqd->busy_queues--;
  1271. if (cfq_cfqq_sync(cfqq))
  1272. cfqd->busy_sync_queues--;
  1273. }
  1274. /*
  1275. * rb tree support functions
  1276. */
  1277. static void cfq_del_rq_rb(struct request *rq)
  1278. {
  1279. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1280. const int sync = rq_is_sync(rq);
  1281. BUG_ON(!cfqq->queued[sync]);
  1282. cfqq->queued[sync]--;
  1283. elv_rb_del(&cfqq->sort_list, rq);
  1284. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1285. /*
  1286. * Queue will be deleted from service tree when we actually
  1287. * expire it later. Right now just remove it from prio tree
  1288. * as it is empty.
  1289. */
  1290. if (cfqq->p_root) {
  1291. rb_erase(&cfqq->p_node, cfqq->p_root);
  1292. cfqq->p_root = NULL;
  1293. }
  1294. }
  1295. }
  1296. static void cfq_add_rq_rb(struct request *rq)
  1297. {
  1298. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1299. struct cfq_data *cfqd = cfqq->cfqd;
  1300. struct request *prev;
  1301. cfqq->queued[rq_is_sync(rq)]++;
  1302. elv_rb_add(&cfqq->sort_list, rq);
  1303. if (!cfq_cfqq_on_rr(cfqq))
  1304. cfq_add_cfqq_rr(cfqd, cfqq);
  1305. /*
  1306. * check if this request is a better next-serve candidate
  1307. */
  1308. prev = cfqq->next_rq;
  1309. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1310. /*
  1311. * adjust priority tree position, if ->next_rq changes
  1312. */
  1313. if (prev != cfqq->next_rq)
  1314. cfq_prio_tree_add(cfqd, cfqq);
  1315. BUG_ON(!cfqq->next_rq);
  1316. }
  1317. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1318. {
  1319. elv_rb_del(&cfqq->sort_list, rq);
  1320. cfqq->queued[rq_is_sync(rq)]--;
  1321. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1322. rq_data_dir(rq), rq_is_sync(rq));
  1323. cfq_add_rq_rb(rq);
  1324. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1325. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1326. rq_is_sync(rq));
  1327. }
  1328. static struct request *
  1329. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1330. {
  1331. struct task_struct *tsk = current;
  1332. struct cfq_io_context *cic;
  1333. struct cfq_queue *cfqq;
  1334. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1335. if (!cic)
  1336. return NULL;
  1337. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1338. if (cfqq) {
  1339. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1340. return elv_rb_find(&cfqq->sort_list, sector);
  1341. }
  1342. return NULL;
  1343. }
  1344. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1345. {
  1346. struct cfq_data *cfqd = q->elevator->elevator_data;
  1347. cfqd->rq_in_driver++;
  1348. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1349. cfqd->rq_in_driver);
  1350. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1351. }
  1352. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1353. {
  1354. struct cfq_data *cfqd = q->elevator->elevator_data;
  1355. WARN_ON(!cfqd->rq_in_driver);
  1356. cfqd->rq_in_driver--;
  1357. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1358. cfqd->rq_in_driver);
  1359. }
  1360. static void cfq_remove_request(struct request *rq)
  1361. {
  1362. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1363. if (cfqq->next_rq == rq)
  1364. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1365. list_del_init(&rq->queuelist);
  1366. cfq_del_rq_rb(rq);
  1367. cfqq->cfqd->rq_queued--;
  1368. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1369. rq_data_dir(rq), rq_is_sync(rq));
  1370. if (rq->cmd_flags & REQ_PRIO) {
  1371. WARN_ON(!cfqq->prio_pending);
  1372. cfqq->prio_pending--;
  1373. }
  1374. }
  1375. static int cfq_merge(struct request_queue *q, struct request **req,
  1376. struct bio *bio)
  1377. {
  1378. struct cfq_data *cfqd = q->elevator->elevator_data;
  1379. struct request *__rq;
  1380. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1381. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1382. *req = __rq;
  1383. return ELEVATOR_FRONT_MERGE;
  1384. }
  1385. return ELEVATOR_NO_MERGE;
  1386. }
  1387. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1388. int type)
  1389. {
  1390. if (type == ELEVATOR_FRONT_MERGE) {
  1391. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1392. cfq_reposition_rq_rb(cfqq, req);
  1393. }
  1394. }
  1395. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1396. struct bio *bio)
  1397. {
  1398. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1399. bio_data_dir(bio), cfq_bio_sync(bio));
  1400. }
  1401. static void
  1402. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1403. struct request *next)
  1404. {
  1405. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1406. /*
  1407. * reposition in fifo if next is older than rq
  1408. */
  1409. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1410. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1411. list_move(&rq->queuelist, &next->queuelist);
  1412. rq_set_fifo_time(rq, rq_fifo_time(next));
  1413. }
  1414. if (cfqq->next_rq == next)
  1415. cfqq->next_rq = rq;
  1416. cfq_remove_request(next);
  1417. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1418. rq_data_dir(next), rq_is_sync(next));
  1419. }
  1420. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1421. struct bio *bio)
  1422. {
  1423. struct cfq_data *cfqd = q->elevator->elevator_data;
  1424. struct cfq_io_context *cic;
  1425. struct cfq_queue *cfqq;
  1426. /*
  1427. * Disallow merge of a sync bio into an async request.
  1428. */
  1429. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1430. return false;
  1431. /*
  1432. * Lookup the cfqq that this bio will be queued with and allow
  1433. * merge only if rq is queued there. This function can be called
  1434. * from plug merge without queue_lock. In such cases, ioc of @rq
  1435. * and %current are guaranteed to be equal. Avoid lookup which
  1436. * requires queue_lock by using @rq's cic.
  1437. */
  1438. if (current->io_context == RQ_CIC(rq)->ioc) {
  1439. cic = RQ_CIC(rq);
  1440. } else {
  1441. cic = cfq_cic_lookup(cfqd, current->io_context);
  1442. if (!cic)
  1443. return false;
  1444. }
  1445. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1446. return cfqq == RQ_CFQQ(rq);
  1447. }
  1448. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1449. {
  1450. del_timer(&cfqd->idle_slice_timer);
  1451. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1452. }
  1453. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1454. struct cfq_queue *cfqq)
  1455. {
  1456. if (cfqq) {
  1457. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1458. cfqd->serving_prio, cfqd->serving_type);
  1459. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1460. cfqq->slice_start = 0;
  1461. cfqq->dispatch_start = jiffies;
  1462. cfqq->allocated_slice = 0;
  1463. cfqq->slice_end = 0;
  1464. cfqq->slice_dispatch = 0;
  1465. cfqq->nr_sectors = 0;
  1466. cfq_clear_cfqq_wait_request(cfqq);
  1467. cfq_clear_cfqq_must_dispatch(cfqq);
  1468. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1469. cfq_clear_cfqq_fifo_expire(cfqq);
  1470. cfq_mark_cfqq_slice_new(cfqq);
  1471. cfq_del_timer(cfqd, cfqq);
  1472. }
  1473. cfqd->active_queue = cfqq;
  1474. }
  1475. /*
  1476. * current cfqq expired its slice (or was too idle), select new one
  1477. */
  1478. static void
  1479. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1480. bool timed_out)
  1481. {
  1482. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1483. if (cfq_cfqq_wait_request(cfqq))
  1484. cfq_del_timer(cfqd, cfqq);
  1485. cfq_clear_cfqq_wait_request(cfqq);
  1486. cfq_clear_cfqq_wait_busy(cfqq);
  1487. /*
  1488. * If this cfqq is shared between multiple processes, check to
  1489. * make sure that those processes are still issuing I/Os within
  1490. * the mean seek distance. If not, it may be time to break the
  1491. * queues apart again.
  1492. */
  1493. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1494. cfq_mark_cfqq_split_coop(cfqq);
  1495. /*
  1496. * store what was left of this slice, if the queue idled/timed out
  1497. */
  1498. if (timed_out) {
  1499. if (cfq_cfqq_slice_new(cfqq))
  1500. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1501. else
  1502. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1503. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1504. }
  1505. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1506. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1507. cfq_del_cfqq_rr(cfqd, cfqq);
  1508. cfq_resort_rr_list(cfqd, cfqq);
  1509. if (cfqq == cfqd->active_queue)
  1510. cfqd->active_queue = NULL;
  1511. if (cfqd->active_cic) {
  1512. put_io_context(cfqd->active_cic->ioc);
  1513. cfqd->active_cic = NULL;
  1514. }
  1515. }
  1516. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1517. {
  1518. struct cfq_queue *cfqq = cfqd->active_queue;
  1519. if (cfqq)
  1520. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1521. }
  1522. /*
  1523. * Get next queue for service. Unless we have a queue preemption,
  1524. * we'll simply select the first cfqq in the service tree.
  1525. */
  1526. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1527. {
  1528. struct cfq_rb_root *service_tree =
  1529. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1530. cfqd->serving_type);
  1531. if (!cfqd->rq_queued)
  1532. return NULL;
  1533. /* There is nothing to dispatch */
  1534. if (!service_tree)
  1535. return NULL;
  1536. if (RB_EMPTY_ROOT(&service_tree->rb))
  1537. return NULL;
  1538. return cfq_rb_first(service_tree);
  1539. }
  1540. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1541. {
  1542. struct cfq_group *cfqg;
  1543. struct cfq_queue *cfqq;
  1544. int i, j;
  1545. struct cfq_rb_root *st;
  1546. if (!cfqd->rq_queued)
  1547. return NULL;
  1548. cfqg = cfq_get_next_cfqg(cfqd);
  1549. if (!cfqg)
  1550. return NULL;
  1551. for_each_cfqg_st(cfqg, i, j, st)
  1552. if ((cfqq = cfq_rb_first(st)) != NULL)
  1553. return cfqq;
  1554. return NULL;
  1555. }
  1556. /*
  1557. * Get and set a new active queue for service.
  1558. */
  1559. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1560. struct cfq_queue *cfqq)
  1561. {
  1562. if (!cfqq)
  1563. cfqq = cfq_get_next_queue(cfqd);
  1564. __cfq_set_active_queue(cfqd, cfqq);
  1565. return cfqq;
  1566. }
  1567. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1568. struct request *rq)
  1569. {
  1570. if (blk_rq_pos(rq) >= cfqd->last_position)
  1571. return blk_rq_pos(rq) - cfqd->last_position;
  1572. else
  1573. return cfqd->last_position - blk_rq_pos(rq);
  1574. }
  1575. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1576. struct request *rq)
  1577. {
  1578. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1579. }
  1580. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1581. struct cfq_queue *cur_cfqq)
  1582. {
  1583. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1584. struct rb_node *parent, *node;
  1585. struct cfq_queue *__cfqq;
  1586. sector_t sector = cfqd->last_position;
  1587. if (RB_EMPTY_ROOT(root))
  1588. return NULL;
  1589. /*
  1590. * First, if we find a request starting at the end of the last
  1591. * request, choose it.
  1592. */
  1593. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1594. if (__cfqq)
  1595. return __cfqq;
  1596. /*
  1597. * If the exact sector wasn't found, the parent of the NULL leaf
  1598. * will contain the closest sector.
  1599. */
  1600. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1601. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1602. return __cfqq;
  1603. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1604. node = rb_next(&__cfqq->p_node);
  1605. else
  1606. node = rb_prev(&__cfqq->p_node);
  1607. if (!node)
  1608. return NULL;
  1609. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1610. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1611. return __cfqq;
  1612. return NULL;
  1613. }
  1614. /*
  1615. * cfqd - obvious
  1616. * cur_cfqq - passed in so that we don't decide that the current queue is
  1617. * closely cooperating with itself.
  1618. *
  1619. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1620. * one request, and that cfqd->last_position reflects a position on the disk
  1621. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1622. * assumption.
  1623. */
  1624. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1625. struct cfq_queue *cur_cfqq)
  1626. {
  1627. struct cfq_queue *cfqq;
  1628. if (cfq_class_idle(cur_cfqq))
  1629. return NULL;
  1630. if (!cfq_cfqq_sync(cur_cfqq))
  1631. return NULL;
  1632. if (CFQQ_SEEKY(cur_cfqq))
  1633. return NULL;
  1634. /*
  1635. * Don't search priority tree if it's the only queue in the group.
  1636. */
  1637. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1638. return NULL;
  1639. /*
  1640. * We should notice if some of the queues are cooperating, eg
  1641. * working closely on the same area of the disk. In that case,
  1642. * we can group them together and don't waste time idling.
  1643. */
  1644. cfqq = cfqq_close(cfqd, cur_cfqq);
  1645. if (!cfqq)
  1646. return NULL;
  1647. /* If new queue belongs to different cfq_group, don't choose it */
  1648. if (cur_cfqq->cfqg != cfqq->cfqg)
  1649. return NULL;
  1650. /*
  1651. * It only makes sense to merge sync queues.
  1652. */
  1653. if (!cfq_cfqq_sync(cfqq))
  1654. return NULL;
  1655. if (CFQQ_SEEKY(cfqq))
  1656. return NULL;
  1657. /*
  1658. * Do not merge queues of different priority classes
  1659. */
  1660. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1661. return NULL;
  1662. return cfqq;
  1663. }
  1664. /*
  1665. * Determine whether we should enforce idle window for this queue.
  1666. */
  1667. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1668. {
  1669. enum wl_prio_t prio = cfqq_prio(cfqq);
  1670. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1671. BUG_ON(!service_tree);
  1672. BUG_ON(!service_tree->count);
  1673. if (!cfqd->cfq_slice_idle)
  1674. return false;
  1675. /* We never do for idle class queues. */
  1676. if (prio == IDLE_WORKLOAD)
  1677. return false;
  1678. /* We do for queues that were marked with idle window flag. */
  1679. if (cfq_cfqq_idle_window(cfqq) &&
  1680. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1681. return true;
  1682. /*
  1683. * Otherwise, we do only if they are the last ones
  1684. * in their service tree.
  1685. */
  1686. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1687. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1688. return true;
  1689. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1690. service_tree->count);
  1691. return false;
  1692. }
  1693. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1694. {
  1695. struct cfq_queue *cfqq = cfqd->active_queue;
  1696. struct cfq_io_context *cic;
  1697. unsigned long sl, group_idle = 0;
  1698. /*
  1699. * SSD device without seek penalty, disable idling. But only do so
  1700. * for devices that support queuing, otherwise we still have a problem
  1701. * with sync vs async workloads.
  1702. */
  1703. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1704. return;
  1705. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1706. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1707. /*
  1708. * idle is disabled, either manually or by past process history
  1709. */
  1710. if (!cfq_should_idle(cfqd, cfqq)) {
  1711. /* no queue idling. Check for group idling */
  1712. if (cfqd->cfq_group_idle)
  1713. group_idle = cfqd->cfq_group_idle;
  1714. else
  1715. return;
  1716. }
  1717. /*
  1718. * still active requests from this queue, don't idle
  1719. */
  1720. if (cfqq->dispatched)
  1721. return;
  1722. /*
  1723. * task has exited, don't wait
  1724. */
  1725. cic = cfqd->active_cic;
  1726. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1727. return;
  1728. /*
  1729. * If our average think time is larger than the remaining time
  1730. * slice, then don't idle. This avoids overrunning the allotted
  1731. * time slice.
  1732. */
  1733. if (sample_valid(cic->ttime.ttime_samples) &&
  1734. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1735. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1736. cic->ttime.ttime_mean);
  1737. return;
  1738. }
  1739. /* There are other queues in the group, don't do group idle */
  1740. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1741. return;
  1742. cfq_mark_cfqq_wait_request(cfqq);
  1743. if (group_idle)
  1744. sl = cfqd->cfq_group_idle;
  1745. else
  1746. sl = cfqd->cfq_slice_idle;
  1747. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1748. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1749. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1750. group_idle ? 1 : 0);
  1751. }
  1752. /*
  1753. * Move request from internal lists to the request queue dispatch list.
  1754. */
  1755. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1756. {
  1757. struct cfq_data *cfqd = q->elevator->elevator_data;
  1758. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1759. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1760. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1761. cfq_remove_request(rq);
  1762. cfqq->dispatched++;
  1763. (RQ_CFQG(rq))->dispatched++;
  1764. elv_dispatch_sort(q, rq);
  1765. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1766. cfqq->nr_sectors += blk_rq_sectors(rq);
  1767. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1768. rq_data_dir(rq), rq_is_sync(rq));
  1769. }
  1770. /*
  1771. * return expired entry, or NULL to just start from scratch in rbtree
  1772. */
  1773. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1774. {
  1775. struct request *rq = NULL;
  1776. if (cfq_cfqq_fifo_expire(cfqq))
  1777. return NULL;
  1778. cfq_mark_cfqq_fifo_expire(cfqq);
  1779. if (list_empty(&cfqq->fifo))
  1780. return NULL;
  1781. rq = rq_entry_fifo(cfqq->fifo.next);
  1782. if (time_before(jiffies, rq_fifo_time(rq)))
  1783. rq = NULL;
  1784. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1785. return rq;
  1786. }
  1787. static inline int
  1788. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1789. {
  1790. const int base_rq = cfqd->cfq_slice_async_rq;
  1791. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1792. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1793. }
  1794. /*
  1795. * Must be called with the queue_lock held.
  1796. */
  1797. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1798. {
  1799. int process_refs, io_refs;
  1800. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1801. process_refs = cfqq->ref - io_refs;
  1802. BUG_ON(process_refs < 0);
  1803. return process_refs;
  1804. }
  1805. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1806. {
  1807. int process_refs, new_process_refs;
  1808. struct cfq_queue *__cfqq;
  1809. /*
  1810. * If there are no process references on the new_cfqq, then it is
  1811. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1812. * chain may have dropped their last reference (not just their
  1813. * last process reference).
  1814. */
  1815. if (!cfqq_process_refs(new_cfqq))
  1816. return;
  1817. /* Avoid a circular list and skip interim queue merges */
  1818. while ((__cfqq = new_cfqq->new_cfqq)) {
  1819. if (__cfqq == cfqq)
  1820. return;
  1821. new_cfqq = __cfqq;
  1822. }
  1823. process_refs = cfqq_process_refs(cfqq);
  1824. new_process_refs = cfqq_process_refs(new_cfqq);
  1825. /*
  1826. * If the process for the cfqq has gone away, there is no
  1827. * sense in merging the queues.
  1828. */
  1829. if (process_refs == 0 || new_process_refs == 0)
  1830. return;
  1831. /*
  1832. * Merge in the direction of the lesser amount of work.
  1833. */
  1834. if (new_process_refs >= process_refs) {
  1835. cfqq->new_cfqq = new_cfqq;
  1836. new_cfqq->ref += process_refs;
  1837. } else {
  1838. new_cfqq->new_cfqq = cfqq;
  1839. cfqq->ref += new_process_refs;
  1840. }
  1841. }
  1842. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1843. struct cfq_group *cfqg, enum wl_prio_t prio)
  1844. {
  1845. struct cfq_queue *queue;
  1846. int i;
  1847. bool key_valid = false;
  1848. unsigned long lowest_key = 0;
  1849. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1850. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1851. /* select the one with lowest rb_key */
  1852. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1853. if (queue &&
  1854. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1855. lowest_key = queue->rb_key;
  1856. cur_best = i;
  1857. key_valid = true;
  1858. }
  1859. }
  1860. return cur_best;
  1861. }
  1862. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1863. {
  1864. unsigned slice;
  1865. unsigned count;
  1866. struct cfq_rb_root *st;
  1867. unsigned group_slice;
  1868. enum wl_prio_t original_prio = cfqd->serving_prio;
  1869. /* Choose next priority. RT > BE > IDLE */
  1870. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1871. cfqd->serving_prio = RT_WORKLOAD;
  1872. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1873. cfqd->serving_prio = BE_WORKLOAD;
  1874. else {
  1875. cfqd->serving_prio = IDLE_WORKLOAD;
  1876. cfqd->workload_expires = jiffies + 1;
  1877. return;
  1878. }
  1879. if (original_prio != cfqd->serving_prio)
  1880. goto new_workload;
  1881. /*
  1882. * For RT and BE, we have to choose also the type
  1883. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1884. * expiration time
  1885. */
  1886. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1887. count = st->count;
  1888. /*
  1889. * check workload expiration, and that we still have other queues ready
  1890. */
  1891. if (count && !time_after(jiffies, cfqd->workload_expires))
  1892. return;
  1893. new_workload:
  1894. /* otherwise select new workload type */
  1895. cfqd->serving_type =
  1896. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1897. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1898. count = st->count;
  1899. /*
  1900. * the workload slice is computed as a fraction of target latency
  1901. * proportional to the number of queues in that workload, over
  1902. * all the queues in the same priority class
  1903. */
  1904. group_slice = cfq_group_slice(cfqd, cfqg);
  1905. slice = group_slice * count /
  1906. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1907. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1908. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1909. unsigned int tmp;
  1910. /*
  1911. * Async queues are currently system wide. Just taking
  1912. * proportion of queues with-in same group will lead to higher
  1913. * async ratio system wide as generally root group is going
  1914. * to have higher weight. A more accurate thing would be to
  1915. * calculate system wide asnc/sync ratio.
  1916. */
  1917. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1918. tmp = tmp/cfqd->busy_queues;
  1919. slice = min_t(unsigned, slice, tmp);
  1920. /* async workload slice is scaled down according to
  1921. * the sync/async slice ratio. */
  1922. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1923. } else
  1924. /* sync workload slice is at least 2 * cfq_slice_idle */
  1925. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1926. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1927. cfq_log(cfqd, "workload slice:%d", slice);
  1928. cfqd->workload_expires = jiffies + slice;
  1929. }
  1930. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1931. {
  1932. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1933. struct cfq_group *cfqg;
  1934. if (RB_EMPTY_ROOT(&st->rb))
  1935. return NULL;
  1936. cfqg = cfq_rb_first_group(st);
  1937. update_min_vdisktime(st);
  1938. return cfqg;
  1939. }
  1940. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1941. {
  1942. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1943. cfqd->serving_group = cfqg;
  1944. /* Restore the workload type data */
  1945. if (cfqg->saved_workload_slice) {
  1946. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1947. cfqd->serving_type = cfqg->saved_workload;
  1948. cfqd->serving_prio = cfqg->saved_serving_prio;
  1949. } else
  1950. cfqd->workload_expires = jiffies - 1;
  1951. choose_service_tree(cfqd, cfqg);
  1952. }
  1953. /*
  1954. * Select a queue for service. If we have a current active queue,
  1955. * check whether to continue servicing it, or retrieve and set a new one.
  1956. */
  1957. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1958. {
  1959. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1960. cfqq = cfqd->active_queue;
  1961. if (!cfqq)
  1962. goto new_queue;
  1963. if (!cfqd->rq_queued)
  1964. return NULL;
  1965. /*
  1966. * We were waiting for group to get backlogged. Expire the queue
  1967. */
  1968. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1969. goto expire;
  1970. /*
  1971. * The active queue has run out of time, expire it and select new.
  1972. */
  1973. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1974. /*
  1975. * If slice had not expired at the completion of last request
  1976. * we might not have turned on wait_busy flag. Don't expire
  1977. * the queue yet. Allow the group to get backlogged.
  1978. *
  1979. * The very fact that we have used the slice, that means we
  1980. * have been idling all along on this queue and it should be
  1981. * ok to wait for this request to complete.
  1982. */
  1983. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1984. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1985. cfqq = NULL;
  1986. goto keep_queue;
  1987. } else
  1988. goto check_group_idle;
  1989. }
  1990. /*
  1991. * The active queue has requests and isn't expired, allow it to
  1992. * dispatch.
  1993. */
  1994. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1995. goto keep_queue;
  1996. /*
  1997. * If another queue has a request waiting within our mean seek
  1998. * distance, let it run. The expire code will check for close
  1999. * cooperators and put the close queue at the front of the service
  2000. * tree. If possible, merge the expiring queue with the new cfqq.
  2001. */
  2002. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  2003. if (new_cfqq) {
  2004. if (!cfqq->new_cfqq)
  2005. cfq_setup_merge(cfqq, new_cfqq);
  2006. goto expire;
  2007. }
  2008. /*
  2009. * No requests pending. If the active queue still has requests in
  2010. * flight or is idling for a new request, allow either of these
  2011. * conditions to happen (or time out) before selecting a new queue.
  2012. */
  2013. if (timer_pending(&cfqd->idle_slice_timer)) {
  2014. cfqq = NULL;
  2015. goto keep_queue;
  2016. }
  2017. /*
  2018. * This is a deep seek queue, but the device is much faster than
  2019. * the queue can deliver, don't idle
  2020. **/
  2021. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2022. (cfq_cfqq_slice_new(cfqq) ||
  2023. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2024. cfq_clear_cfqq_deep(cfqq);
  2025. cfq_clear_cfqq_idle_window(cfqq);
  2026. }
  2027. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2028. cfqq = NULL;
  2029. goto keep_queue;
  2030. }
  2031. /*
  2032. * If group idle is enabled and there are requests dispatched from
  2033. * this group, wait for requests to complete.
  2034. */
  2035. check_group_idle:
  2036. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  2037. cfqq->cfqg->dispatched &&
  2038. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  2039. cfqq = NULL;
  2040. goto keep_queue;
  2041. }
  2042. expire:
  2043. cfq_slice_expired(cfqd, 0);
  2044. new_queue:
  2045. /*
  2046. * Current queue expired. Check if we have to switch to a new
  2047. * service tree
  2048. */
  2049. if (!new_cfqq)
  2050. cfq_choose_cfqg(cfqd);
  2051. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2052. keep_queue:
  2053. return cfqq;
  2054. }
  2055. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2056. {
  2057. int dispatched = 0;
  2058. while (cfqq->next_rq) {
  2059. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2060. dispatched++;
  2061. }
  2062. BUG_ON(!list_empty(&cfqq->fifo));
  2063. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2064. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2065. return dispatched;
  2066. }
  2067. /*
  2068. * Drain our current requests. Used for barriers and when switching
  2069. * io schedulers on-the-fly.
  2070. */
  2071. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2072. {
  2073. struct cfq_queue *cfqq;
  2074. int dispatched = 0;
  2075. /* Expire the timeslice of the current active queue first */
  2076. cfq_slice_expired(cfqd, 0);
  2077. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2078. __cfq_set_active_queue(cfqd, cfqq);
  2079. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2080. }
  2081. BUG_ON(cfqd->busy_queues);
  2082. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2083. return dispatched;
  2084. }
  2085. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2086. struct cfq_queue *cfqq)
  2087. {
  2088. /* the queue hasn't finished any request, can't estimate */
  2089. if (cfq_cfqq_slice_new(cfqq))
  2090. return true;
  2091. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2092. cfqq->slice_end))
  2093. return true;
  2094. return false;
  2095. }
  2096. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2097. {
  2098. unsigned int max_dispatch;
  2099. /*
  2100. * Drain async requests before we start sync IO
  2101. */
  2102. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2103. return false;
  2104. /*
  2105. * If this is an async queue and we have sync IO in flight, let it wait
  2106. */
  2107. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2108. return false;
  2109. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2110. if (cfq_class_idle(cfqq))
  2111. max_dispatch = 1;
  2112. /*
  2113. * Does this cfqq already have too much IO in flight?
  2114. */
  2115. if (cfqq->dispatched >= max_dispatch) {
  2116. bool promote_sync = false;
  2117. /*
  2118. * idle queue must always only have a single IO in flight
  2119. */
  2120. if (cfq_class_idle(cfqq))
  2121. return false;
  2122. /*
  2123. * If there is only one sync queue
  2124. * we can ignore async queue here and give the sync
  2125. * queue no dispatch limit. The reason is a sync queue can
  2126. * preempt async queue, limiting the sync queue doesn't make
  2127. * sense. This is useful for aiostress test.
  2128. */
  2129. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2130. promote_sync = true;
  2131. /*
  2132. * We have other queues, don't allow more IO from this one
  2133. */
  2134. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2135. !promote_sync)
  2136. return false;
  2137. /*
  2138. * Sole queue user, no limit
  2139. */
  2140. if (cfqd->busy_queues == 1 || promote_sync)
  2141. max_dispatch = -1;
  2142. else
  2143. /*
  2144. * Normally we start throttling cfqq when cfq_quantum/2
  2145. * requests have been dispatched. But we can drive
  2146. * deeper queue depths at the beginning of slice
  2147. * subjected to upper limit of cfq_quantum.
  2148. * */
  2149. max_dispatch = cfqd->cfq_quantum;
  2150. }
  2151. /*
  2152. * Async queues must wait a bit before being allowed dispatch.
  2153. * We also ramp up the dispatch depth gradually for async IO,
  2154. * based on the last sync IO we serviced
  2155. */
  2156. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2157. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2158. unsigned int depth;
  2159. depth = last_sync / cfqd->cfq_slice[1];
  2160. if (!depth && !cfqq->dispatched)
  2161. depth = 1;
  2162. if (depth < max_dispatch)
  2163. max_dispatch = depth;
  2164. }
  2165. /*
  2166. * If we're below the current max, allow a dispatch
  2167. */
  2168. return cfqq->dispatched < max_dispatch;
  2169. }
  2170. /*
  2171. * Dispatch a request from cfqq, moving them to the request queue
  2172. * dispatch list.
  2173. */
  2174. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2175. {
  2176. struct request *rq;
  2177. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2178. if (!cfq_may_dispatch(cfqd, cfqq))
  2179. return false;
  2180. /*
  2181. * follow expired path, else get first next available
  2182. */
  2183. rq = cfq_check_fifo(cfqq);
  2184. if (!rq)
  2185. rq = cfqq->next_rq;
  2186. /*
  2187. * insert request into driver dispatch list
  2188. */
  2189. cfq_dispatch_insert(cfqd->queue, rq);
  2190. if (!cfqd->active_cic) {
  2191. struct cfq_io_context *cic = RQ_CIC(rq);
  2192. atomic_long_inc(&cic->ioc->refcount);
  2193. cfqd->active_cic = cic;
  2194. }
  2195. return true;
  2196. }
  2197. /*
  2198. * Find the cfqq that we need to service and move a request from that to the
  2199. * dispatch list
  2200. */
  2201. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2202. {
  2203. struct cfq_data *cfqd = q->elevator->elevator_data;
  2204. struct cfq_queue *cfqq;
  2205. if (!cfqd->busy_queues)
  2206. return 0;
  2207. if (unlikely(force))
  2208. return cfq_forced_dispatch(cfqd);
  2209. cfqq = cfq_select_queue(cfqd);
  2210. if (!cfqq)
  2211. return 0;
  2212. /*
  2213. * Dispatch a request from this cfqq, if it is allowed
  2214. */
  2215. if (!cfq_dispatch_request(cfqd, cfqq))
  2216. return 0;
  2217. cfqq->slice_dispatch++;
  2218. cfq_clear_cfqq_must_dispatch(cfqq);
  2219. /*
  2220. * expire an async queue immediately if it has used up its slice. idle
  2221. * queue always expire after 1 dispatch round.
  2222. */
  2223. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2224. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2225. cfq_class_idle(cfqq))) {
  2226. cfqq->slice_end = jiffies + 1;
  2227. cfq_slice_expired(cfqd, 0);
  2228. }
  2229. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2230. return 1;
  2231. }
  2232. /*
  2233. * task holds one reference to the queue, dropped when task exits. each rq
  2234. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2235. *
  2236. * Each cfq queue took a reference on the parent group. Drop it now.
  2237. * queue lock must be held here.
  2238. */
  2239. static void cfq_put_queue(struct cfq_queue *cfqq)
  2240. {
  2241. struct cfq_data *cfqd = cfqq->cfqd;
  2242. struct cfq_group *cfqg;
  2243. BUG_ON(cfqq->ref <= 0);
  2244. cfqq->ref--;
  2245. if (cfqq->ref)
  2246. return;
  2247. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2248. BUG_ON(rb_first(&cfqq->sort_list));
  2249. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2250. cfqg = cfqq->cfqg;
  2251. if (unlikely(cfqd->active_queue == cfqq)) {
  2252. __cfq_slice_expired(cfqd, cfqq, 0);
  2253. cfq_schedule_dispatch(cfqd);
  2254. }
  2255. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2256. kmem_cache_free(cfq_pool, cfqq);
  2257. cfq_put_cfqg(cfqg);
  2258. }
  2259. /*
  2260. * Call func for each cic attached to this ioc.
  2261. */
  2262. static void
  2263. call_for_each_cic(struct io_context *ioc,
  2264. void (*func)(struct io_context *, struct cfq_io_context *))
  2265. {
  2266. struct cfq_io_context *cic;
  2267. struct hlist_node *n;
  2268. rcu_read_lock();
  2269. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2270. func(ioc, cic);
  2271. rcu_read_unlock();
  2272. }
  2273. static void cfq_cic_free_rcu(struct rcu_head *head)
  2274. {
  2275. struct cfq_io_context *cic;
  2276. cic = container_of(head, struct cfq_io_context, rcu_head);
  2277. kmem_cache_free(cfq_ioc_pool, cic);
  2278. elv_ioc_count_dec(cfq_ioc_count);
  2279. if (ioc_gone) {
  2280. /*
  2281. * CFQ scheduler is exiting, grab exit lock and check
  2282. * the pending io context count. If it hits zero,
  2283. * complete ioc_gone and set it back to NULL
  2284. */
  2285. spin_lock(&ioc_gone_lock);
  2286. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2287. complete(ioc_gone);
  2288. ioc_gone = NULL;
  2289. }
  2290. spin_unlock(&ioc_gone_lock);
  2291. }
  2292. }
  2293. static void cfq_cic_free(struct cfq_io_context *cic)
  2294. {
  2295. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2296. }
  2297. static void cfq_release_cic(struct cfq_io_context *cic)
  2298. {
  2299. struct io_context *ioc = cic->ioc;
  2300. unsigned long dead_key = (unsigned long) cic->key;
  2301. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2302. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2303. hlist_del_rcu(&cic->cic_list);
  2304. cfq_cic_free(cic);
  2305. }
  2306. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2307. {
  2308. unsigned long flags;
  2309. spin_lock_irqsave(&ioc->lock, flags);
  2310. cfq_release_cic(cic);
  2311. spin_unlock_irqrestore(&ioc->lock, flags);
  2312. }
  2313. /*
  2314. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2315. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2316. * and ->trim() which is called with the task lock held
  2317. */
  2318. static void cfq_free_io_context(struct io_context *ioc)
  2319. {
  2320. /*
  2321. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2322. * so no more cic's are allowed to be linked into this ioc. So it
  2323. * should be ok to iterate over the known list, we will see all cic's
  2324. * since no new ones are added.
  2325. */
  2326. call_for_each_cic(ioc, cic_free_func);
  2327. }
  2328. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2329. {
  2330. struct cfq_queue *__cfqq, *next;
  2331. /*
  2332. * If this queue was scheduled to merge with another queue, be
  2333. * sure to drop the reference taken on that queue (and others in
  2334. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2335. */
  2336. __cfqq = cfqq->new_cfqq;
  2337. while (__cfqq) {
  2338. if (__cfqq == cfqq) {
  2339. WARN(1, "cfqq->new_cfqq loop detected\n");
  2340. break;
  2341. }
  2342. next = __cfqq->new_cfqq;
  2343. cfq_put_queue(__cfqq);
  2344. __cfqq = next;
  2345. }
  2346. }
  2347. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2348. {
  2349. if (unlikely(cfqq == cfqd->active_queue)) {
  2350. __cfq_slice_expired(cfqd, cfqq, 0);
  2351. cfq_schedule_dispatch(cfqd);
  2352. }
  2353. cfq_put_cooperator(cfqq);
  2354. cfq_put_queue(cfqq);
  2355. }
  2356. static void cfq_exit_cic(struct cfq_io_context *cic)
  2357. {
  2358. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2359. struct io_context *ioc = cic->ioc;
  2360. list_del_init(&cic->queue_list);
  2361. cic->key = cfqd_dead_key(cfqd);
  2362. /*
  2363. * Both setting lookup hint to and clearing it from @cic are done
  2364. * under queue_lock. If it's not pointing to @cic now, it never
  2365. * will. Hint assignment itself can race safely.
  2366. */
  2367. if (rcu_dereference_raw(ioc->ioc_data) == cic)
  2368. rcu_assign_pointer(ioc->ioc_data, NULL);
  2369. if (cic->cfqq[BLK_RW_ASYNC]) {
  2370. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2371. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2372. }
  2373. if (cic->cfqq[BLK_RW_SYNC]) {
  2374. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2375. cic->cfqq[BLK_RW_SYNC] = NULL;
  2376. }
  2377. }
  2378. static void cfq_exit_single_io_context(struct io_context *ioc,
  2379. struct cfq_io_context *cic)
  2380. {
  2381. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2382. if (cfqd) {
  2383. struct request_queue *q = cfqd->queue;
  2384. unsigned long flags;
  2385. spin_lock_irqsave(q->queue_lock, flags);
  2386. /*
  2387. * Ensure we get a fresh copy of the ->key to prevent
  2388. * race between exiting task and queue
  2389. */
  2390. smp_read_barrier_depends();
  2391. if (cic->key == cfqd)
  2392. cfq_exit_cic(cic);
  2393. spin_unlock_irqrestore(q->queue_lock, flags);
  2394. }
  2395. }
  2396. /*
  2397. * The process that ioc belongs to has exited, we need to clean up
  2398. * and put the internal structures we have that belongs to that process.
  2399. */
  2400. static void cfq_exit_io_context(struct io_context *ioc)
  2401. {
  2402. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2403. }
  2404. static struct cfq_io_context *
  2405. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2406. {
  2407. struct cfq_io_context *cic;
  2408. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2409. cfqd->queue->node);
  2410. if (cic) {
  2411. cic->ttime.last_end_request = jiffies;
  2412. INIT_LIST_HEAD(&cic->queue_list);
  2413. INIT_HLIST_NODE(&cic->cic_list);
  2414. cic->dtor = cfq_free_io_context;
  2415. cic->exit = cfq_exit_io_context;
  2416. elv_ioc_count_inc(cfq_ioc_count);
  2417. }
  2418. return cic;
  2419. }
  2420. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2421. {
  2422. struct task_struct *tsk = current;
  2423. int ioprio_class;
  2424. if (!cfq_cfqq_prio_changed(cfqq))
  2425. return;
  2426. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2427. switch (ioprio_class) {
  2428. default:
  2429. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2430. case IOPRIO_CLASS_NONE:
  2431. /*
  2432. * no prio set, inherit CPU scheduling settings
  2433. */
  2434. cfqq->ioprio = task_nice_ioprio(tsk);
  2435. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2436. break;
  2437. case IOPRIO_CLASS_RT:
  2438. cfqq->ioprio = task_ioprio(ioc);
  2439. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2440. break;
  2441. case IOPRIO_CLASS_BE:
  2442. cfqq->ioprio = task_ioprio(ioc);
  2443. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2444. break;
  2445. case IOPRIO_CLASS_IDLE:
  2446. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2447. cfqq->ioprio = 7;
  2448. cfq_clear_cfqq_idle_window(cfqq);
  2449. break;
  2450. }
  2451. /*
  2452. * keep track of original prio settings in case we have to temporarily
  2453. * elevate the priority of this queue
  2454. */
  2455. cfqq->org_ioprio = cfqq->ioprio;
  2456. cfq_clear_cfqq_prio_changed(cfqq);
  2457. }
  2458. static void changed_ioprio(struct cfq_io_context *cic)
  2459. {
  2460. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2461. struct cfq_queue *cfqq;
  2462. if (unlikely(!cfqd))
  2463. return;
  2464. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2465. if (cfqq) {
  2466. struct cfq_queue *new_cfqq;
  2467. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2468. GFP_ATOMIC);
  2469. if (new_cfqq) {
  2470. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2471. cfq_put_queue(cfqq);
  2472. }
  2473. }
  2474. cfqq = cic->cfqq[BLK_RW_SYNC];
  2475. if (cfqq)
  2476. cfq_mark_cfqq_prio_changed(cfqq);
  2477. }
  2478. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2479. pid_t pid, bool is_sync)
  2480. {
  2481. RB_CLEAR_NODE(&cfqq->rb_node);
  2482. RB_CLEAR_NODE(&cfqq->p_node);
  2483. INIT_LIST_HEAD(&cfqq->fifo);
  2484. cfqq->ref = 0;
  2485. cfqq->cfqd = cfqd;
  2486. cfq_mark_cfqq_prio_changed(cfqq);
  2487. if (is_sync) {
  2488. if (!cfq_class_idle(cfqq))
  2489. cfq_mark_cfqq_idle_window(cfqq);
  2490. cfq_mark_cfqq_sync(cfqq);
  2491. }
  2492. cfqq->pid = pid;
  2493. }
  2494. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2495. static void changed_cgroup(struct cfq_io_context *cic)
  2496. {
  2497. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2498. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2499. struct request_queue *q;
  2500. if (unlikely(!cfqd))
  2501. return;
  2502. q = cfqd->queue;
  2503. if (sync_cfqq) {
  2504. /*
  2505. * Drop reference to sync queue. A new sync queue will be
  2506. * assigned in new group upon arrival of a fresh request.
  2507. */
  2508. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2509. cic_set_cfqq(cic, NULL, 1);
  2510. cfq_put_queue(sync_cfqq);
  2511. }
  2512. }
  2513. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2514. static struct cfq_queue *
  2515. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2516. struct io_context *ioc, gfp_t gfp_mask)
  2517. {
  2518. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2519. struct cfq_io_context *cic;
  2520. struct cfq_group *cfqg;
  2521. retry:
  2522. cfqg = cfq_get_cfqg(cfqd);
  2523. cic = cfq_cic_lookup(cfqd, ioc);
  2524. /* cic always exists here */
  2525. cfqq = cic_to_cfqq(cic, is_sync);
  2526. /*
  2527. * Always try a new alloc if we fell back to the OOM cfqq
  2528. * originally, since it should just be a temporary situation.
  2529. */
  2530. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2531. cfqq = NULL;
  2532. if (new_cfqq) {
  2533. cfqq = new_cfqq;
  2534. new_cfqq = NULL;
  2535. } else if (gfp_mask & __GFP_WAIT) {
  2536. spin_unlock_irq(cfqd->queue->queue_lock);
  2537. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2538. gfp_mask | __GFP_ZERO,
  2539. cfqd->queue->node);
  2540. spin_lock_irq(cfqd->queue->queue_lock);
  2541. if (new_cfqq)
  2542. goto retry;
  2543. } else {
  2544. cfqq = kmem_cache_alloc_node(cfq_pool,
  2545. gfp_mask | __GFP_ZERO,
  2546. cfqd->queue->node);
  2547. }
  2548. if (cfqq) {
  2549. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2550. cfq_init_prio_data(cfqq, ioc);
  2551. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2552. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2553. } else
  2554. cfqq = &cfqd->oom_cfqq;
  2555. }
  2556. if (new_cfqq)
  2557. kmem_cache_free(cfq_pool, new_cfqq);
  2558. return cfqq;
  2559. }
  2560. static struct cfq_queue **
  2561. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2562. {
  2563. switch (ioprio_class) {
  2564. case IOPRIO_CLASS_RT:
  2565. return &cfqd->async_cfqq[0][ioprio];
  2566. case IOPRIO_CLASS_BE:
  2567. return &cfqd->async_cfqq[1][ioprio];
  2568. case IOPRIO_CLASS_IDLE:
  2569. return &cfqd->async_idle_cfqq;
  2570. default:
  2571. BUG();
  2572. }
  2573. }
  2574. static struct cfq_queue *
  2575. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2576. gfp_t gfp_mask)
  2577. {
  2578. const int ioprio = task_ioprio(ioc);
  2579. const int ioprio_class = task_ioprio_class(ioc);
  2580. struct cfq_queue **async_cfqq = NULL;
  2581. struct cfq_queue *cfqq = NULL;
  2582. if (!is_sync) {
  2583. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2584. cfqq = *async_cfqq;
  2585. }
  2586. if (!cfqq)
  2587. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2588. /*
  2589. * pin the queue now that it's allocated, scheduler exit will prune it
  2590. */
  2591. if (!is_sync && !(*async_cfqq)) {
  2592. cfqq->ref++;
  2593. *async_cfqq = cfqq;
  2594. }
  2595. cfqq->ref++;
  2596. return cfqq;
  2597. }
  2598. /*
  2599. * We drop cfq io contexts lazily, so we may find a dead one.
  2600. */
  2601. static void
  2602. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2603. struct cfq_io_context *cic)
  2604. {
  2605. unsigned long flags;
  2606. WARN_ON(!list_empty(&cic->queue_list));
  2607. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2608. spin_lock_irqsave(&ioc->lock, flags);
  2609. BUG_ON(rcu_dereference_check(ioc->ioc_data,
  2610. lockdep_is_held(&ioc->lock)) == cic);
  2611. radix_tree_delete(&ioc->radix_root, cfqd->queue->id);
  2612. hlist_del_rcu(&cic->cic_list);
  2613. spin_unlock_irqrestore(&ioc->lock, flags);
  2614. cfq_cic_free(cic);
  2615. }
  2616. /**
  2617. * cfq_cic_lookup - lookup cfq_io_context
  2618. * @cfqd: the associated cfq_data
  2619. * @ioc: the associated io_context
  2620. *
  2621. * Look up cfq_io_context associated with @cfqd - @ioc pair. Must be
  2622. * called with queue_lock held.
  2623. */
  2624. static struct cfq_io_context *
  2625. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2626. {
  2627. struct cfq_io_context *cic;
  2628. lockdep_assert_held(cfqd->queue->queue_lock);
  2629. if (unlikely(!ioc))
  2630. return NULL;
  2631. rcu_read_lock();
  2632. /*
  2633. * we maintain a last-hit cache, to avoid browsing over the tree
  2634. */
  2635. cic = rcu_dereference(ioc->ioc_data);
  2636. if (cic && cic->key == cfqd)
  2637. goto out;
  2638. do {
  2639. cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
  2640. if (!cic)
  2641. break;
  2642. if (likely(cic->key == cfqd)) {
  2643. /* hint assignment itself can race safely */
  2644. rcu_assign_pointer(ioc->ioc_data, cic);
  2645. break;
  2646. }
  2647. cfq_drop_dead_cic(cfqd, ioc, cic);
  2648. } while (1);
  2649. out:
  2650. rcu_read_unlock();
  2651. return cic;
  2652. }
  2653. /**
  2654. * cfq_create_cic - create and link a cfq_io_context
  2655. * @cfqd: cfqd of interest
  2656. * @gfp_mask: allocation mask
  2657. *
  2658. * Make sure cfq_io_context linking %current->io_context and @cfqd exists.
  2659. * If ioc and/or cic doesn't exist, they will be created using @gfp_mask.
  2660. */
  2661. static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
  2662. {
  2663. struct request_queue *q = cfqd->queue;
  2664. struct cfq_io_context *cic = NULL;
  2665. struct io_context *ioc;
  2666. int ret = -ENOMEM;
  2667. might_sleep_if(gfp_mask & __GFP_WAIT);
  2668. /* allocate stuff */
  2669. ioc = current_io_context(gfp_mask, q->node);
  2670. if (!ioc)
  2671. goto out;
  2672. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2673. if (!cic)
  2674. goto out;
  2675. ret = radix_tree_preload(gfp_mask);
  2676. if (ret)
  2677. goto out;
  2678. cic->ioc = ioc;
  2679. cic->key = cfqd;
  2680. cic->q = cfqd->queue;
  2681. /* lock both q and ioc and try to link @cic */
  2682. spin_lock_irq(q->queue_lock);
  2683. spin_lock(&ioc->lock);
  2684. ret = radix_tree_insert(&ioc->radix_root, q->id, cic);
  2685. if (likely(!ret)) {
  2686. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2687. list_add(&cic->queue_list, &cfqd->cic_list);
  2688. cic = NULL;
  2689. } else if (ret == -EEXIST) {
  2690. /* someone else already did it */
  2691. ret = 0;
  2692. }
  2693. spin_unlock(&ioc->lock);
  2694. spin_unlock_irq(q->queue_lock);
  2695. radix_tree_preload_end();
  2696. out:
  2697. if (ret)
  2698. printk(KERN_ERR "cfq: cic link failed!\n");
  2699. if (cic)
  2700. cfq_cic_free(cic);
  2701. return ret;
  2702. }
  2703. /**
  2704. * cfq_get_io_context - acquire cfq_io_context and bump refcnt on io_context
  2705. * @cfqd: cfqd to setup cic for
  2706. * @gfp_mask: allocation mask
  2707. *
  2708. * Return cfq_io_context associating @cfqd and %current->io_context and
  2709. * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
  2710. * using @gfp_mask.
  2711. *
  2712. * Must be called under queue_lock which may be released and re-acquired.
  2713. * This function also may sleep depending on @gfp_mask.
  2714. */
  2715. static struct cfq_io_context *
  2716. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2717. {
  2718. struct request_queue *q = cfqd->queue;
  2719. struct cfq_io_context *cic = NULL;
  2720. struct io_context *ioc;
  2721. int err;
  2722. lockdep_assert_held(q->queue_lock);
  2723. while (true) {
  2724. /* fast path */
  2725. ioc = current->io_context;
  2726. if (likely(ioc)) {
  2727. cic = cfq_cic_lookup(cfqd, ioc);
  2728. if (likely(cic))
  2729. break;
  2730. }
  2731. /* slow path - unlock, create missing ones and retry */
  2732. spin_unlock_irq(q->queue_lock);
  2733. err = cfq_create_cic(cfqd, gfp_mask);
  2734. spin_lock_irq(q->queue_lock);
  2735. if (err)
  2736. return NULL;
  2737. }
  2738. /* bump @ioc's refcnt and handle changed notifications */
  2739. get_io_context(ioc);
  2740. if (unlikely(cic->changed)) {
  2741. if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
  2742. changed_ioprio(cic);
  2743. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2744. if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
  2745. changed_cgroup(cic);
  2746. #endif
  2747. }
  2748. return cic;
  2749. }
  2750. static void
  2751. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2752. {
  2753. unsigned long elapsed = jiffies - ttime->last_end_request;
  2754. elapsed = min(elapsed, 2UL * slice_idle);
  2755. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2756. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2757. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2758. }
  2759. static void
  2760. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2761. struct cfq_io_context *cic)
  2762. {
  2763. if (cfq_cfqq_sync(cfqq)) {
  2764. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2765. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2766. cfqd->cfq_slice_idle);
  2767. }
  2768. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2769. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2770. #endif
  2771. }
  2772. static void
  2773. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2774. struct request *rq)
  2775. {
  2776. sector_t sdist = 0;
  2777. sector_t n_sec = blk_rq_sectors(rq);
  2778. if (cfqq->last_request_pos) {
  2779. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2780. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2781. else
  2782. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2783. }
  2784. cfqq->seek_history <<= 1;
  2785. if (blk_queue_nonrot(cfqd->queue))
  2786. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2787. else
  2788. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2789. }
  2790. /*
  2791. * Disable idle window if the process thinks too long or seeks so much that
  2792. * it doesn't matter
  2793. */
  2794. static void
  2795. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2796. struct cfq_io_context *cic)
  2797. {
  2798. int old_idle, enable_idle;
  2799. /*
  2800. * Don't idle for async or idle io prio class
  2801. */
  2802. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2803. return;
  2804. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2805. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2806. cfq_mark_cfqq_deep(cfqq);
  2807. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2808. enable_idle = 0;
  2809. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2810. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2811. enable_idle = 0;
  2812. else if (sample_valid(cic->ttime.ttime_samples)) {
  2813. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2814. enable_idle = 0;
  2815. else
  2816. enable_idle = 1;
  2817. }
  2818. if (old_idle != enable_idle) {
  2819. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2820. if (enable_idle)
  2821. cfq_mark_cfqq_idle_window(cfqq);
  2822. else
  2823. cfq_clear_cfqq_idle_window(cfqq);
  2824. }
  2825. }
  2826. /*
  2827. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2828. * no or if we aren't sure, a 1 will cause a preempt.
  2829. */
  2830. static bool
  2831. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2832. struct request *rq)
  2833. {
  2834. struct cfq_queue *cfqq;
  2835. cfqq = cfqd->active_queue;
  2836. if (!cfqq)
  2837. return false;
  2838. if (cfq_class_idle(new_cfqq))
  2839. return false;
  2840. if (cfq_class_idle(cfqq))
  2841. return true;
  2842. /*
  2843. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2844. */
  2845. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2846. return false;
  2847. /*
  2848. * if the new request is sync, but the currently running queue is
  2849. * not, let the sync request have priority.
  2850. */
  2851. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2852. return true;
  2853. if (new_cfqq->cfqg != cfqq->cfqg)
  2854. return false;
  2855. if (cfq_slice_used(cfqq))
  2856. return true;
  2857. /* Allow preemption only if we are idling on sync-noidle tree */
  2858. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2859. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2860. new_cfqq->service_tree->count == 2 &&
  2861. RB_EMPTY_ROOT(&cfqq->sort_list))
  2862. return true;
  2863. /*
  2864. * So both queues are sync. Let the new request get disk time if
  2865. * it's a metadata request and the current queue is doing regular IO.
  2866. */
  2867. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2868. return true;
  2869. /*
  2870. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2871. */
  2872. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2873. return true;
  2874. /* An idle queue should not be idle now for some reason */
  2875. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2876. return true;
  2877. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2878. return false;
  2879. /*
  2880. * if this request is as-good as one we would expect from the
  2881. * current cfqq, let it preempt
  2882. */
  2883. if (cfq_rq_close(cfqd, cfqq, rq))
  2884. return true;
  2885. return false;
  2886. }
  2887. /*
  2888. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2889. * let it have half of its nominal slice.
  2890. */
  2891. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2892. {
  2893. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2894. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2895. cfq_slice_expired(cfqd, 1);
  2896. /*
  2897. * workload type is changed, don't save slice, otherwise preempt
  2898. * doesn't happen
  2899. */
  2900. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2901. cfqq->cfqg->saved_workload_slice = 0;
  2902. /*
  2903. * Put the new queue at the front of the of the current list,
  2904. * so we know that it will be selected next.
  2905. */
  2906. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2907. cfq_service_tree_add(cfqd, cfqq, 1);
  2908. cfqq->slice_end = 0;
  2909. cfq_mark_cfqq_slice_new(cfqq);
  2910. }
  2911. /*
  2912. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2913. * something we should do about it
  2914. */
  2915. static void
  2916. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2917. struct request *rq)
  2918. {
  2919. struct cfq_io_context *cic = RQ_CIC(rq);
  2920. cfqd->rq_queued++;
  2921. if (rq->cmd_flags & REQ_PRIO)
  2922. cfqq->prio_pending++;
  2923. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2924. cfq_update_io_seektime(cfqd, cfqq, rq);
  2925. cfq_update_idle_window(cfqd, cfqq, cic);
  2926. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2927. if (cfqq == cfqd->active_queue) {
  2928. /*
  2929. * Remember that we saw a request from this process, but
  2930. * don't start queuing just yet. Otherwise we risk seeing lots
  2931. * of tiny requests, because we disrupt the normal plugging
  2932. * and merging. If the request is already larger than a single
  2933. * page, let it rip immediately. For that case we assume that
  2934. * merging is already done. Ditto for a busy system that
  2935. * has other work pending, don't risk delaying until the
  2936. * idle timer unplug to continue working.
  2937. */
  2938. if (cfq_cfqq_wait_request(cfqq)) {
  2939. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2940. cfqd->busy_queues > 1) {
  2941. cfq_del_timer(cfqd, cfqq);
  2942. cfq_clear_cfqq_wait_request(cfqq);
  2943. __blk_run_queue(cfqd->queue);
  2944. } else {
  2945. cfq_blkiocg_update_idle_time_stats(
  2946. &cfqq->cfqg->blkg);
  2947. cfq_mark_cfqq_must_dispatch(cfqq);
  2948. }
  2949. }
  2950. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2951. /*
  2952. * not the active queue - expire current slice if it is
  2953. * idle and has expired it's mean thinktime or this new queue
  2954. * has some old slice time left and is of higher priority or
  2955. * this new queue is RT and the current one is BE
  2956. */
  2957. cfq_preempt_queue(cfqd, cfqq);
  2958. __blk_run_queue(cfqd->queue);
  2959. }
  2960. }
  2961. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2962. {
  2963. struct cfq_data *cfqd = q->elevator->elevator_data;
  2964. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2965. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2966. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2967. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2968. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2969. cfq_add_rq_rb(rq);
  2970. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2971. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2972. rq_is_sync(rq));
  2973. cfq_rq_enqueued(cfqd, cfqq, rq);
  2974. }
  2975. /*
  2976. * Update hw_tag based on peak queue depth over 50 samples under
  2977. * sufficient load.
  2978. */
  2979. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2980. {
  2981. struct cfq_queue *cfqq = cfqd->active_queue;
  2982. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2983. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2984. if (cfqd->hw_tag == 1)
  2985. return;
  2986. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2987. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2988. return;
  2989. /*
  2990. * If active queue hasn't enough requests and can idle, cfq might not
  2991. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2992. * case
  2993. */
  2994. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2995. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2996. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2997. return;
  2998. if (cfqd->hw_tag_samples++ < 50)
  2999. return;
  3000. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  3001. cfqd->hw_tag = 1;
  3002. else
  3003. cfqd->hw_tag = 0;
  3004. }
  3005. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  3006. {
  3007. struct cfq_io_context *cic = cfqd->active_cic;
  3008. /* If the queue already has requests, don't wait */
  3009. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3010. return false;
  3011. /* If there are other queues in the group, don't wait */
  3012. if (cfqq->cfqg->nr_cfqq > 1)
  3013. return false;
  3014. /* the only queue in the group, but think time is big */
  3015. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  3016. return false;
  3017. if (cfq_slice_used(cfqq))
  3018. return true;
  3019. /* if slice left is less than think time, wait busy */
  3020. if (cic && sample_valid(cic->ttime.ttime_samples)
  3021. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  3022. return true;
  3023. /*
  3024. * If think times is less than a jiffy than ttime_mean=0 and above
  3025. * will not be true. It might happen that slice has not expired yet
  3026. * but will expire soon (4-5 ns) during select_queue(). To cover the
  3027. * case where think time is less than a jiffy, mark the queue wait
  3028. * busy if only 1 jiffy is left in the slice.
  3029. */
  3030. if (cfqq->slice_end - jiffies == 1)
  3031. return true;
  3032. return false;
  3033. }
  3034. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  3035. {
  3036. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3037. struct cfq_data *cfqd = cfqq->cfqd;
  3038. const int sync = rq_is_sync(rq);
  3039. unsigned long now;
  3040. now = jiffies;
  3041. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  3042. !!(rq->cmd_flags & REQ_NOIDLE));
  3043. cfq_update_hw_tag(cfqd);
  3044. WARN_ON(!cfqd->rq_in_driver);
  3045. WARN_ON(!cfqq->dispatched);
  3046. cfqd->rq_in_driver--;
  3047. cfqq->dispatched--;
  3048. (RQ_CFQG(rq))->dispatched--;
  3049. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  3050. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  3051. rq_data_dir(rq), rq_is_sync(rq));
  3052. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  3053. if (sync) {
  3054. struct cfq_rb_root *service_tree;
  3055. RQ_CIC(rq)->ttime.last_end_request = now;
  3056. if (cfq_cfqq_on_rr(cfqq))
  3057. service_tree = cfqq->service_tree;
  3058. else
  3059. service_tree = service_tree_for(cfqq->cfqg,
  3060. cfqq_prio(cfqq), cfqq_type(cfqq));
  3061. service_tree->ttime.last_end_request = now;
  3062. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3063. cfqd->last_delayed_sync = now;
  3064. }
  3065. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3066. cfqq->cfqg->ttime.last_end_request = now;
  3067. #endif
  3068. /*
  3069. * If this is the active queue, check if it needs to be expired,
  3070. * or if we want to idle in case it has no pending requests.
  3071. */
  3072. if (cfqd->active_queue == cfqq) {
  3073. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3074. if (cfq_cfqq_slice_new(cfqq)) {
  3075. cfq_set_prio_slice(cfqd, cfqq);
  3076. cfq_clear_cfqq_slice_new(cfqq);
  3077. }
  3078. /*
  3079. * Should we wait for next request to come in before we expire
  3080. * the queue.
  3081. */
  3082. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3083. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3084. if (!cfqd->cfq_slice_idle)
  3085. extend_sl = cfqd->cfq_group_idle;
  3086. cfqq->slice_end = jiffies + extend_sl;
  3087. cfq_mark_cfqq_wait_busy(cfqq);
  3088. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3089. }
  3090. /*
  3091. * Idling is not enabled on:
  3092. * - expired queues
  3093. * - idle-priority queues
  3094. * - async queues
  3095. * - queues with still some requests queued
  3096. * - when there is a close cooperator
  3097. */
  3098. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3099. cfq_slice_expired(cfqd, 1);
  3100. else if (sync && cfqq_empty &&
  3101. !cfq_close_cooperator(cfqd, cfqq)) {
  3102. cfq_arm_slice_timer(cfqd);
  3103. }
  3104. }
  3105. if (!cfqd->rq_in_driver)
  3106. cfq_schedule_dispatch(cfqd);
  3107. }
  3108. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3109. {
  3110. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3111. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3112. return ELV_MQUEUE_MUST;
  3113. }
  3114. return ELV_MQUEUE_MAY;
  3115. }
  3116. static int cfq_may_queue(struct request_queue *q, int rw)
  3117. {
  3118. struct cfq_data *cfqd = q->elevator->elevator_data;
  3119. struct task_struct *tsk = current;
  3120. struct cfq_io_context *cic;
  3121. struct cfq_queue *cfqq;
  3122. /*
  3123. * don't force setup of a queue from here, as a call to may_queue
  3124. * does not necessarily imply that a request actually will be queued.
  3125. * so just lookup a possibly existing queue, or return 'may queue'
  3126. * if that fails
  3127. */
  3128. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3129. if (!cic)
  3130. return ELV_MQUEUE_MAY;
  3131. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3132. if (cfqq) {
  3133. cfq_init_prio_data(cfqq, cic->ioc);
  3134. return __cfq_may_queue(cfqq);
  3135. }
  3136. return ELV_MQUEUE_MAY;
  3137. }
  3138. /*
  3139. * queue lock held here
  3140. */
  3141. static void cfq_put_request(struct request *rq)
  3142. {
  3143. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3144. if (cfqq) {
  3145. const int rw = rq_data_dir(rq);
  3146. BUG_ON(!cfqq->allocated[rw]);
  3147. cfqq->allocated[rw]--;
  3148. put_io_context(RQ_CIC(rq)->ioc);
  3149. rq->elevator_private[0] = NULL;
  3150. rq->elevator_private[1] = NULL;
  3151. /* Put down rq reference on cfqg */
  3152. cfq_put_cfqg(RQ_CFQG(rq));
  3153. rq->elevator_private[2] = NULL;
  3154. cfq_put_queue(cfqq);
  3155. }
  3156. }
  3157. static struct cfq_queue *
  3158. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3159. struct cfq_queue *cfqq)
  3160. {
  3161. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3162. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3163. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3164. cfq_put_queue(cfqq);
  3165. return cic_to_cfqq(cic, 1);
  3166. }
  3167. /*
  3168. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3169. * was the last process referring to said cfqq.
  3170. */
  3171. static struct cfq_queue *
  3172. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3173. {
  3174. if (cfqq_process_refs(cfqq) == 1) {
  3175. cfqq->pid = current->pid;
  3176. cfq_clear_cfqq_coop(cfqq);
  3177. cfq_clear_cfqq_split_coop(cfqq);
  3178. return cfqq;
  3179. }
  3180. cic_set_cfqq(cic, NULL, 1);
  3181. cfq_put_cooperator(cfqq);
  3182. cfq_put_queue(cfqq);
  3183. return NULL;
  3184. }
  3185. /*
  3186. * Allocate cfq data structures associated with this request.
  3187. */
  3188. static int
  3189. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3190. {
  3191. struct cfq_data *cfqd = q->elevator->elevator_data;
  3192. struct cfq_io_context *cic;
  3193. const int rw = rq_data_dir(rq);
  3194. const bool is_sync = rq_is_sync(rq);
  3195. struct cfq_queue *cfqq;
  3196. might_sleep_if(gfp_mask & __GFP_WAIT);
  3197. spin_lock_irq(q->queue_lock);
  3198. cic = cfq_get_io_context(cfqd, gfp_mask);
  3199. if (!cic)
  3200. goto queue_fail;
  3201. new_queue:
  3202. cfqq = cic_to_cfqq(cic, is_sync);
  3203. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3204. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3205. cic_set_cfqq(cic, cfqq, is_sync);
  3206. } else {
  3207. /*
  3208. * If the queue was seeky for too long, break it apart.
  3209. */
  3210. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3211. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3212. cfqq = split_cfqq(cic, cfqq);
  3213. if (!cfqq)
  3214. goto new_queue;
  3215. }
  3216. /*
  3217. * Check to see if this queue is scheduled to merge with
  3218. * another, closely cooperating queue. The merging of
  3219. * queues happens here as it must be done in process context.
  3220. * The reference on new_cfqq was taken in merge_cfqqs.
  3221. */
  3222. if (cfqq->new_cfqq)
  3223. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3224. }
  3225. cfqq->allocated[rw]++;
  3226. cfqq->ref++;
  3227. rq->elevator_private[0] = cic;
  3228. rq->elevator_private[1] = cfqq;
  3229. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3230. spin_unlock_irq(q->queue_lock);
  3231. return 0;
  3232. queue_fail:
  3233. cfq_schedule_dispatch(cfqd);
  3234. spin_unlock_irq(q->queue_lock);
  3235. cfq_log(cfqd, "set_request fail");
  3236. return 1;
  3237. }
  3238. static void cfq_kick_queue(struct work_struct *work)
  3239. {
  3240. struct cfq_data *cfqd =
  3241. container_of(work, struct cfq_data, unplug_work);
  3242. struct request_queue *q = cfqd->queue;
  3243. spin_lock_irq(q->queue_lock);
  3244. __blk_run_queue(cfqd->queue);
  3245. spin_unlock_irq(q->queue_lock);
  3246. }
  3247. /*
  3248. * Timer running if the active_queue is currently idling inside its time slice
  3249. */
  3250. static void cfq_idle_slice_timer(unsigned long data)
  3251. {
  3252. struct cfq_data *cfqd = (struct cfq_data *) data;
  3253. struct cfq_queue *cfqq;
  3254. unsigned long flags;
  3255. int timed_out = 1;
  3256. cfq_log(cfqd, "idle timer fired");
  3257. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3258. cfqq = cfqd->active_queue;
  3259. if (cfqq) {
  3260. timed_out = 0;
  3261. /*
  3262. * We saw a request before the queue expired, let it through
  3263. */
  3264. if (cfq_cfqq_must_dispatch(cfqq))
  3265. goto out_kick;
  3266. /*
  3267. * expired
  3268. */
  3269. if (cfq_slice_used(cfqq))
  3270. goto expire;
  3271. /*
  3272. * only expire and reinvoke request handler, if there are
  3273. * other queues with pending requests
  3274. */
  3275. if (!cfqd->busy_queues)
  3276. goto out_cont;
  3277. /*
  3278. * not expired and it has a request pending, let it dispatch
  3279. */
  3280. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3281. goto out_kick;
  3282. /*
  3283. * Queue depth flag is reset only when the idle didn't succeed
  3284. */
  3285. cfq_clear_cfqq_deep(cfqq);
  3286. }
  3287. expire:
  3288. cfq_slice_expired(cfqd, timed_out);
  3289. out_kick:
  3290. cfq_schedule_dispatch(cfqd);
  3291. out_cont:
  3292. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3293. }
  3294. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3295. {
  3296. del_timer_sync(&cfqd->idle_slice_timer);
  3297. cancel_work_sync(&cfqd->unplug_work);
  3298. }
  3299. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3300. {
  3301. int i;
  3302. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3303. if (cfqd->async_cfqq[0][i])
  3304. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3305. if (cfqd->async_cfqq[1][i])
  3306. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3307. }
  3308. if (cfqd->async_idle_cfqq)
  3309. cfq_put_queue(cfqd->async_idle_cfqq);
  3310. }
  3311. static void cfq_exit_queue(struct elevator_queue *e)
  3312. {
  3313. struct cfq_data *cfqd = e->elevator_data;
  3314. struct request_queue *q = cfqd->queue;
  3315. bool wait = false;
  3316. cfq_shutdown_timer_wq(cfqd);
  3317. spin_lock_irq(q->queue_lock);
  3318. if (cfqd->active_queue)
  3319. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3320. while (!list_empty(&cfqd->cic_list)) {
  3321. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3322. struct cfq_io_context,
  3323. queue_list);
  3324. cfq_exit_cic(cic);
  3325. }
  3326. cfq_put_async_queues(cfqd);
  3327. cfq_release_cfq_groups(cfqd);
  3328. /*
  3329. * If there are groups which we could not unlink from blkcg list,
  3330. * wait for a rcu period for them to be freed.
  3331. */
  3332. if (cfqd->nr_blkcg_linked_grps)
  3333. wait = true;
  3334. spin_unlock_irq(q->queue_lock);
  3335. cfq_shutdown_timer_wq(cfqd);
  3336. /*
  3337. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3338. * Do this wait only if there are other unlinked groups out
  3339. * there. This can happen if cgroup deletion path claimed the
  3340. * responsibility of cleaning up a group before queue cleanup code
  3341. * get to the group.
  3342. *
  3343. * Do not call synchronize_rcu() unconditionally as there are drivers
  3344. * which create/delete request queue hundreds of times during scan/boot
  3345. * and synchronize_rcu() can take significant time and slow down boot.
  3346. */
  3347. if (wait)
  3348. synchronize_rcu();
  3349. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3350. /* Free up per cpu stats for root group */
  3351. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3352. #endif
  3353. kfree(cfqd);
  3354. }
  3355. static void *cfq_init_queue(struct request_queue *q)
  3356. {
  3357. struct cfq_data *cfqd;
  3358. int i, j;
  3359. struct cfq_group *cfqg;
  3360. struct cfq_rb_root *st;
  3361. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3362. if (!cfqd)
  3363. return NULL;
  3364. /* Init root service tree */
  3365. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3366. /* Init root group */
  3367. cfqg = &cfqd->root_group;
  3368. for_each_cfqg_st(cfqg, i, j, st)
  3369. *st = CFQ_RB_ROOT;
  3370. RB_CLEAR_NODE(&cfqg->rb_node);
  3371. /* Give preference to root group over other groups */
  3372. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3373. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3374. /*
  3375. * Set root group reference to 2. One reference will be dropped when
  3376. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3377. * Other reference will remain there as we don't want to delete this
  3378. * group as it is statically allocated and gets destroyed when
  3379. * throtl_data goes away.
  3380. */
  3381. cfqg->ref = 2;
  3382. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3383. kfree(cfqg);
  3384. kfree(cfqd);
  3385. return NULL;
  3386. }
  3387. rcu_read_lock();
  3388. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3389. (void *)cfqd, 0);
  3390. rcu_read_unlock();
  3391. cfqd->nr_blkcg_linked_grps++;
  3392. /* Add group on cfqd->cfqg_list */
  3393. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3394. #endif
  3395. /*
  3396. * Not strictly needed (since RB_ROOT just clears the node and we
  3397. * zeroed cfqd on alloc), but better be safe in case someone decides
  3398. * to add magic to the rb code
  3399. */
  3400. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3401. cfqd->prio_trees[i] = RB_ROOT;
  3402. /*
  3403. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3404. * Grab a permanent reference to it, so that the normal code flow
  3405. * will not attempt to free it.
  3406. */
  3407. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3408. cfqd->oom_cfqq.ref++;
  3409. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3410. INIT_LIST_HEAD(&cfqd->cic_list);
  3411. cfqd->queue = q;
  3412. init_timer(&cfqd->idle_slice_timer);
  3413. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3414. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3415. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3416. cfqd->cfq_quantum = cfq_quantum;
  3417. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3418. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3419. cfqd->cfq_back_max = cfq_back_max;
  3420. cfqd->cfq_back_penalty = cfq_back_penalty;
  3421. cfqd->cfq_slice[0] = cfq_slice_async;
  3422. cfqd->cfq_slice[1] = cfq_slice_sync;
  3423. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3424. cfqd->cfq_slice_idle = cfq_slice_idle;
  3425. cfqd->cfq_group_idle = cfq_group_idle;
  3426. cfqd->cfq_latency = 1;
  3427. cfqd->hw_tag = -1;
  3428. /*
  3429. * we optimistically start assuming sync ops weren't delayed in last
  3430. * second, in order to have larger depth for async operations.
  3431. */
  3432. cfqd->last_delayed_sync = jiffies - HZ;
  3433. return cfqd;
  3434. }
  3435. static void cfq_slab_kill(void)
  3436. {
  3437. /*
  3438. * Caller already ensured that pending RCU callbacks are completed,
  3439. * so we should have no busy allocations at this point.
  3440. */
  3441. if (cfq_pool)
  3442. kmem_cache_destroy(cfq_pool);
  3443. if (cfq_ioc_pool)
  3444. kmem_cache_destroy(cfq_ioc_pool);
  3445. }
  3446. static int __init cfq_slab_setup(void)
  3447. {
  3448. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3449. if (!cfq_pool)
  3450. goto fail;
  3451. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3452. if (!cfq_ioc_pool)
  3453. goto fail;
  3454. return 0;
  3455. fail:
  3456. cfq_slab_kill();
  3457. return -ENOMEM;
  3458. }
  3459. /*
  3460. * sysfs parts below -->
  3461. */
  3462. static ssize_t
  3463. cfq_var_show(unsigned int var, char *page)
  3464. {
  3465. return sprintf(page, "%d\n", var);
  3466. }
  3467. static ssize_t
  3468. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3469. {
  3470. char *p = (char *) page;
  3471. *var = simple_strtoul(p, &p, 10);
  3472. return count;
  3473. }
  3474. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3475. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3476. { \
  3477. struct cfq_data *cfqd = e->elevator_data; \
  3478. unsigned int __data = __VAR; \
  3479. if (__CONV) \
  3480. __data = jiffies_to_msecs(__data); \
  3481. return cfq_var_show(__data, (page)); \
  3482. }
  3483. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3484. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3485. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3486. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3487. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3488. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3489. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3490. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3491. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3492. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3493. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3494. #undef SHOW_FUNCTION
  3495. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3496. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3497. { \
  3498. struct cfq_data *cfqd = e->elevator_data; \
  3499. unsigned int __data; \
  3500. int ret = cfq_var_store(&__data, (page), count); \
  3501. if (__data < (MIN)) \
  3502. __data = (MIN); \
  3503. else if (__data > (MAX)) \
  3504. __data = (MAX); \
  3505. if (__CONV) \
  3506. *(__PTR) = msecs_to_jiffies(__data); \
  3507. else \
  3508. *(__PTR) = __data; \
  3509. return ret; \
  3510. }
  3511. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3512. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3513. UINT_MAX, 1);
  3514. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3515. UINT_MAX, 1);
  3516. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3517. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3518. UINT_MAX, 0);
  3519. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3520. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3521. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3522. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3523. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3524. UINT_MAX, 0);
  3525. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3526. #undef STORE_FUNCTION
  3527. #define CFQ_ATTR(name) \
  3528. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3529. static struct elv_fs_entry cfq_attrs[] = {
  3530. CFQ_ATTR(quantum),
  3531. CFQ_ATTR(fifo_expire_sync),
  3532. CFQ_ATTR(fifo_expire_async),
  3533. CFQ_ATTR(back_seek_max),
  3534. CFQ_ATTR(back_seek_penalty),
  3535. CFQ_ATTR(slice_sync),
  3536. CFQ_ATTR(slice_async),
  3537. CFQ_ATTR(slice_async_rq),
  3538. CFQ_ATTR(slice_idle),
  3539. CFQ_ATTR(group_idle),
  3540. CFQ_ATTR(low_latency),
  3541. __ATTR_NULL
  3542. };
  3543. static struct elevator_type iosched_cfq = {
  3544. .ops = {
  3545. .elevator_merge_fn = cfq_merge,
  3546. .elevator_merged_fn = cfq_merged_request,
  3547. .elevator_merge_req_fn = cfq_merged_requests,
  3548. .elevator_allow_merge_fn = cfq_allow_merge,
  3549. .elevator_bio_merged_fn = cfq_bio_merged,
  3550. .elevator_dispatch_fn = cfq_dispatch_requests,
  3551. .elevator_add_req_fn = cfq_insert_request,
  3552. .elevator_activate_req_fn = cfq_activate_request,
  3553. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3554. .elevator_completed_req_fn = cfq_completed_request,
  3555. .elevator_former_req_fn = elv_rb_former_request,
  3556. .elevator_latter_req_fn = elv_rb_latter_request,
  3557. .elevator_set_req_fn = cfq_set_request,
  3558. .elevator_put_req_fn = cfq_put_request,
  3559. .elevator_may_queue_fn = cfq_may_queue,
  3560. .elevator_init_fn = cfq_init_queue,
  3561. .elevator_exit_fn = cfq_exit_queue,
  3562. .trim = cfq_free_io_context,
  3563. },
  3564. .elevator_attrs = cfq_attrs,
  3565. .elevator_name = "cfq",
  3566. .elevator_owner = THIS_MODULE,
  3567. };
  3568. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3569. static struct blkio_policy_type blkio_policy_cfq = {
  3570. .ops = {
  3571. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3572. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3573. },
  3574. .plid = BLKIO_POLICY_PROP,
  3575. };
  3576. #else
  3577. static struct blkio_policy_type blkio_policy_cfq;
  3578. #endif
  3579. static int __init cfq_init(void)
  3580. {
  3581. /*
  3582. * could be 0 on HZ < 1000 setups
  3583. */
  3584. if (!cfq_slice_async)
  3585. cfq_slice_async = 1;
  3586. if (!cfq_slice_idle)
  3587. cfq_slice_idle = 1;
  3588. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3589. if (!cfq_group_idle)
  3590. cfq_group_idle = 1;
  3591. #else
  3592. cfq_group_idle = 0;
  3593. #endif
  3594. if (cfq_slab_setup())
  3595. return -ENOMEM;
  3596. elv_register(&iosched_cfq);
  3597. blkio_policy_register(&blkio_policy_cfq);
  3598. return 0;
  3599. }
  3600. static void __exit cfq_exit(void)
  3601. {
  3602. DECLARE_COMPLETION_ONSTACK(all_gone);
  3603. blkio_policy_unregister(&blkio_policy_cfq);
  3604. elv_unregister(&iosched_cfq);
  3605. ioc_gone = &all_gone;
  3606. /* ioc_gone's update must be visible before reading ioc_count */
  3607. smp_wmb();
  3608. /*
  3609. * this also protects us from entering cfq_slab_kill() with
  3610. * pending RCU callbacks
  3611. */
  3612. if (elv_ioc_count_read(cfq_ioc_count))
  3613. wait_for_completion(&all_gone);
  3614. cfq_slab_kill();
  3615. }
  3616. module_init(cfq_init);
  3617. module_exit(cfq_exit);
  3618. MODULE_AUTHOR("Jens Axboe");
  3619. MODULE_LICENSE("GPL");
  3620. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");