bio.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <scsi/sg.h> /* for struct sg_iovec */
  29. #define BIO_POOL_SIZE 256
  30. static kmem_cache_t *bio_slab;
  31. #define BIOVEC_NR_POOLS 6
  32. /*
  33. * a small number of entries is fine, not going to be performance critical.
  34. * basically we just need to survive
  35. */
  36. #define BIO_SPLIT_ENTRIES 8
  37. mempool_t *bio_split_pool;
  38. struct biovec_slab {
  39. int nr_vecs;
  40. char *name;
  41. kmem_cache_t *slab;
  42. };
  43. /*
  44. * if you change this list, also change bvec_alloc or things will
  45. * break badly! cannot be bigger than what you can fit into an
  46. * unsigned short
  47. */
  48. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  49. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] = {
  50. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  51. };
  52. #undef BV
  53. /*
  54. * bio_set is used to allow other portions of the IO system to
  55. * allocate their own private memory pools for bio and iovec structures.
  56. * These memory pools in turn all allocate from the bio_slab
  57. * and the bvec_slabs[].
  58. */
  59. struct bio_set {
  60. mempool_t *bio_pool;
  61. mempool_t *bvec_pools[BIOVEC_NR_POOLS];
  62. };
  63. /*
  64. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  65. * IO code that does not need private memory pools.
  66. */
  67. static struct bio_set *fs_bio_set;
  68. static inline struct bio_vec *bvec_alloc_bs(unsigned int __nocast gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
  69. {
  70. struct bio_vec *bvl;
  71. struct biovec_slab *bp;
  72. /*
  73. * see comment near bvec_array define!
  74. */
  75. switch (nr) {
  76. case 1 : *idx = 0; break;
  77. case 2 ... 4: *idx = 1; break;
  78. case 5 ... 16: *idx = 2; break;
  79. case 17 ... 64: *idx = 3; break;
  80. case 65 ... 128: *idx = 4; break;
  81. case 129 ... BIO_MAX_PAGES: *idx = 5; break;
  82. default:
  83. return NULL;
  84. }
  85. /*
  86. * idx now points to the pool we want to allocate from
  87. */
  88. bp = bvec_slabs + *idx;
  89. bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
  90. if (bvl)
  91. memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
  92. return bvl;
  93. }
  94. /*
  95. * default destructor for a bio allocated with bio_alloc_bioset()
  96. */
  97. static void bio_destructor(struct bio *bio)
  98. {
  99. const int pool_idx = BIO_POOL_IDX(bio);
  100. struct bio_set *bs = bio->bi_set;
  101. BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
  102. mempool_free(bio->bi_io_vec, bs->bvec_pools[pool_idx]);
  103. mempool_free(bio, bs->bio_pool);
  104. }
  105. inline void bio_init(struct bio *bio)
  106. {
  107. bio->bi_next = NULL;
  108. bio->bi_flags = 1 << BIO_UPTODATE;
  109. bio->bi_rw = 0;
  110. bio->bi_vcnt = 0;
  111. bio->bi_idx = 0;
  112. bio->bi_phys_segments = 0;
  113. bio->bi_hw_segments = 0;
  114. bio->bi_hw_front_size = 0;
  115. bio->bi_hw_back_size = 0;
  116. bio->bi_size = 0;
  117. bio->bi_max_vecs = 0;
  118. bio->bi_end_io = NULL;
  119. atomic_set(&bio->bi_cnt, 1);
  120. bio->bi_private = NULL;
  121. }
  122. /**
  123. * bio_alloc_bioset - allocate a bio for I/O
  124. * @gfp_mask: the GFP_ mask given to the slab allocator
  125. * @nr_iovecs: number of iovecs to pre-allocate
  126. * @bs: the bio_set to allocate from
  127. *
  128. * Description:
  129. * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
  130. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  131. * for a &struct bio to become free.
  132. *
  133. * allocate bio and iovecs from the memory pools specified by the
  134. * bio_set structure.
  135. **/
  136. struct bio *bio_alloc_bioset(unsigned int __nocast gfp_mask, int nr_iovecs, struct bio_set *bs)
  137. {
  138. struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
  139. if (likely(bio)) {
  140. struct bio_vec *bvl = NULL;
  141. bio_init(bio);
  142. if (likely(nr_iovecs)) {
  143. unsigned long idx;
  144. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  145. if (unlikely(!bvl)) {
  146. mempool_free(bio, bs->bio_pool);
  147. bio = NULL;
  148. goto out;
  149. }
  150. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  151. bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
  152. }
  153. bio->bi_io_vec = bvl;
  154. bio->bi_destructor = bio_destructor;
  155. bio->bi_set = bs;
  156. }
  157. out:
  158. return bio;
  159. }
  160. struct bio *bio_alloc(unsigned int __nocast gfp_mask, int nr_iovecs)
  161. {
  162. return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  163. }
  164. void zero_fill_bio(struct bio *bio)
  165. {
  166. unsigned long flags;
  167. struct bio_vec *bv;
  168. int i;
  169. bio_for_each_segment(bv, bio, i) {
  170. char *data = bvec_kmap_irq(bv, &flags);
  171. memset(data, 0, bv->bv_len);
  172. flush_dcache_page(bv->bv_page);
  173. bvec_kunmap_irq(data, &flags);
  174. }
  175. }
  176. EXPORT_SYMBOL(zero_fill_bio);
  177. /**
  178. * bio_put - release a reference to a bio
  179. * @bio: bio to release reference to
  180. *
  181. * Description:
  182. * Put a reference to a &struct bio, either one you have gotten with
  183. * bio_alloc or bio_get. The last put of a bio will free it.
  184. **/
  185. void bio_put(struct bio *bio)
  186. {
  187. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  188. /*
  189. * last put frees it
  190. */
  191. if (atomic_dec_and_test(&bio->bi_cnt)) {
  192. bio->bi_next = NULL;
  193. bio->bi_destructor(bio);
  194. }
  195. }
  196. inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
  197. {
  198. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  199. blk_recount_segments(q, bio);
  200. return bio->bi_phys_segments;
  201. }
  202. inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
  203. {
  204. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  205. blk_recount_segments(q, bio);
  206. return bio->bi_hw_segments;
  207. }
  208. /**
  209. * __bio_clone - clone a bio
  210. * @bio: destination bio
  211. * @bio_src: bio to clone
  212. *
  213. * Clone a &bio. Caller will own the returned bio, but not
  214. * the actual data it points to. Reference count of returned
  215. * bio will be one.
  216. */
  217. inline void __bio_clone(struct bio *bio, struct bio *bio_src)
  218. {
  219. request_queue_t *q = bdev_get_queue(bio_src->bi_bdev);
  220. memcpy(bio->bi_io_vec, bio_src->bi_io_vec, bio_src->bi_max_vecs * sizeof(struct bio_vec));
  221. bio->bi_sector = bio_src->bi_sector;
  222. bio->bi_bdev = bio_src->bi_bdev;
  223. bio->bi_flags |= 1 << BIO_CLONED;
  224. bio->bi_rw = bio_src->bi_rw;
  225. /*
  226. * notes -- maybe just leave bi_idx alone. assume identical mapping
  227. * for the clone
  228. */
  229. bio->bi_vcnt = bio_src->bi_vcnt;
  230. bio->bi_size = bio_src->bi_size;
  231. bio_phys_segments(q, bio);
  232. bio_hw_segments(q, bio);
  233. }
  234. /**
  235. * bio_clone - clone a bio
  236. * @bio: bio to clone
  237. * @gfp_mask: allocation priority
  238. *
  239. * Like __bio_clone, only also allocates the returned bio
  240. */
  241. struct bio *bio_clone(struct bio *bio, unsigned int __nocast gfp_mask)
  242. {
  243. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  244. if (b)
  245. __bio_clone(b, bio);
  246. return b;
  247. }
  248. /**
  249. * bio_get_nr_vecs - return approx number of vecs
  250. * @bdev: I/O target
  251. *
  252. * Return the approximate number of pages we can send to this target.
  253. * There's no guarantee that you will be able to fit this number of pages
  254. * into a bio, it does not account for dynamic restrictions that vary
  255. * on offset.
  256. */
  257. int bio_get_nr_vecs(struct block_device *bdev)
  258. {
  259. request_queue_t *q = bdev_get_queue(bdev);
  260. int nr_pages;
  261. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  262. if (nr_pages > q->max_phys_segments)
  263. nr_pages = q->max_phys_segments;
  264. if (nr_pages > q->max_hw_segments)
  265. nr_pages = q->max_hw_segments;
  266. return nr_pages;
  267. }
  268. static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
  269. *page, unsigned int len, unsigned int offset)
  270. {
  271. int retried_segments = 0;
  272. struct bio_vec *bvec;
  273. /*
  274. * cloned bio must not modify vec list
  275. */
  276. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  277. return 0;
  278. if (bio->bi_vcnt >= bio->bi_max_vecs)
  279. return 0;
  280. if (((bio->bi_size + len) >> 9) > q->max_sectors)
  281. return 0;
  282. /*
  283. * we might lose a segment or two here, but rather that than
  284. * make this too complex.
  285. */
  286. while (bio->bi_phys_segments >= q->max_phys_segments
  287. || bio->bi_hw_segments >= q->max_hw_segments
  288. || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
  289. if (retried_segments)
  290. return 0;
  291. retried_segments = 1;
  292. blk_recount_segments(q, bio);
  293. }
  294. /*
  295. * setup the new entry, we might clear it again later if we
  296. * cannot add the page
  297. */
  298. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  299. bvec->bv_page = page;
  300. bvec->bv_len = len;
  301. bvec->bv_offset = offset;
  302. /*
  303. * if queue has other restrictions (eg varying max sector size
  304. * depending on offset), it can specify a merge_bvec_fn in the
  305. * queue to get further control
  306. */
  307. if (q->merge_bvec_fn) {
  308. /*
  309. * merge_bvec_fn() returns number of bytes it can accept
  310. * at this offset
  311. */
  312. if (q->merge_bvec_fn(q, bio, bvec) < len) {
  313. bvec->bv_page = NULL;
  314. bvec->bv_len = 0;
  315. bvec->bv_offset = 0;
  316. return 0;
  317. }
  318. }
  319. /* If we may be able to merge these biovecs, force a recount */
  320. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
  321. BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
  322. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  323. bio->bi_vcnt++;
  324. bio->bi_phys_segments++;
  325. bio->bi_hw_segments++;
  326. bio->bi_size += len;
  327. return len;
  328. }
  329. /**
  330. * bio_add_page - attempt to add page to bio
  331. * @bio: destination bio
  332. * @page: page to add
  333. * @len: vec entry length
  334. * @offset: vec entry offset
  335. *
  336. * Attempt to add a page to the bio_vec maplist. This can fail for a
  337. * number of reasons, such as the bio being full or target block
  338. * device limitations. The target block device must allow bio's
  339. * smaller than PAGE_SIZE, so it is always possible to add a single
  340. * page to an empty bio.
  341. */
  342. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  343. unsigned int offset)
  344. {
  345. return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page,
  346. len, offset);
  347. }
  348. struct bio_map_data {
  349. struct bio_vec *iovecs;
  350. void __user *userptr;
  351. };
  352. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
  353. {
  354. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  355. bio->bi_private = bmd;
  356. }
  357. static void bio_free_map_data(struct bio_map_data *bmd)
  358. {
  359. kfree(bmd->iovecs);
  360. kfree(bmd);
  361. }
  362. static struct bio_map_data *bio_alloc_map_data(int nr_segs)
  363. {
  364. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
  365. if (!bmd)
  366. return NULL;
  367. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
  368. if (bmd->iovecs)
  369. return bmd;
  370. kfree(bmd);
  371. return NULL;
  372. }
  373. /**
  374. * bio_uncopy_user - finish previously mapped bio
  375. * @bio: bio being terminated
  376. *
  377. * Free pages allocated from bio_copy_user() and write back data
  378. * to user space in case of a read.
  379. */
  380. int bio_uncopy_user(struct bio *bio)
  381. {
  382. struct bio_map_data *bmd = bio->bi_private;
  383. const int read = bio_data_dir(bio) == READ;
  384. struct bio_vec *bvec;
  385. int i, ret = 0;
  386. __bio_for_each_segment(bvec, bio, i, 0) {
  387. char *addr = page_address(bvec->bv_page);
  388. unsigned int len = bmd->iovecs[i].bv_len;
  389. if (read && !ret && copy_to_user(bmd->userptr, addr, len))
  390. ret = -EFAULT;
  391. __free_page(bvec->bv_page);
  392. bmd->userptr += len;
  393. }
  394. bio_free_map_data(bmd);
  395. bio_put(bio);
  396. return ret;
  397. }
  398. /**
  399. * bio_copy_user - copy user data to bio
  400. * @q: destination block queue
  401. * @uaddr: start of user address
  402. * @len: length in bytes
  403. * @write_to_vm: bool indicating writing to pages or not
  404. *
  405. * Prepares and returns a bio for indirect user io, bouncing data
  406. * to/from kernel pages as necessary. Must be paired with
  407. * call bio_uncopy_user() on io completion.
  408. */
  409. struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
  410. unsigned int len, int write_to_vm)
  411. {
  412. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  413. unsigned long start = uaddr >> PAGE_SHIFT;
  414. struct bio_map_data *bmd;
  415. struct bio_vec *bvec;
  416. struct page *page;
  417. struct bio *bio;
  418. int i, ret;
  419. bmd = bio_alloc_map_data(end - start);
  420. if (!bmd)
  421. return ERR_PTR(-ENOMEM);
  422. bmd->userptr = (void __user *) uaddr;
  423. ret = -ENOMEM;
  424. bio = bio_alloc(GFP_KERNEL, end - start);
  425. if (!bio)
  426. goto out_bmd;
  427. bio->bi_rw |= (!write_to_vm << BIO_RW);
  428. ret = 0;
  429. while (len) {
  430. unsigned int bytes = PAGE_SIZE;
  431. if (bytes > len)
  432. bytes = len;
  433. page = alloc_page(q->bounce_gfp | GFP_KERNEL);
  434. if (!page) {
  435. ret = -ENOMEM;
  436. break;
  437. }
  438. if (__bio_add_page(q, bio, page, bytes, 0) < bytes) {
  439. ret = -EINVAL;
  440. break;
  441. }
  442. len -= bytes;
  443. }
  444. if (ret)
  445. goto cleanup;
  446. /*
  447. * success
  448. */
  449. if (!write_to_vm) {
  450. char __user *p = (char __user *) uaddr;
  451. /*
  452. * for a write, copy in data to kernel pages
  453. */
  454. ret = -EFAULT;
  455. bio_for_each_segment(bvec, bio, i) {
  456. char *addr = page_address(bvec->bv_page);
  457. if (copy_from_user(addr, p, bvec->bv_len))
  458. goto cleanup;
  459. p += bvec->bv_len;
  460. }
  461. }
  462. bio_set_map_data(bmd, bio);
  463. return bio;
  464. cleanup:
  465. bio_for_each_segment(bvec, bio, i)
  466. __free_page(bvec->bv_page);
  467. bio_put(bio);
  468. out_bmd:
  469. bio_free_map_data(bmd);
  470. return ERR_PTR(ret);
  471. }
  472. static struct bio *__bio_map_user_iov(request_queue_t *q,
  473. struct block_device *bdev,
  474. struct sg_iovec *iov, int iov_count,
  475. int write_to_vm)
  476. {
  477. int i, j;
  478. int nr_pages = 0;
  479. struct page **pages;
  480. struct bio *bio;
  481. int cur_page = 0;
  482. int ret, offset;
  483. for (i = 0; i < iov_count; i++) {
  484. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  485. unsigned long len = iov[i].iov_len;
  486. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  487. unsigned long start = uaddr >> PAGE_SHIFT;
  488. nr_pages += end - start;
  489. /*
  490. * transfer and buffer must be aligned to at least hardsector
  491. * size for now, in the future we can relax this restriction
  492. */
  493. if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
  494. return ERR_PTR(-EINVAL);
  495. }
  496. if (!nr_pages)
  497. return ERR_PTR(-EINVAL);
  498. bio = bio_alloc(GFP_KERNEL, nr_pages);
  499. if (!bio)
  500. return ERR_PTR(-ENOMEM);
  501. ret = -ENOMEM;
  502. pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
  503. if (!pages)
  504. goto out;
  505. memset(pages, 0, nr_pages * sizeof(struct page *));
  506. for (i = 0; i < iov_count; i++) {
  507. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  508. unsigned long len = iov[i].iov_len;
  509. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  510. unsigned long start = uaddr >> PAGE_SHIFT;
  511. const int local_nr_pages = end - start;
  512. const int page_limit = cur_page + local_nr_pages;
  513. down_read(&current->mm->mmap_sem);
  514. ret = get_user_pages(current, current->mm, uaddr,
  515. local_nr_pages,
  516. write_to_vm, 0, &pages[cur_page], NULL);
  517. up_read(&current->mm->mmap_sem);
  518. if (ret < local_nr_pages)
  519. goto out_unmap;
  520. offset = uaddr & ~PAGE_MASK;
  521. for (j = cur_page; j < page_limit; j++) {
  522. unsigned int bytes = PAGE_SIZE - offset;
  523. if (len <= 0)
  524. break;
  525. if (bytes > len)
  526. bytes = len;
  527. /*
  528. * sorry...
  529. */
  530. if (__bio_add_page(q, bio, pages[j], bytes, offset) < bytes)
  531. break;
  532. len -= bytes;
  533. offset = 0;
  534. }
  535. cur_page = j;
  536. /*
  537. * release the pages we didn't map into the bio, if any
  538. */
  539. while (j < page_limit)
  540. page_cache_release(pages[j++]);
  541. }
  542. kfree(pages);
  543. /*
  544. * set data direction, and check if mapped pages need bouncing
  545. */
  546. if (!write_to_vm)
  547. bio->bi_rw |= (1 << BIO_RW);
  548. bio->bi_bdev = bdev;
  549. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  550. return bio;
  551. out_unmap:
  552. for (i = 0; i < nr_pages; i++) {
  553. if(!pages[i])
  554. break;
  555. page_cache_release(pages[i]);
  556. }
  557. out:
  558. kfree(pages);
  559. bio_put(bio);
  560. return ERR_PTR(ret);
  561. }
  562. /**
  563. * bio_map_user - map user address into bio
  564. * @q: the request_queue_t for the bio
  565. * @bdev: destination block device
  566. * @uaddr: start of user address
  567. * @len: length in bytes
  568. * @write_to_vm: bool indicating writing to pages or not
  569. *
  570. * Map the user space address into a bio suitable for io to a block
  571. * device. Returns an error pointer in case of error.
  572. */
  573. struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
  574. unsigned long uaddr, unsigned int len, int write_to_vm)
  575. {
  576. struct sg_iovec iov;
  577. iov.iov_base = (__user void *)uaddr;
  578. iov.iov_len = len;
  579. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
  580. }
  581. /**
  582. * bio_map_user_iov - map user sg_iovec table into bio
  583. * @q: the request_queue_t for the bio
  584. * @bdev: destination block device
  585. * @iov: the iovec.
  586. * @iov_count: number of elements in the iovec
  587. * @write_to_vm: bool indicating writing to pages or not
  588. *
  589. * Map the user space address into a bio suitable for io to a block
  590. * device. Returns an error pointer in case of error.
  591. */
  592. struct bio *bio_map_user_iov(request_queue_t *q, struct block_device *bdev,
  593. struct sg_iovec *iov, int iov_count,
  594. int write_to_vm)
  595. {
  596. struct bio *bio;
  597. int len = 0, i;
  598. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
  599. if (IS_ERR(bio))
  600. return bio;
  601. /*
  602. * subtle -- if __bio_map_user() ended up bouncing a bio,
  603. * it would normally disappear when its bi_end_io is run.
  604. * however, we need it for the unmap, so grab an extra
  605. * reference to it
  606. */
  607. bio_get(bio);
  608. for (i = 0; i < iov_count; i++)
  609. len += iov[i].iov_len;
  610. if (bio->bi_size == len)
  611. return bio;
  612. /*
  613. * don't support partial mappings
  614. */
  615. bio_endio(bio, bio->bi_size, 0);
  616. bio_unmap_user(bio);
  617. return ERR_PTR(-EINVAL);
  618. }
  619. static void __bio_unmap_user(struct bio *bio)
  620. {
  621. struct bio_vec *bvec;
  622. int i;
  623. /*
  624. * make sure we dirty pages we wrote to
  625. */
  626. __bio_for_each_segment(bvec, bio, i, 0) {
  627. if (bio_data_dir(bio) == READ)
  628. set_page_dirty_lock(bvec->bv_page);
  629. page_cache_release(bvec->bv_page);
  630. }
  631. bio_put(bio);
  632. }
  633. /**
  634. * bio_unmap_user - unmap a bio
  635. * @bio: the bio being unmapped
  636. *
  637. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  638. * a process context.
  639. *
  640. * bio_unmap_user() may sleep.
  641. */
  642. void bio_unmap_user(struct bio *bio)
  643. {
  644. __bio_unmap_user(bio);
  645. bio_put(bio);
  646. }
  647. static int bio_map_kern_endio(struct bio *bio, unsigned int bytes_done, int err)
  648. {
  649. if (bio->bi_size)
  650. return 1;
  651. bio_put(bio);
  652. return 0;
  653. }
  654. static struct bio *__bio_map_kern(request_queue_t *q, void *data,
  655. unsigned int len, unsigned int gfp_mask)
  656. {
  657. unsigned long kaddr = (unsigned long)data;
  658. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  659. unsigned long start = kaddr >> PAGE_SHIFT;
  660. const int nr_pages = end - start;
  661. int offset, i;
  662. struct bio *bio;
  663. bio = bio_alloc(gfp_mask, nr_pages);
  664. if (!bio)
  665. return ERR_PTR(-ENOMEM);
  666. offset = offset_in_page(kaddr);
  667. for (i = 0; i < nr_pages; i++) {
  668. unsigned int bytes = PAGE_SIZE - offset;
  669. if (len <= 0)
  670. break;
  671. if (bytes > len)
  672. bytes = len;
  673. if (__bio_add_page(q, bio, virt_to_page(data), bytes,
  674. offset) < bytes)
  675. break;
  676. data += bytes;
  677. len -= bytes;
  678. offset = 0;
  679. }
  680. bio->bi_end_io = bio_map_kern_endio;
  681. return bio;
  682. }
  683. /**
  684. * bio_map_kern - map kernel address into bio
  685. * @q: the request_queue_t for the bio
  686. * @data: pointer to buffer to map
  687. * @len: length in bytes
  688. * @gfp_mask: allocation flags for bio allocation
  689. *
  690. * Map the kernel address into a bio suitable for io to a block
  691. * device. Returns an error pointer in case of error.
  692. */
  693. struct bio *bio_map_kern(request_queue_t *q, void *data, unsigned int len,
  694. unsigned int gfp_mask)
  695. {
  696. struct bio *bio;
  697. bio = __bio_map_kern(q, data, len, gfp_mask);
  698. if (IS_ERR(bio))
  699. return bio;
  700. if (bio->bi_size == len)
  701. return bio;
  702. /*
  703. * Don't support partial mappings.
  704. */
  705. bio_put(bio);
  706. return ERR_PTR(-EINVAL);
  707. }
  708. /*
  709. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  710. * for performing direct-IO in BIOs.
  711. *
  712. * The problem is that we cannot run set_page_dirty() from interrupt context
  713. * because the required locks are not interrupt-safe. So what we can do is to
  714. * mark the pages dirty _before_ performing IO. And in interrupt context,
  715. * check that the pages are still dirty. If so, fine. If not, redirty them
  716. * in process context.
  717. *
  718. * We special-case compound pages here: normally this means reads into hugetlb
  719. * pages. The logic in here doesn't really work right for compound pages
  720. * because the VM does not uniformly chase down the head page in all cases.
  721. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  722. * handle them at all. So we skip compound pages here at an early stage.
  723. *
  724. * Note that this code is very hard to test under normal circumstances because
  725. * direct-io pins the pages with get_user_pages(). This makes
  726. * is_page_cache_freeable return false, and the VM will not clean the pages.
  727. * But other code (eg, pdflush) could clean the pages if they are mapped
  728. * pagecache.
  729. *
  730. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  731. * deferred bio dirtying paths.
  732. */
  733. /*
  734. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  735. */
  736. void bio_set_pages_dirty(struct bio *bio)
  737. {
  738. struct bio_vec *bvec = bio->bi_io_vec;
  739. int i;
  740. for (i = 0; i < bio->bi_vcnt; i++) {
  741. struct page *page = bvec[i].bv_page;
  742. if (page && !PageCompound(page))
  743. set_page_dirty_lock(page);
  744. }
  745. }
  746. static void bio_release_pages(struct bio *bio)
  747. {
  748. struct bio_vec *bvec = bio->bi_io_vec;
  749. int i;
  750. for (i = 0; i < bio->bi_vcnt; i++) {
  751. struct page *page = bvec[i].bv_page;
  752. if (page)
  753. put_page(page);
  754. }
  755. }
  756. /*
  757. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  758. * If they are, then fine. If, however, some pages are clean then they must
  759. * have been written out during the direct-IO read. So we take another ref on
  760. * the BIO and the offending pages and re-dirty the pages in process context.
  761. *
  762. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  763. * here on. It will run one page_cache_release() against each page and will
  764. * run one bio_put() against the BIO.
  765. */
  766. static void bio_dirty_fn(void *data);
  767. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
  768. static DEFINE_SPINLOCK(bio_dirty_lock);
  769. static struct bio *bio_dirty_list;
  770. /*
  771. * This runs in process context
  772. */
  773. static void bio_dirty_fn(void *data)
  774. {
  775. unsigned long flags;
  776. struct bio *bio;
  777. spin_lock_irqsave(&bio_dirty_lock, flags);
  778. bio = bio_dirty_list;
  779. bio_dirty_list = NULL;
  780. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  781. while (bio) {
  782. struct bio *next = bio->bi_private;
  783. bio_set_pages_dirty(bio);
  784. bio_release_pages(bio);
  785. bio_put(bio);
  786. bio = next;
  787. }
  788. }
  789. void bio_check_pages_dirty(struct bio *bio)
  790. {
  791. struct bio_vec *bvec = bio->bi_io_vec;
  792. int nr_clean_pages = 0;
  793. int i;
  794. for (i = 0; i < bio->bi_vcnt; i++) {
  795. struct page *page = bvec[i].bv_page;
  796. if (PageDirty(page) || PageCompound(page)) {
  797. page_cache_release(page);
  798. bvec[i].bv_page = NULL;
  799. } else {
  800. nr_clean_pages++;
  801. }
  802. }
  803. if (nr_clean_pages) {
  804. unsigned long flags;
  805. spin_lock_irqsave(&bio_dirty_lock, flags);
  806. bio->bi_private = bio_dirty_list;
  807. bio_dirty_list = bio;
  808. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  809. schedule_work(&bio_dirty_work);
  810. } else {
  811. bio_put(bio);
  812. }
  813. }
  814. /**
  815. * bio_endio - end I/O on a bio
  816. * @bio: bio
  817. * @bytes_done: number of bytes completed
  818. * @error: error, if any
  819. *
  820. * Description:
  821. * bio_endio() will end I/O on @bytes_done number of bytes. This may be
  822. * just a partial part of the bio, or it may be the whole bio. bio_endio()
  823. * is the preferred way to end I/O on a bio, it takes care of decrementing
  824. * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
  825. * and one of the established -Exxxx (-EIO, for instance) error values in
  826. * case something went wrong. Noone should call bi_end_io() directly on
  827. * a bio unless they own it and thus know that it has an end_io function.
  828. **/
  829. void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
  830. {
  831. if (error)
  832. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  833. if (unlikely(bytes_done > bio->bi_size)) {
  834. printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
  835. bytes_done, bio->bi_size);
  836. bytes_done = bio->bi_size;
  837. }
  838. bio->bi_size -= bytes_done;
  839. bio->bi_sector += (bytes_done >> 9);
  840. if (bio->bi_end_io)
  841. bio->bi_end_io(bio, bytes_done, error);
  842. }
  843. void bio_pair_release(struct bio_pair *bp)
  844. {
  845. if (atomic_dec_and_test(&bp->cnt)) {
  846. struct bio *master = bp->bio1.bi_private;
  847. bio_endio(master, master->bi_size, bp->error);
  848. mempool_free(bp, bp->bio2.bi_private);
  849. }
  850. }
  851. static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
  852. {
  853. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  854. if (err)
  855. bp->error = err;
  856. if (bi->bi_size)
  857. return 1;
  858. bio_pair_release(bp);
  859. return 0;
  860. }
  861. static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
  862. {
  863. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  864. if (err)
  865. bp->error = err;
  866. if (bi->bi_size)
  867. return 1;
  868. bio_pair_release(bp);
  869. return 0;
  870. }
  871. /*
  872. * split a bio - only worry about a bio with a single page
  873. * in it's iovec
  874. */
  875. struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
  876. {
  877. struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
  878. if (!bp)
  879. return bp;
  880. BUG_ON(bi->bi_vcnt != 1);
  881. BUG_ON(bi->bi_idx != 0);
  882. atomic_set(&bp->cnt, 3);
  883. bp->error = 0;
  884. bp->bio1 = *bi;
  885. bp->bio2 = *bi;
  886. bp->bio2.bi_sector += first_sectors;
  887. bp->bio2.bi_size -= first_sectors << 9;
  888. bp->bio1.bi_size = first_sectors << 9;
  889. bp->bv1 = bi->bi_io_vec[0];
  890. bp->bv2 = bi->bi_io_vec[0];
  891. bp->bv2.bv_offset += first_sectors << 9;
  892. bp->bv2.bv_len -= first_sectors << 9;
  893. bp->bv1.bv_len = first_sectors << 9;
  894. bp->bio1.bi_io_vec = &bp->bv1;
  895. bp->bio2.bi_io_vec = &bp->bv2;
  896. bp->bio1.bi_end_io = bio_pair_end_1;
  897. bp->bio2.bi_end_io = bio_pair_end_2;
  898. bp->bio1.bi_private = bi;
  899. bp->bio2.bi_private = pool;
  900. return bp;
  901. }
  902. static void *bio_pair_alloc(unsigned int __nocast gfp_flags, void *data)
  903. {
  904. return kmalloc(sizeof(struct bio_pair), gfp_flags);
  905. }
  906. static void bio_pair_free(void *bp, void *data)
  907. {
  908. kfree(bp);
  909. }
  910. /*
  911. * create memory pools for biovec's in a bio_set.
  912. * use the global biovec slabs created for general use.
  913. */
  914. static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale)
  915. {
  916. int i;
  917. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  918. struct biovec_slab *bp = bvec_slabs + i;
  919. mempool_t **bvp = bs->bvec_pools + i;
  920. if (i >= scale)
  921. pool_entries >>= 1;
  922. *bvp = mempool_create(pool_entries, mempool_alloc_slab,
  923. mempool_free_slab, bp->slab);
  924. if (!*bvp)
  925. return -ENOMEM;
  926. }
  927. return 0;
  928. }
  929. static void biovec_free_pools(struct bio_set *bs)
  930. {
  931. int i;
  932. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  933. mempool_t *bvp = bs->bvec_pools[i];
  934. if (bvp)
  935. mempool_destroy(bvp);
  936. }
  937. }
  938. void bioset_free(struct bio_set *bs)
  939. {
  940. if (bs->bio_pool)
  941. mempool_destroy(bs->bio_pool);
  942. biovec_free_pools(bs);
  943. kfree(bs);
  944. }
  945. struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale)
  946. {
  947. struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL);
  948. if (!bs)
  949. return NULL;
  950. memset(bs, 0, sizeof(*bs));
  951. bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab,
  952. mempool_free_slab, bio_slab);
  953. if (!bs->bio_pool)
  954. goto bad;
  955. if (!biovec_create_pools(bs, bvec_pool_size, scale))
  956. return bs;
  957. bad:
  958. bioset_free(bs);
  959. return NULL;
  960. }
  961. static void __init biovec_init_slabs(void)
  962. {
  963. int i;
  964. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  965. int size;
  966. struct biovec_slab *bvs = bvec_slabs + i;
  967. size = bvs->nr_vecs * sizeof(struct bio_vec);
  968. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  969. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  970. }
  971. }
  972. static int __init init_bio(void)
  973. {
  974. int megabytes, bvec_pool_entries;
  975. int scale = BIOVEC_NR_POOLS;
  976. bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
  977. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  978. biovec_init_slabs();
  979. megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
  980. /*
  981. * find out where to start scaling
  982. */
  983. if (megabytes <= 16)
  984. scale = 0;
  985. else if (megabytes <= 32)
  986. scale = 1;
  987. else if (megabytes <= 64)
  988. scale = 2;
  989. else if (megabytes <= 96)
  990. scale = 3;
  991. else if (megabytes <= 128)
  992. scale = 4;
  993. /*
  994. * scale number of entries
  995. */
  996. bvec_pool_entries = megabytes * 2;
  997. if (bvec_pool_entries > 256)
  998. bvec_pool_entries = 256;
  999. fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale);
  1000. if (!fs_bio_set)
  1001. panic("bio: can't allocate bios\n");
  1002. bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
  1003. bio_pair_alloc, bio_pair_free, NULL);
  1004. if (!bio_split_pool)
  1005. panic("bio: can't create split pool\n");
  1006. return 0;
  1007. }
  1008. subsys_initcall(init_bio);
  1009. EXPORT_SYMBOL(bio_alloc);
  1010. EXPORT_SYMBOL(bio_put);
  1011. EXPORT_SYMBOL(bio_endio);
  1012. EXPORT_SYMBOL(bio_init);
  1013. EXPORT_SYMBOL(__bio_clone);
  1014. EXPORT_SYMBOL(bio_clone);
  1015. EXPORT_SYMBOL(bio_phys_segments);
  1016. EXPORT_SYMBOL(bio_hw_segments);
  1017. EXPORT_SYMBOL(bio_add_page);
  1018. EXPORT_SYMBOL(bio_get_nr_vecs);
  1019. EXPORT_SYMBOL(bio_map_user);
  1020. EXPORT_SYMBOL(bio_unmap_user);
  1021. EXPORT_SYMBOL(bio_map_kern);
  1022. EXPORT_SYMBOL(bio_pair_release);
  1023. EXPORT_SYMBOL(bio_split);
  1024. EXPORT_SYMBOL(bio_split_pool);
  1025. EXPORT_SYMBOL(bio_copy_user);
  1026. EXPORT_SYMBOL(bio_uncopy_user);
  1027. EXPORT_SYMBOL(bioset_create);
  1028. EXPORT_SYMBOL(bioset_free);
  1029. EXPORT_SYMBOL(bio_alloc_bioset);