kvm_main.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include <linux/sysdev.h>
  36. #include <linux/cpu.h>
  37. #include <linux/file.h>
  38. #include <linux/fs.h>
  39. #include <linux/mount.h>
  40. #include "x86_emulate.h"
  41. #include "segment_descriptor.h"
  42. MODULE_AUTHOR("Qumranet");
  43. MODULE_LICENSE("GPL");
  44. static DEFINE_SPINLOCK(kvm_lock);
  45. static LIST_HEAD(vm_list);
  46. struct kvm_arch_ops *kvm_arch_ops;
  47. struct kvm_stat kvm_stat;
  48. EXPORT_SYMBOL_GPL(kvm_stat);
  49. static struct kvm_stats_debugfs_item {
  50. const char *name;
  51. u32 *data;
  52. struct dentry *dentry;
  53. } debugfs_entries[] = {
  54. { "pf_fixed", &kvm_stat.pf_fixed },
  55. { "pf_guest", &kvm_stat.pf_guest },
  56. { "tlb_flush", &kvm_stat.tlb_flush },
  57. { "invlpg", &kvm_stat.invlpg },
  58. { "exits", &kvm_stat.exits },
  59. { "io_exits", &kvm_stat.io_exits },
  60. { "mmio_exits", &kvm_stat.mmio_exits },
  61. { "signal_exits", &kvm_stat.signal_exits },
  62. { "irq_window", &kvm_stat.irq_window_exits },
  63. { "halt_exits", &kvm_stat.halt_exits },
  64. { "request_irq", &kvm_stat.request_irq_exits },
  65. { "irq_exits", &kvm_stat.irq_exits },
  66. { NULL, NULL }
  67. };
  68. static struct dentry *debugfs_dir;
  69. #define KVMFS_MAGIC 0x19700426
  70. struct vfsmount *kvmfs_mnt;
  71. #define MAX_IO_MSRS 256
  72. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  73. #define LMSW_GUEST_MASK 0x0eULL
  74. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  75. #define CR8_RESEVED_BITS (~0x0fULL)
  76. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  77. #ifdef CONFIG_X86_64
  78. // LDT or TSS descriptor in the GDT. 16 bytes.
  79. struct segment_descriptor_64 {
  80. struct segment_descriptor s;
  81. u32 base_higher;
  82. u32 pad_zero;
  83. };
  84. #endif
  85. static struct inode *kvmfs_inode(struct file_operations *fops)
  86. {
  87. int error = -ENOMEM;
  88. struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
  89. if (!inode)
  90. goto eexit_1;
  91. inode->i_fop = fops;
  92. /*
  93. * Mark the inode dirty from the very beginning,
  94. * that way it will never be moved to the dirty
  95. * list because mark_inode_dirty() will think
  96. * that it already _is_ on the dirty list.
  97. */
  98. inode->i_state = I_DIRTY;
  99. inode->i_mode = S_IRUSR | S_IWUSR;
  100. inode->i_uid = current->fsuid;
  101. inode->i_gid = current->fsgid;
  102. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  103. return inode;
  104. eexit_1:
  105. return ERR_PTR(error);
  106. }
  107. static struct file *kvmfs_file(struct inode *inode, void *private_data)
  108. {
  109. struct file *file = get_empty_filp();
  110. if (!file)
  111. return ERR_PTR(-ENFILE);
  112. file->f_path.mnt = mntget(kvmfs_mnt);
  113. file->f_path.dentry = d_alloc_anon(inode);
  114. if (!file->f_path.dentry)
  115. return ERR_PTR(-ENOMEM);
  116. file->f_mapping = inode->i_mapping;
  117. file->f_pos = 0;
  118. file->f_flags = O_RDWR;
  119. file->f_op = inode->i_fop;
  120. file->f_mode = FMODE_READ | FMODE_WRITE;
  121. file->f_version = 0;
  122. file->private_data = private_data;
  123. return file;
  124. }
  125. unsigned long segment_base(u16 selector)
  126. {
  127. struct descriptor_table gdt;
  128. struct segment_descriptor *d;
  129. unsigned long table_base;
  130. typedef unsigned long ul;
  131. unsigned long v;
  132. if (selector == 0)
  133. return 0;
  134. asm ("sgdt %0" : "=m"(gdt));
  135. table_base = gdt.base;
  136. if (selector & 4) { /* from ldt */
  137. u16 ldt_selector;
  138. asm ("sldt %0" : "=g"(ldt_selector));
  139. table_base = segment_base(ldt_selector);
  140. }
  141. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  142. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  143. #ifdef CONFIG_X86_64
  144. if (d->system == 0
  145. && (d->type == 2 || d->type == 9 || d->type == 11))
  146. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  147. #endif
  148. return v;
  149. }
  150. EXPORT_SYMBOL_GPL(segment_base);
  151. static inline int valid_vcpu(int n)
  152. {
  153. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  154. }
  155. int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  156. void *dest)
  157. {
  158. unsigned char *host_buf = dest;
  159. unsigned long req_size = size;
  160. while (size) {
  161. hpa_t paddr;
  162. unsigned now;
  163. unsigned offset;
  164. hva_t guest_buf;
  165. paddr = gva_to_hpa(vcpu, addr);
  166. if (is_error_hpa(paddr))
  167. break;
  168. guest_buf = (hva_t)kmap_atomic(
  169. pfn_to_page(paddr >> PAGE_SHIFT),
  170. KM_USER0);
  171. offset = addr & ~PAGE_MASK;
  172. guest_buf |= offset;
  173. now = min(size, PAGE_SIZE - offset);
  174. memcpy(host_buf, (void*)guest_buf, now);
  175. host_buf += now;
  176. addr += now;
  177. size -= now;
  178. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  179. }
  180. return req_size - size;
  181. }
  182. EXPORT_SYMBOL_GPL(kvm_read_guest);
  183. int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
  184. void *data)
  185. {
  186. unsigned char *host_buf = data;
  187. unsigned long req_size = size;
  188. while (size) {
  189. hpa_t paddr;
  190. unsigned now;
  191. unsigned offset;
  192. hva_t guest_buf;
  193. paddr = gva_to_hpa(vcpu, addr);
  194. if (is_error_hpa(paddr))
  195. break;
  196. guest_buf = (hva_t)kmap_atomic(
  197. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  198. offset = addr & ~PAGE_MASK;
  199. guest_buf |= offset;
  200. now = min(size, PAGE_SIZE - offset);
  201. memcpy((void*)guest_buf, host_buf, now);
  202. host_buf += now;
  203. addr += now;
  204. size -= now;
  205. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  206. }
  207. return req_size - size;
  208. }
  209. EXPORT_SYMBOL_GPL(kvm_write_guest);
  210. static int vcpu_slot(struct kvm_vcpu *vcpu)
  211. {
  212. return vcpu - vcpu->kvm->vcpus;
  213. }
  214. /*
  215. * Switches to specified vcpu, until a matching vcpu_put()
  216. */
  217. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  218. {
  219. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  220. mutex_lock(&vcpu->mutex);
  221. if (unlikely(!vcpu->vmcs)) {
  222. mutex_unlock(&vcpu->mutex);
  223. return NULL;
  224. }
  225. return kvm_arch_ops->vcpu_load(vcpu);
  226. }
  227. static void vcpu_put(struct kvm_vcpu *vcpu)
  228. {
  229. kvm_arch_ops->vcpu_put(vcpu);
  230. mutex_unlock(&vcpu->mutex);
  231. }
  232. static struct kvm *kvm_create_vm(void)
  233. {
  234. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  235. int i;
  236. if (!kvm)
  237. return ERR_PTR(-ENOMEM);
  238. spin_lock_init(&kvm->lock);
  239. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  240. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  241. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  242. mutex_init(&vcpu->mutex);
  243. vcpu->cpu = -1;
  244. vcpu->kvm = kvm;
  245. vcpu->mmu.root_hpa = INVALID_PAGE;
  246. INIT_LIST_HEAD(&vcpu->free_pages);
  247. spin_lock(&kvm_lock);
  248. list_add(&kvm->vm_list, &vm_list);
  249. spin_unlock(&kvm_lock);
  250. }
  251. return kvm;
  252. }
  253. static int kvm_dev_open(struct inode *inode, struct file *filp)
  254. {
  255. return 0;
  256. }
  257. /*
  258. * Free any memory in @free but not in @dont.
  259. */
  260. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  261. struct kvm_memory_slot *dont)
  262. {
  263. int i;
  264. if (!dont || free->phys_mem != dont->phys_mem)
  265. if (free->phys_mem) {
  266. for (i = 0; i < free->npages; ++i)
  267. if (free->phys_mem[i])
  268. __free_page(free->phys_mem[i]);
  269. vfree(free->phys_mem);
  270. }
  271. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  272. vfree(free->dirty_bitmap);
  273. free->phys_mem = NULL;
  274. free->npages = 0;
  275. free->dirty_bitmap = NULL;
  276. }
  277. static void kvm_free_physmem(struct kvm *kvm)
  278. {
  279. int i;
  280. for (i = 0; i < kvm->nmemslots; ++i)
  281. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  282. }
  283. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  284. {
  285. if (!vcpu_load(vcpu->kvm, vcpu_slot(vcpu)))
  286. return;
  287. kvm_mmu_destroy(vcpu);
  288. vcpu_put(vcpu);
  289. kvm_arch_ops->vcpu_free(vcpu);
  290. }
  291. static void kvm_free_vcpus(struct kvm *kvm)
  292. {
  293. unsigned int i;
  294. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  295. kvm_free_vcpu(&kvm->vcpus[i]);
  296. }
  297. static int kvm_dev_release(struct inode *inode, struct file *filp)
  298. {
  299. return 0;
  300. }
  301. static void kvm_destroy_vm(struct kvm *kvm)
  302. {
  303. spin_lock(&kvm_lock);
  304. list_del(&kvm->vm_list);
  305. spin_unlock(&kvm_lock);
  306. kvm_free_vcpus(kvm);
  307. kvm_free_physmem(kvm);
  308. kfree(kvm);
  309. }
  310. static int kvm_vm_release(struct inode *inode, struct file *filp)
  311. {
  312. struct kvm *kvm = filp->private_data;
  313. kvm_destroy_vm(kvm);
  314. return 0;
  315. }
  316. static void inject_gp(struct kvm_vcpu *vcpu)
  317. {
  318. kvm_arch_ops->inject_gp(vcpu, 0);
  319. }
  320. /*
  321. * Load the pae pdptrs. Return true is they are all valid.
  322. */
  323. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  324. {
  325. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  326. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  327. int i;
  328. u64 pdpte;
  329. u64 *pdpt;
  330. int ret;
  331. struct kvm_memory_slot *memslot;
  332. spin_lock(&vcpu->kvm->lock);
  333. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  334. /* FIXME: !memslot - emulate? 0xff? */
  335. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  336. ret = 1;
  337. for (i = 0; i < 4; ++i) {
  338. pdpte = pdpt[offset + i];
  339. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
  340. ret = 0;
  341. goto out;
  342. }
  343. }
  344. for (i = 0; i < 4; ++i)
  345. vcpu->pdptrs[i] = pdpt[offset + i];
  346. out:
  347. kunmap_atomic(pdpt, KM_USER0);
  348. spin_unlock(&vcpu->kvm->lock);
  349. return ret;
  350. }
  351. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  352. {
  353. if (cr0 & CR0_RESEVED_BITS) {
  354. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  355. cr0, vcpu->cr0);
  356. inject_gp(vcpu);
  357. return;
  358. }
  359. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  360. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  361. inject_gp(vcpu);
  362. return;
  363. }
  364. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  365. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  366. "and a clear PE flag\n");
  367. inject_gp(vcpu);
  368. return;
  369. }
  370. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  371. #ifdef CONFIG_X86_64
  372. if ((vcpu->shadow_efer & EFER_LME)) {
  373. int cs_db, cs_l;
  374. if (!is_pae(vcpu)) {
  375. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  376. "in long mode while PAE is disabled\n");
  377. inject_gp(vcpu);
  378. return;
  379. }
  380. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  381. if (cs_l) {
  382. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  383. "in long mode while CS.L == 1\n");
  384. inject_gp(vcpu);
  385. return;
  386. }
  387. } else
  388. #endif
  389. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  390. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  391. "reserved bits\n");
  392. inject_gp(vcpu);
  393. return;
  394. }
  395. }
  396. kvm_arch_ops->set_cr0(vcpu, cr0);
  397. vcpu->cr0 = cr0;
  398. spin_lock(&vcpu->kvm->lock);
  399. kvm_mmu_reset_context(vcpu);
  400. spin_unlock(&vcpu->kvm->lock);
  401. return;
  402. }
  403. EXPORT_SYMBOL_GPL(set_cr0);
  404. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  405. {
  406. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  407. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  408. }
  409. EXPORT_SYMBOL_GPL(lmsw);
  410. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  411. {
  412. if (cr4 & CR4_RESEVED_BITS) {
  413. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  414. inject_gp(vcpu);
  415. return;
  416. }
  417. if (is_long_mode(vcpu)) {
  418. if (!(cr4 & CR4_PAE_MASK)) {
  419. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  420. "in long mode\n");
  421. inject_gp(vcpu);
  422. return;
  423. }
  424. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  425. && !load_pdptrs(vcpu, vcpu->cr3)) {
  426. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  427. inject_gp(vcpu);
  428. }
  429. if (cr4 & CR4_VMXE_MASK) {
  430. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  431. inject_gp(vcpu);
  432. return;
  433. }
  434. kvm_arch_ops->set_cr4(vcpu, cr4);
  435. spin_lock(&vcpu->kvm->lock);
  436. kvm_mmu_reset_context(vcpu);
  437. spin_unlock(&vcpu->kvm->lock);
  438. }
  439. EXPORT_SYMBOL_GPL(set_cr4);
  440. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  441. {
  442. if (is_long_mode(vcpu)) {
  443. if (cr3 & CR3_L_MODE_RESEVED_BITS) {
  444. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  445. inject_gp(vcpu);
  446. return;
  447. }
  448. } else {
  449. if (cr3 & CR3_RESEVED_BITS) {
  450. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  451. inject_gp(vcpu);
  452. return;
  453. }
  454. if (is_paging(vcpu) && is_pae(vcpu) &&
  455. !load_pdptrs(vcpu, cr3)) {
  456. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  457. "reserved bits\n");
  458. inject_gp(vcpu);
  459. return;
  460. }
  461. }
  462. vcpu->cr3 = cr3;
  463. spin_lock(&vcpu->kvm->lock);
  464. /*
  465. * Does the new cr3 value map to physical memory? (Note, we
  466. * catch an invalid cr3 even in real-mode, because it would
  467. * cause trouble later on when we turn on paging anyway.)
  468. *
  469. * A real CPU would silently accept an invalid cr3 and would
  470. * attempt to use it - with largely undefined (and often hard
  471. * to debug) behavior on the guest side.
  472. */
  473. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  474. inject_gp(vcpu);
  475. else
  476. vcpu->mmu.new_cr3(vcpu);
  477. spin_unlock(&vcpu->kvm->lock);
  478. }
  479. EXPORT_SYMBOL_GPL(set_cr3);
  480. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  481. {
  482. if ( cr8 & CR8_RESEVED_BITS) {
  483. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  484. inject_gp(vcpu);
  485. return;
  486. }
  487. vcpu->cr8 = cr8;
  488. }
  489. EXPORT_SYMBOL_GPL(set_cr8);
  490. void fx_init(struct kvm_vcpu *vcpu)
  491. {
  492. struct __attribute__ ((__packed__)) fx_image_s {
  493. u16 control; //fcw
  494. u16 status; //fsw
  495. u16 tag; // ftw
  496. u16 opcode; //fop
  497. u64 ip; // fpu ip
  498. u64 operand;// fpu dp
  499. u32 mxcsr;
  500. u32 mxcsr_mask;
  501. } *fx_image;
  502. fx_save(vcpu->host_fx_image);
  503. fpu_init();
  504. fx_save(vcpu->guest_fx_image);
  505. fx_restore(vcpu->host_fx_image);
  506. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  507. fx_image->mxcsr = 0x1f80;
  508. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  509. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  510. }
  511. EXPORT_SYMBOL_GPL(fx_init);
  512. /*
  513. * Creates some virtual cpus. Good luck creating more than one.
  514. */
  515. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  516. {
  517. int r;
  518. struct kvm_vcpu *vcpu;
  519. r = -EINVAL;
  520. if (!valid_vcpu(n))
  521. goto out;
  522. vcpu = &kvm->vcpus[n];
  523. mutex_lock(&vcpu->mutex);
  524. if (vcpu->vmcs) {
  525. mutex_unlock(&vcpu->mutex);
  526. return -EEXIST;
  527. }
  528. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  529. FX_IMAGE_ALIGN);
  530. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  531. r = kvm_arch_ops->vcpu_create(vcpu);
  532. if (r < 0)
  533. goto out_free_vcpus;
  534. r = kvm_mmu_create(vcpu);
  535. if (r < 0)
  536. goto out_free_vcpus;
  537. kvm_arch_ops->vcpu_load(vcpu);
  538. r = kvm_mmu_setup(vcpu);
  539. if (r >= 0)
  540. r = kvm_arch_ops->vcpu_setup(vcpu);
  541. vcpu_put(vcpu);
  542. if (r < 0)
  543. goto out_free_vcpus;
  544. return 0;
  545. out_free_vcpus:
  546. kvm_free_vcpu(vcpu);
  547. mutex_unlock(&vcpu->mutex);
  548. out:
  549. return r;
  550. }
  551. /*
  552. * Allocate some memory and give it an address in the guest physical address
  553. * space.
  554. *
  555. * Discontiguous memory is allowed, mostly for framebuffers.
  556. */
  557. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  558. struct kvm_memory_region *mem)
  559. {
  560. int r;
  561. gfn_t base_gfn;
  562. unsigned long npages;
  563. unsigned long i;
  564. struct kvm_memory_slot *memslot;
  565. struct kvm_memory_slot old, new;
  566. int memory_config_version;
  567. r = -EINVAL;
  568. /* General sanity checks */
  569. if (mem->memory_size & (PAGE_SIZE - 1))
  570. goto out;
  571. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  572. goto out;
  573. if (mem->slot >= KVM_MEMORY_SLOTS)
  574. goto out;
  575. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  576. goto out;
  577. memslot = &kvm->memslots[mem->slot];
  578. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  579. npages = mem->memory_size >> PAGE_SHIFT;
  580. if (!npages)
  581. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  582. raced:
  583. spin_lock(&kvm->lock);
  584. memory_config_version = kvm->memory_config_version;
  585. new = old = *memslot;
  586. new.base_gfn = base_gfn;
  587. new.npages = npages;
  588. new.flags = mem->flags;
  589. /* Disallow changing a memory slot's size. */
  590. r = -EINVAL;
  591. if (npages && old.npages && npages != old.npages)
  592. goto out_unlock;
  593. /* Check for overlaps */
  594. r = -EEXIST;
  595. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  596. struct kvm_memory_slot *s = &kvm->memslots[i];
  597. if (s == memslot)
  598. continue;
  599. if (!((base_gfn + npages <= s->base_gfn) ||
  600. (base_gfn >= s->base_gfn + s->npages)))
  601. goto out_unlock;
  602. }
  603. /*
  604. * Do memory allocations outside lock. memory_config_version will
  605. * detect any races.
  606. */
  607. spin_unlock(&kvm->lock);
  608. /* Deallocate if slot is being removed */
  609. if (!npages)
  610. new.phys_mem = NULL;
  611. /* Free page dirty bitmap if unneeded */
  612. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  613. new.dirty_bitmap = NULL;
  614. r = -ENOMEM;
  615. /* Allocate if a slot is being created */
  616. if (npages && !new.phys_mem) {
  617. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  618. if (!new.phys_mem)
  619. goto out_free;
  620. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  621. for (i = 0; i < npages; ++i) {
  622. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  623. | __GFP_ZERO);
  624. if (!new.phys_mem[i])
  625. goto out_free;
  626. set_page_private(new.phys_mem[i],0);
  627. }
  628. }
  629. /* Allocate page dirty bitmap if needed */
  630. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  631. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  632. new.dirty_bitmap = vmalloc(dirty_bytes);
  633. if (!new.dirty_bitmap)
  634. goto out_free;
  635. memset(new.dirty_bitmap, 0, dirty_bytes);
  636. }
  637. spin_lock(&kvm->lock);
  638. if (memory_config_version != kvm->memory_config_version) {
  639. spin_unlock(&kvm->lock);
  640. kvm_free_physmem_slot(&new, &old);
  641. goto raced;
  642. }
  643. r = -EAGAIN;
  644. if (kvm->busy)
  645. goto out_unlock;
  646. if (mem->slot >= kvm->nmemslots)
  647. kvm->nmemslots = mem->slot + 1;
  648. *memslot = new;
  649. ++kvm->memory_config_version;
  650. spin_unlock(&kvm->lock);
  651. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  652. struct kvm_vcpu *vcpu;
  653. vcpu = vcpu_load(kvm, i);
  654. if (!vcpu)
  655. continue;
  656. kvm_mmu_reset_context(vcpu);
  657. vcpu_put(vcpu);
  658. }
  659. kvm_free_physmem_slot(&old, &new);
  660. return 0;
  661. out_unlock:
  662. spin_unlock(&kvm->lock);
  663. out_free:
  664. kvm_free_physmem_slot(&new, &old);
  665. out:
  666. return r;
  667. }
  668. static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  669. {
  670. spin_lock(&vcpu->kvm->lock);
  671. kvm_mmu_slot_remove_write_access(vcpu, slot);
  672. spin_unlock(&vcpu->kvm->lock);
  673. }
  674. /*
  675. * Get (and clear) the dirty memory log for a memory slot.
  676. */
  677. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  678. struct kvm_dirty_log *log)
  679. {
  680. struct kvm_memory_slot *memslot;
  681. int r, i;
  682. int n;
  683. int cleared;
  684. unsigned long any = 0;
  685. spin_lock(&kvm->lock);
  686. /*
  687. * Prevent changes to guest memory configuration even while the lock
  688. * is not taken.
  689. */
  690. ++kvm->busy;
  691. spin_unlock(&kvm->lock);
  692. r = -EINVAL;
  693. if (log->slot >= KVM_MEMORY_SLOTS)
  694. goto out;
  695. memslot = &kvm->memslots[log->slot];
  696. r = -ENOENT;
  697. if (!memslot->dirty_bitmap)
  698. goto out;
  699. n = ALIGN(memslot->npages, 8) / 8;
  700. for (i = 0; !any && i < n; ++i)
  701. any = memslot->dirty_bitmap[i];
  702. r = -EFAULT;
  703. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  704. goto out;
  705. if (any) {
  706. cleared = 0;
  707. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  708. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  709. if (!vcpu)
  710. continue;
  711. if (!cleared) {
  712. do_remove_write_access(vcpu, log->slot);
  713. memset(memslot->dirty_bitmap, 0, n);
  714. cleared = 1;
  715. }
  716. kvm_arch_ops->tlb_flush(vcpu);
  717. vcpu_put(vcpu);
  718. }
  719. }
  720. r = 0;
  721. out:
  722. spin_lock(&kvm->lock);
  723. --kvm->busy;
  724. spin_unlock(&kvm->lock);
  725. return r;
  726. }
  727. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  728. {
  729. int i;
  730. for (i = 0; i < kvm->nmemslots; ++i) {
  731. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  732. if (gfn >= memslot->base_gfn
  733. && gfn < memslot->base_gfn + memslot->npages)
  734. return memslot;
  735. }
  736. return NULL;
  737. }
  738. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  739. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  740. {
  741. int i;
  742. struct kvm_memory_slot *memslot = NULL;
  743. unsigned long rel_gfn;
  744. for (i = 0; i < kvm->nmemslots; ++i) {
  745. memslot = &kvm->memslots[i];
  746. if (gfn >= memslot->base_gfn
  747. && gfn < memslot->base_gfn + memslot->npages) {
  748. if (!memslot || !memslot->dirty_bitmap)
  749. return;
  750. rel_gfn = gfn - memslot->base_gfn;
  751. /* avoid RMW */
  752. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  753. set_bit(rel_gfn, memslot->dirty_bitmap);
  754. return;
  755. }
  756. }
  757. }
  758. static int emulator_read_std(unsigned long addr,
  759. unsigned long *val,
  760. unsigned int bytes,
  761. struct x86_emulate_ctxt *ctxt)
  762. {
  763. struct kvm_vcpu *vcpu = ctxt->vcpu;
  764. void *data = val;
  765. while (bytes) {
  766. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  767. unsigned offset = addr & (PAGE_SIZE-1);
  768. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  769. unsigned long pfn;
  770. struct kvm_memory_slot *memslot;
  771. void *page;
  772. if (gpa == UNMAPPED_GVA)
  773. return X86EMUL_PROPAGATE_FAULT;
  774. pfn = gpa >> PAGE_SHIFT;
  775. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  776. if (!memslot)
  777. return X86EMUL_UNHANDLEABLE;
  778. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  779. memcpy(data, page + offset, tocopy);
  780. kunmap_atomic(page, KM_USER0);
  781. bytes -= tocopy;
  782. data += tocopy;
  783. addr += tocopy;
  784. }
  785. return X86EMUL_CONTINUE;
  786. }
  787. static int emulator_write_std(unsigned long addr,
  788. unsigned long val,
  789. unsigned int bytes,
  790. struct x86_emulate_ctxt *ctxt)
  791. {
  792. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  793. addr, bytes);
  794. return X86EMUL_UNHANDLEABLE;
  795. }
  796. static int emulator_read_emulated(unsigned long addr,
  797. unsigned long *val,
  798. unsigned int bytes,
  799. struct x86_emulate_ctxt *ctxt)
  800. {
  801. struct kvm_vcpu *vcpu = ctxt->vcpu;
  802. if (vcpu->mmio_read_completed) {
  803. memcpy(val, vcpu->mmio_data, bytes);
  804. vcpu->mmio_read_completed = 0;
  805. return X86EMUL_CONTINUE;
  806. } else if (emulator_read_std(addr, val, bytes, ctxt)
  807. == X86EMUL_CONTINUE)
  808. return X86EMUL_CONTINUE;
  809. else {
  810. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  811. if (gpa == UNMAPPED_GVA)
  812. return X86EMUL_PROPAGATE_FAULT;
  813. vcpu->mmio_needed = 1;
  814. vcpu->mmio_phys_addr = gpa;
  815. vcpu->mmio_size = bytes;
  816. vcpu->mmio_is_write = 0;
  817. return X86EMUL_UNHANDLEABLE;
  818. }
  819. }
  820. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  821. unsigned long val, int bytes)
  822. {
  823. struct kvm_memory_slot *m;
  824. struct page *page;
  825. void *virt;
  826. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  827. return 0;
  828. m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  829. if (!m)
  830. return 0;
  831. page = gfn_to_page(m, gpa >> PAGE_SHIFT);
  832. kvm_mmu_pre_write(vcpu, gpa, bytes);
  833. virt = kmap_atomic(page, KM_USER0);
  834. memcpy(virt + offset_in_page(gpa), &val, bytes);
  835. kunmap_atomic(virt, KM_USER0);
  836. kvm_mmu_post_write(vcpu, gpa, bytes);
  837. return 1;
  838. }
  839. static int emulator_write_emulated(unsigned long addr,
  840. unsigned long val,
  841. unsigned int bytes,
  842. struct x86_emulate_ctxt *ctxt)
  843. {
  844. struct kvm_vcpu *vcpu = ctxt->vcpu;
  845. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  846. if (gpa == UNMAPPED_GVA)
  847. return X86EMUL_PROPAGATE_FAULT;
  848. if (emulator_write_phys(vcpu, gpa, val, bytes))
  849. return X86EMUL_CONTINUE;
  850. vcpu->mmio_needed = 1;
  851. vcpu->mmio_phys_addr = gpa;
  852. vcpu->mmio_size = bytes;
  853. vcpu->mmio_is_write = 1;
  854. memcpy(vcpu->mmio_data, &val, bytes);
  855. return X86EMUL_CONTINUE;
  856. }
  857. static int emulator_cmpxchg_emulated(unsigned long addr,
  858. unsigned long old,
  859. unsigned long new,
  860. unsigned int bytes,
  861. struct x86_emulate_ctxt *ctxt)
  862. {
  863. static int reported;
  864. if (!reported) {
  865. reported = 1;
  866. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  867. }
  868. return emulator_write_emulated(addr, new, bytes, ctxt);
  869. }
  870. #ifdef CONFIG_X86_32
  871. static int emulator_cmpxchg8b_emulated(unsigned long addr,
  872. unsigned long old_lo,
  873. unsigned long old_hi,
  874. unsigned long new_lo,
  875. unsigned long new_hi,
  876. struct x86_emulate_ctxt *ctxt)
  877. {
  878. static int reported;
  879. int r;
  880. if (!reported) {
  881. reported = 1;
  882. printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
  883. }
  884. r = emulator_write_emulated(addr, new_lo, 4, ctxt);
  885. if (r != X86EMUL_CONTINUE)
  886. return r;
  887. return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
  888. }
  889. #endif
  890. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  891. {
  892. return kvm_arch_ops->get_segment_base(vcpu, seg);
  893. }
  894. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  895. {
  896. return X86EMUL_CONTINUE;
  897. }
  898. int emulate_clts(struct kvm_vcpu *vcpu)
  899. {
  900. unsigned long cr0;
  901. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  902. cr0 = vcpu->cr0 & ~CR0_TS_MASK;
  903. kvm_arch_ops->set_cr0(vcpu, cr0);
  904. return X86EMUL_CONTINUE;
  905. }
  906. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  907. {
  908. struct kvm_vcpu *vcpu = ctxt->vcpu;
  909. switch (dr) {
  910. case 0 ... 3:
  911. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  912. return X86EMUL_CONTINUE;
  913. default:
  914. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  915. __FUNCTION__, dr);
  916. return X86EMUL_UNHANDLEABLE;
  917. }
  918. }
  919. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  920. {
  921. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  922. int exception;
  923. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  924. if (exception) {
  925. /* FIXME: better handling */
  926. return X86EMUL_UNHANDLEABLE;
  927. }
  928. return X86EMUL_CONTINUE;
  929. }
  930. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  931. {
  932. static int reported;
  933. u8 opcodes[4];
  934. unsigned long rip = ctxt->vcpu->rip;
  935. unsigned long rip_linear;
  936. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  937. if (reported)
  938. return;
  939. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  940. printk(KERN_ERR "emulation failed but !mmio_needed?"
  941. " rip %lx %02x %02x %02x %02x\n",
  942. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  943. reported = 1;
  944. }
  945. struct x86_emulate_ops emulate_ops = {
  946. .read_std = emulator_read_std,
  947. .write_std = emulator_write_std,
  948. .read_emulated = emulator_read_emulated,
  949. .write_emulated = emulator_write_emulated,
  950. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  951. #ifdef CONFIG_X86_32
  952. .cmpxchg8b_emulated = emulator_cmpxchg8b_emulated,
  953. #endif
  954. };
  955. int emulate_instruction(struct kvm_vcpu *vcpu,
  956. struct kvm_run *run,
  957. unsigned long cr2,
  958. u16 error_code)
  959. {
  960. struct x86_emulate_ctxt emulate_ctxt;
  961. int r;
  962. int cs_db, cs_l;
  963. kvm_arch_ops->cache_regs(vcpu);
  964. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  965. emulate_ctxt.vcpu = vcpu;
  966. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  967. emulate_ctxt.cr2 = cr2;
  968. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  969. ? X86EMUL_MODE_REAL : cs_l
  970. ? X86EMUL_MODE_PROT64 : cs_db
  971. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  972. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  973. emulate_ctxt.cs_base = 0;
  974. emulate_ctxt.ds_base = 0;
  975. emulate_ctxt.es_base = 0;
  976. emulate_ctxt.ss_base = 0;
  977. } else {
  978. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  979. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  980. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  981. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  982. }
  983. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  984. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  985. vcpu->mmio_is_write = 0;
  986. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  987. if ((r || vcpu->mmio_is_write) && run) {
  988. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  989. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  990. run->mmio.len = vcpu->mmio_size;
  991. run->mmio.is_write = vcpu->mmio_is_write;
  992. }
  993. if (r) {
  994. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  995. return EMULATE_DONE;
  996. if (!vcpu->mmio_needed) {
  997. report_emulation_failure(&emulate_ctxt);
  998. return EMULATE_FAIL;
  999. }
  1000. return EMULATE_DO_MMIO;
  1001. }
  1002. kvm_arch_ops->decache_regs(vcpu);
  1003. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1004. if (vcpu->mmio_is_write)
  1005. return EMULATE_DO_MMIO;
  1006. return EMULATE_DONE;
  1007. }
  1008. EXPORT_SYMBOL_GPL(emulate_instruction);
  1009. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1010. {
  1011. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1012. kvm_arch_ops->decache_regs(vcpu);
  1013. ret = -KVM_EINVAL;
  1014. #ifdef CONFIG_X86_64
  1015. if (is_long_mode(vcpu)) {
  1016. nr = vcpu->regs[VCPU_REGS_RAX];
  1017. a0 = vcpu->regs[VCPU_REGS_RDI];
  1018. a1 = vcpu->regs[VCPU_REGS_RSI];
  1019. a2 = vcpu->regs[VCPU_REGS_RDX];
  1020. a3 = vcpu->regs[VCPU_REGS_RCX];
  1021. a4 = vcpu->regs[VCPU_REGS_R8];
  1022. a5 = vcpu->regs[VCPU_REGS_R9];
  1023. } else
  1024. #endif
  1025. {
  1026. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1027. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1028. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1029. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1030. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1031. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1032. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1033. }
  1034. switch (nr) {
  1035. default:
  1036. ;
  1037. }
  1038. vcpu->regs[VCPU_REGS_RAX] = ret;
  1039. kvm_arch_ops->cache_regs(vcpu);
  1040. return 1;
  1041. }
  1042. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1043. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1044. {
  1045. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1046. }
  1047. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1048. {
  1049. struct descriptor_table dt = { limit, base };
  1050. kvm_arch_ops->set_gdt(vcpu, &dt);
  1051. }
  1052. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1053. {
  1054. struct descriptor_table dt = { limit, base };
  1055. kvm_arch_ops->set_idt(vcpu, &dt);
  1056. }
  1057. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1058. unsigned long *rflags)
  1059. {
  1060. lmsw(vcpu, msw);
  1061. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1062. }
  1063. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1064. {
  1065. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1066. switch (cr) {
  1067. case 0:
  1068. return vcpu->cr0;
  1069. case 2:
  1070. return vcpu->cr2;
  1071. case 3:
  1072. return vcpu->cr3;
  1073. case 4:
  1074. return vcpu->cr4;
  1075. default:
  1076. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1077. return 0;
  1078. }
  1079. }
  1080. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1081. unsigned long *rflags)
  1082. {
  1083. switch (cr) {
  1084. case 0:
  1085. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1086. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1087. break;
  1088. case 2:
  1089. vcpu->cr2 = val;
  1090. break;
  1091. case 3:
  1092. set_cr3(vcpu, val);
  1093. break;
  1094. case 4:
  1095. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1096. break;
  1097. default:
  1098. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1099. }
  1100. }
  1101. /*
  1102. * Register the para guest with the host:
  1103. */
  1104. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1105. {
  1106. struct kvm_vcpu_para_state *para_state;
  1107. hpa_t para_state_hpa, hypercall_hpa;
  1108. struct page *para_state_page;
  1109. unsigned char *hypercall;
  1110. gpa_t hypercall_gpa;
  1111. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1112. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1113. /*
  1114. * Needs to be page aligned:
  1115. */
  1116. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1117. goto err_gp;
  1118. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1119. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1120. if (is_error_hpa(para_state_hpa))
  1121. goto err_gp;
  1122. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1123. para_state = kmap_atomic(para_state_page, KM_USER0);
  1124. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1125. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1126. para_state->host_version = KVM_PARA_API_VERSION;
  1127. /*
  1128. * We cannot support guests that try to register themselves
  1129. * with a newer API version than the host supports:
  1130. */
  1131. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1132. para_state->ret = -KVM_EINVAL;
  1133. goto err_kunmap_skip;
  1134. }
  1135. hypercall_gpa = para_state->hypercall_gpa;
  1136. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1137. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1138. if (is_error_hpa(hypercall_hpa)) {
  1139. para_state->ret = -KVM_EINVAL;
  1140. goto err_kunmap_skip;
  1141. }
  1142. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1143. vcpu->para_state_page = para_state_page;
  1144. vcpu->para_state_gpa = para_state_gpa;
  1145. vcpu->hypercall_gpa = hypercall_gpa;
  1146. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1147. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1148. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1149. kunmap_atomic(hypercall, KM_USER1);
  1150. para_state->ret = 0;
  1151. err_kunmap_skip:
  1152. kunmap_atomic(para_state, KM_USER0);
  1153. return 0;
  1154. err_gp:
  1155. return 1;
  1156. }
  1157. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1158. {
  1159. u64 data;
  1160. switch (msr) {
  1161. case 0xc0010010: /* SYSCFG */
  1162. case 0xc0010015: /* HWCR */
  1163. case MSR_IA32_PLATFORM_ID:
  1164. case MSR_IA32_P5_MC_ADDR:
  1165. case MSR_IA32_P5_MC_TYPE:
  1166. case MSR_IA32_MC0_CTL:
  1167. case MSR_IA32_MCG_STATUS:
  1168. case MSR_IA32_MCG_CAP:
  1169. case MSR_IA32_MC0_MISC:
  1170. case MSR_IA32_MC0_MISC+4:
  1171. case MSR_IA32_MC0_MISC+8:
  1172. case MSR_IA32_MC0_MISC+12:
  1173. case MSR_IA32_MC0_MISC+16:
  1174. case MSR_IA32_UCODE_REV:
  1175. case MSR_IA32_PERF_STATUS:
  1176. /* MTRR registers */
  1177. case 0xfe:
  1178. case 0x200 ... 0x2ff:
  1179. data = 0;
  1180. break;
  1181. case 0xcd: /* fsb frequency */
  1182. data = 3;
  1183. break;
  1184. case MSR_IA32_APICBASE:
  1185. data = vcpu->apic_base;
  1186. break;
  1187. case MSR_IA32_MISC_ENABLE:
  1188. data = vcpu->ia32_misc_enable_msr;
  1189. break;
  1190. #ifdef CONFIG_X86_64
  1191. case MSR_EFER:
  1192. data = vcpu->shadow_efer;
  1193. break;
  1194. #endif
  1195. default:
  1196. printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
  1197. return 1;
  1198. }
  1199. *pdata = data;
  1200. return 0;
  1201. }
  1202. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1203. /*
  1204. * Reads an msr value (of 'msr_index') into 'pdata'.
  1205. * Returns 0 on success, non-0 otherwise.
  1206. * Assumes vcpu_load() was already called.
  1207. */
  1208. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1209. {
  1210. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1211. }
  1212. #ifdef CONFIG_X86_64
  1213. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1214. {
  1215. if (efer & EFER_RESERVED_BITS) {
  1216. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1217. efer);
  1218. inject_gp(vcpu);
  1219. return;
  1220. }
  1221. if (is_paging(vcpu)
  1222. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1223. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1224. inject_gp(vcpu);
  1225. return;
  1226. }
  1227. kvm_arch_ops->set_efer(vcpu, efer);
  1228. efer &= ~EFER_LMA;
  1229. efer |= vcpu->shadow_efer & EFER_LMA;
  1230. vcpu->shadow_efer = efer;
  1231. }
  1232. #endif
  1233. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1234. {
  1235. switch (msr) {
  1236. #ifdef CONFIG_X86_64
  1237. case MSR_EFER:
  1238. set_efer(vcpu, data);
  1239. break;
  1240. #endif
  1241. case MSR_IA32_MC0_STATUS:
  1242. printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1243. __FUNCTION__, data);
  1244. break;
  1245. case MSR_IA32_UCODE_REV:
  1246. case MSR_IA32_UCODE_WRITE:
  1247. case 0x200 ... 0x2ff: /* MTRRs */
  1248. break;
  1249. case MSR_IA32_APICBASE:
  1250. vcpu->apic_base = data;
  1251. break;
  1252. case MSR_IA32_MISC_ENABLE:
  1253. vcpu->ia32_misc_enable_msr = data;
  1254. break;
  1255. /*
  1256. * This is the 'probe whether the host is KVM' logic:
  1257. */
  1258. case MSR_KVM_API_MAGIC:
  1259. return vcpu_register_para(vcpu, data);
  1260. default:
  1261. printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
  1262. return 1;
  1263. }
  1264. return 0;
  1265. }
  1266. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1267. /*
  1268. * Writes msr value into into the appropriate "register".
  1269. * Returns 0 on success, non-0 otherwise.
  1270. * Assumes vcpu_load() was already called.
  1271. */
  1272. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1273. {
  1274. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1275. }
  1276. void kvm_resched(struct kvm_vcpu *vcpu)
  1277. {
  1278. vcpu_put(vcpu);
  1279. cond_resched();
  1280. /* Cannot fail - no vcpu unplug yet. */
  1281. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  1282. }
  1283. EXPORT_SYMBOL_GPL(kvm_resched);
  1284. void load_msrs(struct vmx_msr_entry *e, int n)
  1285. {
  1286. int i;
  1287. for (i = 0; i < n; ++i)
  1288. wrmsrl(e[i].index, e[i].data);
  1289. }
  1290. EXPORT_SYMBOL_GPL(load_msrs);
  1291. void save_msrs(struct vmx_msr_entry *e, int n)
  1292. {
  1293. int i;
  1294. for (i = 0; i < n; ++i)
  1295. rdmsrl(e[i].index, e[i].data);
  1296. }
  1297. EXPORT_SYMBOL_GPL(save_msrs);
  1298. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  1299. {
  1300. struct kvm_vcpu *vcpu;
  1301. int r;
  1302. if (!valid_vcpu(kvm_run->vcpu))
  1303. return -EINVAL;
  1304. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  1305. if (!vcpu)
  1306. return -ENOENT;
  1307. /* re-sync apic's tpr */
  1308. vcpu->cr8 = kvm_run->cr8;
  1309. if (kvm_run->emulated) {
  1310. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1311. kvm_run->emulated = 0;
  1312. }
  1313. if (kvm_run->mmio_completed) {
  1314. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1315. vcpu->mmio_read_completed = 1;
  1316. }
  1317. vcpu->mmio_needed = 0;
  1318. r = kvm_arch_ops->run(vcpu, kvm_run);
  1319. vcpu_put(vcpu);
  1320. return r;
  1321. }
  1322. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1323. {
  1324. struct kvm_vcpu *vcpu;
  1325. if (!valid_vcpu(regs->vcpu))
  1326. return -EINVAL;
  1327. vcpu = vcpu_load(kvm, regs->vcpu);
  1328. if (!vcpu)
  1329. return -ENOENT;
  1330. kvm_arch_ops->cache_regs(vcpu);
  1331. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1332. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1333. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1334. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1335. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1336. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1337. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1338. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1339. #ifdef CONFIG_X86_64
  1340. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1341. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1342. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1343. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1344. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1345. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1346. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1347. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1348. #endif
  1349. regs->rip = vcpu->rip;
  1350. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1351. /*
  1352. * Don't leak debug flags in case they were set for guest debugging
  1353. */
  1354. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1355. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1356. vcpu_put(vcpu);
  1357. return 0;
  1358. }
  1359. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1360. {
  1361. struct kvm_vcpu *vcpu;
  1362. if (!valid_vcpu(regs->vcpu))
  1363. return -EINVAL;
  1364. vcpu = vcpu_load(kvm, regs->vcpu);
  1365. if (!vcpu)
  1366. return -ENOENT;
  1367. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1368. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1369. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1370. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1371. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1372. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1373. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1374. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1375. #ifdef CONFIG_X86_64
  1376. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1377. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1378. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1379. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1380. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1381. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1382. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1383. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1384. #endif
  1385. vcpu->rip = regs->rip;
  1386. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1387. kvm_arch_ops->decache_regs(vcpu);
  1388. vcpu_put(vcpu);
  1389. return 0;
  1390. }
  1391. static void get_segment(struct kvm_vcpu *vcpu,
  1392. struct kvm_segment *var, int seg)
  1393. {
  1394. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1395. }
  1396. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1397. {
  1398. struct kvm_vcpu *vcpu;
  1399. struct descriptor_table dt;
  1400. if (!valid_vcpu(sregs->vcpu))
  1401. return -EINVAL;
  1402. vcpu = vcpu_load(kvm, sregs->vcpu);
  1403. if (!vcpu)
  1404. return -ENOENT;
  1405. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1406. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1407. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1408. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1409. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1410. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1411. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1412. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1413. kvm_arch_ops->get_idt(vcpu, &dt);
  1414. sregs->idt.limit = dt.limit;
  1415. sregs->idt.base = dt.base;
  1416. kvm_arch_ops->get_gdt(vcpu, &dt);
  1417. sregs->gdt.limit = dt.limit;
  1418. sregs->gdt.base = dt.base;
  1419. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1420. sregs->cr0 = vcpu->cr0;
  1421. sregs->cr2 = vcpu->cr2;
  1422. sregs->cr3 = vcpu->cr3;
  1423. sregs->cr4 = vcpu->cr4;
  1424. sregs->cr8 = vcpu->cr8;
  1425. sregs->efer = vcpu->shadow_efer;
  1426. sregs->apic_base = vcpu->apic_base;
  1427. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1428. sizeof sregs->interrupt_bitmap);
  1429. vcpu_put(vcpu);
  1430. return 0;
  1431. }
  1432. static void set_segment(struct kvm_vcpu *vcpu,
  1433. struct kvm_segment *var, int seg)
  1434. {
  1435. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1436. }
  1437. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1438. {
  1439. struct kvm_vcpu *vcpu;
  1440. int mmu_reset_needed = 0;
  1441. int i;
  1442. struct descriptor_table dt;
  1443. if (!valid_vcpu(sregs->vcpu))
  1444. return -EINVAL;
  1445. vcpu = vcpu_load(kvm, sregs->vcpu);
  1446. if (!vcpu)
  1447. return -ENOENT;
  1448. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1449. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1450. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1451. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1452. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1453. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1454. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1455. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1456. dt.limit = sregs->idt.limit;
  1457. dt.base = sregs->idt.base;
  1458. kvm_arch_ops->set_idt(vcpu, &dt);
  1459. dt.limit = sregs->gdt.limit;
  1460. dt.base = sregs->gdt.base;
  1461. kvm_arch_ops->set_gdt(vcpu, &dt);
  1462. vcpu->cr2 = sregs->cr2;
  1463. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1464. vcpu->cr3 = sregs->cr3;
  1465. vcpu->cr8 = sregs->cr8;
  1466. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1467. #ifdef CONFIG_X86_64
  1468. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1469. #endif
  1470. vcpu->apic_base = sregs->apic_base;
  1471. kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
  1472. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1473. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1474. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1475. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1476. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1477. load_pdptrs(vcpu, vcpu->cr3);
  1478. if (mmu_reset_needed)
  1479. kvm_mmu_reset_context(vcpu);
  1480. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1481. sizeof vcpu->irq_pending);
  1482. vcpu->irq_summary = 0;
  1483. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1484. if (vcpu->irq_pending[i])
  1485. __set_bit(i, &vcpu->irq_summary);
  1486. vcpu_put(vcpu);
  1487. return 0;
  1488. }
  1489. /*
  1490. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1491. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1492. *
  1493. * This list is modified at module load time to reflect the
  1494. * capabilities of the host cpu.
  1495. */
  1496. static u32 msrs_to_save[] = {
  1497. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1498. MSR_K6_STAR,
  1499. #ifdef CONFIG_X86_64
  1500. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1501. #endif
  1502. MSR_IA32_TIME_STAMP_COUNTER,
  1503. };
  1504. static unsigned num_msrs_to_save;
  1505. static u32 emulated_msrs[] = {
  1506. MSR_IA32_MISC_ENABLE,
  1507. };
  1508. static __init void kvm_init_msr_list(void)
  1509. {
  1510. u32 dummy[2];
  1511. unsigned i, j;
  1512. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1513. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1514. continue;
  1515. if (j < i)
  1516. msrs_to_save[j] = msrs_to_save[i];
  1517. j++;
  1518. }
  1519. num_msrs_to_save = j;
  1520. }
  1521. /*
  1522. * Adapt set_msr() to msr_io()'s calling convention
  1523. */
  1524. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1525. {
  1526. return set_msr(vcpu, index, *data);
  1527. }
  1528. /*
  1529. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1530. *
  1531. * @return number of msrs set successfully.
  1532. */
  1533. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1534. struct kvm_msr_entry *entries,
  1535. int (*do_msr)(struct kvm_vcpu *vcpu,
  1536. unsigned index, u64 *data))
  1537. {
  1538. struct kvm_vcpu *vcpu;
  1539. int i;
  1540. if (!valid_vcpu(msrs->vcpu))
  1541. return -EINVAL;
  1542. vcpu = vcpu_load(kvm, msrs->vcpu);
  1543. if (!vcpu)
  1544. return -ENOENT;
  1545. for (i = 0; i < msrs->nmsrs; ++i)
  1546. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1547. break;
  1548. vcpu_put(vcpu);
  1549. return i;
  1550. }
  1551. /*
  1552. * Read or write a bunch of msrs. Parameters are user addresses.
  1553. *
  1554. * @return number of msrs set successfully.
  1555. */
  1556. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1557. int (*do_msr)(struct kvm_vcpu *vcpu,
  1558. unsigned index, u64 *data),
  1559. int writeback)
  1560. {
  1561. struct kvm_msrs msrs;
  1562. struct kvm_msr_entry *entries;
  1563. int r, n;
  1564. unsigned size;
  1565. r = -EFAULT;
  1566. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1567. goto out;
  1568. r = -E2BIG;
  1569. if (msrs.nmsrs >= MAX_IO_MSRS)
  1570. goto out;
  1571. r = -ENOMEM;
  1572. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1573. entries = vmalloc(size);
  1574. if (!entries)
  1575. goto out;
  1576. r = -EFAULT;
  1577. if (copy_from_user(entries, user_msrs->entries, size))
  1578. goto out_free;
  1579. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1580. if (r < 0)
  1581. goto out_free;
  1582. r = -EFAULT;
  1583. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1584. goto out_free;
  1585. r = n;
  1586. out_free:
  1587. vfree(entries);
  1588. out:
  1589. return r;
  1590. }
  1591. /*
  1592. * Translate a guest virtual address to a guest physical address.
  1593. */
  1594. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1595. {
  1596. unsigned long vaddr = tr->linear_address;
  1597. struct kvm_vcpu *vcpu;
  1598. gpa_t gpa;
  1599. vcpu = vcpu_load(kvm, tr->vcpu);
  1600. if (!vcpu)
  1601. return -ENOENT;
  1602. spin_lock(&kvm->lock);
  1603. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1604. tr->physical_address = gpa;
  1605. tr->valid = gpa != UNMAPPED_GVA;
  1606. tr->writeable = 1;
  1607. tr->usermode = 0;
  1608. spin_unlock(&kvm->lock);
  1609. vcpu_put(vcpu);
  1610. return 0;
  1611. }
  1612. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1613. {
  1614. struct kvm_vcpu *vcpu;
  1615. if (!valid_vcpu(irq->vcpu))
  1616. return -EINVAL;
  1617. if (irq->irq < 0 || irq->irq >= 256)
  1618. return -EINVAL;
  1619. vcpu = vcpu_load(kvm, irq->vcpu);
  1620. if (!vcpu)
  1621. return -ENOENT;
  1622. set_bit(irq->irq, vcpu->irq_pending);
  1623. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1624. vcpu_put(vcpu);
  1625. return 0;
  1626. }
  1627. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1628. struct kvm_debug_guest *dbg)
  1629. {
  1630. struct kvm_vcpu *vcpu;
  1631. int r;
  1632. if (!valid_vcpu(dbg->vcpu))
  1633. return -EINVAL;
  1634. vcpu = vcpu_load(kvm, dbg->vcpu);
  1635. if (!vcpu)
  1636. return -ENOENT;
  1637. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1638. vcpu_put(vcpu);
  1639. return r;
  1640. }
  1641. static long kvm_vm_ioctl(struct file *filp,
  1642. unsigned int ioctl, unsigned long arg)
  1643. {
  1644. struct kvm *kvm = filp->private_data;
  1645. void __user *argp = (void __user *)arg;
  1646. int r = -EINVAL;
  1647. switch (ioctl) {
  1648. case KVM_CREATE_VCPU:
  1649. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1650. if (r)
  1651. goto out;
  1652. break;
  1653. case KVM_RUN: {
  1654. struct kvm_run kvm_run;
  1655. r = -EFAULT;
  1656. if (copy_from_user(&kvm_run, argp, sizeof kvm_run))
  1657. goto out;
  1658. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1659. if (r < 0 && r != -EINTR)
  1660. goto out;
  1661. if (copy_to_user(argp, &kvm_run, sizeof kvm_run)) {
  1662. r = -EFAULT;
  1663. goto out;
  1664. }
  1665. break;
  1666. }
  1667. case KVM_GET_REGS: {
  1668. struct kvm_regs kvm_regs;
  1669. r = -EFAULT;
  1670. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1671. goto out;
  1672. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1673. if (r)
  1674. goto out;
  1675. r = -EFAULT;
  1676. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  1677. goto out;
  1678. r = 0;
  1679. break;
  1680. }
  1681. case KVM_SET_REGS: {
  1682. struct kvm_regs kvm_regs;
  1683. r = -EFAULT;
  1684. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  1685. goto out;
  1686. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1687. if (r)
  1688. goto out;
  1689. r = 0;
  1690. break;
  1691. }
  1692. case KVM_GET_SREGS: {
  1693. struct kvm_sregs kvm_sregs;
  1694. r = -EFAULT;
  1695. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1696. goto out;
  1697. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1698. if (r)
  1699. goto out;
  1700. r = -EFAULT;
  1701. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  1702. goto out;
  1703. r = 0;
  1704. break;
  1705. }
  1706. case KVM_SET_SREGS: {
  1707. struct kvm_sregs kvm_sregs;
  1708. r = -EFAULT;
  1709. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  1710. goto out;
  1711. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1712. if (r)
  1713. goto out;
  1714. r = 0;
  1715. break;
  1716. }
  1717. case KVM_TRANSLATE: {
  1718. struct kvm_translation tr;
  1719. r = -EFAULT;
  1720. if (copy_from_user(&tr, argp, sizeof tr))
  1721. goto out;
  1722. r = kvm_dev_ioctl_translate(kvm, &tr);
  1723. if (r)
  1724. goto out;
  1725. r = -EFAULT;
  1726. if (copy_to_user(argp, &tr, sizeof tr))
  1727. goto out;
  1728. r = 0;
  1729. break;
  1730. }
  1731. case KVM_INTERRUPT: {
  1732. struct kvm_interrupt irq;
  1733. r = -EFAULT;
  1734. if (copy_from_user(&irq, argp, sizeof irq))
  1735. goto out;
  1736. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1737. if (r)
  1738. goto out;
  1739. r = 0;
  1740. break;
  1741. }
  1742. case KVM_DEBUG_GUEST: {
  1743. struct kvm_debug_guest dbg;
  1744. r = -EFAULT;
  1745. if (copy_from_user(&dbg, argp, sizeof dbg))
  1746. goto out;
  1747. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1748. if (r)
  1749. goto out;
  1750. r = 0;
  1751. break;
  1752. }
  1753. case KVM_SET_MEMORY_REGION: {
  1754. struct kvm_memory_region kvm_mem;
  1755. r = -EFAULT;
  1756. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1757. goto out;
  1758. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1759. if (r)
  1760. goto out;
  1761. break;
  1762. }
  1763. case KVM_GET_DIRTY_LOG: {
  1764. struct kvm_dirty_log log;
  1765. r = -EFAULT;
  1766. if (copy_from_user(&log, argp, sizeof log))
  1767. goto out;
  1768. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1769. if (r)
  1770. goto out;
  1771. break;
  1772. }
  1773. case KVM_GET_MSRS:
  1774. r = msr_io(kvm, argp, get_msr, 1);
  1775. break;
  1776. case KVM_SET_MSRS:
  1777. r = msr_io(kvm, argp, do_set_msr, 0);
  1778. break;
  1779. default:
  1780. ;
  1781. }
  1782. out:
  1783. return r;
  1784. }
  1785. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  1786. unsigned long address,
  1787. int *type)
  1788. {
  1789. struct kvm *kvm = vma->vm_file->private_data;
  1790. unsigned long pgoff;
  1791. struct kvm_memory_slot *slot;
  1792. struct page *page;
  1793. *type = VM_FAULT_MINOR;
  1794. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1795. slot = gfn_to_memslot(kvm, pgoff);
  1796. if (!slot)
  1797. return NOPAGE_SIGBUS;
  1798. page = gfn_to_page(slot, pgoff);
  1799. if (!page)
  1800. return NOPAGE_SIGBUS;
  1801. get_page(page);
  1802. return page;
  1803. }
  1804. static struct vm_operations_struct kvm_vm_vm_ops = {
  1805. .nopage = kvm_vm_nopage,
  1806. };
  1807. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1808. {
  1809. vma->vm_ops = &kvm_vm_vm_ops;
  1810. return 0;
  1811. }
  1812. static struct file_operations kvm_vm_fops = {
  1813. .release = kvm_vm_release,
  1814. .unlocked_ioctl = kvm_vm_ioctl,
  1815. .compat_ioctl = kvm_vm_ioctl,
  1816. .mmap = kvm_vm_mmap,
  1817. };
  1818. static int kvm_dev_ioctl_create_vm(void)
  1819. {
  1820. int fd, r;
  1821. struct inode *inode;
  1822. struct file *file;
  1823. struct kvm *kvm;
  1824. inode = kvmfs_inode(&kvm_vm_fops);
  1825. if (IS_ERR(inode)) {
  1826. r = PTR_ERR(inode);
  1827. goto out1;
  1828. }
  1829. kvm = kvm_create_vm();
  1830. if (IS_ERR(kvm)) {
  1831. r = PTR_ERR(kvm);
  1832. goto out2;
  1833. }
  1834. file = kvmfs_file(inode, kvm);
  1835. if (IS_ERR(file)) {
  1836. r = PTR_ERR(file);
  1837. goto out3;
  1838. }
  1839. r = get_unused_fd();
  1840. if (r < 0)
  1841. goto out4;
  1842. fd = r;
  1843. fd_install(fd, file);
  1844. return fd;
  1845. out4:
  1846. fput(file);
  1847. out3:
  1848. kvm_destroy_vm(kvm);
  1849. out2:
  1850. iput(inode);
  1851. out1:
  1852. return r;
  1853. }
  1854. static long kvm_dev_ioctl(struct file *filp,
  1855. unsigned int ioctl, unsigned long arg)
  1856. {
  1857. void __user *argp = (void __user *)arg;
  1858. int r = -EINVAL;
  1859. switch (ioctl) {
  1860. case KVM_GET_API_VERSION:
  1861. r = KVM_API_VERSION;
  1862. break;
  1863. case KVM_CREATE_VM:
  1864. r = kvm_dev_ioctl_create_vm();
  1865. break;
  1866. case KVM_GET_MSR_INDEX_LIST: {
  1867. struct kvm_msr_list __user *user_msr_list = argp;
  1868. struct kvm_msr_list msr_list;
  1869. unsigned n;
  1870. r = -EFAULT;
  1871. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1872. goto out;
  1873. n = msr_list.nmsrs;
  1874. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1875. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1876. goto out;
  1877. r = -E2BIG;
  1878. if (n < num_msrs_to_save)
  1879. goto out;
  1880. r = -EFAULT;
  1881. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1882. num_msrs_to_save * sizeof(u32)))
  1883. goto out;
  1884. if (copy_to_user(user_msr_list->indices
  1885. + num_msrs_to_save * sizeof(u32),
  1886. &emulated_msrs,
  1887. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1888. goto out;
  1889. r = 0;
  1890. break;
  1891. }
  1892. default:
  1893. ;
  1894. }
  1895. out:
  1896. return r;
  1897. }
  1898. static struct file_operations kvm_chardev_ops = {
  1899. .open = kvm_dev_open,
  1900. .release = kvm_dev_release,
  1901. .unlocked_ioctl = kvm_dev_ioctl,
  1902. .compat_ioctl = kvm_dev_ioctl,
  1903. };
  1904. static struct miscdevice kvm_dev = {
  1905. MISC_DYNAMIC_MINOR,
  1906. "kvm",
  1907. &kvm_chardev_ops,
  1908. };
  1909. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1910. void *v)
  1911. {
  1912. if (val == SYS_RESTART) {
  1913. /*
  1914. * Some (well, at least mine) BIOSes hang on reboot if
  1915. * in vmx root mode.
  1916. */
  1917. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1918. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  1919. }
  1920. return NOTIFY_OK;
  1921. }
  1922. static struct notifier_block kvm_reboot_notifier = {
  1923. .notifier_call = kvm_reboot,
  1924. .priority = 0,
  1925. };
  1926. /*
  1927. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1928. * cached on it.
  1929. */
  1930. static void decache_vcpus_on_cpu(int cpu)
  1931. {
  1932. struct kvm *vm;
  1933. struct kvm_vcpu *vcpu;
  1934. int i;
  1935. spin_lock(&kvm_lock);
  1936. list_for_each_entry(vm, &vm_list, vm_list)
  1937. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1938. vcpu = &vm->vcpus[i];
  1939. /*
  1940. * If the vcpu is locked, then it is running on some
  1941. * other cpu and therefore it is not cached on the
  1942. * cpu in question.
  1943. *
  1944. * If it's not locked, check the last cpu it executed
  1945. * on.
  1946. */
  1947. if (mutex_trylock(&vcpu->mutex)) {
  1948. if (vcpu->cpu == cpu) {
  1949. kvm_arch_ops->vcpu_decache(vcpu);
  1950. vcpu->cpu = -1;
  1951. }
  1952. mutex_unlock(&vcpu->mutex);
  1953. }
  1954. }
  1955. spin_unlock(&kvm_lock);
  1956. }
  1957. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1958. void *v)
  1959. {
  1960. int cpu = (long)v;
  1961. switch (val) {
  1962. case CPU_DOWN_PREPARE:
  1963. case CPU_UP_CANCELED:
  1964. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1965. cpu);
  1966. decache_vcpus_on_cpu(cpu);
  1967. smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
  1968. NULL, 0, 1);
  1969. break;
  1970. case CPU_ONLINE:
  1971. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1972. cpu);
  1973. smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
  1974. NULL, 0, 1);
  1975. break;
  1976. }
  1977. return NOTIFY_OK;
  1978. }
  1979. static struct notifier_block kvm_cpu_notifier = {
  1980. .notifier_call = kvm_cpu_hotplug,
  1981. .priority = 20, /* must be > scheduler priority */
  1982. };
  1983. static __init void kvm_init_debug(void)
  1984. {
  1985. struct kvm_stats_debugfs_item *p;
  1986. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1987. for (p = debugfs_entries; p->name; ++p)
  1988. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1989. p->data);
  1990. }
  1991. static void kvm_exit_debug(void)
  1992. {
  1993. struct kvm_stats_debugfs_item *p;
  1994. for (p = debugfs_entries; p->name; ++p)
  1995. debugfs_remove(p->dentry);
  1996. debugfs_remove(debugfs_dir);
  1997. }
  1998. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1999. {
  2000. decache_vcpus_on_cpu(raw_smp_processor_id());
  2001. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2002. return 0;
  2003. }
  2004. static int kvm_resume(struct sys_device *dev)
  2005. {
  2006. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2007. return 0;
  2008. }
  2009. static struct sysdev_class kvm_sysdev_class = {
  2010. set_kset_name("kvm"),
  2011. .suspend = kvm_suspend,
  2012. .resume = kvm_resume,
  2013. };
  2014. static struct sys_device kvm_sysdev = {
  2015. .id = 0,
  2016. .cls = &kvm_sysdev_class,
  2017. };
  2018. hpa_t bad_page_address;
  2019. static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
  2020. const char *dev_name, void *data, struct vfsmount *mnt)
  2021. {
  2022. return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_MAGIC, mnt);
  2023. }
  2024. static struct file_system_type kvm_fs_type = {
  2025. .name = "kvmfs",
  2026. .get_sb = kvmfs_get_sb,
  2027. .kill_sb = kill_anon_super,
  2028. };
  2029. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  2030. {
  2031. int r;
  2032. if (kvm_arch_ops) {
  2033. printk(KERN_ERR "kvm: already loaded the other module\n");
  2034. return -EEXIST;
  2035. }
  2036. if (!ops->cpu_has_kvm_support()) {
  2037. printk(KERN_ERR "kvm: no hardware support\n");
  2038. return -EOPNOTSUPP;
  2039. }
  2040. if (ops->disabled_by_bios()) {
  2041. printk(KERN_ERR "kvm: disabled by bios\n");
  2042. return -EOPNOTSUPP;
  2043. }
  2044. kvm_arch_ops = ops;
  2045. r = kvm_arch_ops->hardware_setup();
  2046. if (r < 0)
  2047. return r;
  2048. on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
  2049. r = register_cpu_notifier(&kvm_cpu_notifier);
  2050. if (r)
  2051. goto out_free_1;
  2052. register_reboot_notifier(&kvm_reboot_notifier);
  2053. r = sysdev_class_register(&kvm_sysdev_class);
  2054. if (r)
  2055. goto out_free_2;
  2056. r = sysdev_register(&kvm_sysdev);
  2057. if (r)
  2058. goto out_free_3;
  2059. kvm_chardev_ops.owner = module;
  2060. r = misc_register(&kvm_dev);
  2061. if (r) {
  2062. printk (KERN_ERR "kvm: misc device register failed\n");
  2063. goto out_free;
  2064. }
  2065. return r;
  2066. out_free:
  2067. sysdev_unregister(&kvm_sysdev);
  2068. out_free_3:
  2069. sysdev_class_unregister(&kvm_sysdev_class);
  2070. out_free_2:
  2071. unregister_reboot_notifier(&kvm_reboot_notifier);
  2072. unregister_cpu_notifier(&kvm_cpu_notifier);
  2073. out_free_1:
  2074. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2075. kvm_arch_ops->hardware_unsetup();
  2076. return r;
  2077. }
  2078. void kvm_exit_arch(void)
  2079. {
  2080. misc_deregister(&kvm_dev);
  2081. sysdev_unregister(&kvm_sysdev);
  2082. sysdev_class_unregister(&kvm_sysdev_class);
  2083. unregister_reboot_notifier(&kvm_reboot_notifier);
  2084. unregister_cpu_notifier(&kvm_cpu_notifier);
  2085. on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
  2086. kvm_arch_ops->hardware_unsetup();
  2087. kvm_arch_ops = NULL;
  2088. }
  2089. static __init int kvm_init(void)
  2090. {
  2091. static struct page *bad_page;
  2092. int r;
  2093. r = register_filesystem(&kvm_fs_type);
  2094. if (r)
  2095. goto out3;
  2096. kvmfs_mnt = kern_mount(&kvm_fs_type);
  2097. r = PTR_ERR(kvmfs_mnt);
  2098. if (IS_ERR(kvmfs_mnt))
  2099. goto out2;
  2100. kvm_init_debug();
  2101. kvm_init_msr_list();
  2102. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2103. r = -ENOMEM;
  2104. goto out;
  2105. }
  2106. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2107. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2108. return r;
  2109. out:
  2110. kvm_exit_debug();
  2111. mntput(kvmfs_mnt);
  2112. out2:
  2113. unregister_filesystem(&kvm_fs_type);
  2114. out3:
  2115. return r;
  2116. }
  2117. static __exit void kvm_exit(void)
  2118. {
  2119. kvm_exit_debug();
  2120. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2121. mntput(kvmfs_mnt);
  2122. unregister_filesystem(&kvm_fs_type);
  2123. }
  2124. module_init(kvm_init)
  2125. module_exit(kvm_exit)
  2126. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2127. EXPORT_SYMBOL_GPL(kvm_exit_arch);