intel_pm.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  33. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  34. * during in-memory transfers and, therefore, reduce the power packet.
  35. *
  36. * The benefits of FBC are mostly visible with solid backgrounds and
  37. * variation-less patterns.
  38. *
  39. * FBC-related functionality can be enabled by the means of the
  40. * i915.i915_enable_fbc parameter
  41. */
  42. static void i8xx_disable_fbc(struct drm_device *dev)
  43. {
  44. struct drm_i915_private *dev_priv = dev->dev_private;
  45. u32 fbc_ctl;
  46. /* Disable compression */
  47. fbc_ctl = I915_READ(FBC_CONTROL);
  48. if ((fbc_ctl & FBC_CTL_EN) == 0)
  49. return;
  50. fbc_ctl &= ~FBC_CTL_EN;
  51. I915_WRITE(FBC_CONTROL, fbc_ctl);
  52. /* Wait for compressing bit to clear */
  53. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  54. DRM_DEBUG_KMS("FBC idle timed out\n");
  55. return;
  56. }
  57. DRM_DEBUG_KMS("disabled FBC\n");
  58. }
  59. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  60. {
  61. struct drm_device *dev = crtc->dev;
  62. struct drm_i915_private *dev_priv = dev->dev_private;
  63. struct drm_framebuffer *fb = crtc->fb;
  64. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  65. struct drm_i915_gem_object *obj = intel_fb->obj;
  66. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  67. int cfb_pitch;
  68. int plane, i;
  69. u32 fbc_ctl, fbc_ctl2;
  70. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  71. if (fb->pitches[0] < cfb_pitch)
  72. cfb_pitch = fb->pitches[0];
  73. /* FBC_CTL wants 64B units */
  74. cfb_pitch = (cfb_pitch / 64) - 1;
  75. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  76. /* Clear old tags */
  77. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  78. I915_WRITE(FBC_TAG + (i * 4), 0);
  79. /* Set it up... */
  80. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  81. fbc_ctl2 |= plane;
  82. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  83. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  84. /* enable it... */
  85. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  86. if (IS_I945GM(dev))
  87. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  88. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  89. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  90. fbc_ctl |= obj->fence_reg;
  91. I915_WRITE(FBC_CONTROL, fbc_ctl);
  92. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  93. cfb_pitch, crtc->y, intel_crtc->plane);
  94. }
  95. static bool i8xx_fbc_enabled(struct drm_device *dev)
  96. {
  97. struct drm_i915_private *dev_priv = dev->dev_private;
  98. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  99. }
  100. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  101. {
  102. struct drm_device *dev = crtc->dev;
  103. struct drm_i915_private *dev_priv = dev->dev_private;
  104. struct drm_framebuffer *fb = crtc->fb;
  105. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  106. struct drm_i915_gem_object *obj = intel_fb->obj;
  107. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  108. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  109. unsigned long stall_watermark = 200;
  110. u32 dpfc_ctl;
  111. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  112. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  113. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  114. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  115. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  116. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  117. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  118. /* enable it... */
  119. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  120. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  121. }
  122. static void g4x_disable_fbc(struct drm_device *dev)
  123. {
  124. struct drm_i915_private *dev_priv = dev->dev_private;
  125. u32 dpfc_ctl;
  126. /* Disable compression */
  127. dpfc_ctl = I915_READ(DPFC_CONTROL);
  128. if (dpfc_ctl & DPFC_CTL_EN) {
  129. dpfc_ctl &= ~DPFC_CTL_EN;
  130. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  131. DRM_DEBUG_KMS("disabled FBC\n");
  132. }
  133. }
  134. static bool g4x_fbc_enabled(struct drm_device *dev)
  135. {
  136. struct drm_i915_private *dev_priv = dev->dev_private;
  137. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  138. }
  139. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  140. {
  141. struct drm_i915_private *dev_priv = dev->dev_private;
  142. u32 blt_ecoskpd;
  143. /* Make sure blitter notifies FBC of writes */
  144. gen6_gt_force_wake_get(dev_priv);
  145. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  146. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  147. GEN6_BLITTER_LOCK_SHIFT;
  148. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  149. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  150. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  151. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  152. GEN6_BLITTER_LOCK_SHIFT);
  153. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  154. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  155. gen6_gt_force_wake_put(dev_priv);
  156. }
  157. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  158. {
  159. struct drm_device *dev = crtc->dev;
  160. struct drm_i915_private *dev_priv = dev->dev_private;
  161. struct drm_framebuffer *fb = crtc->fb;
  162. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  163. struct drm_i915_gem_object *obj = intel_fb->obj;
  164. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  165. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  166. unsigned long stall_watermark = 200;
  167. u32 dpfc_ctl;
  168. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  169. dpfc_ctl &= DPFC_RESERVED;
  170. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  171. /* Set persistent mode for front-buffer rendering, ala X. */
  172. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  173. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  174. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  175. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  176. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  177. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  178. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  179. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  180. /* enable it... */
  181. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  182. if (IS_GEN6(dev)) {
  183. I915_WRITE(SNB_DPFC_CTL_SA,
  184. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  185. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  186. sandybridge_blit_fbc_update(dev);
  187. }
  188. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  189. }
  190. static void ironlake_disable_fbc(struct drm_device *dev)
  191. {
  192. struct drm_i915_private *dev_priv = dev->dev_private;
  193. u32 dpfc_ctl;
  194. /* Disable compression */
  195. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  196. if (dpfc_ctl & DPFC_CTL_EN) {
  197. dpfc_ctl &= ~DPFC_CTL_EN;
  198. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  199. DRM_DEBUG_KMS("disabled FBC\n");
  200. }
  201. }
  202. static bool ironlake_fbc_enabled(struct drm_device *dev)
  203. {
  204. struct drm_i915_private *dev_priv = dev->dev_private;
  205. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  206. }
  207. bool intel_fbc_enabled(struct drm_device *dev)
  208. {
  209. struct drm_i915_private *dev_priv = dev->dev_private;
  210. if (!dev_priv->display.fbc_enabled)
  211. return false;
  212. return dev_priv->display.fbc_enabled(dev);
  213. }
  214. static void intel_fbc_work_fn(struct work_struct *__work)
  215. {
  216. struct intel_fbc_work *work =
  217. container_of(to_delayed_work(__work),
  218. struct intel_fbc_work, work);
  219. struct drm_device *dev = work->crtc->dev;
  220. struct drm_i915_private *dev_priv = dev->dev_private;
  221. mutex_lock(&dev->struct_mutex);
  222. if (work == dev_priv->fbc_work) {
  223. /* Double check that we haven't switched fb without cancelling
  224. * the prior work.
  225. */
  226. if (work->crtc->fb == work->fb) {
  227. dev_priv->display.enable_fbc(work->crtc,
  228. work->interval);
  229. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  230. dev_priv->cfb_fb = work->crtc->fb->base.id;
  231. dev_priv->cfb_y = work->crtc->y;
  232. }
  233. dev_priv->fbc_work = NULL;
  234. }
  235. mutex_unlock(&dev->struct_mutex);
  236. kfree(work);
  237. }
  238. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  239. {
  240. if (dev_priv->fbc_work == NULL)
  241. return;
  242. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  243. /* Synchronisation is provided by struct_mutex and checking of
  244. * dev_priv->fbc_work, so we can perform the cancellation
  245. * entirely asynchronously.
  246. */
  247. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  248. /* tasklet was killed before being run, clean up */
  249. kfree(dev_priv->fbc_work);
  250. /* Mark the work as no longer wanted so that if it does
  251. * wake-up (because the work was already running and waiting
  252. * for our mutex), it will discover that is no longer
  253. * necessary to run.
  254. */
  255. dev_priv->fbc_work = NULL;
  256. }
  257. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  258. {
  259. struct intel_fbc_work *work;
  260. struct drm_device *dev = crtc->dev;
  261. struct drm_i915_private *dev_priv = dev->dev_private;
  262. if (!dev_priv->display.enable_fbc)
  263. return;
  264. intel_cancel_fbc_work(dev_priv);
  265. work = kzalloc(sizeof *work, GFP_KERNEL);
  266. if (work == NULL) {
  267. dev_priv->display.enable_fbc(crtc, interval);
  268. return;
  269. }
  270. work->crtc = crtc;
  271. work->fb = crtc->fb;
  272. work->interval = interval;
  273. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  274. dev_priv->fbc_work = work;
  275. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  276. /* Delay the actual enabling to let pageflipping cease and the
  277. * display to settle before starting the compression. Note that
  278. * this delay also serves a second purpose: it allows for a
  279. * vblank to pass after disabling the FBC before we attempt
  280. * to modify the control registers.
  281. *
  282. * A more complicated solution would involve tracking vblanks
  283. * following the termination of the page-flipping sequence
  284. * and indeed performing the enable as a co-routine and not
  285. * waiting synchronously upon the vblank.
  286. */
  287. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  288. }
  289. void intel_disable_fbc(struct drm_device *dev)
  290. {
  291. struct drm_i915_private *dev_priv = dev->dev_private;
  292. intel_cancel_fbc_work(dev_priv);
  293. if (!dev_priv->display.disable_fbc)
  294. return;
  295. dev_priv->display.disable_fbc(dev);
  296. dev_priv->cfb_plane = -1;
  297. }
  298. /**
  299. * intel_update_fbc - enable/disable FBC as needed
  300. * @dev: the drm_device
  301. *
  302. * Set up the framebuffer compression hardware at mode set time. We
  303. * enable it if possible:
  304. * - plane A only (on pre-965)
  305. * - no pixel mulitply/line duplication
  306. * - no alpha buffer discard
  307. * - no dual wide
  308. * - framebuffer <= 2048 in width, 1536 in height
  309. *
  310. * We can't assume that any compression will take place (worst case),
  311. * so the compressed buffer has to be the same size as the uncompressed
  312. * one. It also must reside (along with the line length buffer) in
  313. * stolen memory.
  314. *
  315. * We need to enable/disable FBC on a global basis.
  316. */
  317. void intel_update_fbc(struct drm_device *dev)
  318. {
  319. struct drm_i915_private *dev_priv = dev->dev_private;
  320. struct drm_crtc *crtc = NULL, *tmp_crtc;
  321. struct intel_crtc *intel_crtc;
  322. struct drm_framebuffer *fb;
  323. struct intel_framebuffer *intel_fb;
  324. struct drm_i915_gem_object *obj;
  325. int enable_fbc;
  326. DRM_DEBUG_KMS("\n");
  327. if (!i915_powersave)
  328. return;
  329. if (!I915_HAS_FBC(dev))
  330. return;
  331. /*
  332. * If FBC is already on, we just have to verify that we can
  333. * keep it that way...
  334. * Need to disable if:
  335. * - more than one pipe is active
  336. * - changing FBC params (stride, fence, mode)
  337. * - new fb is too large to fit in compressed buffer
  338. * - going to an unsupported config (interlace, pixel multiply, etc.)
  339. */
  340. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  341. if (tmp_crtc->enabled && tmp_crtc->fb) {
  342. if (crtc) {
  343. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  344. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  345. goto out_disable;
  346. }
  347. crtc = tmp_crtc;
  348. }
  349. }
  350. if (!crtc || crtc->fb == NULL) {
  351. DRM_DEBUG_KMS("no output, disabling\n");
  352. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  353. goto out_disable;
  354. }
  355. intel_crtc = to_intel_crtc(crtc);
  356. fb = crtc->fb;
  357. intel_fb = to_intel_framebuffer(fb);
  358. obj = intel_fb->obj;
  359. enable_fbc = i915_enable_fbc;
  360. if (enable_fbc < 0) {
  361. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  362. enable_fbc = 1;
  363. if (INTEL_INFO(dev)->gen <= 6)
  364. enable_fbc = 0;
  365. }
  366. if (!enable_fbc) {
  367. DRM_DEBUG_KMS("fbc disabled per module param\n");
  368. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  369. goto out_disable;
  370. }
  371. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  372. DRM_DEBUG_KMS("framebuffer too large, disabling "
  373. "compression\n");
  374. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  375. goto out_disable;
  376. }
  377. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  378. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  379. DRM_DEBUG_KMS("mode incompatible with compression, "
  380. "disabling\n");
  381. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  382. goto out_disable;
  383. }
  384. if ((crtc->mode.hdisplay > 2048) ||
  385. (crtc->mode.vdisplay > 1536)) {
  386. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  387. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  388. goto out_disable;
  389. }
  390. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  391. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  392. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  393. goto out_disable;
  394. }
  395. /* The use of a CPU fence is mandatory in order to detect writes
  396. * by the CPU to the scanout and trigger updates to the FBC.
  397. */
  398. if (obj->tiling_mode != I915_TILING_X ||
  399. obj->fence_reg == I915_FENCE_REG_NONE) {
  400. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  401. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  402. goto out_disable;
  403. }
  404. /* If the kernel debugger is active, always disable compression */
  405. if (in_dbg_master())
  406. goto out_disable;
  407. /* If the scanout has not changed, don't modify the FBC settings.
  408. * Note that we make the fundamental assumption that the fb->obj
  409. * cannot be unpinned (and have its GTT offset and fence revoked)
  410. * without first being decoupled from the scanout and FBC disabled.
  411. */
  412. if (dev_priv->cfb_plane == intel_crtc->plane &&
  413. dev_priv->cfb_fb == fb->base.id &&
  414. dev_priv->cfb_y == crtc->y)
  415. return;
  416. if (intel_fbc_enabled(dev)) {
  417. /* We update FBC along two paths, after changing fb/crtc
  418. * configuration (modeswitching) and after page-flipping
  419. * finishes. For the latter, we know that not only did
  420. * we disable the FBC at the start of the page-flip
  421. * sequence, but also more than one vblank has passed.
  422. *
  423. * For the former case of modeswitching, it is possible
  424. * to switch between two FBC valid configurations
  425. * instantaneously so we do need to disable the FBC
  426. * before we can modify its control registers. We also
  427. * have to wait for the next vblank for that to take
  428. * effect. However, since we delay enabling FBC we can
  429. * assume that a vblank has passed since disabling and
  430. * that we can safely alter the registers in the deferred
  431. * callback.
  432. *
  433. * In the scenario that we go from a valid to invalid
  434. * and then back to valid FBC configuration we have
  435. * no strict enforcement that a vblank occurred since
  436. * disabling the FBC. However, along all current pipe
  437. * disabling paths we do need to wait for a vblank at
  438. * some point. And we wait before enabling FBC anyway.
  439. */
  440. DRM_DEBUG_KMS("disabling active FBC for update\n");
  441. intel_disable_fbc(dev);
  442. }
  443. intel_enable_fbc(crtc, 500);
  444. return;
  445. out_disable:
  446. /* Multiple disables should be harmless */
  447. if (intel_fbc_enabled(dev)) {
  448. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  449. intel_disable_fbc(dev);
  450. }
  451. }
  452. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  453. {
  454. drm_i915_private_t *dev_priv = dev->dev_private;
  455. u32 tmp;
  456. tmp = I915_READ(CLKCFG);
  457. switch (tmp & CLKCFG_FSB_MASK) {
  458. case CLKCFG_FSB_533:
  459. dev_priv->fsb_freq = 533; /* 133*4 */
  460. break;
  461. case CLKCFG_FSB_800:
  462. dev_priv->fsb_freq = 800; /* 200*4 */
  463. break;
  464. case CLKCFG_FSB_667:
  465. dev_priv->fsb_freq = 667; /* 167*4 */
  466. break;
  467. case CLKCFG_FSB_400:
  468. dev_priv->fsb_freq = 400; /* 100*4 */
  469. break;
  470. }
  471. switch (tmp & CLKCFG_MEM_MASK) {
  472. case CLKCFG_MEM_533:
  473. dev_priv->mem_freq = 533;
  474. break;
  475. case CLKCFG_MEM_667:
  476. dev_priv->mem_freq = 667;
  477. break;
  478. case CLKCFG_MEM_800:
  479. dev_priv->mem_freq = 800;
  480. break;
  481. }
  482. /* detect pineview DDR3 setting */
  483. tmp = I915_READ(CSHRDDR3CTL);
  484. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  485. }
  486. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  487. {
  488. drm_i915_private_t *dev_priv = dev->dev_private;
  489. u16 ddrpll, csipll;
  490. ddrpll = I915_READ16(DDRMPLL1);
  491. csipll = I915_READ16(CSIPLL0);
  492. switch (ddrpll & 0xff) {
  493. case 0xc:
  494. dev_priv->mem_freq = 800;
  495. break;
  496. case 0x10:
  497. dev_priv->mem_freq = 1066;
  498. break;
  499. case 0x14:
  500. dev_priv->mem_freq = 1333;
  501. break;
  502. case 0x18:
  503. dev_priv->mem_freq = 1600;
  504. break;
  505. default:
  506. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  507. ddrpll & 0xff);
  508. dev_priv->mem_freq = 0;
  509. break;
  510. }
  511. dev_priv->r_t = dev_priv->mem_freq;
  512. switch (csipll & 0x3ff) {
  513. case 0x00c:
  514. dev_priv->fsb_freq = 3200;
  515. break;
  516. case 0x00e:
  517. dev_priv->fsb_freq = 3733;
  518. break;
  519. case 0x010:
  520. dev_priv->fsb_freq = 4266;
  521. break;
  522. case 0x012:
  523. dev_priv->fsb_freq = 4800;
  524. break;
  525. case 0x014:
  526. dev_priv->fsb_freq = 5333;
  527. break;
  528. case 0x016:
  529. dev_priv->fsb_freq = 5866;
  530. break;
  531. case 0x018:
  532. dev_priv->fsb_freq = 6400;
  533. break;
  534. default:
  535. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  536. csipll & 0x3ff);
  537. dev_priv->fsb_freq = 0;
  538. break;
  539. }
  540. if (dev_priv->fsb_freq == 3200) {
  541. dev_priv->c_m = 0;
  542. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  543. dev_priv->c_m = 1;
  544. } else {
  545. dev_priv->c_m = 2;
  546. }
  547. }
  548. static const struct cxsr_latency cxsr_latency_table[] = {
  549. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  550. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  551. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  552. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  553. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  554. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  555. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  556. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  557. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  558. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  559. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  560. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  561. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  562. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  563. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  564. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  565. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  566. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  567. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  568. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  569. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  570. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  571. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  572. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  573. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  574. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  575. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  576. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  577. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  578. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  579. };
  580. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  581. int is_ddr3,
  582. int fsb,
  583. int mem)
  584. {
  585. const struct cxsr_latency *latency;
  586. int i;
  587. if (fsb == 0 || mem == 0)
  588. return NULL;
  589. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  590. latency = &cxsr_latency_table[i];
  591. if (is_desktop == latency->is_desktop &&
  592. is_ddr3 == latency->is_ddr3 &&
  593. fsb == latency->fsb_freq && mem == latency->mem_freq)
  594. return latency;
  595. }
  596. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  597. return NULL;
  598. }
  599. static void pineview_disable_cxsr(struct drm_device *dev)
  600. {
  601. struct drm_i915_private *dev_priv = dev->dev_private;
  602. /* deactivate cxsr */
  603. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  604. }
  605. /*
  606. * Latency for FIFO fetches is dependent on several factors:
  607. * - memory configuration (speed, channels)
  608. * - chipset
  609. * - current MCH state
  610. * It can be fairly high in some situations, so here we assume a fairly
  611. * pessimal value. It's a tradeoff between extra memory fetches (if we
  612. * set this value too high, the FIFO will fetch frequently to stay full)
  613. * and power consumption (set it too low to save power and we might see
  614. * FIFO underruns and display "flicker").
  615. *
  616. * A value of 5us seems to be a good balance; safe for very low end
  617. * platforms but not overly aggressive on lower latency configs.
  618. */
  619. static const int latency_ns = 5000;
  620. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  621. {
  622. struct drm_i915_private *dev_priv = dev->dev_private;
  623. uint32_t dsparb = I915_READ(DSPARB);
  624. int size;
  625. size = dsparb & 0x7f;
  626. if (plane)
  627. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  628. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  629. plane ? "B" : "A", size);
  630. return size;
  631. }
  632. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  633. {
  634. struct drm_i915_private *dev_priv = dev->dev_private;
  635. uint32_t dsparb = I915_READ(DSPARB);
  636. int size;
  637. size = dsparb & 0x1ff;
  638. if (plane)
  639. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  640. size >>= 1; /* Convert to cachelines */
  641. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  642. plane ? "B" : "A", size);
  643. return size;
  644. }
  645. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  646. {
  647. struct drm_i915_private *dev_priv = dev->dev_private;
  648. uint32_t dsparb = I915_READ(DSPARB);
  649. int size;
  650. size = dsparb & 0x7f;
  651. size >>= 2; /* Convert to cachelines */
  652. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  653. plane ? "B" : "A",
  654. size);
  655. return size;
  656. }
  657. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  658. {
  659. struct drm_i915_private *dev_priv = dev->dev_private;
  660. uint32_t dsparb = I915_READ(DSPARB);
  661. int size;
  662. size = dsparb & 0x7f;
  663. size >>= 1; /* Convert to cachelines */
  664. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  665. plane ? "B" : "A", size);
  666. return size;
  667. }
  668. /* Pineview has different values for various configs */
  669. static const struct intel_watermark_params pineview_display_wm = {
  670. PINEVIEW_DISPLAY_FIFO,
  671. PINEVIEW_MAX_WM,
  672. PINEVIEW_DFT_WM,
  673. PINEVIEW_GUARD_WM,
  674. PINEVIEW_FIFO_LINE_SIZE
  675. };
  676. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  677. PINEVIEW_DISPLAY_FIFO,
  678. PINEVIEW_MAX_WM,
  679. PINEVIEW_DFT_HPLLOFF_WM,
  680. PINEVIEW_GUARD_WM,
  681. PINEVIEW_FIFO_LINE_SIZE
  682. };
  683. static const struct intel_watermark_params pineview_cursor_wm = {
  684. PINEVIEW_CURSOR_FIFO,
  685. PINEVIEW_CURSOR_MAX_WM,
  686. PINEVIEW_CURSOR_DFT_WM,
  687. PINEVIEW_CURSOR_GUARD_WM,
  688. PINEVIEW_FIFO_LINE_SIZE,
  689. };
  690. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  691. PINEVIEW_CURSOR_FIFO,
  692. PINEVIEW_CURSOR_MAX_WM,
  693. PINEVIEW_CURSOR_DFT_WM,
  694. PINEVIEW_CURSOR_GUARD_WM,
  695. PINEVIEW_FIFO_LINE_SIZE
  696. };
  697. static const struct intel_watermark_params g4x_wm_info = {
  698. G4X_FIFO_SIZE,
  699. G4X_MAX_WM,
  700. G4X_MAX_WM,
  701. 2,
  702. G4X_FIFO_LINE_SIZE,
  703. };
  704. static const struct intel_watermark_params g4x_cursor_wm_info = {
  705. I965_CURSOR_FIFO,
  706. I965_CURSOR_MAX_WM,
  707. I965_CURSOR_DFT_WM,
  708. 2,
  709. G4X_FIFO_LINE_SIZE,
  710. };
  711. static const struct intel_watermark_params valleyview_wm_info = {
  712. VALLEYVIEW_FIFO_SIZE,
  713. VALLEYVIEW_MAX_WM,
  714. VALLEYVIEW_MAX_WM,
  715. 2,
  716. G4X_FIFO_LINE_SIZE,
  717. };
  718. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  719. I965_CURSOR_FIFO,
  720. VALLEYVIEW_CURSOR_MAX_WM,
  721. I965_CURSOR_DFT_WM,
  722. 2,
  723. G4X_FIFO_LINE_SIZE,
  724. };
  725. static const struct intel_watermark_params i965_cursor_wm_info = {
  726. I965_CURSOR_FIFO,
  727. I965_CURSOR_MAX_WM,
  728. I965_CURSOR_DFT_WM,
  729. 2,
  730. I915_FIFO_LINE_SIZE,
  731. };
  732. static const struct intel_watermark_params i945_wm_info = {
  733. I945_FIFO_SIZE,
  734. I915_MAX_WM,
  735. 1,
  736. 2,
  737. I915_FIFO_LINE_SIZE
  738. };
  739. static const struct intel_watermark_params i915_wm_info = {
  740. I915_FIFO_SIZE,
  741. I915_MAX_WM,
  742. 1,
  743. 2,
  744. I915_FIFO_LINE_SIZE
  745. };
  746. static const struct intel_watermark_params i855_wm_info = {
  747. I855GM_FIFO_SIZE,
  748. I915_MAX_WM,
  749. 1,
  750. 2,
  751. I830_FIFO_LINE_SIZE
  752. };
  753. static const struct intel_watermark_params i830_wm_info = {
  754. I830_FIFO_SIZE,
  755. I915_MAX_WM,
  756. 1,
  757. 2,
  758. I830_FIFO_LINE_SIZE
  759. };
  760. static const struct intel_watermark_params ironlake_display_wm_info = {
  761. ILK_DISPLAY_FIFO,
  762. ILK_DISPLAY_MAXWM,
  763. ILK_DISPLAY_DFTWM,
  764. 2,
  765. ILK_FIFO_LINE_SIZE
  766. };
  767. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  768. ILK_CURSOR_FIFO,
  769. ILK_CURSOR_MAXWM,
  770. ILK_CURSOR_DFTWM,
  771. 2,
  772. ILK_FIFO_LINE_SIZE
  773. };
  774. static const struct intel_watermark_params ironlake_display_srwm_info = {
  775. ILK_DISPLAY_SR_FIFO,
  776. ILK_DISPLAY_MAX_SRWM,
  777. ILK_DISPLAY_DFT_SRWM,
  778. 2,
  779. ILK_FIFO_LINE_SIZE
  780. };
  781. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  782. ILK_CURSOR_SR_FIFO,
  783. ILK_CURSOR_MAX_SRWM,
  784. ILK_CURSOR_DFT_SRWM,
  785. 2,
  786. ILK_FIFO_LINE_SIZE
  787. };
  788. static const struct intel_watermark_params sandybridge_display_wm_info = {
  789. SNB_DISPLAY_FIFO,
  790. SNB_DISPLAY_MAXWM,
  791. SNB_DISPLAY_DFTWM,
  792. 2,
  793. SNB_FIFO_LINE_SIZE
  794. };
  795. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  796. SNB_CURSOR_FIFO,
  797. SNB_CURSOR_MAXWM,
  798. SNB_CURSOR_DFTWM,
  799. 2,
  800. SNB_FIFO_LINE_SIZE
  801. };
  802. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  803. SNB_DISPLAY_SR_FIFO,
  804. SNB_DISPLAY_MAX_SRWM,
  805. SNB_DISPLAY_DFT_SRWM,
  806. 2,
  807. SNB_FIFO_LINE_SIZE
  808. };
  809. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  810. SNB_CURSOR_SR_FIFO,
  811. SNB_CURSOR_MAX_SRWM,
  812. SNB_CURSOR_DFT_SRWM,
  813. 2,
  814. SNB_FIFO_LINE_SIZE
  815. };
  816. /**
  817. * intel_calculate_wm - calculate watermark level
  818. * @clock_in_khz: pixel clock
  819. * @wm: chip FIFO params
  820. * @pixel_size: display pixel size
  821. * @latency_ns: memory latency for the platform
  822. *
  823. * Calculate the watermark level (the level at which the display plane will
  824. * start fetching from memory again). Each chip has a different display
  825. * FIFO size and allocation, so the caller needs to figure that out and pass
  826. * in the correct intel_watermark_params structure.
  827. *
  828. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  829. * on the pixel size. When it reaches the watermark level, it'll start
  830. * fetching FIFO line sized based chunks from memory until the FIFO fills
  831. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  832. * will occur, and a display engine hang could result.
  833. */
  834. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  835. const struct intel_watermark_params *wm,
  836. int fifo_size,
  837. int pixel_size,
  838. unsigned long latency_ns)
  839. {
  840. long entries_required, wm_size;
  841. /*
  842. * Note: we need to make sure we don't overflow for various clock &
  843. * latency values.
  844. * clocks go from a few thousand to several hundred thousand.
  845. * latency is usually a few thousand
  846. */
  847. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  848. 1000;
  849. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  850. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  851. wm_size = fifo_size - (entries_required + wm->guard_size);
  852. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  853. /* Don't promote wm_size to unsigned... */
  854. if (wm_size > (long)wm->max_wm)
  855. wm_size = wm->max_wm;
  856. if (wm_size <= 0)
  857. wm_size = wm->default_wm;
  858. return wm_size;
  859. }
  860. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  861. {
  862. struct drm_crtc *crtc, *enabled = NULL;
  863. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  864. if (crtc->enabled && crtc->fb) {
  865. if (enabled)
  866. return NULL;
  867. enabled = crtc;
  868. }
  869. }
  870. return enabled;
  871. }
  872. static void pineview_update_wm(struct drm_device *dev)
  873. {
  874. struct drm_i915_private *dev_priv = dev->dev_private;
  875. struct drm_crtc *crtc;
  876. const struct cxsr_latency *latency;
  877. u32 reg;
  878. unsigned long wm;
  879. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  880. dev_priv->fsb_freq, dev_priv->mem_freq);
  881. if (!latency) {
  882. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  883. pineview_disable_cxsr(dev);
  884. return;
  885. }
  886. crtc = single_enabled_crtc(dev);
  887. if (crtc) {
  888. int clock = crtc->mode.clock;
  889. int pixel_size = crtc->fb->bits_per_pixel / 8;
  890. /* Display SR */
  891. wm = intel_calculate_wm(clock, &pineview_display_wm,
  892. pineview_display_wm.fifo_size,
  893. pixel_size, latency->display_sr);
  894. reg = I915_READ(DSPFW1);
  895. reg &= ~DSPFW_SR_MASK;
  896. reg |= wm << DSPFW_SR_SHIFT;
  897. I915_WRITE(DSPFW1, reg);
  898. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  899. /* cursor SR */
  900. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  901. pineview_display_wm.fifo_size,
  902. pixel_size, latency->cursor_sr);
  903. reg = I915_READ(DSPFW3);
  904. reg &= ~DSPFW_CURSOR_SR_MASK;
  905. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  906. I915_WRITE(DSPFW3, reg);
  907. /* Display HPLL off SR */
  908. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  909. pineview_display_hplloff_wm.fifo_size,
  910. pixel_size, latency->display_hpll_disable);
  911. reg = I915_READ(DSPFW3);
  912. reg &= ~DSPFW_HPLL_SR_MASK;
  913. reg |= wm & DSPFW_HPLL_SR_MASK;
  914. I915_WRITE(DSPFW3, reg);
  915. /* cursor HPLL off SR */
  916. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  917. pineview_display_hplloff_wm.fifo_size,
  918. pixel_size, latency->cursor_hpll_disable);
  919. reg = I915_READ(DSPFW3);
  920. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  921. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  922. I915_WRITE(DSPFW3, reg);
  923. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  924. /* activate cxsr */
  925. I915_WRITE(DSPFW3,
  926. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  927. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  928. } else {
  929. pineview_disable_cxsr(dev);
  930. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  931. }
  932. }
  933. static bool g4x_compute_wm0(struct drm_device *dev,
  934. int plane,
  935. const struct intel_watermark_params *display,
  936. int display_latency_ns,
  937. const struct intel_watermark_params *cursor,
  938. int cursor_latency_ns,
  939. int *plane_wm,
  940. int *cursor_wm)
  941. {
  942. struct drm_crtc *crtc;
  943. int htotal, hdisplay, clock, pixel_size;
  944. int line_time_us, line_count;
  945. int entries, tlb_miss;
  946. crtc = intel_get_crtc_for_plane(dev, plane);
  947. if (crtc->fb == NULL || !crtc->enabled) {
  948. *cursor_wm = cursor->guard_size;
  949. *plane_wm = display->guard_size;
  950. return false;
  951. }
  952. htotal = crtc->mode.htotal;
  953. hdisplay = crtc->mode.hdisplay;
  954. clock = crtc->mode.clock;
  955. pixel_size = crtc->fb->bits_per_pixel / 8;
  956. /* Use the small buffer method to calculate plane watermark */
  957. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  958. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  959. if (tlb_miss > 0)
  960. entries += tlb_miss;
  961. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  962. *plane_wm = entries + display->guard_size;
  963. if (*plane_wm > (int)display->max_wm)
  964. *plane_wm = display->max_wm;
  965. /* Use the large buffer method to calculate cursor watermark */
  966. line_time_us = ((htotal * 1000) / clock);
  967. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  968. entries = line_count * 64 * pixel_size;
  969. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  970. if (tlb_miss > 0)
  971. entries += tlb_miss;
  972. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  973. *cursor_wm = entries + cursor->guard_size;
  974. if (*cursor_wm > (int)cursor->max_wm)
  975. *cursor_wm = (int)cursor->max_wm;
  976. return true;
  977. }
  978. /*
  979. * Check the wm result.
  980. *
  981. * If any calculated watermark values is larger than the maximum value that
  982. * can be programmed into the associated watermark register, that watermark
  983. * must be disabled.
  984. */
  985. static bool g4x_check_srwm(struct drm_device *dev,
  986. int display_wm, int cursor_wm,
  987. const struct intel_watermark_params *display,
  988. const struct intel_watermark_params *cursor)
  989. {
  990. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  991. display_wm, cursor_wm);
  992. if (display_wm > display->max_wm) {
  993. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  994. display_wm, display->max_wm);
  995. return false;
  996. }
  997. if (cursor_wm > cursor->max_wm) {
  998. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  999. cursor_wm, cursor->max_wm);
  1000. return false;
  1001. }
  1002. if (!(display_wm || cursor_wm)) {
  1003. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1004. return false;
  1005. }
  1006. return true;
  1007. }
  1008. static bool g4x_compute_srwm(struct drm_device *dev,
  1009. int plane,
  1010. int latency_ns,
  1011. const struct intel_watermark_params *display,
  1012. const struct intel_watermark_params *cursor,
  1013. int *display_wm, int *cursor_wm)
  1014. {
  1015. struct drm_crtc *crtc;
  1016. int hdisplay, htotal, pixel_size, clock;
  1017. unsigned long line_time_us;
  1018. int line_count, line_size;
  1019. int small, large;
  1020. int entries;
  1021. if (!latency_ns) {
  1022. *display_wm = *cursor_wm = 0;
  1023. return false;
  1024. }
  1025. crtc = intel_get_crtc_for_plane(dev, plane);
  1026. hdisplay = crtc->mode.hdisplay;
  1027. htotal = crtc->mode.htotal;
  1028. clock = crtc->mode.clock;
  1029. pixel_size = crtc->fb->bits_per_pixel / 8;
  1030. line_time_us = (htotal * 1000) / clock;
  1031. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1032. line_size = hdisplay * pixel_size;
  1033. /* Use the minimum of the small and large buffer method for primary */
  1034. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1035. large = line_count * line_size;
  1036. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1037. *display_wm = entries + display->guard_size;
  1038. /* calculate the self-refresh watermark for display cursor */
  1039. entries = line_count * pixel_size * 64;
  1040. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1041. *cursor_wm = entries + cursor->guard_size;
  1042. return g4x_check_srwm(dev,
  1043. *display_wm, *cursor_wm,
  1044. display, cursor);
  1045. }
  1046. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1047. int plane,
  1048. int *plane_prec_mult,
  1049. int *plane_dl,
  1050. int *cursor_prec_mult,
  1051. int *cursor_dl)
  1052. {
  1053. struct drm_crtc *crtc;
  1054. int clock, pixel_size;
  1055. int entries;
  1056. crtc = intel_get_crtc_for_plane(dev, plane);
  1057. if (crtc->fb == NULL || !crtc->enabled)
  1058. return false;
  1059. clock = crtc->mode.clock; /* VESA DOT Clock */
  1060. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1061. entries = (clock / 1000) * pixel_size;
  1062. *plane_prec_mult = (entries > 256) ?
  1063. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1064. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1065. pixel_size);
  1066. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1067. *cursor_prec_mult = (entries > 256) ?
  1068. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1069. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1070. return true;
  1071. }
  1072. /*
  1073. * Update drain latency registers of memory arbiter
  1074. *
  1075. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1076. * to be programmed. Each plane has a drain latency multiplier and a drain
  1077. * latency value.
  1078. */
  1079. static void vlv_update_drain_latency(struct drm_device *dev)
  1080. {
  1081. struct drm_i915_private *dev_priv = dev->dev_private;
  1082. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1083. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1084. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1085. either 16 or 32 */
  1086. /* For plane A, Cursor A */
  1087. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1088. &cursor_prec_mult, &cursora_dl)) {
  1089. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1090. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1091. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1092. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1093. I915_WRITE(VLV_DDL1, cursora_prec |
  1094. (cursora_dl << DDL_CURSORA_SHIFT) |
  1095. planea_prec | planea_dl);
  1096. }
  1097. /* For plane B, Cursor B */
  1098. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1099. &cursor_prec_mult, &cursorb_dl)) {
  1100. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1101. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1102. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1103. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1104. I915_WRITE(VLV_DDL2, cursorb_prec |
  1105. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1106. planeb_prec | planeb_dl);
  1107. }
  1108. }
  1109. #define single_plane_enabled(mask) is_power_of_2(mask)
  1110. static void valleyview_update_wm(struct drm_device *dev)
  1111. {
  1112. static const int sr_latency_ns = 12000;
  1113. struct drm_i915_private *dev_priv = dev->dev_private;
  1114. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1115. int plane_sr, cursor_sr;
  1116. unsigned int enabled = 0;
  1117. vlv_update_drain_latency(dev);
  1118. if (g4x_compute_wm0(dev, 0,
  1119. &valleyview_wm_info, latency_ns,
  1120. &valleyview_cursor_wm_info, latency_ns,
  1121. &planea_wm, &cursora_wm))
  1122. enabled |= 1;
  1123. if (g4x_compute_wm0(dev, 1,
  1124. &valleyview_wm_info, latency_ns,
  1125. &valleyview_cursor_wm_info, latency_ns,
  1126. &planeb_wm, &cursorb_wm))
  1127. enabled |= 2;
  1128. plane_sr = cursor_sr = 0;
  1129. if (single_plane_enabled(enabled) &&
  1130. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1131. sr_latency_ns,
  1132. &valleyview_wm_info,
  1133. &valleyview_cursor_wm_info,
  1134. &plane_sr, &cursor_sr))
  1135. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1136. else
  1137. I915_WRITE(FW_BLC_SELF_VLV,
  1138. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1139. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1140. planea_wm, cursora_wm,
  1141. planeb_wm, cursorb_wm,
  1142. plane_sr, cursor_sr);
  1143. I915_WRITE(DSPFW1,
  1144. (plane_sr << DSPFW_SR_SHIFT) |
  1145. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1146. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1147. planea_wm);
  1148. I915_WRITE(DSPFW2,
  1149. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  1150. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1151. I915_WRITE(DSPFW3,
  1152. (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
  1153. }
  1154. static void g4x_update_wm(struct drm_device *dev)
  1155. {
  1156. static const int sr_latency_ns = 12000;
  1157. struct drm_i915_private *dev_priv = dev->dev_private;
  1158. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1159. int plane_sr, cursor_sr;
  1160. unsigned int enabled = 0;
  1161. if (g4x_compute_wm0(dev, 0,
  1162. &g4x_wm_info, latency_ns,
  1163. &g4x_cursor_wm_info, latency_ns,
  1164. &planea_wm, &cursora_wm))
  1165. enabled |= 1;
  1166. if (g4x_compute_wm0(dev, 1,
  1167. &g4x_wm_info, latency_ns,
  1168. &g4x_cursor_wm_info, latency_ns,
  1169. &planeb_wm, &cursorb_wm))
  1170. enabled |= 2;
  1171. plane_sr = cursor_sr = 0;
  1172. if (single_plane_enabled(enabled) &&
  1173. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1174. sr_latency_ns,
  1175. &g4x_wm_info,
  1176. &g4x_cursor_wm_info,
  1177. &plane_sr, &cursor_sr))
  1178. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1179. else
  1180. I915_WRITE(FW_BLC_SELF,
  1181. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1182. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1183. planea_wm, cursora_wm,
  1184. planeb_wm, cursorb_wm,
  1185. plane_sr, cursor_sr);
  1186. I915_WRITE(DSPFW1,
  1187. (plane_sr << DSPFW_SR_SHIFT) |
  1188. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1189. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1190. planea_wm);
  1191. I915_WRITE(DSPFW2,
  1192. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  1193. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1194. /* HPLL off in SR has some issues on G4x... disable it */
  1195. I915_WRITE(DSPFW3,
  1196. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  1197. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1198. }
  1199. static void i965_update_wm(struct drm_device *dev)
  1200. {
  1201. struct drm_i915_private *dev_priv = dev->dev_private;
  1202. struct drm_crtc *crtc;
  1203. int srwm = 1;
  1204. int cursor_sr = 16;
  1205. /* Calc sr entries for one plane configs */
  1206. crtc = single_enabled_crtc(dev);
  1207. if (crtc) {
  1208. /* self-refresh has much higher latency */
  1209. static const int sr_latency_ns = 12000;
  1210. int clock = crtc->mode.clock;
  1211. int htotal = crtc->mode.htotal;
  1212. int hdisplay = crtc->mode.hdisplay;
  1213. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1214. unsigned long line_time_us;
  1215. int entries;
  1216. line_time_us = ((htotal * 1000) / clock);
  1217. /* Use ns/us then divide to preserve precision */
  1218. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1219. pixel_size * hdisplay;
  1220. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1221. srwm = I965_FIFO_SIZE - entries;
  1222. if (srwm < 0)
  1223. srwm = 1;
  1224. srwm &= 0x1ff;
  1225. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1226. entries, srwm);
  1227. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1228. pixel_size * 64;
  1229. entries = DIV_ROUND_UP(entries,
  1230. i965_cursor_wm_info.cacheline_size);
  1231. cursor_sr = i965_cursor_wm_info.fifo_size -
  1232. (entries + i965_cursor_wm_info.guard_size);
  1233. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1234. cursor_sr = i965_cursor_wm_info.max_wm;
  1235. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1236. "cursor %d\n", srwm, cursor_sr);
  1237. if (IS_CRESTLINE(dev))
  1238. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1239. } else {
  1240. /* Turn off self refresh if both pipes are enabled */
  1241. if (IS_CRESTLINE(dev))
  1242. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1243. & ~FW_BLC_SELF_EN);
  1244. }
  1245. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1246. srwm);
  1247. /* 965 has limitations... */
  1248. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1249. (8 << 16) | (8 << 8) | (8 << 0));
  1250. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1251. /* update cursor SR watermark */
  1252. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1253. }
  1254. static void i9xx_update_wm(struct drm_device *dev)
  1255. {
  1256. struct drm_i915_private *dev_priv = dev->dev_private;
  1257. const struct intel_watermark_params *wm_info;
  1258. uint32_t fwater_lo;
  1259. uint32_t fwater_hi;
  1260. int cwm, srwm = 1;
  1261. int fifo_size;
  1262. int planea_wm, planeb_wm;
  1263. struct drm_crtc *crtc, *enabled = NULL;
  1264. if (IS_I945GM(dev))
  1265. wm_info = &i945_wm_info;
  1266. else if (!IS_GEN2(dev))
  1267. wm_info = &i915_wm_info;
  1268. else
  1269. wm_info = &i855_wm_info;
  1270. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1271. crtc = intel_get_crtc_for_plane(dev, 0);
  1272. if (crtc->enabled && crtc->fb) {
  1273. planea_wm = intel_calculate_wm(crtc->mode.clock,
  1274. wm_info, fifo_size,
  1275. crtc->fb->bits_per_pixel / 8,
  1276. latency_ns);
  1277. enabled = crtc;
  1278. } else
  1279. planea_wm = fifo_size - wm_info->guard_size;
  1280. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1281. crtc = intel_get_crtc_for_plane(dev, 1);
  1282. if (crtc->enabled && crtc->fb) {
  1283. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  1284. wm_info, fifo_size,
  1285. crtc->fb->bits_per_pixel / 8,
  1286. latency_ns);
  1287. if (enabled == NULL)
  1288. enabled = crtc;
  1289. else
  1290. enabled = NULL;
  1291. } else
  1292. planeb_wm = fifo_size - wm_info->guard_size;
  1293. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1294. /*
  1295. * Overlay gets an aggressive default since video jitter is bad.
  1296. */
  1297. cwm = 2;
  1298. /* Play safe and disable self-refresh before adjusting watermarks. */
  1299. if (IS_I945G(dev) || IS_I945GM(dev))
  1300. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1301. else if (IS_I915GM(dev))
  1302. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1303. /* Calc sr entries for one plane configs */
  1304. if (HAS_FW_BLC(dev) && enabled) {
  1305. /* self-refresh has much higher latency */
  1306. static const int sr_latency_ns = 6000;
  1307. int clock = enabled->mode.clock;
  1308. int htotal = enabled->mode.htotal;
  1309. int hdisplay = enabled->mode.hdisplay;
  1310. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1311. unsigned long line_time_us;
  1312. int entries;
  1313. line_time_us = (htotal * 1000) / clock;
  1314. /* Use ns/us then divide to preserve precision */
  1315. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1316. pixel_size * hdisplay;
  1317. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1318. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1319. srwm = wm_info->fifo_size - entries;
  1320. if (srwm < 0)
  1321. srwm = 1;
  1322. if (IS_I945G(dev) || IS_I945GM(dev))
  1323. I915_WRITE(FW_BLC_SELF,
  1324. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1325. else if (IS_I915GM(dev))
  1326. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1327. }
  1328. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1329. planea_wm, planeb_wm, cwm, srwm);
  1330. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1331. fwater_hi = (cwm & 0x1f);
  1332. /* Set request length to 8 cachelines per fetch */
  1333. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1334. fwater_hi = fwater_hi | (1 << 8);
  1335. I915_WRITE(FW_BLC, fwater_lo);
  1336. I915_WRITE(FW_BLC2, fwater_hi);
  1337. if (HAS_FW_BLC(dev)) {
  1338. if (enabled) {
  1339. if (IS_I945G(dev) || IS_I945GM(dev))
  1340. I915_WRITE(FW_BLC_SELF,
  1341. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1342. else if (IS_I915GM(dev))
  1343. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1344. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1345. } else
  1346. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1347. }
  1348. }
  1349. static void i830_update_wm(struct drm_device *dev)
  1350. {
  1351. struct drm_i915_private *dev_priv = dev->dev_private;
  1352. struct drm_crtc *crtc;
  1353. uint32_t fwater_lo;
  1354. int planea_wm;
  1355. crtc = single_enabled_crtc(dev);
  1356. if (crtc == NULL)
  1357. return;
  1358. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  1359. dev_priv->display.get_fifo_size(dev, 0),
  1360. crtc->fb->bits_per_pixel / 8,
  1361. latency_ns);
  1362. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1363. fwater_lo |= (3<<8) | planea_wm;
  1364. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1365. I915_WRITE(FW_BLC, fwater_lo);
  1366. }
  1367. #define ILK_LP0_PLANE_LATENCY 700
  1368. #define ILK_LP0_CURSOR_LATENCY 1300
  1369. /*
  1370. * Check the wm result.
  1371. *
  1372. * If any calculated watermark values is larger than the maximum value that
  1373. * can be programmed into the associated watermark register, that watermark
  1374. * must be disabled.
  1375. */
  1376. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1377. int fbc_wm, int display_wm, int cursor_wm,
  1378. const struct intel_watermark_params *display,
  1379. const struct intel_watermark_params *cursor)
  1380. {
  1381. struct drm_i915_private *dev_priv = dev->dev_private;
  1382. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1383. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1384. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1385. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1386. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1387. /* fbc has it's own way to disable FBC WM */
  1388. I915_WRITE(DISP_ARB_CTL,
  1389. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1390. return false;
  1391. }
  1392. if (display_wm > display->max_wm) {
  1393. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1394. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1395. return false;
  1396. }
  1397. if (cursor_wm > cursor->max_wm) {
  1398. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1399. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1400. return false;
  1401. }
  1402. if (!(fbc_wm || display_wm || cursor_wm)) {
  1403. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1404. return false;
  1405. }
  1406. return true;
  1407. }
  1408. /*
  1409. * Compute watermark values of WM[1-3],
  1410. */
  1411. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1412. int latency_ns,
  1413. const struct intel_watermark_params *display,
  1414. const struct intel_watermark_params *cursor,
  1415. int *fbc_wm, int *display_wm, int *cursor_wm)
  1416. {
  1417. struct drm_crtc *crtc;
  1418. unsigned long line_time_us;
  1419. int hdisplay, htotal, pixel_size, clock;
  1420. int line_count, line_size;
  1421. int small, large;
  1422. int entries;
  1423. if (!latency_ns) {
  1424. *fbc_wm = *display_wm = *cursor_wm = 0;
  1425. return false;
  1426. }
  1427. crtc = intel_get_crtc_for_plane(dev, plane);
  1428. hdisplay = crtc->mode.hdisplay;
  1429. htotal = crtc->mode.htotal;
  1430. clock = crtc->mode.clock;
  1431. pixel_size = crtc->fb->bits_per_pixel / 8;
  1432. line_time_us = (htotal * 1000) / clock;
  1433. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1434. line_size = hdisplay * pixel_size;
  1435. /* Use the minimum of the small and large buffer method for primary */
  1436. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1437. large = line_count * line_size;
  1438. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1439. *display_wm = entries + display->guard_size;
  1440. /*
  1441. * Spec says:
  1442. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1443. */
  1444. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1445. /* calculate the self-refresh watermark for display cursor */
  1446. entries = line_count * pixel_size * 64;
  1447. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1448. *cursor_wm = entries + cursor->guard_size;
  1449. return ironlake_check_srwm(dev, level,
  1450. *fbc_wm, *display_wm, *cursor_wm,
  1451. display, cursor);
  1452. }
  1453. static void ironlake_update_wm(struct drm_device *dev)
  1454. {
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. int fbc_wm, plane_wm, cursor_wm;
  1457. unsigned int enabled;
  1458. enabled = 0;
  1459. if (g4x_compute_wm0(dev, 0,
  1460. &ironlake_display_wm_info,
  1461. ILK_LP0_PLANE_LATENCY,
  1462. &ironlake_cursor_wm_info,
  1463. ILK_LP0_CURSOR_LATENCY,
  1464. &plane_wm, &cursor_wm)) {
  1465. I915_WRITE(WM0_PIPEA_ILK,
  1466. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1467. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1468. " plane %d, " "cursor: %d\n",
  1469. plane_wm, cursor_wm);
  1470. enabled |= 1;
  1471. }
  1472. if (g4x_compute_wm0(dev, 1,
  1473. &ironlake_display_wm_info,
  1474. ILK_LP0_PLANE_LATENCY,
  1475. &ironlake_cursor_wm_info,
  1476. ILK_LP0_CURSOR_LATENCY,
  1477. &plane_wm, &cursor_wm)) {
  1478. I915_WRITE(WM0_PIPEB_ILK,
  1479. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1480. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1481. " plane %d, cursor: %d\n",
  1482. plane_wm, cursor_wm);
  1483. enabled |= 2;
  1484. }
  1485. /*
  1486. * Calculate and update the self-refresh watermark only when one
  1487. * display plane is used.
  1488. */
  1489. I915_WRITE(WM3_LP_ILK, 0);
  1490. I915_WRITE(WM2_LP_ILK, 0);
  1491. I915_WRITE(WM1_LP_ILK, 0);
  1492. if (!single_plane_enabled(enabled))
  1493. return;
  1494. enabled = ffs(enabled) - 1;
  1495. /* WM1 */
  1496. if (!ironlake_compute_srwm(dev, 1, enabled,
  1497. ILK_READ_WM1_LATENCY() * 500,
  1498. &ironlake_display_srwm_info,
  1499. &ironlake_cursor_srwm_info,
  1500. &fbc_wm, &plane_wm, &cursor_wm))
  1501. return;
  1502. I915_WRITE(WM1_LP_ILK,
  1503. WM1_LP_SR_EN |
  1504. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1505. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1506. (plane_wm << WM1_LP_SR_SHIFT) |
  1507. cursor_wm);
  1508. /* WM2 */
  1509. if (!ironlake_compute_srwm(dev, 2, enabled,
  1510. ILK_READ_WM2_LATENCY() * 500,
  1511. &ironlake_display_srwm_info,
  1512. &ironlake_cursor_srwm_info,
  1513. &fbc_wm, &plane_wm, &cursor_wm))
  1514. return;
  1515. I915_WRITE(WM2_LP_ILK,
  1516. WM2_LP_EN |
  1517. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1518. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1519. (plane_wm << WM1_LP_SR_SHIFT) |
  1520. cursor_wm);
  1521. /*
  1522. * WM3 is unsupported on ILK, probably because we don't have latency
  1523. * data for that power state
  1524. */
  1525. }
  1526. static void sandybridge_update_wm(struct drm_device *dev)
  1527. {
  1528. struct drm_i915_private *dev_priv = dev->dev_private;
  1529. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1530. u32 val;
  1531. int fbc_wm, plane_wm, cursor_wm;
  1532. unsigned int enabled;
  1533. enabled = 0;
  1534. if (g4x_compute_wm0(dev, 0,
  1535. &sandybridge_display_wm_info, latency,
  1536. &sandybridge_cursor_wm_info, latency,
  1537. &plane_wm, &cursor_wm)) {
  1538. val = I915_READ(WM0_PIPEA_ILK);
  1539. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1540. I915_WRITE(WM0_PIPEA_ILK, val |
  1541. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1542. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1543. " plane %d, " "cursor: %d\n",
  1544. plane_wm, cursor_wm);
  1545. enabled |= 1;
  1546. }
  1547. if (g4x_compute_wm0(dev, 1,
  1548. &sandybridge_display_wm_info, latency,
  1549. &sandybridge_cursor_wm_info, latency,
  1550. &plane_wm, &cursor_wm)) {
  1551. val = I915_READ(WM0_PIPEB_ILK);
  1552. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1553. I915_WRITE(WM0_PIPEB_ILK, val |
  1554. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1555. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1556. " plane %d, cursor: %d\n",
  1557. plane_wm, cursor_wm);
  1558. enabled |= 2;
  1559. }
  1560. if ((dev_priv->num_pipe == 3) &&
  1561. g4x_compute_wm0(dev, 2,
  1562. &sandybridge_display_wm_info, latency,
  1563. &sandybridge_cursor_wm_info, latency,
  1564. &plane_wm, &cursor_wm)) {
  1565. val = I915_READ(WM0_PIPEC_IVB);
  1566. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1567. I915_WRITE(WM0_PIPEC_IVB, val |
  1568. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1569. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1570. " plane %d, cursor: %d\n",
  1571. plane_wm, cursor_wm);
  1572. enabled |= 3;
  1573. }
  1574. /*
  1575. * Calculate and update the self-refresh watermark only when one
  1576. * display plane is used.
  1577. *
  1578. * SNB support 3 levels of watermark.
  1579. *
  1580. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1581. * and disabled in the descending order
  1582. *
  1583. */
  1584. I915_WRITE(WM3_LP_ILK, 0);
  1585. I915_WRITE(WM2_LP_ILK, 0);
  1586. I915_WRITE(WM1_LP_ILK, 0);
  1587. if (!single_plane_enabled(enabled) ||
  1588. dev_priv->sprite_scaling_enabled)
  1589. return;
  1590. enabled = ffs(enabled) - 1;
  1591. /* WM1 */
  1592. if (!ironlake_compute_srwm(dev, 1, enabled,
  1593. SNB_READ_WM1_LATENCY() * 500,
  1594. &sandybridge_display_srwm_info,
  1595. &sandybridge_cursor_srwm_info,
  1596. &fbc_wm, &plane_wm, &cursor_wm))
  1597. return;
  1598. I915_WRITE(WM1_LP_ILK,
  1599. WM1_LP_SR_EN |
  1600. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1601. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1602. (plane_wm << WM1_LP_SR_SHIFT) |
  1603. cursor_wm);
  1604. /* WM2 */
  1605. if (!ironlake_compute_srwm(dev, 2, enabled,
  1606. SNB_READ_WM2_LATENCY() * 500,
  1607. &sandybridge_display_srwm_info,
  1608. &sandybridge_cursor_srwm_info,
  1609. &fbc_wm, &plane_wm, &cursor_wm))
  1610. return;
  1611. I915_WRITE(WM2_LP_ILK,
  1612. WM2_LP_EN |
  1613. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1614. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1615. (plane_wm << WM1_LP_SR_SHIFT) |
  1616. cursor_wm);
  1617. /* WM3 */
  1618. if (!ironlake_compute_srwm(dev, 3, enabled,
  1619. SNB_READ_WM3_LATENCY() * 500,
  1620. &sandybridge_display_srwm_info,
  1621. &sandybridge_cursor_srwm_info,
  1622. &fbc_wm, &plane_wm, &cursor_wm))
  1623. return;
  1624. I915_WRITE(WM3_LP_ILK,
  1625. WM3_LP_EN |
  1626. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1627. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1628. (plane_wm << WM1_LP_SR_SHIFT) |
  1629. cursor_wm);
  1630. }
  1631. static void
  1632. haswell_update_linetime_wm(struct drm_device *dev, int pipe,
  1633. struct drm_display_mode *mode)
  1634. {
  1635. struct drm_i915_private *dev_priv = dev->dev_private;
  1636. u32 temp;
  1637. temp = I915_READ(PIPE_WM_LINETIME(pipe));
  1638. temp &= ~PIPE_WM_LINETIME_MASK;
  1639. /* The WM are computed with base on how long it takes to fill a single
  1640. * row at the given clock rate, multiplied by 8.
  1641. * */
  1642. temp |= PIPE_WM_LINETIME_TIME(
  1643. ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
  1644. /* IPS watermarks are only used by pipe A, and are ignored by
  1645. * pipes B and C. They are calculated similarly to the common
  1646. * linetime values, except that we are using CD clock frequency
  1647. * in MHz instead of pixel rate for the division.
  1648. *
  1649. * This is a placeholder for the IPS watermark calculation code.
  1650. */
  1651. I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
  1652. }
  1653. static bool
  1654. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  1655. uint32_t sprite_width, int pixel_size,
  1656. const struct intel_watermark_params *display,
  1657. int display_latency_ns, int *sprite_wm)
  1658. {
  1659. struct drm_crtc *crtc;
  1660. int clock;
  1661. int entries, tlb_miss;
  1662. crtc = intel_get_crtc_for_plane(dev, plane);
  1663. if (crtc->fb == NULL || !crtc->enabled) {
  1664. *sprite_wm = display->guard_size;
  1665. return false;
  1666. }
  1667. clock = crtc->mode.clock;
  1668. /* Use the small buffer method to calculate the sprite watermark */
  1669. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1670. tlb_miss = display->fifo_size*display->cacheline_size -
  1671. sprite_width * 8;
  1672. if (tlb_miss > 0)
  1673. entries += tlb_miss;
  1674. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1675. *sprite_wm = entries + display->guard_size;
  1676. if (*sprite_wm > (int)display->max_wm)
  1677. *sprite_wm = display->max_wm;
  1678. return true;
  1679. }
  1680. static bool
  1681. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  1682. uint32_t sprite_width, int pixel_size,
  1683. const struct intel_watermark_params *display,
  1684. int latency_ns, int *sprite_wm)
  1685. {
  1686. struct drm_crtc *crtc;
  1687. unsigned long line_time_us;
  1688. int clock;
  1689. int line_count, line_size;
  1690. int small, large;
  1691. int entries;
  1692. if (!latency_ns) {
  1693. *sprite_wm = 0;
  1694. return false;
  1695. }
  1696. crtc = intel_get_crtc_for_plane(dev, plane);
  1697. clock = crtc->mode.clock;
  1698. if (!clock) {
  1699. *sprite_wm = 0;
  1700. return false;
  1701. }
  1702. line_time_us = (sprite_width * 1000) / clock;
  1703. if (!line_time_us) {
  1704. *sprite_wm = 0;
  1705. return false;
  1706. }
  1707. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1708. line_size = sprite_width * pixel_size;
  1709. /* Use the minimum of the small and large buffer method for primary */
  1710. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1711. large = line_count * line_size;
  1712. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1713. *sprite_wm = entries + display->guard_size;
  1714. return *sprite_wm > 0x3ff ? false : true;
  1715. }
  1716. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  1717. uint32_t sprite_width, int pixel_size)
  1718. {
  1719. struct drm_i915_private *dev_priv = dev->dev_private;
  1720. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1721. u32 val;
  1722. int sprite_wm, reg;
  1723. int ret;
  1724. switch (pipe) {
  1725. case 0:
  1726. reg = WM0_PIPEA_ILK;
  1727. break;
  1728. case 1:
  1729. reg = WM0_PIPEB_ILK;
  1730. break;
  1731. case 2:
  1732. reg = WM0_PIPEC_IVB;
  1733. break;
  1734. default:
  1735. return; /* bad pipe */
  1736. }
  1737. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  1738. &sandybridge_display_wm_info,
  1739. latency, &sprite_wm);
  1740. if (!ret) {
  1741. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  1742. pipe);
  1743. return;
  1744. }
  1745. val = I915_READ(reg);
  1746. val &= ~WM0_PIPE_SPRITE_MASK;
  1747. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  1748. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  1749. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1750. pixel_size,
  1751. &sandybridge_display_srwm_info,
  1752. SNB_READ_WM1_LATENCY() * 500,
  1753. &sprite_wm);
  1754. if (!ret) {
  1755. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  1756. pipe);
  1757. return;
  1758. }
  1759. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  1760. /* Only IVB has two more LP watermarks for sprite */
  1761. if (!IS_IVYBRIDGE(dev))
  1762. return;
  1763. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1764. pixel_size,
  1765. &sandybridge_display_srwm_info,
  1766. SNB_READ_WM2_LATENCY() * 500,
  1767. &sprite_wm);
  1768. if (!ret) {
  1769. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  1770. pipe);
  1771. return;
  1772. }
  1773. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  1774. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1775. pixel_size,
  1776. &sandybridge_display_srwm_info,
  1777. SNB_READ_WM3_LATENCY() * 500,
  1778. &sprite_wm);
  1779. if (!ret) {
  1780. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  1781. pipe);
  1782. return;
  1783. }
  1784. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  1785. }
  1786. /**
  1787. * intel_update_watermarks - update FIFO watermark values based on current modes
  1788. *
  1789. * Calculate watermark values for the various WM regs based on current mode
  1790. * and plane configuration.
  1791. *
  1792. * There are several cases to deal with here:
  1793. * - normal (i.e. non-self-refresh)
  1794. * - self-refresh (SR) mode
  1795. * - lines are large relative to FIFO size (buffer can hold up to 2)
  1796. * - lines are small relative to FIFO size (buffer can hold more than 2
  1797. * lines), so need to account for TLB latency
  1798. *
  1799. * The normal calculation is:
  1800. * watermark = dotclock * bytes per pixel * latency
  1801. * where latency is platform & configuration dependent (we assume pessimal
  1802. * values here).
  1803. *
  1804. * The SR calculation is:
  1805. * watermark = (trunc(latency/line time)+1) * surface width *
  1806. * bytes per pixel
  1807. * where
  1808. * line time = htotal / dotclock
  1809. * surface width = hdisplay for normal plane and 64 for cursor
  1810. * and latency is assumed to be high, as above.
  1811. *
  1812. * The final value programmed to the register should always be rounded up,
  1813. * and include an extra 2 entries to account for clock crossings.
  1814. *
  1815. * We don't use the sprite, so we can ignore that. And on Crestline we have
  1816. * to set the non-SR watermarks to 8.
  1817. */
  1818. void intel_update_watermarks(struct drm_device *dev)
  1819. {
  1820. struct drm_i915_private *dev_priv = dev->dev_private;
  1821. if (dev_priv->display.update_wm)
  1822. dev_priv->display.update_wm(dev);
  1823. }
  1824. void intel_update_linetime_watermarks(struct drm_device *dev,
  1825. int pipe, struct drm_display_mode *mode)
  1826. {
  1827. struct drm_i915_private *dev_priv = dev->dev_private;
  1828. if (dev_priv->display.update_linetime_wm)
  1829. dev_priv->display.update_linetime_wm(dev, pipe, mode);
  1830. }
  1831. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  1832. uint32_t sprite_width, int pixel_size)
  1833. {
  1834. struct drm_i915_private *dev_priv = dev->dev_private;
  1835. if (dev_priv->display.update_sprite_wm)
  1836. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  1837. pixel_size);
  1838. }
  1839. static struct drm_i915_gem_object *
  1840. intel_alloc_context_page(struct drm_device *dev)
  1841. {
  1842. struct drm_i915_gem_object *ctx;
  1843. int ret;
  1844. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  1845. ctx = i915_gem_alloc_object(dev, 4096);
  1846. if (!ctx) {
  1847. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  1848. return NULL;
  1849. }
  1850. ret = i915_gem_object_pin(ctx, 4096, true);
  1851. if (ret) {
  1852. DRM_ERROR("failed to pin power context: %d\n", ret);
  1853. goto err_unref;
  1854. }
  1855. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  1856. if (ret) {
  1857. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  1858. goto err_unpin;
  1859. }
  1860. return ctx;
  1861. err_unpin:
  1862. i915_gem_object_unpin(ctx);
  1863. err_unref:
  1864. drm_gem_object_unreference(&ctx->base);
  1865. mutex_unlock(&dev->struct_mutex);
  1866. return NULL;
  1867. }
  1868. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  1869. {
  1870. struct drm_i915_private *dev_priv = dev->dev_private;
  1871. u16 rgvswctl;
  1872. rgvswctl = I915_READ16(MEMSWCTL);
  1873. if (rgvswctl & MEMCTL_CMD_STS) {
  1874. DRM_DEBUG("gpu busy, RCS change rejected\n");
  1875. return false; /* still busy with another command */
  1876. }
  1877. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  1878. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  1879. I915_WRITE16(MEMSWCTL, rgvswctl);
  1880. POSTING_READ16(MEMSWCTL);
  1881. rgvswctl |= MEMCTL_CMD_STS;
  1882. I915_WRITE16(MEMSWCTL, rgvswctl);
  1883. return true;
  1884. }
  1885. void ironlake_enable_drps(struct drm_device *dev)
  1886. {
  1887. struct drm_i915_private *dev_priv = dev->dev_private;
  1888. u32 rgvmodectl = I915_READ(MEMMODECTL);
  1889. u8 fmax, fmin, fstart, vstart;
  1890. /* Enable temp reporting */
  1891. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  1892. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  1893. /* 100ms RC evaluation intervals */
  1894. I915_WRITE(RCUPEI, 100000);
  1895. I915_WRITE(RCDNEI, 100000);
  1896. /* Set max/min thresholds to 90ms and 80ms respectively */
  1897. I915_WRITE(RCBMAXAVG, 90000);
  1898. I915_WRITE(RCBMINAVG, 80000);
  1899. I915_WRITE(MEMIHYST, 1);
  1900. /* Set up min, max, and cur for interrupt handling */
  1901. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  1902. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  1903. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  1904. MEMMODE_FSTART_SHIFT;
  1905. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  1906. PXVFREQ_PX_SHIFT;
  1907. dev_priv->fmax = fmax; /* IPS callback will increase this */
  1908. dev_priv->fstart = fstart;
  1909. dev_priv->max_delay = fstart;
  1910. dev_priv->min_delay = fmin;
  1911. dev_priv->cur_delay = fstart;
  1912. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  1913. fmax, fmin, fstart);
  1914. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  1915. /*
  1916. * Interrupts will be enabled in ironlake_irq_postinstall
  1917. */
  1918. I915_WRITE(VIDSTART, vstart);
  1919. POSTING_READ(VIDSTART);
  1920. rgvmodectl |= MEMMODE_SWMODE_EN;
  1921. I915_WRITE(MEMMODECTL, rgvmodectl);
  1922. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  1923. DRM_ERROR("stuck trying to change perf mode\n");
  1924. msleep(1);
  1925. ironlake_set_drps(dev, fstart);
  1926. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  1927. I915_READ(0x112e0);
  1928. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  1929. dev_priv->last_count2 = I915_READ(0x112f4);
  1930. getrawmonotonic(&dev_priv->last_time2);
  1931. }
  1932. void ironlake_disable_drps(struct drm_device *dev)
  1933. {
  1934. struct drm_i915_private *dev_priv = dev->dev_private;
  1935. u16 rgvswctl = I915_READ16(MEMSWCTL);
  1936. /* Ack interrupts, disable EFC interrupt */
  1937. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  1938. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  1939. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  1940. I915_WRITE(DEIIR, DE_PCU_EVENT);
  1941. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  1942. /* Go back to the starting frequency */
  1943. ironlake_set_drps(dev, dev_priv->fstart);
  1944. msleep(1);
  1945. rgvswctl |= MEMCTL_CMD_STS;
  1946. I915_WRITE(MEMSWCTL, rgvswctl);
  1947. msleep(1);
  1948. }
  1949. void gen6_set_rps(struct drm_device *dev, u8 val)
  1950. {
  1951. struct drm_i915_private *dev_priv = dev->dev_private;
  1952. u32 swreq;
  1953. swreq = (val & 0x3ff) << 25;
  1954. I915_WRITE(GEN6_RPNSWREQ, swreq);
  1955. }
  1956. void gen6_disable_rps(struct drm_device *dev)
  1957. {
  1958. struct drm_i915_private *dev_priv = dev->dev_private;
  1959. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  1960. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  1961. I915_WRITE(GEN6_PMIER, 0);
  1962. /* Complete PM interrupt masking here doesn't race with the rps work
  1963. * item again unmasking PM interrupts because that is using a different
  1964. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  1965. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  1966. spin_lock_irq(&dev_priv->rps_lock);
  1967. dev_priv->pm_iir = 0;
  1968. spin_unlock_irq(&dev_priv->rps_lock);
  1969. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  1970. }
  1971. int intel_enable_rc6(const struct drm_device *dev)
  1972. {
  1973. /*
  1974. * Respect the kernel parameter if it is set
  1975. */
  1976. if (i915_enable_rc6 >= 0)
  1977. return i915_enable_rc6;
  1978. /*
  1979. * Disable RC6 on Ironlake
  1980. */
  1981. if (INTEL_INFO(dev)->gen == 5)
  1982. return 0;
  1983. /* Sorry Haswell, no RC6 for you for now. */
  1984. if (IS_HASWELL(dev))
  1985. return 0;
  1986. /*
  1987. * Disable rc6 on Sandybridge
  1988. */
  1989. if (INTEL_INFO(dev)->gen == 6) {
  1990. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  1991. return INTEL_RC6_ENABLE;
  1992. }
  1993. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  1994. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  1995. }
  1996. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  1997. {
  1998. struct intel_ring_buffer *ring;
  1999. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2000. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2001. u32 pcu_mbox, rc6_mask = 0;
  2002. u32 gtfifodbg;
  2003. int cur_freq, min_freq, max_freq;
  2004. int rc6_mode;
  2005. int i;
  2006. /* Here begins a magic sequence of register writes to enable
  2007. * auto-downclocking.
  2008. *
  2009. * Perhaps there might be some value in exposing these to
  2010. * userspace...
  2011. */
  2012. I915_WRITE(GEN6_RC_STATE, 0);
  2013. mutex_lock(&dev_priv->dev->struct_mutex);
  2014. /* Clear the DBG now so we don't confuse earlier errors */
  2015. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2016. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2017. I915_WRITE(GTFIFODBG, gtfifodbg);
  2018. }
  2019. gen6_gt_force_wake_get(dev_priv);
  2020. /* disable the counters and set deterministic thresholds */
  2021. I915_WRITE(GEN6_RC_CONTROL, 0);
  2022. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2023. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2024. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2025. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2026. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2027. for_each_ring(ring, dev_priv, i)
  2028. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2029. I915_WRITE(GEN6_RC_SLEEP, 0);
  2030. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  2031. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  2032. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  2033. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  2034. rc6_mode = intel_enable_rc6(dev_priv->dev);
  2035. if (rc6_mode & INTEL_RC6_ENABLE)
  2036. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  2037. if (rc6_mode & INTEL_RC6p_ENABLE)
  2038. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  2039. if (rc6_mode & INTEL_RC6pp_ENABLE)
  2040. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  2041. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2042. (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
  2043. (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
  2044. (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
  2045. I915_WRITE(GEN6_RC_CONTROL,
  2046. rc6_mask |
  2047. GEN6_RC_CTL_EI_MODE(1) |
  2048. GEN6_RC_CTL_HW_ENABLE);
  2049. I915_WRITE(GEN6_RPNSWREQ,
  2050. GEN6_FREQUENCY(10) |
  2051. GEN6_OFFSET(0) |
  2052. GEN6_AGGRESSIVE_TURBO);
  2053. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2054. GEN6_FREQUENCY(12));
  2055. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  2056. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2057. 18 << 24 |
  2058. 6 << 16);
  2059. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  2060. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  2061. I915_WRITE(GEN6_RP_UP_EI, 100000);
  2062. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  2063. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2064. I915_WRITE(GEN6_RP_CONTROL,
  2065. GEN6_RP_MEDIA_TURBO |
  2066. GEN6_RP_MEDIA_HW_MODE |
  2067. GEN6_RP_MEDIA_IS_GFX |
  2068. GEN6_RP_ENABLE |
  2069. GEN6_RP_UP_BUSY_AVG |
  2070. GEN6_RP_DOWN_IDLE_CONT);
  2071. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  2072. 500))
  2073. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  2074. I915_WRITE(GEN6_PCODE_DATA, 0);
  2075. I915_WRITE(GEN6_PCODE_MAILBOX,
  2076. GEN6_PCODE_READY |
  2077. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  2078. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  2079. 500))
  2080. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  2081. min_freq = (rp_state_cap & 0xff0000) >> 16;
  2082. max_freq = rp_state_cap & 0xff;
  2083. cur_freq = (gt_perf_status & 0xff00) >> 8;
  2084. /* Check for overclock support */
  2085. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  2086. 500))
  2087. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  2088. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  2089. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  2090. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  2091. 500))
  2092. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  2093. if (pcu_mbox & (1<<31)) { /* OC supported */
  2094. max_freq = pcu_mbox & 0xff;
  2095. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  2096. }
  2097. /* In units of 100MHz */
  2098. dev_priv->max_delay = max_freq;
  2099. dev_priv->min_delay = min_freq;
  2100. dev_priv->cur_delay = cur_freq;
  2101. /* requires MSI enabled */
  2102. I915_WRITE(GEN6_PMIER,
  2103. GEN6_PM_MBOX_EVENT |
  2104. GEN6_PM_THERMAL_EVENT |
  2105. GEN6_PM_RP_DOWN_TIMEOUT |
  2106. GEN6_PM_RP_UP_THRESHOLD |
  2107. GEN6_PM_RP_DOWN_THRESHOLD |
  2108. GEN6_PM_RP_UP_EI_EXPIRED |
  2109. GEN6_PM_RP_DOWN_EI_EXPIRED);
  2110. spin_lock_irq(&dev_priv->rps_lock);
  2111. WARN_ON(dev_priv->pm_iir != 0);
  2112. I915_WRITE(GEN6_PMIMR, 0);
  2113. spin_unlock_irq(&dev_priv->rps_lock);
  2114. /* enable all PM interrupts */
  2115. I915_WRITE(GEN6_PMINTRMSK, 0);
  2116. gen6_gt_force_wake_put(dev_priv);
  2117. mutex_unlock(&dev_priv->dev->struct_mutex);
  2118. }
  2119. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  2120. {
  2121. int min_freq = 15;
  2122. int gpu_freq, ia_freq, max_ia_freq;
  2123. int scaling_factor = 180;
  2124. max_ia_freq = cpufreq_quick_get_max(0);
  2125. /*
  2126. * Default to measured freq if none found, PCU will ensure we don't go
  2127. * over
  2128. */
  2129. if (!max_ia_freq)
  2130. max_ia_freq = tsc_khz;
  2131. /* Convert from kHz to MHz */
  2132. max_ia_freq /= 1000;
  2133. mutex_lock(&dev_priv->dev->struct_mutex);
  2134. /*
  2135. * For each potential GPU frequency, load a ring frequency we'd like
  2136. * to use for memory access. We do this by specifying the IA frequency
  2137. * the PCU should use as a reference to determine the ring frequency.
  2138. */
  2139. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  2140. gpu_freq--) {
  2141. int diff = dev_priv->max_delay - gpu_freq;
  2142. /*
  2143. * For GPU frequencies less than 750MHz, just use the lowest
  2144. * ring freq.
  2145. */
  2146. if (gpu_freq < min_freq)
  2147. ia_freq = 800;
  2148. else
  2149. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  2150. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  2151. I915_WRITE(GEN6_PCODE_DATA,
  2152. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  2153. gpu_freq);
  2154. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  2155. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  2156. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  2157. GEN6_PCODE_READY) == 0, 10)) {
  2158. DRM_ERROR("pcode write of freq table timed out\n");
  2159. continue;
  2160. }
  2161. }
  2162. mutex_unlock(&dev_priv->dev->struct_mutex);
  2163. }
  2164. static void ironlake_teardown_rc6(struct drm_device *dev)
  2165. {
  2166. struct drm_i915_private *dev_priv = dev->dev_private;
  2167. if (dev_priv->renderctx) {
  2168. i915_gem_object_unpin(dev_priv->renderctx);
  2169. drm_gem_object_unreference(&dev_priv->renderctx->base);
  2170. dev_priv->renderctx = NULL;
  2171. }
  2172. if (dev_priv->pwrctx) {
  2173. i915_gem_object_unpin(dev_priv->pwrctx);
  2174. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  2175. dev_priv->pwrctx = NULL;
  2176. }
  2177. }
  2178. void ironlake_disable_rc6(struct drm_device *dev)
  2179. {
  2180. struct drm_i915_private *dev_priv = dev->dev_private;
  2181. if (I915_READ(PWRCTXA)) {
  2182. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  2183. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  2184. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  2185. 50);
  2186. I915_WRITE(PWRCTXA, 0);
  2187. POSTING_READ(PWRCTXA);
  2188. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2189. POSTING_READ(RSTDBYCTL);
  2190. }
  2191. ironlake_teardown_rc6(dev);
  2192. }
  2193. static int ironlake_setup_rc6(struct drm_device *dev)
  2194. {
  2195. struct drm_i915_private *dev_priv = dev->dev_private;
  2196. if (dev_priv->renderctx == NULL)
  2197. dev_priv->renderctx = intel_alloc_context_page(dev);
  2198. if (!dev_priv->renderctx)
  2199. return -ENOMEM;
  2200. if (dev_priv->pwrctx == NULL)
  2201. dev_priv->pwrctx = intel_alloc_context_page(dev);
  2202. if (!dev_priv->pwrctx) {
  2203. ironlake_teardown_rc6(dev);
  2204. return -ENOMEM;
  2205. }
  2206. return 0;
  2207. }
  2208. void ironlake_enable_rc6(struct drm_device *dev)
  2209. {
  2210. struct drm_i915_private *dev_priv = dev->dev_private;
  2211. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  2212. int ret;
  2213. /* rc6 disabled by default due to repeated reports of hanging during
  2214. * boot and resume.
  2215. */
  2216. if (!intel_enable_rc6(dev))
  2217. return;
  2218. mutex_lock(&dev->struct_mutex);
  2219. ret = ironlake_setup_rc6(dev);
  2220. if (ret) {
  2221. mutex_unlock(&dev->struct_mutex);
  2222. return;
  2223. }
  2224. /*
  2225. * GPU can automatically power down the render unit if given a page
  2226. * to save state.
  2227. */
  2228. ret = intel_ring_begin(ring, 6);
  2229. if (ret) {
  2230. ironlake_teardown_rc6(dev);
  2231. mutex_unlock(&dev->struct_mutex);
  2232. return;
  2233. }
  2234. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  2235. intel_ring_emit(ring, MI_SET_CONTEXT);
  2236. intel_ring_emit(ring, dev_priv->renderctx->gtt_offset |
  2237. MI_MM_SPACE_GTT |
  2238. MI_SAVE_EXT_STATE_EN |
  2239. MI_RESTORE_EXT_STATE_EN |
  2240. MI_RESTORE_INHIBIT);
  2241. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  2242. intel_ring_emit(ring, MI_NOOP);
  2243. intel_ring_emit(ring, MI_FLUSH);
  2244. intel_ring_advance(ring);
  2245. /*
  2246. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  2247. * does an implicit flush, combined with MI_FLUSH above, it should be
  2248. * safe to assume that renderctx is valid
  2249. */
  2250. ret = intel_wait_ring_idle(ring);
  2251. if (ret) {
  2252. DRM_ERROR("failed to enable ironlake power power savings\n");
  2253. ironlake_teardown_rc6(dev);
  2254. mutex_unlock(&dev->struct_mutex);
  2255. return;
  2256. }
  2257. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  2258. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2259. mutex_unlock(&dev->struct_mutex);
  2260. }
  2261. static unsigned long intel_pxfreq(u32 vidfreq)
  2262. {
  2263. unsigned long freq;
  2264. int div = (vidfreq & 0x3f0000) >> 16;
  2265. int post = (vidfreq & 0x3000) >> 12;
  2266. int pre = (vidfreq & 0x7);
  2267. if (!pre)
  2268. return 0;
  2269. freq = ((div * 133333) / ((1<<post) * pre));
  2270. return freq;
  2271. }
  2272. static const struct cparams {
  2273. u16 i;
  2274. u16 t;
  2275. u16 m;
  2276. u16 c;
  2277. } cparams[] = {
  2278. { 1, 1333, 301, 28664 },
  2279. { 1, 1066, 294, 24460 },
  2280. { 1, 800, 294, 25192 },
  2281. { 0, 1333, 276, 27605 },
  2282. { 0, 1066, 276, 27605 },
  2283. { 0, 800, 231, 23784 },
  2284. };
  2285. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  2286. {
  2287. u64 total_count, diff, ret;
  2288. u32 count1, count2, count3, m = 0, c = 0;
  2289. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  2290. int i;
  2291. diff1 = now - dev_priv->last_time1;
  2292. /* Prevent division-by-zero if we are asking too fast.
  2293. * Also, we don't get interesting results if we are polling
  2294. * faster than once in 10ms, so just return the saved value
  2295. * in such cases.
  2296. */
  2297. if (diff1 <= 10)
  2298. return dev_priv->chipset_power;
  2299. count1 = I915_READ(DMIEC);
  2300. count2 = I915_READ(DDREC);
  2301. count3 = I915_READ(CSIEC);
  2302. total_count = count1 + count2 + count3;
  2303. /* FIXME: handle per-counter overflow */
  2304. if (total_count < dev_priv->last_count1) {
  2305. diff = ~0UL - dev_priv->last_count1;
  2306. diff += total_count;
  2307. } else {
  2308. diff = total_count - dev_priv->last_count1;
  2309. }
  2310. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  2311. if (cparams[i].i == dev_priv->c_m &&
  2312. cparams[i].t == dev_priv->r_t) {
  2313. m = cparams[i].m;
  2314. c = cparams[i].c;
  2315. break;
  2316. }
  2317. }
  2318. diff = div_u64(diff, diff1);
  2319. ret = ((m * diff) + c);
  2320. ret = div_u64(ret, 10);
  2321. dev_priv->last_count1 = total_count;
  2322. dev_priv->last_time1 = now;
  2323. dev_priv->chipset_power = ret;
  2324. return ret;
  2325. }
  2326. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  2327. {
  2328. unsigned long m, x, b;
  2329. u32 tsfs;
  2330. tsfs = I915_READ(TSFS);
  2331. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  2332. x = I915_READ8(TR1);
  2333. b = tsfs & TSFS_INTR_MASK;
  2334. return ((m * x) / 127) - b;
  2335. }
  2336. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  2337. {
  2338. static const struct v_table {
  2339. u16 vd; /* in .1 mil */
  2340. u16 vm; /* in .1 mil */
  2341. } v_table[] = {
  2342. { 0, 0, },
  2343. { 375, 0, },
  2344. { 500, 0, },
  2345. { 625, 0, },
  2346. { 750, 0, },
  2347. { 875, 0, },
  2348. { 1000, 0, },
  2349. { 1125, 0, },
  2350. { 4125, 3000, },
  2351. { 4125, 3000, },
  2352. { 4125, 3000, },
  2353. { 4125, 3000, },
  2354. { 4125, 3000, },
  2355. { 4125, 3000, },
  2356. { 4125, 3000, },
  2357. { 4125, 3000, },
  2358. { 4125, 3000, },
  2359. { 4125, 3000, },
  2360. { 4125, 3000, },
  2361. { 4125, 3000, },
  2362. { 4125, 3000, },
  2363. { 4125, 3000, },
  2364. { 4125, 3000, },
  2365. { 4125, 3000, },
  2366. { 4125, 3000, },
  2367. { 4125, 3000, },
  2368. { 4125, 3000, },
  2369. { 4125, 3000, },
  2370. { 4125, 3000, },
  2371. { 4125, 3000, },
  2372. { 4125, 3000, },
  2373. { 4125, 3000, },
  2374. { 4250, 3125, },
  2375. { 4375, 3250, },
  2376. { 4500, 3375, },
  2377. { 4625, 3500, },
  2378. { 4750, 3625, },
  2379. { 4875, 3750, },
  2380. { 5000, 3875, },
  2381. { 5125, 4000, },
  2382. { 5250, 4125, },
  2383. { 5375, 4250, },
  2384. { 5500, 4375, },
  2385. { 5625, 4500, },
  2386. { 5750, 4625, },
  2387. { 5875, 4750, },
  2388. { 6000, 4875, },
  2389. { 6125, 5000, },
  2390. { 6250, 5125, },
  2391. { 6375, 5250, },
  2392. { 6500, 5375, },
  2393. { 6625, 5500, },
  2394. { 6750, 5625, },
  2395. { 6875, 5750, },
  2396. { 7000, 5875, },
  2397. { 7125, 6000, },
  2398. { 7250, 6125, },
  2399. { 7375, 6250, },
  2400. { 7500, 6375, },
  2401. { 7625, 6500, },
  2402. { 7750, 6625, },
  2403. { 7875, 6750, },
  2404. { 8000, 6875, },
  2405. { 8125, 7000, },
  2406. { 8250, 7125, },
  2407. { 8375, 7250, },
  2408. { 8500, 7375, },
  2409. { 8625, 7500, },
  2410. { 8750, 7625, },
  2411. { 8875, 7750, },
  2412. { 9000, 7875, },
  2413. { 9125, 8000, },
  2414. { 9250, 8125, },
  2415. { 9375, 8250, },
  2416. { 9500, 8375, },
  2417. { 9625, 8500, },
  2418. { 9750, 8625, },
  2419. { 9875, 8750, },
  2420. { 10000, 8875, },
  2421. { 10125, 9000, },
  2422. { 10250, 9125, },
  2423. { 10375, 9250, },
  2424. { 10500, 9375, },
  2425. { 10625, 9500, },
  2426. { 10750, 9625, },
  2427. { 10875, 9750, },
  2428. { 11000, 9875, },
  2429. { 11125, 10000, },
  2430. { 11250, 10125, },
  2431. { 11375, 10250, },
  2432. { 11500, 10375, },
  2433. { 11625, 10500, },
  2434. { 11750, 10625, },
  2435. { 11875, 10750, },
  2436. { 12000, 10875, },
  2437. { 12125, 11000, },
  2438. { 12250, 11125, },
  2439. { 12375, 11250, },
  2440. { 12500, 11375, },
  2441. { 12625, 11500, },
  2442. { 12750, 11625, },
  2443. { 12875, 11750, },
  2444. { 13000, 11875, },
  2445. { 13125, 12000, },
  2446. { 13250, 12125, },
  2447. { 13375, 12250, },
  2448. { 13500, 12375, },
  2449. { 13625, 12500, },
  2450. { 13750, 12625, },
  2451. { 13875, 12750, },
  2452. { 14000, 12875, },
  2453. { 14125, 13000, },
  2454. { 14250, 13125, },
  2455. { 14375, 13250, },
  2456. { 14500, 13375, },
  2457. { 14625, 13500, },
  2458. { 14750, 13625, },
  2459. { 14875, 13750, },
  2460. { 15000, 13875, },
  2461. { 15125, 14000, },
  2462. { 15250, 14125, },
  2463. { 15375, 14250, },
  2464. { 15500, 14375, },
  2465. { 15625, 14500, },
  2466. { 15750, 14625, },
  2467. { 15875, 14750, },
  2468. { 16000, 14875, },
  2469. { 16125, 15000, },
  2470. };
  2471. if (dev_priv->info->is_mobile)
  2472. return v_table[pxvid].vm;
  2473. else
  2474. return v_table[pxvid].vd;
  2475. }
  2476. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2477. {
  2478. struct timespec now, diff1;
  2479. u64 diff;
  2480. unsigned long diffms;
  2481. u32 count;
  2482. if (dev_priv->info->gen != 5)
  2483. return;
  2484. getrawmonotonic(&now);
  2485. diff1 = timespec_sub(now, dev_priv->last_time2);
  2486. /* Don't divide by 0 */
  2487. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  2488. if (!diffms)
  2489. return;
  2490. count = I915_READ(GFXEC);
  2491. if (count < dev_priv->last_count2) {
  2492. diff = ~0UL - dev_priv->last_count2;
  2493. diff += count;
  2494. } else {
  2495. diff = count - dev_priv->last_count2;
  2496. }
  2497. dev_priv->last_count2 = count;
  2498. dev_priv->last_time2 = now;
  2499. /* More magic constants... */
  2500. diff = diff * 1181;
  2501. diff = div_u64(diff, diffms * 10);
  2502. dev_priv->gfx_power = diff;
  2503. }
  2504. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  2505. {
  2506. unsigned long t, corr, state1, corr2, state2;
  2507. u32 pxvid, ext_v;
  2508. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->cur_delay * 4));
  2509. pxvid = (pxvid >> 24) & 0x7f;
  2510. ext_v = pvid_to_extvid(dev_priv, pxvid);
  2511. state1 = ext_v;
  2512. t = i915_mch_val(dev_priv);
  2513. /* Revel in the empirically derived constants */
  2514. /* Correction factor in 1/100000 units */
  2515. if (t > 80)
  2516. corr = ((t * 2349) + 135940);
  2517. else if (t >= 50)
  2518. corr = ((t * 964) + 29317);
  2519. else /* < 50 */
  2520. corr = ((t * 301) + 1004);
  2521. corr = corr * ((150142 * state1) / 10000 - 78642);
  2522. corr /= 100000;
  2523. corr2 = (corr * dev_priv->corr);
  2524. state2 = (corr2 * state1) / 10000;
  2525. state2 /= 100; /* convert to mW */
  2526. i915_update_gfx_val(dev_priv);
  2527. return dev_priv->gfx_power + state2;
  2528. }
  2529. /* Global for IPS driver to get at the current i915 device */
  2530. static struct drm_i915_private *i915_mch_dev;
  2531. /*
  2532. * Lock protecting IPS related data structures
  2533. * - i915_mch_dev
  2534. * - dev_priv->max_delay
  2535. * - dev_priv->min_delay
  2536. * - dev_priv->fmax
  2537. * - dev_priv->gpu_busy
  2538. */
  2539. static DEFINE_SPINLOCK(mchdev_lock);
  2540. /**
  2541. * i915_read_mch_val - return value for IPS use
  2542. *
  2543. * Calculate and return a value for the IPS driver to use when deciding whether
  2544. * we have thermal and power headroom to increase CPU or GPU power budget.
  2545. */
  2546. unsigned long i915_read_mch_val(void)
  2547. {
  2548. struct drm_i915_private *dev_priv;
  2549. unsigned long chipset_val, graphics_val, ret = 0;
  2550. spin_lock(&mchdev_lock);
  2551. if (!i915_mch_dev)
  2552. goto out_unlock;
  2553. dev_priv = i915_mch_dev;
  2554. chipset_val = i915_chipset_val(dev_priv);
  2555. graphics_val = i915_gfx_val(dev_priv);
  2556. ret = chipset_val + graphics_val;
  2557. out_unlock:
  2558. spin_unlock(&mchdev_lock);
  2559. return ret;
  2560. }
  2561. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  2562. /**
  2563. * i915_gpu_raise - raise GPU frequency limit
  2564. *
  2565. * Raise the limit; IPS indicates we have thermal headroom.
  2566. */
  2567. bool i915_gpu_raise(void)
  2568. {
  2569. struct drm_i915_private *dev_priv;
  2570. bool ret = true;
  2571. spin_lock(&mchdev_lock);
  2572. if (!i915_mch_dev) {
  2573. ret = false;
  2574. goto out_unlock;
  2575. }
  2576. dev_priv = i915_mch_dev;
  2577. if (dev_priv->max_delay > dev_priv->fmax)
  2578. dev_priv->max_delay--;
  2579. out_unlock:
  2580. spin_unlock(&mchdev_lock);
  2581. return ret;
  2582. }
  2583. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  2584. /**
  2585. * i915_gpu_lower - lower GPU frequency limit
  2586. *
  2587. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  2588. * frequency maximum.
  2589. */
  2590. bool i915_gpu_lower(void)
  2591. {
  2592. struct drm_i915_private *dev_priv;
  2593. bool ret = true;
  2594. spin_lock(&mchdev_lock);
  2595. if (!i915_mch_dev) {
  2596. ret = false;
  2597. goto out_unlock;
  2598. }
  2599. dev_priv = i915_mch_dev;
  2600. if (dev_priv->max_delay < dev_priv->min_delay)
  2601. dev_priv->max_delay++;
  2602. out_unlock:
  2603. spin_unlock(&mchdev_lock);
  2604. return ret;
  2605. }
  2606. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  2607. /**
  2608. * i915_gpu_busy - indicate GPU business to IPS
  2609. *
  2610. * Tell the IPS driver whether or not the GPU is busy.
  2611. */
  2612. bool i915_gpu_busy(void)
  2613. {
  2614. struct drm_i915_private *dev_priv;
  2615. bool ret = false;
  2616. spin_lock(&mchdev_lock);
  2617. if (!i915_mch_dev)
  2618. goto out_unlock;
  2619. dev_priv = i915_mch_dev;
  2620. ret = dev_priv->busy;
  2621. out_unlock:
  2622. spin_unlock(&mchdev_lock);
  2623. return ret;
  2624. }
  2625. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  2626. /**
  2627. * i915_gpu_turbo_disable - disable graphics turbo
  2628. *
  2629. * Disable graphics turbo by resetting the max frequency and setting the
  2630. * current frequency to the default.
  2631. */
  2632. bool i915_gpu_turbo_disable(void)
  2633. {
  2634. struct drm_i915_private *dev_priv;
  2635. bool ret = true;
  2636. spin_lock(&mchdev_lock);
  2637. if (!i915_mch_dev) {
  2638. ret = false;
  2639. goto out_unlock;
  2640. }
  2641. dev_priv = i915_mch_dev;
  2642. dev_priv->max_delay = dev_priv->fstart;
  2643. if (!ironlake_set_drps(dev_priv->dev, dev_priv->fstart))
  2644. ret = false;
  2645. out_unlock:
  2646. spin_unlock(&mchdev_lock);
  2647. return ret;
  2648. }
  2649. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  2650. /**
  2651. * Tells the intel_ips driver that the i915 driver is now loaded, if
  2652. * IPS got loaded first.
  2653. *
  2654. * This awkward dance is so that neither module has to depend on the
  2655. * other in order for IPS to do the appropriate communication of
  2656. * GPU turbo limits to i915.
  2657. */
  2658. static void
  2659. ips_ping_for_i915_load(void)
  2660. {
  2661. void (*link)(void);
  2662. link = symbol_get(ips_link_to_i915_driver);
  2663. if (link) {
  2664. link();
  2665. symbol_put(ips_link_to_i915_driver);
  2666. }
  2667. }
  2668. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  2669. {
  2670. spin_lock(&mchdev_lock);
  2671. i915_mch_dev = dev_priv;
  2672. dev_priv->mchdev_lock = &mchdev_lock;
  2673. spin_unlock(&mchdev_lock);
  2674. ips_ping_for_i915_load();
  2675. }
  2676. void intel_gpu_ips_teardown(void)
  2677. {
  2678. spin_lock(&mchdev_lock);
  2679. i915_mch_dev = NULL;
  2680. spin_unlock(&mchdev_lock);
  2681. }
  2682. void intel_init_emon(struct drm_device *dev)
  2683. {
  2684. struct drm_i915_private *dev_priv = dev->dev_private;
  2685. u32 lcfuse;
  2686. u8 pxw[16];
  2687. int i;
  2688. /* Disable to program */
  2689. I915_WRITE(ECR, 0);
  2690. POSTING_READ(ECR);
  2691. /* Program energy weights for various events */
  2692. I915_WRITE(SDEW, 0x15040d00);
  2693. I915_WRITE(CSIEW0, 0x007f0000);
  2694. I915_WRITE(CSIEW1, 0x1e220004);
  2695. I915_WRITE(CSIEW2, 0x04000004);
  2696. for (i = 0; i < 5; i++)
  2697. I915_WRITE(PEW + (i * 4), 0);
  2698. for (i = 0; i < 3; i++)
  2699. I915_WRITE(DEW + (i * 4), 0);
  2700. /* Program P-state weights to account for frequency power adjustment */
  2701. for (i = 0; i < 16; i++) {
  2702. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  2703. unsigned long freq = intel_pxfreq(pxvidfreq);
  2704. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  2705. PXVFREQ_PX_SHIFT;
  2706. unsigned long val;
  2707. val = vid * vid;
  2708. val *= (freq / 1000);
  2709. val *= 255;
  2710. val /= (127*127*900);
  2711. if (val > 0xff)
  2712. DRM_ERROR("bad pxval: %ld\n", val);
  2713. pxw[i] = val;
  2714. }
  2715. /* Render standby states get 0 weight */
  2716. pxw[14] = 0;
  2717. pxw[15] = 0;
  2718. for (i = 0; i < 4; i++) {
  2719. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  2720. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  2721. I915_WRITE(PXW + (i * 4), val);
  2722. }
  2723. /* Adjust magic regs to magic values (more experimental results) */
  2724. I915_WRITE(OGW0, 0);
  2725. I915_WRITE(OGW1, 0);
  2726. I915_WRITE(EG0, 0x00007f00);
  2727. I915_WRITE(EG1, 0x0000000e);
  2728. I915_WRITE(EG2, 0x000e0000);
  2729. I915_WRITE(EG3, 0x68000300);
  2730. I915_WRITE(EG4, 0x42000000);
  2731. I915_WRITE(EG5, 0x00140031);
  2732. I915_WRITE(EG6, 0);
  2733. I915_WRITE(EG7, 0);
  2734. for (i = 0; i < 8; i++)
  2735. I915_WRITE(PXWL + (i * 4), 0);
  2736. /* Enable PMON + select events */
  2737. I915_WRITE(ECR, 0x80000019);
  2738. lcfuse = I915_READ(LCFUSE02);
  2739. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  2740. }
  2741. static void ironlake_init_clock_gating(struct drm_device *dev)
  2742. {
  2743. struct drm_i915_private *dev_priv = dev->dev_private;
  2744. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  2745. /* Required for FBC */
  2746. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  2747. DPFCRUNIT_CLOCK_GATE_DISABLE |
  2748. DPFDUNIT_CLOCK_GATE_DISABLE;
  2749. /* Required for CxSR */
  2750. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  2751. I915_WRITE(PCH_3DCGDIS0,
  2752. MARIUNIT_CLOCK_GATE_DISABLE |
  2753. SVSMUNIT_CLOCK_GATE_DISABLE);
  2754. I915_WRITE(PCH_3DCGDIS1,
  2755. VFMUNIT_CLOCK_GATE_DISABLE);
  2756. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  2757. /*
  2758. * According to the spec the following bits should be set in
  2759. * order to enable memory self-refresh
  2760. * The bit 22/21 of 0x42004
  2761. * The bit 5 of 0x42020
  2762. * The bit 15 of 0x45000
  2763. */
  2764. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2765. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  2766. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  2767. I915_WRITE(ILK_DSPCLK_GATE,
  2768. (I915_READ(ILK_DSPCLK_GATE) |
  2769. ILK_DPARB_CLK_GATE));
  2770. I915_WRITE(DISP_ARB_CTL,
  2771. (I915_READ(DISP_ARB_CTL) |
  2772. DISP_FBC_WM_DIS));
  2773. I915_WRITE(WM3_LP_ILK, 0);
  2774. I915_WRITE(WM2_LP_ILK, 0);
  2775. I915_WRITE(WM1_LP_ILK, 0);
  2776. /*
  2777. * Based on the document from hardware guys the following bits
  2778. * should be set unconditionally in order to enable FBC.
  2779. * The bit 22 of 0x42000
  2780. * The bit 22 of 0x42004
  2781. * The bit 7,8,9 of 0x42020.
  2782. */
  2783. if (IS_IRONLAKE_M(dev)) {
  2784. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  2785. I915_READ(ILK_DISPLAY_CHICKEN1) |
  2786. ILK_FBCQ_DIS);
  2787. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2788. I915_READ(ILK_DISPLAY_CHICKEN2) |
  2789. ILK_DPARB_GATE);
  2790. I915_WRITE(ILK_DSPCLK_GATE,
  2791. I915_READ(ILK_DSPCLK_GATE) |
  2792. ILK_DPFC_DIS1 |
  2793. ILK_DPFC_DIS2 |
  2794. ILK_CLK_FBC);
  2795. }
  2796. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2797. I915_READ(ILK_DISPLAY_CHICKEN2) |
  2798. ILK_ELPIN_409_SELECT);
  2799. I915_WRITE(_3D_CHICKEN2,
  2800. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  2801. _3D_CHICKEN2_WM_READ_PIPELINED);
  2802. }
  2803. static void gen6_init_clock_gating(struct drm_device *dev)
  2804. {
  2805. struct drm_i915_private *dev_priv = dev->dev_private;
  2806. int pipe;
  2807. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  2808. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  2809. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2810. I915_READ(ILK_DISPLAY_CHICKEN2) |
  2811. ILK_ELPIN_409_SELECT);
  2812. I915_WRITE(WM3_LP_ILK, 0);
  2813. I915_WRITE(WM2_LP_ILK, 0);
  2814. I915_WRITE(WM1_LP_ILK, 0);
  2815. I915_WRITE(CACHE_MODE_0,
  2816. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  2817. I915_WRITE(GEN6_UCGCTL1,
  2818. I915_READ(GEN6_UCGCTL1) |
  2819. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  2820. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  2821. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  2822. * gating disable must be set. Failure to set it results in
  2823. * flickering pixels due to Z write ordering failures after
  2824. * some amount of runtime in the Mesa "fire" demo, and Unigine
  2825. * Sanctuary and Tropics, and apparently anything else with
  2826. * alpha test or pixel discard.
  2827. *
  2828. * According to the spec, bit 11 (RCCUNIT) must also be set,
  2829. * but we didn't debug actual testcases to find it out.
  2830. */
  2831. I915_WRITE(GEN6_UCGCTL2,
  2832. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  2833. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  2834. /* Bspec says we need to always set all mask bits. */
  2835. I915_WRITE(_3D_CHICKEN, (0xFFFF << 16) |
  2836. _3D_CHICKEN_SF_DISABLE_FASTCLIP_CULL);
  2837. /*
  2838. * According to the spec the following bits should be
  2839. * set in order to enable memory self-refresh and fbc:
  2840. * The bit21 and bit22 of 0x42000
  2841. * The bit21 and bit22 of 0x42004
  2842. * The bit5 and bit7 of 0x42020
  2843. * The bit14 of 0x70180
  2844. * The bit14 of 0x71180
  2845. */
  2846. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  2847. I915_READ(ILK_DISPLAY_CHICKEN1) |
  2848. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  2849. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2850. I915_READ(ILK_DISPLAY_CHICKEN2) |
  2851. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  2852. I915_WRITE(ILK_DSPCLK_GATE,
  2853. I915_READ(ILK_DSPCLK_GATE) |
  2854. ILK_DPARB_CLK_GATE |
  2855. ILK_DPFD_CLK_GATE);
  2856. for_each_pipe(pipe) {
  2857. I915_WRITE(DSPCNTR(pipe),
  2858. I915_READ(DSPCNTR(pipe)) |
  2859. DISPPLANE_TRICKLE_FEED_DISABLE);
  2860. intel_flush_display_plane(dev_priv, pipe);
  2861. }
  2862. }
  2863. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  2864. {
  2865. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  2866. reg &= ~GEN7_FF_SCHED_MASK;
  2867. reg |= GEN7_FF_TS_SCHED_HW;
  2868. reg |= GEN7_FF_VS_SCHED_HW;
  2869. reg |= GEN7_FF_DS_SCHED_HW;
  2870. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  2871. }
  2872. static void ivybridge_init_clock_gating(struct drm_device *dev)
  2873. {
  2874. struct drm_i915_private *dev_priv = dev->dev_private;
  2875. int pipe;
  2876. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  2877. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  2878. I915_WRITE(WM3_LP_ILK, 0);
  2879. I915_WRITE(WM2_LP_ILK, 0);
  2880. I915_WRITE(WM1_LP_ILK, 0);
  2881. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  2882. * This implements the WaDisableRCZUnitClockGating workaround.
  2883. */
  2884. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  2885. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  2886. I915_WRITE(IVB_CHICKEN3,
  2887. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  2888. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  2889. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  2890. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  2891. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  2892. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  2893. I915_WRITE(GEN7_L3CNTLREG1,
  2894. GEN7_WA_FOR_GEN7_L3_CONTROL);
  2895. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  2896. GEN7_WA_L3_CHICKEN_MODE);
  2897. /* This is required by WaCatErrorRejectionIssue */
  2898. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  2899. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  2900. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  2901. for_each_pipe(pipe) {
  2902. I915_WRITE(DSPCNTR(pipe),
  2903. I915_READ(DSPCNTR(pipe)) |
  2904. DISPPLANE_TRICKLE_FEED_DISABLE);
  2905. intel_flush_display_plane(dev_priv, pipe);
  2906. }
  2907. gen7_setup_fixed_func_scheduler(dev_priv);
  2908. /* WaDisable4x2SubspanOptimization */
  2909. I915_WRITE(CACHE_MODE_1,
  2910. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  2911. }
  2912. static void valleyview_init_clock_gating(struct drm_device *dev)
  2913. {
  2914. struct drm_i915_private *dev_priv = dev->dev_private;
  2915. int pipe;
  2916. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  2917. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  2918. I915_WRITE(WM3_LP_ILK, 0);
  2919. I915_WRITE(WM2_LP_ILK, 0);
  2920. I915_WRITE(WM1_LP_ILK, 0);
  2921. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  2922. * This implements the WaDisableRCZUnitClockGating workaround.
  2923. */
  2924. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  2925. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  2926. I915_WRITE(IVB_CHICKEN3,
  2927. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  2928. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  2929. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  2930. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  2931. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  2932. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  2933. I915_WRITE(GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
  2934. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  2935. /* This is required by WaCatErrorRejectionIssue */
  2936. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  2937. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  2938. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  2939. for_each_pipe(pipe) {
  2940. I915_WRITE(DSPCNTR(pipe),
  2941. I915_READ(DSPCNTR(pipe)) |
  2942. DISPPLANE_TRICKLE_FEED_DISABLE);
  2943. intel_flush_display_plane(dev_priv, pipe);
  2944. }
  2945. I915_WRITE(CACHE_MODE_1,
  2946. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  2947. }
  2948. static void g4x_init_clock_gating(struct drm_device *dev)
  2949. {
  2950. struct drm_i915_private *dev_priv = dev->dev_private;
  2951. uint32_t dspclk_gate;
  2952. I915_WRITE(RENCLK_GATE_D1, 0);
  2953. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  2954. GS_UNIT_CLOCK_GATE_DISABLE |
  2955. CL_UNIT_CLOCK_GATE_DISABLE);
  2956. I915_WRITE(RAMCLK_GATE_D, 0);
  2957. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  2958. OVRUNIT_CLOCK_GATE_DISABLE |
  2959. OVCUNIT_CLOCK_GATE_DISABLE;
  2960. if (IS_GM45(dev))
  2961. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  2962. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  2963. }
  2964. static void crestline_init_clock_gating(struct drm_device *dev)
  2965. {
  2966. struct drm_i915_private *dev_priv = dev->dev_private;
  2967. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  2968. I915_WRITE(RENCLK_GATE_D2, 0);
  2969. I915_WRITE(DSPCLK_GATE_D, 0);
  2970. I915_WRITE(RAMCLK_GATE_D, 0);
  2971. I915_WRITE16(DEUC, 0);
  2972. }
  2973. static void broadwater_init_clock_gating(struct drm_device *dev)
  2974. {
  2975. struct drm_i915_private *dev_priv = dev->dev_private;
  2976. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  2977. I965_RCC_CLOCK_GATE_DISABLE |
  2978. I965_RCPB_CLOCK_GATE_DISABLE |
  2979. I965_ISC_CLOCK_GATE_DISABLE |
  2980. I965_FBC_CLOCK_GATE_DISABLE);
  2981. I915_WRITE(RENCLK_GATE_D2, 0);
  2982. }
  2983. static void gen3_init_clock_gating(struct drm_device *dev)
  2984. {
  2985. struct drm_i915_private *dev_priv = dev->dev_private;
  2986. u32 dstate = I915_READ(D_STATE);
  2987. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  2988. DSTATE_DOT_CLOCK_GATING;
  2989. I915_WRITE(D_STATE, dstate);
  2990. if (IS_PINEVIEW(dev))
  2991. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  2992. }
  2993. static void i85x_init_clock_gating(struct drm_device *dev)
  2994. {
  2995. struct drm_i915_private *dev_priv = dev->dev_private;
  2996. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  2997. }
  2998. static void i830_init_clock_gating(struct drm_device *dev)
  2999. {
  3000. struct drm_i915_private *dev_priv = dev->dev_private;
  3001. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  3002. }
  3003. static void ibx_init_clock_gating(struct drm_device *dev)
  3004. {
  3005. struct drm_i915_private *dev_priv = dev->dev_private;
  3006. /*
  3007. * On Ibex Peak and Cougar Point, we need to disable clock
  3008. * gating for the panel power sequencer or it will fail to
  3009. * start up when no ports are active.
  3010. */
  3011. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3012. }
  3013. static void cpt_init_clock_gating(struct drm_device *dev)
  3014. {
  3015. struct drm_i915_private *dev_priv = dev->dev_private;
  3016. int pipe;
  3017. /*
  3018. * On Ibex Peak and Cougar Point, we need to disable clock
  3019. * gating for the panel power sequencer or it will fail to
  3020. * start up when no ports are active.
  3021. */
  3022. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3023. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  3024. DPLS_EDP_PPS_FIX_DIS);
  3025. /* Without this, mode sets may fail silently on FDI */
  3026. for_each_pipe(pipe)
  3027. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  3028. }
  3029. void intel_init_clock_gating(struct drm_device *dev)
  3030. {
  3031. struct drm_i915_private *dev_priv = dev->dev_private;
  3032. dev_priv->display.init_clock_gating(dev);
  3033. if (dev_priv->display.init_pch_clock_gating)
  3034. dev_priv->display.init_pch_clock_gating(dev);
  3035. }
  3036. static void gen6_sanitize_pm(struct drm_device *dev)
  3037. {
  3038. struct drm_i915_private *dev_priv = dev->dev_private;
  3039. u32 limits, delay, old;
  3040. gen6_gt_force_wake_get(dev_priv);
  3041. old = limits = I915_READ(GEN6_RP_INTERRUPT_LIMITS);
  3042. /* Make sure we continue to get interrupts
  3043. * until we hit the minimum or maximum frequencies.
  3044. */
  3045. limits &= ~(0x3f << 16 | 0x3f << 24);
  3046. delay = dev_priv->cur_delay;
  3047. if (delay < dev_priv->max_delay)
  3048. limits |= (dev_priv->max_delay & 0x3f) << 24;
  3049. if (delay > dev_priv->min_delay)
  3050. limits |= (dev_priv->min_delay & 0x3f) << 16;
  3051. if (old != limits) {
  3052. DRM_ERROR("Power management discrepancy: GEN6_RP_INTERRUPT_LIMITS expected %08x, was %08x\n",
  3053. limits, old);
  3054. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  3055. }
  3056. gen6_gt_force_wake_put(dev_priv);
  3057. }
  3058. void intel_sanitize_pm(struct drm_device *dev)
  3059. {
  3060. struct drm_i915_private *dev_priv = dev->dev_private;
  3061. if (dev_priv->display.sanitize_pm)
  3062. dev_priv->display.sanitize_pm(dev);
  3063. }
  3064. /* Starting with Haswell, we have different power wells for
  3065. * different parts of the GPU. This attempts to enable them all.
  3066. */
  3067. void intel_init_power_wells(struct drm_device *dev)
  3068. {
  3069. struct drm_i915_private *dev_priv = dev->dev_private;
  3070. unsigned long power_wells[] = {
  3071. HSW_PWR_WELL_CTL1,
  3072. HSW_PWR_WELL_CTL2,
  3073. HSW_PWR_WELL_CTL4
  3074. };
  3075. int i;
  3076. if (!IS_HASWELL(dev))
  3077. return;
  3078. mutex_lock(&dev->struct_mutex);
  3079. for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
  3080. int well = I915_READ(power_wells[i]);
  3081. if ((well & HSW_PWR_WELL_STATE) == 0) {
  3082. I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
  3083. if (wait_for(I915_READ(power_wells[i] & HSW_PWR_WELL_STATE), 20))
  3084. DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
  3085. }
  3086. }
  3087. mutex_unlock(&dev->struct_mutex);
  3088. }
  3089. /* Set up chip specific power management-related functions */
  3090. void intel_init_pm(struct drm_device *dev)
  3091. {
  3092. struct drm_i915_private *dev_priv = dev->dev_private;
  3093. if (I915_HAS_FBC(dev)) {
  3094. if (HAS_PCH_SPLIT(dev)) {
  3095. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  3096. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  3097. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  3098. } else if (IS_GM45(dev)) {
  3099. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  3100. dev_priv->display.enable_fbc = g4x_enable_fbc;
  3101. dev_priv->display.disable_fbc = g4x_disable_fbc;
  3102. } else if (IS_CRESTLINE(dev)) {
  3103. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  3104. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  3105. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  3106. }
  3107. /* 855GM needs testing */
  3108. }
  3109. /* For cxsr */
  3110. if (IS_PINEVIEW(dev))
  3111. i915_pineview_get_mem_freq(dev);
  3112. else if (IS_GEN5(dev))
  3113. i915_ironlake_get_mem_freq(dev);
  3114. /* For FIFO watermark updates */
  3115. if (HAS_PCH_SPLIT(dev)) {
  3116. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  3117. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  3118. /* IVB configs may use multi-threaded forcewake */
  3119. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  3120. u32 ecobus;
  3121. /* A small trick here - if the bios hasn't configured MT forcewake,
  3122. * and if the device is in RC6, then force_wake_mt_get will not wake
  3123. * the device and the ECOBUS read will return zero. Which will be
  3124. * (correctly) interpreted by the test below as MT forcewake being
  3125. * disabled.
  3126. */
  3127. mutex_lock(&dev->struct_mutex);
  3128. __gen6_gt_force_wake_mt_get(dev_priv);
  3129. ecobus = I915_READ_NOTRACE(ECOBUS);
  3130. __gen6_gt_force_wake_mt_put(dev_priv);
  3131. mutex_unlock(&dev->struct_mutex);
  3132. if (ecobus & FORCEWAKE_MT_ENABLE) {
  3133. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  3134. dev_priv->display.force_wake_get =
  3135. __gen6_gt_force_wake_mt_get;
  3136. dev_priv->display.force_wake_put =
  3137. __gen6_gt_force_wake_mt_put;
  3138. }
  3139. }
  3140. if (HAS_PCH_IBX(dev))
  3141. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  3142. else if (HAS_PCH_CPT(dev))
  3143. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  3144. if (IS_GEN5(dev)) {
  3145. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  3146. dev_priv->display.update_wm = ironlake_update_wm;
  3147. else {
  3148. DRM_DEBUG_KMS("Failed to get proper latency. "
  3149. "Disable CxSR\n");
  3150. dev_priv->display.update_wm = NULL;
  3151. }
  3152. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  3153. } else if (IS_GEN6(dev)) {
  3154. if (SNB_READ_WM0_LATENCY()) {
  3155. dev_priv->display.update_wm = sandybridge_update_wm;
  3156. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3157. } else {
  3158. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3159. "Disable CxSR\n");
  3160. dev_priv->display.update_wm = NULL;
  3161. }
  3162. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  3163. dev_priv->display.sanitize_pm = gen6_sanitize_pm;
  3164. } else if (IS_IVYBRIDGE(dev)) {
  3165. /* FIXME: detect B0+ stepping and use auto training */
  3166. if (SNB_READ_WM0_LATENCY()) {
  3167. dev_priv->display.update_wm = sandybridge_update_wm;
  3168. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3169. } else {
  3170. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3171. "Disable CxSR\n");
  3172. dev_priv->display.update_wm = NULL;
  3173. }
  3174. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  3175. dev_priv->display.sanitize_pm = gen6_sanitize_pm;
  3176. } else if (IS_HASWELL(dev)) {
  3177. if (SNB_READ_WM0_LATENCY()) {
  3178. dev_priv->display.update_wm = sandybridge_update_wm;
  3179. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3180. dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
  3181. } else {
  3182. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3183. "Disable CxSR\n");
  3184. dev_priv->display.update_wm = NULL;
  3185. }
  3186. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  3187. dev_priv->display.sanitize_pm = gen6_sanitize_pm;
  3188. } else
  3189. dev_priv->display.update_wm = NULL;
  3190. } else if (IS_VALLEYVIEW(dev)) {
  3191. dev_priv->display.update_wm = valleyview_update_wm;
  3192. dev_priv->display.init_clock_gating =
  3193. valleyview_init_clock_gating;
  3194. dev_priv->display.force_wake_get = vlv_force_wake_get;
  3195. dev_priv->display.force_wake_put = vlv_force_wake_put;
  3196. } else if (IS_PINEVIEW(dev)) {
  3197. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  3198. dev_priv->is_ddr3,
  3199. dev_priv->fsb_freq,
  3200. dev_priv->mem_freq)) {
  3201. DRM_INFO("failed to find known CxSR latency "
  3202. "(found ddr%s fsb freq %d, mem freq %d), "
  3203. "disabling CxSR\n",
  3204. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  3205. dev_priv->fsb_freq, dev_priv->mem_freq);
  3206. /* Disable CxSR and never update its watermark again */
  3207. pineview_disable_cxsr(dev);
  3208. dev_priv->display.update_wm = NULL;
  3209. } else
  3210. dev_priv->display.update_wm = pineview_update_wm;
  3211. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3212. } else if (IS_G4X(dev)) {
  3213. dev_priv->display.update_wm = g4x_update_wm;
  3214. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  3215. } else if (IS_GEN4(dev)) {
  3216. dev_priv->display.update_wm = i965_update_wm;
  3217. if (IS_CRESTLINE(dev))
  3218. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  3219. else if (IS_BROADWATER(dev))
  3220. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  3221. } else if (IS_GEN3(dev)) {
  3222. dev_priv->display.update_wm = i9xx_update_wm;
  3223. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  3224. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3225. } else if (IS_I865G(dev)) {
  3226. dev_priv->display.update_wm = i830_update_wm;
  3227. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3228. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3229. } else if (IS_I85X(dev)) {
  3230. dev_priv->display.update_wm = i9xx_update_wm;
  3231. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  3232. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3233. } else {
  3234. dev_priv->display.update_wm = i830_update_wm;
  3235. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  3236. if (IS_845G(dev))
  3237. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  3238. else
  3239. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3240. }
  3241. /* We attempt to init the necessary power wells early in the initialization
  3242. * time, so the subsystems that expect power to be enabled can work.
  3243. */
  3244. intel_init_power_wells(dev);
  3245. }