i915_debugfs.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/slab.h>
  31. #include <linux/export.h>
  32. #include "drmP.h"
  33. #include "drm.h"
  34. #include "intel_drv.h"
  35. #include "intel_ringbuffer.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #define DRM_I915_RING_DEBUG 1
  39. #if defined(CONFIG_DEBUG_FS)
  40. enum {
  41. ACTIVE_LIST,
  42. FLUSHING_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. static const char *yesno(int v)
  47. {
  48. return v ? "yes" : "no";
  49. }
  50. static int i915_capabilities(struct seq_file *m, void *data)
  51. {
  52. struct drm_info_node *node = (struct drm_info_node *) m->private;
  53. struct drm_device *dev = node->minor->dev;
  54. const struct intel_device_info *info = INTEL_INFO(dev);
  55. seq_printf(m, "gen: %d\n", info->gen);
  56. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  57. #define B(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  58. B(is_mobile);
  59. B(is_i85x);
  60. B(is_i915g);
  61. B(is_i945gm);
  62. B(is_g33);
  63. B(need_gfx_hws);
  64. B(is_g4x);
  65. B(is_pineview);
  66. B(is_broadwater);
  67. B(is_crestline);
  68. B(has_fbc);
  69. B(has_pipe_cxsr);
  70. B(has_hotplug);
  71. B(cursor_needs_physical);
  72. B(has_overlay);
  73. B(overlay_needs_physical);
  74. B(supports_tv);
  75. B(has_bsd_ring);
  76. B(has_blt_ring);
  77. B(has_llc);
  78. #undef B
  79. return 0;
  80. }
  81. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  82. {
  83. if (obj->user_pin_count > 0)
  84. return "P";
  85. else if (obj->pin_count > 0)
  86. return "p";
  87. else
  88. return " ";
  89. }
  90. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  91. {
  92. switch (obj->tiling_mode) {
  93. default:
  94. case I915_TILING_NONE: return " ";
  95. case I915_TILING_X: return "X";
  96. case I915_TILING_Y: return "Y";
  97. }
  98. }
  99. static const char *cache_level_str(int type)
  100. {
  101. switch (type) {
  102. case I915_CACHE_NONE: return " uncached";
  103. case I915_CACHE_LLC: return " snooped (LLC)";
  104. case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)";
  105. default: return "";
  106. }
  107. }
  108. static void
  109. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  110. {
  111. seq_printf(m, "%p: %s%s %8zdKiB %04x %04x %d %d%s%s%s",
  112. &obj->base,
  113. get_pin_flag(obj),
  114. get_tiling_flag(obj),
  115. obj->base.size / 1024,
  116. obj->base.read_domains,
  117. obj->base.write_domain,
  118. obj->last_rendering_seqno,
  119. obj->last_fenced_seqno,
  120. cache_level_str(obj->cache_level),
  121. obj->dirty ? " dirty" : "",
  122. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  123. if (obj->base.name)
  124. seq_printf(m, " (name: %d)", obj->base.name);
  125. if (obj->fence_reg != I915_FENCE_REG_NONE)
  126. seq_printf(m, " (fence: %d)", obj->fence_reg);
  127. if (obj->gtt_space != NULL)
  128. seq_printf(m, " (gtt offset: %08x, size: %08x)",
  129. obj->gtt_offset, (unsigned int)obj->gtt_space->size);
  130. if (obj->pin_mappable || obj->fault_mappable) {
  131. char s[3], *t = s;
  132. if (obj->pin_mappable)
  133. *t++ = 'p';
  134. if (obj->fault_mappable)
  135. *t++ = 'f';
  136. *t = '\0';
  137. seq_printf(m, " (%s mappable)", s);
  138. }
  139. if (obj->ring != NULL)
  140. seq_printf(m, " (%s)", obj->ring->name);
  141. }
  142. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  143. {
  144. struct drm_info_node *node = (struct drm_info_node *) m->private;
  145. uintptr_t list = (uintptr_t) node->info_ent->data;
  146. struct list_head *head;
  147. struct drm_device *dev = node->minor->dev;
  148. drm_i915_private_t *dev_priv = dev->dev_private;
  149. struct drm_i915_gem_object *obj;
  150. size_t total_obj_size, total_gtt_size;
  151. int count, ret;
  152. ret = mutex_lock_interruptible(&dev->struct_mutex);
  153. if (ret)
  154. return ret;
  155. switch (list) {
  156. case ACTIVE_LIST:
  157. seq_printf(m, "Active:\n");
  158. head = &dev_priv->mm.active_list;
  159. break;
  160. case INACTIVE_LIST:
  161. seq_printf(m, "Inactive:\n");
  162. head = &dev_priv->mm.inactive_list;
  163. break;
  164. case FLUSHING_LIST:
  165. seq_printf(m, "Flushing:\n");
  166. head = &dev_priv->mm.flushing_list;
  167. break;
  168. default:
  169. mutex_unlock(&dev->struct_mutex);
  170. return -EINVAL;
  171. }
  172. total_obj_size = total_gtt_size = count = 0;
  173. list_for_each_entry(obj, head, mm_list) {
  174. seq_printf(m, " ");
  175. describe_obj(m, obj);
  176. seq_printf(m, "\n");
  177. total_obj_size += obj->base.size;
  178. total_gtt_size += obj->gtt_space->size;
  179. count++;
  180. }
  181. mutex_unlock(&dev->struct_mutex);
  182. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  183. count, total_obj_size, total_gtt_size);
  184. return 0;
  185. }
  186. #define count_objects(list, member) do { \
  187. list_for_each_entry(obj, list, member) { \
  188. size += obj->gtt_space->size; \
  189. ++count; \
  190. if (obj->map_and_fenceable) { \
  191. mappable_size += obj->gtt_space->size; \
  192. ++mappable_count; \
  193. } \
  194. } \
  195. } while (0)
  196. static int i915_gem_object_info(struct seq_file *m, void* data)
  197. {
  198. struct drm_info_node *node = (struct drm_info_node *) m->private;
  199. struct drm_device *dev = node->minor->dev;
  200. struct drm_i915_private *dev_priv = dev->dev_private;
  201. u32 count, mappable_count;
  202. size_t size, mappable_size;
  203. struct drm_i915_gem_object *obj;
  204. int ret;
  205. ret = mutex_lock_interruptible(&dev->struct_mutex);
  206. if (ret)
  207. return ret;
  208. seq_printf(m, "%u objects, %zu bytes\n",
  209. dev_priv->mm.object_count,
  210. dev_priv->mm.object_memory);
  211. size = count = mappable_size = mappable_count = 0;
  212. count_objects(&dev_priv->mm.gtt_list, gtt_list);
  213. seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
  214. count, mappable_count, size, mappable_size);
  215. size = count = mappable_size = mappable_count = 0;
  216. count_objects(&dev_priv->mm.active_list, mm_list);
  217. count_objects(&dev_priv->mm.flushing_list, mm_list);
  218. seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
  219. count, mappable_count, size, mappable_size);
  220. size = count = mappable_size = mappable_count = 0;
  221. count_objects(&dev_priv->mm.inactive_list, mm_list);
  222. seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
  223. count, mappable_count, size, mappable_size);
  224. size = count = mappable_size = mappable_count = 0;
  225. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  226. if (obj->fault_mappable) {
  227. size += obj->gtt_space->size;
  228. ++count;
  229. }
  230. if (obj->pin_mappable) {
  231. mappable_size += obj->gtt_space->size;
  232. ++mappable_count;
  233. }
  234. }
  235. seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
  236. mappable_count, mappable_size);
  237. seq_printf(m, "%u fault mappable objects, %zu bytes\n",
  238. count, size);
  239. seq_printf(m, "%zu [%zu] gtt total\n",
  240. dev_priv->mm.gtt_total, dev_priv->mm.mappable_gtt_total);
  241. mutex_unlock(&dev->struct_mutex);
  242. return 0;
  243. }
  244. static int i915_gem_gtt_info(struct seq_file *m, void* data)
  245. {
  246. struct drm_info_node *node = (struct drm_info_node *) m->private;
  247. struct drm_device *dev = node->minor->dev;
  248. uintptr_t list = (uintptr_t) node->info_ent->data;
  249. struct drm_i915_private *dev_priv = dev->dev_private;
  250. struct drm_i915_gem_object *obj;
  251. size_t total_obj_size, total_gtt_size;
  252. int count, ret;
  253. ret = mutex_lock_interruptible(&dev->struct_mutex);
  254. if (ret)
  255. return ret;
  256. total_obj_size = total_gtt_size = count = 0;
  257. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  258. if (list == PINNED_LIST && obj->pin_count == 0)
  259. continue;
  260. seq_printf(m, " ");
  261. describe_obj(m, obj);
  262. seq_printf(m, "\n");
  263. total_obj_size += obj->base.size;
  264. total_gtt_size += obj->gtt_space->size;
  265. count++;
  266. }
  267. mutex_unlock(&dev->struct_mutex);
  268. seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
  269. count, total_obj_size, total_gtt_size);
  270. return 0;
  271. }
  272. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  273. {
  274. struct drm_info_node *node = (struct drm_info_node *) m->private;
  275. struct drm_device *dev = node->minor->dev;
  276. unsigned long flags;
  277. struct intel_crtc *crtc;
  278. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  279. const char pipe = pipe_name(crtc->pipe);
  280. const char plane = plane_name(crtc->plane);
  281. struct intel_unpin_work *work;
  282. spin_lock_irqsave(&dev->event_lock, flags);
  283. work = crtc->unpin_work;
  284. if (work == NULL) {
  285. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  286. pipe, plane);
  287. } else {
  288. if (!work->pending) {
  289. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  290. pipe, plane);
  291. } else {
  292. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  293. pipe, plane);
  294. }
  295. if (work->enable_stall_check)
  296. seq_printf(m, "Stall check enabled, ");
  297. else
  298. seq_printf(m, "Stall check waiting for page flip ioctl, ");
  299. seq_printf(m, "%d prepares\n", work->pending);
  300. if (work->old_fb_obj) {
  301. struct drm_i915_gem_object *obj = work->old_fb_obj;
  302. if (obj)
  303. seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
  304. }
  305. if (work->pending_flip_obj) {
  306. struct drm_i915_gem_object *obj = work->pending_flip_obj;
  307. if (obj)
  308. seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset);
  309. }
  310. }
  311. spin_unlock_irqrestore(&dev->event_lock, flags);
  312. }
  313. return 0;
  314. }
  315. static int i915_gem_request_info(struct seq_file *m, void *data)
  316. {
  317. struct drm_info_node *node = (struct drm_info_node *) m->private;
  318. struct drm_device *dev = node->minor->dev;
  319. drm_i915_private_t *dev_priv = dev->dev_private;
  320. struct drm_i915_gem_request *gem_request;
  321. int ret, count;
  322. ret = mutex_lock_interruptible(&dev->struct_mutex);
  323. if (ret)
  324. return ret;
  325. count = 0;
  326. if (!list_empty(&dev_priv->ring[RCS].request_list)) {
  327. seq_printf(m, "Render requests:\n");
  328. list_for_each_entry(gem_request,
  329. &dev_priv->ring[RCS].request_list,
  330. list) {
  331. seq_printf(m, " %d @ %d\n",
  332. gem_request->seqno,
  333. (int) (jiffies - gem_request->emitted_jiffies));
  334. }
  335. count++;
  336. }
  337. if (!list_empty(&dev_priv->ring[VCS].request_list)) {
  338. seq_printf(m, "BSD requests:\n");
  339. list_for_each_entry(gem_request,
  340. &dev_priv->ring[VCS].request_list,
  341. list) {
  342. seq_printf(m, " %d @ %d\n",
  343. gem_request->seqno,
  344. (int) (jiffies - gem_request->emitted_jiffies));
  345. }
  346. count++;
  347. }
  348. if (!list_empty(&dev_priv->ring[BCS].request_list)) {
  349. seq_printf(m, "BLT requests:\n");
  350. list_for_each_entry(gem_request,
  351. &dev_priv->ring[BCS].request_list,
  352. list) {
  353. seq_printf(m, " %d @ %d\n",
  354. gem_request->seqno,
  355. (int) (jiffies - gem_request->emitted_jiffies));
  356. }
  357. count++;
  358. }
  359. mutex_unlock(&dev->struct_mutex);
  360. if (count == 0)
  361. seq_printf(m, "No requests\n");
  362. return 0;
  363. }
  364. static void i915_ring_seqno_info(struct seq_file *m,
  365. struct intel_ring_buffer *ring)
  366. {
  367. if (ring->get_seqno) {
  368. seq_printf(m, "Current sequence (%s): %d\n",
  369. ring->name, ring->get_seqno(ring));
  370. }
  371. }
  372. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  373. {
  374. struct drm_info_node *node = (struct drm_info_node *) m->private;
  375. struct drm_device *dev = node->minor->dev;
  376. drm_i915_private_t *dev_priv = dev->dev_private;
  377. int ret, i;
  378. ret = mutex_lock_interruptible(&dev->struct_mutex);
  379. if (ret)
  380. return ret;
  381. for (i = 0; i < I915_NUM_RINGS; i++)
  382. i915_ring_seqno_info(m, &dev_priv->ring[i]);
  383. mutex_unlock(&dev->struct_mutex);
  384. return 0;
  385. }
  386. static int i915_interrupt_info(struct seq_file *m, void *data)
  387. {
  388. struct drm_info_node *node = (struct drm_info_node *) m->private;
  389. struct drm_device *dev = node->minor->dev;
  390. drm_i915_private_t *dev_priv = dev->dev_private;
  391. int ret, i, pipe;
  392. ret = mutex_lock_interruptible(&dev->struct_mutex);
  393. if (ret)
  394. return ret;
  395. if (IS_VALLEYVIEW(dev)) {
  396. seq_printf(m, "Display IER:\t%08x\n",
  397. I915_READ(VLV_IER));
  398. seq_printf(m, "Display IIR:\t%08x\n",
  399. I915_READ(VLV_IIR));
  400. seq_printf(m, "Display IIR_RW:\t%08x\n",
  401. I915_READ(VLV_IIR_RW));
  402. seq_printf(m, "Display IMR:\t%08x\n",
  403. I915_READ(VLV_IMR));
  404. for_each_pipe(pipe)
  405. seq_printf(m, "Pipe %c stat:\t%08x\n",
  406. pipe_name(pipe),
  407. I915_READ(PIPESTAT(pipe)));
  408. seq_printf(m, "Master IER:\t%08x\n",
  409. I915_READ(VLV_MASTER_IER));
  410. seq_printf(m, "Render IER:\t%08x\n",
  411. I915_READ(GTIER));
  412. seq_printf(m, "Render IIR:\t%08x\n",
  413. I915_READ(GTIIR));
  414. seq_printf(m, "Render IMR:\t%08x\n",
  415. I915_READ(GTIMR));
  416. seq_printf(m, "PM IER:\t\t%08x\n",
  417. I915_READ(GEN6_PMIER));
  418. seq_printf(m, "PM IIR:\t\t%08x\n",
  419. I915_READ(GEN6_PMIIR));
  420. seq_printf(m, "PM IMR:\t\t%08x\n",
  421. I915_READ(GEN6_PMIMR));
  422. seq_printf(m, "Port hotplug:\t%08x\n",
  423. I915_READ(PORT_HOTPLUG_EN));
  424. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  425. I915_READ(VLV_DPFLIPSTAT));
  426. seq_printf(m, "DPINVGTT:\t%08x\n",
  427. I915_READ(DPINVGTT));
  428. } else if (!HAS_PCH_SPLIT(dev)) {
  429. seq_printf(m, "Interrupt enable: %08x\n",
  430. I915_READ(IER));
  431. seq_printf(m, "Interrupt identity: %08x\n",
  432. I915_READ(IIR));
  433. seq_printf(m, "Interrupt mask: %08x\n",
  434. I915_READ(IMR));
  435. for_each_pipe(pipe)
  436. seq_printf(m, "Pipe %c stat: %08x\n",
  437. pipe_name(pipe),
  438. I915_READ(PIPESTAT(pipe)));
  439. } else {
  440. seq_printf(m, "North Display Interrupt enable: %08x\n",
  441. I915_READ(DEIER));
  442. seq_printf(m, "North Display Interrupt identity: %08x\n",
  443. I915_READ(DEIIR));
  444. seq_printf(m, "North Display Interrupt mask: %08x\n",
  445. I915_READ(DEIMR));
  446. seq_printf(m, "South Display Interrupt enable: %08x\n",
  447. I915_READ(SDEIER));
  448. seq_printf(m, "South Display Interrupt identity: %08x\n",
  449. I915_READ(SDEIIR));
  450. seq_printf(m, "South Display Interrupt mask: %08x\n",
  451. I915_READ(SDEIMR));
  452. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  453. I915_READ(GTIER));
  454. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  455. I915_READ(GTIIR));
  456. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  457. I915_READ(GTIMR));
  458. }
  459. seq_printf(m, "Interrupts received: %d\n",
  460. atomic_read(&dev_priv->irq_received));
  461. for (i = 0; i < I915_NUM_RINGS; i++) {
  462. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  463. seq_printf(m, "Graphics Interrupt mask (%s): %08x\n",
  464. dev_priv->ring[i].name,
  465. I915_READ_IMR(&dev_priv->ring[i]));
  466. }
  467. i915_ring_seqno_info(m, &dev_priv->ring[i]);
  468. }
  469. mutex_unlock(&dev->struct_mutex);
  470. return 0;
  471. }
  472. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  473. {
  474. struct drm_info_node *node = (struct drm_info_node *) m->private;
  475. struct drm_device *dev = node->minor->dev;
  476. drm_i915_private_t *dev_priv = dev->dev_private;
  477. int i, ret;
  478. ret = mutex_lock_interruptible(&dev->struct_mutex);
  479. if (ret)
  480. return ret;
  481. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  482. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  483. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  484. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  485. seq_printf(m, "Fenced object[%2d] = ", i);
  486. if (obj == NULL)
  487. seq_printf(m, "unused");
  488. else
  489. describe_obj(m, obj);
  490. seq_printf(m, "\n");
  491. }
  492. mutex_unlock(&dev->struct_mutex);
  493. return 0;
  494. }
  495. static int i915_hws_info(struct seq_file *m, void *data)
  496. {
  497. struct drm_info_node *node = (struct drm_info_node *) m->private;
  498. struct drm_device *dev = node->minor->dev;
  499. drm_i915_private_t *dev_priv = dev->dev_private;
  500. struct intel_ring_buffer *ring;
  501. const volatile u32 __iomem *hws;
  502. int i;
  503. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  504. hws = (volatile u32 __iomem *)ring->status_page.page_addr;
  505. if (hws == NULL)
  506. return 0;
  507. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  508. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  509. i * 4,
  510. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  511. }
  512. return 0;
  513. }
  514. static const char *ring_str(int ring)
  515. {
  516. switch (ring) {
  517. case RCS: return "render";
  518. case VCS: return "bsd";
  519. case BCS: return "blt";
  520. default: return "";
  521. }
  522. }
  523. static const char *pin_flag(int pinned)
  524. {
  525. if (pinned > 0)
  526. return " P";
  527. else if (pinned < 0)
  528. return " p";
  529. else
  530. return "";
  531. }
  532. static const char *tiling_flag(int tiling)
  533. {
  534. switch (tiling) {
  535. default:
  536. case I915_TILING_NONE: return "";
  537. case I915_TILING_X: return " X";
  538. case I915_TILING_Y: return " Y";
  539. }
  540. }
  541. static const char *dirty_flag(int dirty)
  542. {
  543. return dirty ? " dirty" : "";
  544. }
  545. static const char *purgeable_flag(int purgeable)
  546. {
  547. return purgeable ? " purgeable" : "";
  548. }
  549. static void print_error_buffers(struct seq_file *m,
  550. const char *name,
  551. struct drm_i915_error_buffer *err,
  552. int count)
  553. {
  554. seq_printf(m, "%s [%d]:\n", name, count);
  555. while (count--) {
  556. seq_printf(m, " %08x %8u %04x %04x %08x%s%s%s%s%s%s%s",
  557. err->gtt_offset,
  558. err->size,
  559. err->read_domains,
  560. err->write_domain,
  561. err->seqno,
  562. pin_flag(err->pinned),
  563. tiling_flag(err->tiling),
  564. dirty_flag(err->dirty),
  565. purgeable_flag(err->purgeable),
  566. err->ring != -1 ? " " : "",
  567. ring_str(err->ring),
  568. cache_level_str(err->cache_level));
  569. if (err->name)
  570. seq_printf(m, " (name: %d)", err->name);
  571. if (err->fence_reg != I915_FENCE_REG_NONE)
  572. seq_printf(m, " (fence: %d)", err->fence_reg);
  573. seq_printf(m, "\n");
  574. err++;
  575. }
  576. }
  577. static void i915_ring_error_state(struct seq_file *m,
  578. struct drm_device *dev,
  579. struct drm_i915_error_state *error,
  580. unsigned ring)
  581. {
  582. BUG_ON(ring >= I915_NUM_RINGS); /* shut up confused gcc */
  583. seq_printf(m, "%s command stream:\n", ring_str(ring));
  584. seq_printf(m, " HEAD: 0x%08x\n", error->head[ring]);
  585. seq_printf(m, " TAIL: 0x%08x\n", error->tail[ring]);
  586. seq_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]);
  587. seq_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]);
  588. seq_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]);
  589. seq_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]);
  590. if (ring == RCS && INTEL_INFO(dev)->gen >= 4) {
  591. seq_printf(m, " INSTDONE1: 0x%08x\n", error->instdone1);
  592. seq_printf(m, " BBADDR: 0x%08llx\n", error->bbaddr);
  593. }
  594. if (INTEL_INFO(dev)->gen >= 4)
  595. seq_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]);
  596. seq_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]);
  597. seq_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]);
  598. if (INTEL_INFO(dev)->gen >= 6) {
  599. seq_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]);
  600. seq_printf(m, " SYNC_0: 0x%08x\n",
  601. error->semaphore_mboxes[ring][0]);
  602. seq_printf(m, " SYNC_1: 0x%08x\n",
  603. error->semaphore_mboxes[ring][1]);
  604. }
  605. seq_printf(m, " seqno: 0x%08x\n", error->seqno[ring]);
  606. seq_printf(m, " waiting: %s\n", yesno(error->waiting[ring]));
  607. seq_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]);
  608. seq_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]);
  609. }
  610. struct i915_error_state_file_priv {
  611. struct drm_device *dev;
  612. struct drm_i915_error_state *error;
  613. };
  614. static int i915_error_state(struct seq_file *m, void *unused)
  615. {
  616. struct i915_error_state_file_priv *error_priv = m->private;
  617. struct drm_device *dev = error_priv->dev;
  618. drm_i915_private_t *dev_priv = dev->dev_private;
  619. struct drm_i915_error_state *error = error_priv->error;
  620. struct intel_ring_buffer *ring;
  621. int i, j, page, offset, elt;
  622. if (!error) {
  623. seq_printf(m, "no error state collected\n");
  624. return 0;
  625. }
  626. seq_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec,
  627. error->time.tv_usec);
  628. seq_printf(m, "PCI ID: 0x%04x\n", dev->pci_device);
  629. seq_printf(m, "EIR: 0x%08x\n", error->eir);
  630. seq_printf(m, "IER: 0x%08x\n", error->ier);
  631. seq_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er);
  632. for (i = 0; i < dev_priv->num_fence_regs; i++)
  633. seq_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]);
  634. if (INTEL_INFO(dev)->gen >= 6) {
  635. seq_printf(m, "ERROR: 0x%08x\n", error->error);
  636. seq_printf(m, "DONE_REG: 0x%08x\n", error->done_reg);
  637. }
  638. for_each_ring(ring, dev_priv, i)
  639. i915_ring_error_state(m, dev, error, i);
  640. if (error->active_bo)
  641. print_error_buffers(m, "Active",
  642. error->active_bo,
  643. error->active_bo_count);
  644. if (error->pinned_bo)
  645. print_error_buffers(m, "Pinned",
  646. error->pinned_bo,
  647. error->pinned_bo_count);
  648. for (i = 0; i < ARRAY_SIZE(error->ring); i++) {
  649. struct drm_i915_error_object *obj;
  650. if ((obj = error->ring[i].batchbuffer)) {
  651. seq_printf(m, "%s --- gtt_offset = 0x%08x\n",
  652. dev_priv->ring[i].name,
  653. obj->gtt_offset);
  654. offset = 0;
  655. for (page = 0; page < obj->page_count; page++) {
  656. for (elt = 0; elt < PAGE_SIZE/4; elt++) {
  657. seq_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]);
  658. offset += 4;
  659. }
  660. }
  661. }
  662. if (error->ring[i].num_requests) {
  663. seq_printf(m, "%s --- %d requests\n",
  664. dev_priv->ring[i].name,
  665. error->ring[i].num_requests);
  666. for (j = 0; j < error->ring[i].num_requests; j++) {
  667. seq_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n",
  668. error->ring[i].requests[j].seqno,
  669. error->ring[i].requests[j].jiffies,
  670. error->ring[i].requests[j].tail);
  671. }
  672. }
  673. if ((obj = error->ring[i].ringbuffer)) {
  674. seq_printf(m, "%s --- ringbuffer = 0x%08x\n",
  675. dev_priv->ring[i].name,
  676. obj->gtt_offset);
  677. offset = 0;
  678. for (page = 0; page < obj->page_count; page++) {
  679. for (elt = 0; elt < PAGE_SIZE/4; elt++) {
  680. seq_printf(m, "%08x : %08x\n",
  681. offset,
  682. obj->pages[page][elt]);
  683. offset += 4;
  684. }
  685. }
  686. }
  687. }
  688. if (error->overlay)
  689. intel_overlay_print_error_state(m, error->overlay);
  690. if (error->display)
  691. intel_display_print_error_state(m, dev, error->display);
  692. return 0;
  693. }
  694. static ssize_t
  695. i915_error_state_write(struct file *filp,
  696. const char __user *ubuf,
  697. size_t cnt,
  698. loff_t *ppos)
  699. {
  700. struct seq_file *m = filp->private_data;
  701. struct i915_error_state_file_priv *error_priv = m->private;
  702. struct drm_device *dev = error_priv->dev;
  703. DRM_DEBUG_DRIVER("Resetting error state\n");
  704. mutex_lock(&dev->struct_mutex);
  705. i915_destroy_error_state(dev);
  706. mutex_unlock(&dev->struct_mutex);
  707. return cnt;
  708. }
  709. static int i915_error_state_open(struct inode *inode, struct file *file)
  710. {
  711. struct drm_device *dev = inode->i_private;
  712. drm_i915_private_t *dev_priv = dev->dev_private;
  713. struct i915_error_state_file_priv *error_priv;
  714. unsigned long flags;
  715. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  716. if (!error_priv)
  717. return -ENOMEM;
  718. error_priv->dev = dev;
  719. spin_lock_irqsave(&dev_priv->error_lock, flags);
  720. error_priv->error = dev_priv->first_error;
  721. if (error_priv->error)
  722. kref_get(&error_priv->error->ref);
  723. spin_unlock_irqrestore(&dev_priv->error_lock, flags);
  724. return single_open(file, i915_error_state, error_priv);
  725. }
  726. static int i915_error_state_release(struct inode *inode, struct file *file)
  727. {
  728. struct seq_file *m = file->private_data;
  729. struct i915_error_state_file_priv *error_priv = m->private;
  730. if (error_priv->error)
  731. kref_put(&error_priv->error->ref, i915_error_state_free);
  732. kfree(error_priv);
  733. return single_release(inode, file);
  734. }
  735. static const struct file_operations i915_error_state_fops = {
  736. .owner = THIS_MODULE,
  737. .open = i915_error_state_open,
  738. .read = seq_read,
  739. .write = i915_error_state_write,
  740. .llseek = default_llseek,
  741. .release = i915_error_state_release,
  742. };
  743. static int i915_rstdby_delays(struct seq_file *m, void *unused)
  744. {
  745. struct drm_info_node *node = (struct drm_info_node *) m->private;
  746. struct drm_device *dev = node->minor->dev;
  747. drm_i915_private_t *dev_priv = dev->dev_private;
  748. u16 crstanddelay;
  749. int ret;
  750. ret = mutex_lock_interruptible(&dev->struct_mutex);
  751. if (ret)
  752. return ret;
  753. crstanddelay = I915_READ16(CRSTANDVID);
  754. mutex_unlock(&dev->struct_mutex);
  755. seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f));
  756. return 0;
  757. }
  758. static int i915_cur_delayinfo(struct seq_file *m, void *unused)
  759. {
  760. struct drm_info_node *node = (struct drm_info_node *) m->private;
  761. struct drm_device *dev = node->minor->dev;
  762. drm_i915_private_t *dev_priv = dev->dev_private;
  763. int ret;
  764. if (IS_GEN5(dev)) {
  765. u16 rgvswctl = I915_READ16(MEMSWCTL);
  766. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  767. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  768. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  769. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  770. MEMSTAT_VID_SHIFT);
  771. seq_printf(m, "Current P-state: %d\n",
  772. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  773. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  774. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  775. u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  776. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  777. u32 rpstat;
  778. u32 rpupei, rpcurup, rpprevup;
  779. u32 rpdownei, rpcurdown, rpprevdown;
  780. int max_freq;
  781. /* RPSTAT1 is in the GT power well */
  782. ret = mutex_lock_interruptible(&dev->struct_mutex);
  783. if (ret)
  784. return ret;
  785. gen6_gt_force_wake_get(dev_priv);
  786. rpstat = I915_READ(GEN6_RPSTAT1);
  787. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  788. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  789. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  790. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  791. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  792. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  793. gen6_gt_force_wake_put(dev_priv);
  794. mutex_unlock(&dev->struct_mutex);
  795. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  796. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  797. seq_printf(m, "Render p-state ratio: %d\n",
  798. (gt_perf_status & 0xff00) >> 8);
  799. seq_printf(m, "Render p-state VID: %d\n",
  800. gt_perf_status & 0xff);
  801. seq_printf(m, "Render p-state limit: %d\n",
  802. rp_state_limits & 0xff);
  803. seq_printf(m, "CAGF: %dMHz\n", ((rpstat & GEN6_CAGF_MASK) >>
  804. GEN6_CAGF_SHIFT) * 50);
  805. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  806. GEN6_CURICONT_MASK);
  807. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  808. GEN6_CURBSYTAVG_MASK);
  809. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  810. GEN6_CURBSYTAVG_MASK);
  811. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  812. GEN6_CURIAVG_MASK);
  813. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  814. GEN6_CURBSYTAVG_MASK);
  815. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  816. GEN6_CURBSYTAVG_MASK);
  817. max_freq = (rp_state_cap & 0xff0000) >> 16;
  818. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  819. max_freq * 50);
  820. max_freq = (rp_state_cap & 0xff00) >> 8;
  821. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  822. max_freq * 50);
  823. max_freq = rp_state_cap & 0xff;
  824. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  825. max_freq * 50);
  826. } else {
  827. seq_printf(m, "no P-state info available\n");
  828. }
  829. return 0;
  830. }
  831. static int i915_delayfreq_table(struct seq_file *m, void *unused)
  832. {
  833. struct drm_info_node *node = (struct drm_info_node *) m->private;
  834. struct drm_device *dev = node->minor->dev;
  835. drm_i915_private_t *dev_priv = dev->dev_private;
  836. u32 delayfreq;
  837. int ret, i;
  838. ret = mutex_lock_interruptible(&dev->struct_mutex);
  839. if (ret)
  840. return ret;
  841. for (i = 0; i < 16; i++) {
  842. delayfreq = I915_READ(PXVFREQ_BASE + i * 4);
  843. seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq,
  844. (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT);
  845. }
  846. mutex_unlock(&dev->struct_mutex);
  847. return 0;
  848. }
  849. static inline int MAP_TO_MV(int map)
  850. {
  851. return 1250 - (map * 25);
  852. }
  853. static int i915_inttoext_table(struct seq_file *m, void *unused)
  854. {
  855. struct drm_info_node *node = (struct drm_info_node *) m->private;
  856. struct drm_device *dev = node->minor->dev;
  857. drm_i915_private_t *dev_priv = dev->dev_private;
  858. u32 inttoext;
  859. int ret, i;
  860. ret = mutex_lock_interruptible(&dev->struct_mutex);
  861. if (ret)
  862. return ret;
  863. for (i = 1; i <= 32; i++) {
  864. inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4);
  865. seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext);
  866. }
  867. mutex_unlock(&dev->struct_mutex);
  868. return 0;
  869. }
  870. static int ironlake_drpc_info(struct seq_file *m)
  871. {
  872. struct drm_info_node *node = (struct drm_info_node *) m->private;
  873. struct drm_device *dev = node->minor->dev;
  874. drm_i915_private_t *dev_priv = dev->dev_private;
  875. u32 rgvmodectl, rstdbyctl;
  876. u16 crstandvid;
  877. int ret;
  878. ret = mutex_lock_interruptible(&dev->struct_mutex);
  879. if (ret)
  880. return ret;
  881. rgvmodectl = I915_READ(MEMMODECTL);
  882. rstdbyctl = I915_READ(RSTDBYCTL);
  883. crstandvid = I915_READ16(CRSTANDVID);
  884. mutex_unlock(&dev->struct_mutex);
  885. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  886. "yes" : "no");
  887. seq_printf(m, "Boost freq: %d\n",
  888. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  889. MEMMODE_BOOST_FREQ_SHIFT);
  890. seq_printf(m, "HW control enabled: %s\n",
  891. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  892. seq_printf(m, "SW control enabled: %s\n",
  893. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  894. seq_printf(m, "Gated voltage change: %s\n",
  895. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  896. seq_printf(m, "Starting frequency: P%d\n",
  897. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  898. seq_printf(m, "Max P-state: P%d\n",
  899. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  900. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  901. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  902. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  903. seq_printf(m, "Render standby enabled: %s\n",
  904. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  905. seq_printf(m, "Current RS state: ");
  906. switch (rstdbyctl & RSX_STATUS_MASK) {
  907. case RSX_STATUS_ON:
  908. seq_printf(m, "on\n");
  909. break;
  910. case RSX_STATUS_RC1:
  911. seq_printf(m, "RC1\n");
  912. break;
  913. case RSX_STATUS_RC1E:
  914. seq_printf(m, "RC1E\n");
  915. break;
  916. case RSX_STATUS_RS1:
  917. seq_printf(m, "RS1\n");
  918. break;
  919. case RSX_STATUS_RS2:
  920. seq_printf(m, "RS2 (RC6)\n");
  921. break;
  922. case RSX_STATUS_RS3:
  923. seq_printf(m, "RC3 (RC6+)\n");
  924. break;
  925. default:
  926. seq_printf(m, "unknown\n");
  927. break;
  928. }
  929. return 0;
  930. }
  931. static int gen6_drpc_info(struct seq_file *m)
  932. {
  933. struct drm_info_node *node = (struct drm_info_node *) m->private;
  934. struct drm_device *dev = node->minor->dev;
  935. struct drm_i915_private *dev_priv = dev->dev_private;
  936. u32 rpmodectl1, gt_core_status, rcctl1;
  937. unsigned forcewake_count;
  938. int count=0, ret;
  939. ret = mutex_lock_interruptible(&dev->struct_mutex);
  940. if (ret)
  941. return ret;
  942. spin_lock_irq(&dev_priv->gt_lock);
  943. forcewake_count = dev_priv->forcewake_count;
  944. spin_unlock_irq(&dev_priv->gt_lock);
  945. if (forcewake_count) {
  946. seq_printf(m, "RC information inaccurate because somebody "
  947. "holds a forcewake reference \n");
  948. } else {
  949. /* NB: we cannot use forcewake, else we read the wrong values */
  950. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  951. udelay(10);
  952. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  953. }
  954. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  955. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4);
  956. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  957. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  958. mutex_unlock(&dev->struct_mutex);
  959. seq_printf(m, "Video Turbo Mode: %s\n",
  960. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  961. seq_printf(m, "HW control enabled: %s\n",
  962. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  963. seq_printf(m, "SW control enabled: %s\n",
  964. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  965. GEN6_RP_MEDIA_SW_MODE));
  966. seq_printf(m, "RC1e Enabled: %s\n",
  967. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  968. seq_printf(m, "RC6 Enabled: %s\n",
  969. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  970. seq_printf(m, "Deep RC6 Enabled: %s\n",
  971. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  972. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  973. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  974. seq_printf(m, "Current RC state: ");
  975. switch (gt_core_status & GEN6_RCn_MASK) {
  976. case GEN6_RC0:
  977. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  978. seq_printf(m, "Core Power Down\n");
  979. else
  980. seq_printf(m, "on\n");
  981. break;
  982. case GEN6_RC3:
  983. seq_printf(m, "RC3\n");
  984. break;
  985. case GEN6_RC6:
  986. seq_printf(m, "RC6\n");
  987. break;
  988. case GEN6_RC7:
  989. seq_printf(m, "RC7\n");
  990. break;
  991. default:
  992. seq_printf(m, "Unknown\n");
  993. break;
  994. }
  995. seq_printf(m, "Core Power Down: %s\n",
  996. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  997. /* Not exactly sure what this is */
  998. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  999. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1000. seq_printf(m, "RC6 residency since boot: %u\n",
  1001. I915_READ(GEN6_GT_GFX_RC6));
  1002. seq_printf(m, "RC6+ residency since boot: %u\n",
  1003. I915_READ(GEN6_GT_GFX_RC6p));
  1004. seq_printf(m, "RC6++ residency since boot: %u\n",
  1005. I915_READ(GEN6_GT_GFX_RC6pp));
  1006. return 0;
  1007. }
  1008. static int i915_drpc_info(struct seq_file *m, void *unused)
  1009. {
  1010. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1011. struct drm_device *dev = node->minor->dev;
  1012. if (IS_GEN6(dev) || IS_GEN7(dev))
  1013. return gen6_drpc_info(m);
  1014. else
  1015. return ironlake_drpc_info(m);
  1016. }
  1017. static int i915_fbc_status(struct seq_file *m, void *unused)
  1018. {
  1019. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1020. struct drm_device *dev = node->minor->dev;
  1021. drm_i915_private_t *dev_priv = dev->dev_private;
  1022. if (!I915_HAS_FBC(dev)) {
  1023. seq_printf(m, "FBC unsupported on this chipset\n");
  1024. return 0;
  1025. }
  1026. if (intel_fbc_enabled(dev)) {
  1027. seq_printf(m, "FBC enabled\n");
  1028. } else {
  1029. seq_printf(m, "FBC disabled: ");
  1030. switch (dev_priv->no_fbc_reason) {
  1031. case FBC_NO_OUTPUT:
  1032. seq_printf(m, "no outputs");
  1033. break;
  1034. case FBC_STOLEN_TOO_SMALL:
  1035. seq_printf(m, "not enough stolen memory");
  1036. break;
  1037. case FBC_UNSUPPORTED_MODE:
  1038. seq_printf(m, "mode not supported");
  1039. break;
  1040. case FBC_MODE_TOO_LARGE:
  1041. seq_printf(m, "mode too large");
  1042. break;
  1043. case FBC_BAD_PLANE:
  1044. seq_printf(m, "FBC unsupported on plane");
  1045. break;
  1046. case FBC_NOT_TILED:
  1047. seq_printf(m, "scanout buffer not tiled");
  1048. break;
  1049. case FBC_MULTIPLE_PIPES:
  1050. seq_printf(m, "multiple pipes are enabled");
  1051. break;
  1052. case FBC_MODULE_PARAM:
  1053. seq_printf(m, "disabled per module param (default off)");
  1054. break;
  1055. default:
  1056. seq_printf(m, "unknown reason");
  1057. }
  1058. seq_printf(m, "\n");
  1059. }
  1060. return 0;
  1061. }
  1062. static int i915_sr_status(struct seq_file *m, void *unused)
  1063. {
  1064. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1065. struct drm_device *dev = node->minor->dev;
  1066. drm_i915_private_t *dev_priv = dev->dev_private;
  1067. bool sr_enabled = false;
  1068. if (HAS_PCH_SPLIT(dev))
  1069. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1070. else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
  1071. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1072. else if (IS_I915GM(dev))
  1073. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1074. else if (IS_PINEVIEW(dev))
  1075. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1076. seq_printf(m, "self-refresh: %s\n",
  1077. sr_enabled ? "enabled" : "disabled");
  1078. return 0;
  1079. }
  1080. static int i915_emon_status(struct seq_file *m, void *unused)
  1081. {
  1082. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1083. struct drm_device *dev = node->minor->dev;
  1084. drm_i915_private_t *dev_priv = dev->dev_private;
  1085. unsigned long temp, chipset, gfx;
  1086. int ret;
  1087. if (!IS_GEN5(dev))
  1088. return -ENODEV;
  1089. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1090. if (ret)
  1091. return ret;
  1092. temp = i915_mch_val(dev_priv);
  1093. chipset = i915_chipset_val(dev_priv);
  1094. gfx = i915_gfx_val(dev_priv);
  1095. mutex_unlock(&dev->struct_mutex);
  1096. seq_printf(m, "GMCH temp: %ld\n", temp);
  1097. seq_printf(m, "Chipset power: %ld\n", chipset);
  1098. seq_printf(m, "GFX power: %ld\n", gfx);
  1099. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1100. return 0;
  1101. }
  1102. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1103. {
  1104. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1105. struct drm_device *dev = node->minor->dev;
  1106. drm_i915_private_t *dev_priv = dev->dev_private;
  1107. int ret;
  1108. int gpu_freq, ia_freq;
  1109. if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
  1110. seq_printf(m, "unsupported on this chipset\n");
  1111. return 0;
  1112. }
  1113. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1114. if (ret)
  1115. return ret;
  1116. seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\n");
  1117. for (gpu_freq = dev_priv->min_delay; gpu_freq <= dev_priv->max_delay;
  1118. gpu_freq++) {
  1119. I915_WRITE(GEN6_PCODE_DATA, gpu_freq);
  1120. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  1121. GEN6_PCODE_READ_MIN_FREQ_TABLE);
  1122. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  1123. GEN6_PCODE_READY) == 0, 10)) {
  1124. DRM_ERROR("pcode read of freq table timed out\n");
  1125. continue;
  1126. }
  1127. ia_freq = I915_READ(GEN6_PCODE_DATA);
  1128. seq_printf(m, "%d\t\t%d\n", gpu_freq * 50, ia_freq * 100);
  1129. }
  1130. mutex_unlock(&dev->struct_mutex);
  1131. return 0;
  1132. }
  1133. static int i915_gfxec(struct seq_file *m, void *unused)
  1134. {
  1135. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1136. struct drm_device *dev = node->minor->dev;
  1137. drm_i915_private_t *dev_priv = dev->dev_private;
  1138. int ret;
  1139. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1140. if (ret)
  1141. return ret;
  1142. seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4));
  1143. mutex_unlock(&dev->struct_mutex);
  1144. return 0;
  1145. }
  1146. static int i915_opregion(struct seq_file *m, void *unused)
  1147. {
  1148. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1149. struct drm_device *dev = node->minor->dev;
  1150. drm_i915_private_t *dev_priv = dev->dev_private;
  1151. struct intel_opregion *opregion = &dev_priv->opregion;
  1152. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1153. int ret;
  1154. if (data == NULL)
  1155. return -ENOMEM;
  1156. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1157. if (ret)
  1158. goto out;
  1159. if (opregion->header) {
  1160. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1161. seq_write(m, data, OPREGION_SIZE);
  1162. }
  1163. mutex_unlock(&dev->struct_mutex);
  1164. out:
  1165. kfree(data);
  1166. return 0;
  1167. }
  1168. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1169. {
  1170. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1171. struct drm_device *dev = node->minor->dev;
  1172. drm_i915_private_t *dev_priv = dev->dev_private;
  1173. struct intel_fbdev *ifbdev;
  1174. struct intel_framebuffer *fb;
  1175. int ret;
  1176. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1177. if (ret)
  1178. return ret;
  1179. ifbdev = dev_priv->fbdev;
  1180. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1181. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, obj ",
  1182. fb->base.width,
  1183. fb->base.height,
  1184. fb->base.depth,
  1185. fb->base.bits_per_pixel);
  1186. describe_obj(m, fb->obj);
  1187. seq_printf(m, "\n");
  1188. list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
  1189. if (&fb->base == ifbdev->helper.fb)
  1190. continue;
  1191. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, obj ",
  1192. fb->base.width,
  1193. fb->base.height,
  1194. fb->base.depth,
  1195. fb->base.bits_per_pixel);
  1196. describe_obj(m, fb->obj);
  1197. seq_printf(m, "\n");
  1198. }
  1199. mutex_unlock(&dev->mode_config.mutex);
  1200. return 0;
  1201. }
  1202. static int i915_context_status(struct seq_file *m, void *unused)
  1203. {
  1204. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1205. struct drm_device *dev = node->minor->dev;
  1206. drm_i915_private_t *dev_priv = dev->dev_private;
  1207. int ret;
  1208. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1209. if (ret)
  1210. return ret;
  1211. if (dev_priv->pwrctx) {
  1212. seq_printf(m, "power context ");
  1213. describe_obj(m, dev_priv->pwrctx);
  1214. seq_printf(m, "\n");
  1215. }
  1216. if (dev_priv->renderctx) {
  1217. seq_printf(m, "render context ");
  1218. describe_obj(m, dev_priv->renderctx);
  1219. seq_printf(m, "\n");
  1220. }
  1221. mutex_unlock(&dev->mode_config.mutex);
  1222. return 0;
  1223. }
  1224. static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
  1225. {
  1226. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1227. struct drm_device *dev = node->minor->dev;
  1228. struct drm_i915_private *dev_priv = dev->dev_private;
  1229. unsigned forcewake_count;
  1230. spin_lock_irq(&dev_priv->gt_lock);
  1231. forcewake_count = dev_priv->forcewake_count;
  1232. spin_unlock_irq(&dev_priv->gt_lock);
  1233. seq_printf(m, "forcewake count = %u\n", forcewake_count);
  1234. return 0;
  1235. }
  1236. static const char *swizzle_string(unsigned swizzle)
  1237. {
  1238. switch(swizzle) {
  1239. case I915_BIT_6_SWIZZLE_NONE:
  1240. return "none";
  1241. case I915_BIT_6_SWIZZLE_9:
  1242. return "bit9";
  1243. case I915_BIT_6_SWIZZLE_9_10:
  1244. return "bit9/bit10";
  1245. case I915_BIT_6_SWIZZLE_9_11:
  1246. return "bit9/bit11";
  1247. case I915_BIT_6_SWIZZLE_9_10_11:
  1248. return "bit9/bit10/bit11";
  1249. case I915_BIT_6_SWIZZLE_9_17:
  1250. return "bit9/bit17";
  1251. case I915_BIT_6_SWIZZLE_9_10_17:
  1252. return "bit9/bit10/bit17";
  1253. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1254. return "unkown";
  1255. }
  1256. return "bug";
  1257. }
  1258. static int i915_swizzle_info(struct seq_file *m, void *data)
  1259. {
  1260. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1261. struct drm_device *dev = node->minor->dev;
  1262. struct drm_i915_private *dev_priv = dev->dev_private;
  1263. mutex_lock(&dev->struct_mutex);
  1264. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1265. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1266. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1267. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1268. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1269. seq_printf(m, "DDC = 0x%08x\n",
  1270. I915_READ(DCC));
  1271. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1272. I915_READ16(C0DRB3));
  1273. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1274. I915_READ16(C1DRB3));
  1275. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1276. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1277. I915_READ(MAD_DIMM_C0));
  1278. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1279. I915_READ(MAD_DIMM_C1));
  1280. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1281. I915_READ(MAD_DIMM_C2));
  1282. seq_printf(m, "TILECTL = 0x%08x\n",
  1283. I915_READ(TILECTL));
  1284. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1285. I915_READ(ARB_MODE));
  1286. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1287. I915_READ(DISP_ARB_CTL));
  1288. }
  1289. mutex_unlock(&dev->struct_mutex);
  1290. return 0;
  1291. }
  1292. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1293. {
  1294. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1295. struct drm_device *dev = node->minor->dev;
  1296. struct drm_i915_private *dev_priv = dev->dev_private;
  1297. struct intel_ring_buffer *ring;
  1298. int i, ret;
  1299. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1300. if (ret)
  1301. return ret;
  1302. if (INTEL_INFO(dev)->gen == 6)
  1303. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1304. for (i = 0; i < I915_NUM_RINGS; i++) {
  1305. ring = &dev_priv->ring[i];
  1306. seq_printf(m, "%s\n", ring->name);
  1307. if (INTEL_INFO(dev)->gen == 7)
  1308. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1309. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1310. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1311. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1312. }
  1313. if (dev_priv->mm.aliasing_ppgtt) {
  1314. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1315. seq_printf(m, "aliasing PPGTT:\n");
  1316. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
  1317. }
  1318. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1319. mutex_unlock(&dev->struct_mutex);
  1320. return 0;
  1321. }
  1322. static int i915_dpio_info(struct seq_file *m, void *data)
  1323. {
  1324. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1325. struct drm_device *dev = node->minor->dev;
  1326. struct drm_i915_private *dev_priv = dev->dev_private;
  1327. int ret;
  1328. if (!IS_VALLEYVIEW(dev)) {
  1329. seq_printf(m, "unsupported\n");
  1330. return 0;
  1331. }
  1332. ret = mutex_lock_interruptible(&dev->mode_config.mutex);
  1333. if (ret)
  1334. return ret;
  1335. seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL));
  1336. seq_printf(m, "DPIO_DIV_A: 0x%08x\n",
  1337. intel_dpio_read(dev_priv, _DPIO_DIV_A));
  1338. seq_printf(m, "DPIO_DIV_B: 0x%08x\n",
  1339. intel_dpio_read(dev_priv, _DPIO_DIV_B));
  1340. seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n",
  1341. intel_dpio_read(dev_priv, _DPIO_REFSFR_A));
  1342. seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n",
  1343. intel_dpio_read(dev_priv, _DPIO_REFSFR_B));
  1344. seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n",
  1345. intel_dpio_read(dev_priv, _DPIO_CORE_CLK_A));
  1346. seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n",
  1347. intel_dpio_read(dev_priv, _DPIO_CORE_CLK_B));
  1348. seq_printf(m, "DPIO_LFP_COEFF_A: 0x%08x\n",
  1349. intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_A));
  1350. seq_printf(m, "DPIO_LFP_COEFF_B: 0x%08x\n",
  1351. intel_dpio_read(dev_priv, _DPIO_LFP_COEFF_B));
  1352. seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n",
  1353. intel_dpio_read(dev_priv, DPIO_FASTCLK_DISABLE));
  1354. mutex_unlock(&dev->mode_config.mutex);
  1355. return 0;
  1356. }
  1357. static ssize_t
  1358. i915_wedged_read(struct file *filp,
  1359. char __user *ubuf,
  1360. size_t max,
  1361. loff_t *ppos)
  1362. {
  1363. struct drm_device *dev = filp->private_data;
  1364. drm_i915_private_t *dev_priv = dev->dev_private;
  1365. char buf[80];
  1366. int len;
  1367. len = snprintf(buf, sizeof(buf),
  1368. "wedged : %d\n",
  1369. atomic_read(&dev_priv->mm.wedged));
  1370. if (len > sizeof(buf))
  1371. len = sizeof(buf);
  1372. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1373. }
  1374. static ssize_t
  1375. i915_wedged_write(struct file *filp,
  1376. const char __user *ubuf,
  1377. size_t cnt,
  1378. loff_t *ppos)
  1379. {
  1380. struct drm_device *dev = filp->private_data;
  1381. char buf[20];
  1382. int val = 1;
  1383. if (cnt > 0) {
  1384. if (cnt > sizeof(buf) - 1)
  1385. return -EINVAL;
  1386. if (copy_from_user(buf, ubuf, cnt))
  1387. return -EFAULT;
  1388. buf[cnt] = 0;
  1389. val = simple_strtoul(buf, NULL, 0);
  1390. }
  1391. DRM_INFO("Manually setting wedged to %d\n", val);
  1392. i915_handle_error(dev, val);
  1393. return cnt;
  1394. }
  1395. static const struct file_operations i915_wedged_fops = {
  1396. .owner = THIS_MODULE,
  1397. .open = simple_open,
  1398. .read = i915_wedged_read,
  1399. .write = i915_wedged_write,
  1400. .llseek = default_llseek,
  1401. };
  1402. static ssize_t
  1403. i915_ring_stop_read(struct file *filp,
  1404. char __user *ubuf,
  1405. size_t max,
  1406. loff_t *ppos)
  1407. {
  1408. struct drm_device *dev = filp->private_data;
  1409. drm_i915_private_t *dev_priv = dev->dev_private;
  1410. char buf[20];
  1411. int len;
  1412. len = snprintf(buf, sizeof(buf),
  1413. "0x%08x\n", dev_priv->stop_rings);
  1414. if (len > sizeof(buf))
  1415. len = sizeof(buf);
  1416. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1417. }
  1418. static ssize_t
  1419. i915_ring_stop_write(struct file *filp,
  1420. const char __user *ubuf,
  1421. size_t cnt,
  1422. loff_t *ppos)
  1423. {
  1424. struct drm_device *dev = filp->private_data;
  1425. struct drm_i915_private *dev_priv = dev->dev_private;
  1426. char buf[20];
  1427. int val = 0;
  1428. if (cnt > 0) {
  1429. if (cnt > sizeof(buf) - 1)
  1430. return -EINVAL;
  1431. if (copy_from_user(buf, ubuf, cnt))
  1432. return -EFAULT;
  1433. buf[cnt] = 0;
  1434. val = simple_strtoul(buf, NULL, 0);
  1435. }
  1436. DRM_DEBUG_DRIVER("Stopping rings 0x%08x\n", val);
  1437. mutex_lock(&dev->struct_mutex);
  1438. dev_priv->stop_rings = val;
  1439. mutex_unlock(&dev->struct_mutex);
  1440. return cnt;
  1441. }
  1442. static const struct file_operations i915_ring_stop_fops = {
  1443. .owner = THIS_MODULE,
  1444. .open = simple_open,
  1445. .read = i915_ring_stop_read,
  1446. .write = i915_ring_stop_write,
  1447. .llseek = default_llseek,
  1448. };
  1449. static ssize_t
  1450. i915_max_freq_read(struct file *filp,
  1451. char __user *ubuf,
  1452. size_t max,
  1453. loff_t *ppos)
  1454. {
  1455. struct drm_device *dev = filp->private_data;
  1456. drm_i915_private_t *dev_priv = dev->dev_private;
  1457. char buf[80];
  1458. int len;
  1459. len = snprintf(buf, sizeof(buf),
  1460. "max freq: %d\n", dev_priv->max_delay * 50);
  1461. if (len > sizeof(buf))
  1462. len = sizeof(buf);
  1463. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1464. }
  1465. static ssize_t
  1466. i915_max_freq_write(struct file *filp,
  1467. const char __user *ubuf,
  1468. size_t cnt,
  1469. loff_t *ppos)
  1470. {
  1471. struct drm_device *dev = filp->private_data;
  1472. struct drm_i915_private *dev_priv = dev->dev_private;
  1473. char buf[20];
  1474. int val = 1;
  1475. if (cnt > 0) {
  1476. if (cnt > sizeof(buf) - 1)
  1477. return -EINVAL;
  1478. if (copy_from_user(buf, ubuf, cnt))
  1479. return -EFAULT;
  1480. buf[cnt] = 0;
  1481. val = simple_strtoul(buf, NULL, 0);
  1482. }
  1483. DRM_DEBUG_DRIVER("Manually setting max freq to %d\n", val);
  1484. /*
  1485. * Turbo will still be enabled, but won't go above the set value.
  1486. */
  1487. dev_priv->max_delay = val / 50;
  1488. gen6_set_rps(dev, val / 50);
  1489. return cnt;
  1490. }
  1491. static const struct file_operations i915_max_freq_fops = {
  1492. .owner = THIS_MODULE,
  1493. .open = simple_open,
  1494. .read = i915_max_freq_read,
  1495. .write = i915_max_freq_write,
  1496. .llseek = default_llseek,
  1497. };
  1498. static ssize_t
  1499. i915_cache_sharing_read(struct file *filp,
  1500. char __user *ubuf,
  1501. size_t max,
  1502. loff_t *ppos)
  1503. {
  1504. struct drm_device *dev = filp->private_data;
  1505. drm_i915_private_t *dev_priv = dev->dev_private;
  1506. char buf[80];
  1507. u32 snpcr;
  1508. int len;
  1509. mutex_lock(&dev_priv->dev->struct_mutex);
  1510. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  1511. mutex_unlock(&dev_priv->dev->struct_mutex);
  1512. len = snprintf(buf, sizeof(buf),
  1513. "%d\n", (snpcr & GEN6_MBC_SNPCR_MASK) >>
  1514. GEN6_MBC_SNPCR_SHIFT);
  1515. if (len > sizeof(buf))
  1516. len = sizeof(buf);
  1517. return simple_read_from_buffer(ubuf, max, ppos, buf, len);
  1518. }
  1519. static ssize_t
  1520. i915_cache_sharing_write(struct file *filp,
  1521. const char __user *ubuf,
  1522. size_t cnt,
  1523. loff_t *ppos)
  1524. {
  1525. struct drm_device *dev = filp->private_data;
  1526. struct drm_i915_private *dev_priv = dev->dev_private;
  1527. char buf[20];
  1528. u32 snpcr;
  1529. int val = 1;
  1530. if (cnt > 0) {
  1531. if (cnt > sizeof(buf) - 1)
  1532. return -EINVAL;
  1533. if (copy_from_user(buf, ubuf, cnt))
  1534. return -EFAULT;
  1535. buf[cnt] = 0;
  1536. val = simple_strtoul(buf, NULL, 0);
  1537. }
  1538. if (val < 0 || val > 3)
  1539. return -EINVAL;
  1540. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %d\n", val);
  1541. /* Update the cache sharing policy here as well */
  1542. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  1543. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  1544. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  1545. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  1546. return cnt;
  1547. }
  1548. static const struct file_operations i915_cache_sharing_fops = {
  1549. .owner = THIS_MODULE,
  1550. .open = simple_open,
  1551. .read = i915_cache_sharing_read,
  1552. .write = i915_cache_sharing_write,
  1553. .llseek = default_llseek,
  1554. };
  1555. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  1556. * allocated we need to hook into the minor for release. */
  1557. static int
  1558. drm_add_fake_info_node(struct drm_minor *minor,
  1559. struct dentry *ent,
  1560. const void *key)
  1561. {
  1562. struct drm_info_node *node;
  1563. node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL);
  1564. if (node == NULL) {
  1565. debugfs_remove(ent);
  1566. return -ENOMEM;
  1567. }
  1568. node->minor = minor;
  1569. node->dent = ent;
  1570. node->info_ent = (void *) key;
  1571. mutex_lock(&minor->debugfs_lock);
  1572. list_add(&node->list, &minor->debugfs_list);
  1573. mutex_unlock(&minor->debugfs_lock);
  1574. return 0;
  1575. }
  1576. static int i915_forcewake_open(struct inode *inode, struct file *file)
  1577. {
  1578. struct drm_device *dev = inode->i_private;
  1579. struct drm_i915_private *dev_priv = dev->dev_private;
  1580. int ret;
  1581. if (INTEL_INFO(dev)->gen < 6)
  1582. return 0;
  1583. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1584. if (ret)
  1585. return ret;
  1586. gen6_gt_force_wake_get(dev_priv);
  1587. mutex_unlock(&dev->struct_mutex);
  1588. return 0;
  1589. }
  1590. static int i915_forcewake_release(struct inode *inode, struct file *file)
  1591. {
  1592. struct drm_device *dev = inode->i_private;
  1593. struct drm_i915_private *dev_priv = dev->dev_private;
  1594. if (INTEL_INFO(dev)->gen < 6)
  1595. return 0;
  1596. /*
  1597. * It's bad that we can potentially hang userspace if struct_mutex gets
  1598. * forever stuck. However, if we cannot acquire this lock it means that
  1599. * almost certainly the driver has hung, is not unload-able. Therefore
  1600. * hanging here is probably a minor inconvenience not to be seen my
  1601. * almost every user.
  1602. */
  1603. mutex_lock(&dev->struct_mutex);
  1604. gen6_gt_force_wake_put(dev_priv);
  1605. mutex_unlock(&dev->struct_mutex);
  1606. return 0;
  1607. }
  1608. static const struct file_operations i915_forcewake_fops = {
  1609. .owner = THIS_MODULE,
  1610. .open = i915_forcewake_open,
  1611. .release = i915_forcewake_release,
  1612. };
  1613. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  1614. {
  1615. struct drm_device *dev = minor->dev;
  1616. struct dentry *ent;
  1617. ent = debugfs_create_file("i915_forcewake_user",
  1618. S_IRUSR,
  1619. root, dev,
  1620. &i915_forcewake_fops);
  1621. if (IS_ERR(ent))
  1622. return PTR_ERR(ent);
  1623. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  1624. }
  1625. static int i915_debugfs_create(struct dentry *root,
  1626. struct drm_minor *minor,
  1627. const char *name,
  1628. const struct file_operations *fops)
  1629. {
  1630. struct drm_device *dev = minor->dev;
  1631. struct dentry *ent;
  1632. ent = debugfs_create_file(name,
  1633. S_IRUGO | S_IWUSR,
  1634. root, dev,
  1635. fops);
  1636. if (IS_ERR(ent))
  1637. return PTR_ERR(ent);
  1638. return drm_add_fake_info_node(minor, ent, fops);
  1639. }
  1640. static struct drm_info_list i915_debugfs_list[] = {
  1641. {"i915_capabilities", i915_capabilities, 0},
  1642. {"i915_gem_objects", i915_gem_object_info, 0},
  1643. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  1644. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  1645. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  1646. {"i915_gem_flushing", i915_gem_object_list_info, 0, (void *) FLUSHING_LIST},
  1647. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  1648. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  1649. {"i915_gem_request", i915_gem_request_info, 0},
  1650. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  1651. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  1652. {"i915_gem_interrupt", i915_interrupt_info, 0},
  1653. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  1654. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  1655. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  1656. {"i915_rstdby_delays", i915_rstdby_delays, 0},
  1657. {"i915_cur_delayinfo", i915_cur_delayinfo, 0},
  1658. {"i915_delayfreq_table", i915_delayfreq_table, 0},
  1659. {"i915_inttoext_table", i915_inttoext_table, 0},
  1660. {"i915_drpc_info", i915_drpc_info, 0},
  1661. {"i915_emon_status", i915_emon_status, 0},
  1662. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  1663. {"i915_gfxec", i915_gfxec, 0},
  1664. {"i915_fbc_status", i915_fbc_status, 0},
  1665. {"i915_sr_status", i915_sr_status, 0},
  1666. {"i915_opregion", i915_opregion, 0},
  1667. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  1668. {"i915_context_status", i915_context_status, 0},
  1669. {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
  1670. {"i915_swizzle_info", i915_swizzle_info, 0},
  1671. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  1672. {"i915_dpio", i915_dpio_info, 0},
  1673. };
  1674. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  1675. int i915_debugfs_init(struct drm_minor *minor)
  1676. {
  1677. int ret;
  1678. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1679. "i915_wedged",
  1680. &i915_wedged_fops);
  1681. if (ret)
  1682. return ret;
  1683. ret = i915_forcewake_create(minor->debugfs_root, minor);
  1684. if (ret)
  1685. return ret;
  1686. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1687. "i915_max_freq",
  1688. &i915_max_freq_fops);
  1689. if (ret)
  1690. return ret;
  1691. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1692. "i915_cache_sharing",
  1693. &i915_cache_sharing_fops);
  1694. if (ret)
  1695. return ret;
  1696. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1697. "i915_ring_stop",
  1698. &i915_ring_stop_fops);
  1699. if (ret)
  1700. return ret;
  1701. ret = i915_debugfs_create(minor->debugfs_root, minor,
  1702. "i915_error_state",
  1703. &i915_error_state_fops);
  1704. if (ret)
  1705. return ret;
  1706. return drm_debugfs_create_files(i915_debugfs_list,
  1707. I915_DEBUGFS_ENTRIES,
  1708. minor->debugfs_root, minor);
  1709. }
  1710. void i915_debugfs_cleanup(struct drm_minor *minor)
  1711. {
  1712. drm_debugfs_remove_files(i915_debugfs_list,
  1713. I915_DEBUGFS_ENTRIES, minor);
  1714. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  1715. 1, minor);
  1716. drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops,
  1717. 1, minor);
  1718. drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops,
  1719. 1, minor);
  1720. drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops,
  1721. 1, minor);
  1722. drm_debugfs_remove_files((struct drm_info_list *) &i915_ring_stop_fops,
  1723. 1, minor);
  1724. }
  1725. #endif /* CONFIG_DEBUG_FS */