file.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342
  1. /*
  2. * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
  3. *
  4. * Copyright (c) 2001-2006 Anton Altaparmakov
  5. *
  6. * This program/include file is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as published
  8. * by the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program/include file is distributed in the hope that it will be
  12. * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  13. * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program (in the main directory of the Linux-NTFS
  18. * distribution in the file COPYING); if not, write to the Free Software
  19. * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/buffer_head.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/pagevec.h>
  24. #include <linux/sched.h>
  25. #include <linux/swap.h>
  26. #include <linux/uio.h>
  27. #include <linux/writeback.h>
  28. #include <asm/page.h>
  29. #include <asm/uaccess.h>
  30. #include "attrib.h"
  31. #include "bitmap.h"
  32. #include "inode.h"
  33. #include "debug.h"
  34. #include "lcnalloc.h"
  35. #include "malloc.h"
  36. #include "mft.h"
  37. #include "ntfs.h"
  38. /**
  39. * ntfs_file_open - called when an inode is about to be opened
  40. * @vi: inode to be opened
  41. * @filp: file structure describing the inode
  42. *
  43. * Limit file size to the page cache limit on architectures where unsigned long
  44. * is 32-bits. This is the most we can do for now without overflowing the page
  45. * cache page index. Doing it this way means we don't run into problems because
  46. * of existing too large files. It would be better to allow the user to read
  47. * the beginning of the file but I doubt very much anyone is going to hit this
  48. * check on a 32-bit architecture, so there is no point in adding the extra
  49. * complexity required to support this.
  50. *
  51. * On 64-bit architectures, the check is hopefully optimized away by the
  52. * compiler.
  53. *
  54. * After the check passes, just call generic_file_open() to do its work.
  55. */
  56. static int ntfs_file_open(struct inode *vi, struct file *filp)
  57. {
  58. if (sizeof(unsigned long) < 8) {
  59. if (i_size_read(vi) > MAX_LFS_FILESIZE)
  60. return -EFBIG;
  61. }
  62. return generic_file_open(vi, filp);
  63. }
  64. #ifdef NTFS_RW
  65. /**
  66. * ntfs_attr_extend_initialized - extend the initialized size of an attribute
  67. * @ni: ntfs inode of the attribute to extend
  68. * @new_init_size: requested new initialized size in bytes
  69. * @cached_page: store any allocated but unused page here
  70. * @lru_pvec: lru-buffering pagevec of the caller
  71. *
  72. * Extend the initialized size of an attribute described by the ntfs inode @ni
  73. * to @new_init_size bytes. This involves zeroing any non-sparse space between
  74. * the old initialized size and @new_init_size both in the page cache and on
  75. * disk (if relevant complete pages are already uptodate in the page cache then
  76. * these are simply marked dirty).
  77. *
  78. * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
  79. * in the resident attribute case, it is tied to the initialized size and, in
  80. * the non-resident attribute case, it may not fall below the initialized size.
  81. *
  82. * Note that if the attribute is resident, we do not need to touch the page
  83. * cache at all. This is because if the page cache page is not uptodate we
  84. * bring it uptodate later, when doing the write to the mft record since we
  85. * then already have the page mapped. And if the page is uptodate, the
  86. * non-initialized region will already have been zeroed when the page was
  87. * brought uptodate and the region may in fact already have been overwritten
  88. * with new data via mmap() based writes, so we cannot just zero it. And since
  89. * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
  90. * is unspecified, we choose not to do zeroing and thus we do not need to touch
  91. * the page at all. For a more detailed explanation see ntfs_truncate() in
  92. * fs/ntfs/inode.c.
  93. *
  94. * @cached_page and @lru_pvec are just optimizations for dealing with multiple
  95. * pages.
  96. *
  97. * Return 0 on success and -errno on error. In the case that an error is
  98. * encountered it is possible that the initialized size will already have been
  99. * incremented some way towards @new_init_size but it is guaranteed that if
  100. * this is the case, the necessary zeroing will also have happened and that all
  101. * metadata is self-consistent.
  102. *
  103. * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
  104. * held by the caller.
  105. */
  106. static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
  107. struct page **cached_page, struct pagevec *lru_pvec)
  108. {
  109. s64 old_init_size;
  110. loff_t old_i_size;
  111. pgoff_t index, end_index;
  112. unsigned long flags;
  113. struct inode *vi = VFS_I(ni);
  114. ntfs_inode *base_ni;
  115. MFT_RECORD *m = NULL;
  116. ATTR_RECORD *a;
  117. ntfs_attr_search_ctx *ctx = NULL;
  118. struct address_space *mapping;
  119. struct page *page = NULL;
  120. u8 *kattr;
  121. int err;
  122. u32 attr_len;
  123. read_lock_irqsave(&ni->size_lock, flags);
  124. old_init_size = ni->initialized_size;
  125. old_i_size = i_size_read(vi);
  126. BUG_ON(new_init_size > ni->allocated_size);
  127. read_unlock_irqrestore(&ni->size_lock, flags);
  128. ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
  129. "old_initialized_size 0x%llx, "
  130. "new_initialized_size 0x%llx, i_size 0x%llx.",
  131. vi->i_ino, (unsigned)le32_to_cpu(ni->type),
  132. (unsigned long long)old_init_size,
  133. (unsigned long long)new_init_size, old_i_size);
  134. if (!NInoAttr(ni))
  135. base_ni = ni;
  136. else
  137. base_ni = ni->ext.base_ntfs_ino;
  138. /* Use goto to reduce indentation and we need the label below anyway. */
  139. if (NInoNonResident(ni))
  140. goto do_non_resident_extend;
  141. BUG_ON(old_init_size != old_i_size);
  142. m = map_mft_record(base_ni);
  143. if (IS_ERR(m)) {
  144. err = PTR_ERR(m);
  145. m = NULL;
  146. goto err_out;
  147. }
  148. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  149. if (unlikely(!ctx)) {
  150. err = -ENOMEM;
  151. goto err_out;
  152. }
  153. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  154. CASE_SENSITIVE, 0, NULL, 0, ctx);
  155. if (unlikely(err)) {
  156. if (err == -ENOENT)
  157. err = -EIO;
  158. goto err_out;
  159. }
  160. m = ctx->mrec;
  161. a = ctx->attr;
  162. BUG_ON(a->non_resident);
  163. /* The total length of the attribute value. */
  164. attr_len = le32_to_cpu(a->data.resident.value_length);
  165. BUG_ON(old_i_size != (loff_t)attr_len);
  166. /*
  167. * Do the zeroing in the mft record and update the attribute size in
  168. * the mft record.
  169. */
  170. kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
  171. memset(kattr + attr_len, 0, new_init_size - attr_len);
  172. a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
  173. /* Finally, update the sizes in the vfs and ntfs inodes. */
  174. write_lock_irqsave(&ni->size_lock, flags);
  175. i_size_write(vi, new_init_size);
  176. ni->initialized_size = new_init_size;
  177. write_unlock_irqrestore(&ni->size_lock, flags);
  178. goto done;
  179. do_non_resident_extend:
  180. /*
  181. * If the new initialized size @new_init_size exceeds the current file
  182. * size (vfs inode->i_size), we need to extend the file size to the
  183. * new initialized size.
  184. */
  185. if (new_init_size > old_i_size) {
  186. m = map_mft_record(base_ni);
  187. if (IS_ERR(m)) {
  188. err = PTR_ERR(m);
  189. m = NULL;
  190. goto err_out;
  191. }
  192. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  193. if (unlikely(!ctx)) {
  194. err = -ENOMEM;
  195. goto err_out;
  196. }
  197. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  198. CASE_SENSITIVE, 0, NULL, 0, ctx);
  199. if (unlikely(err)) {
  200. if (err == -ENOENT)
  201. err = -EIO;
  202. goto err_out;
  203. }
  204. m = ctx->mrec;
  205. a = ctx->attr;
  206. BUG_ON(!a->non_resident);
  207. BUG_ON(old_i_size != (loff_t)
  208. sle64_to_cpu(a->data.non_resident.data_size));
  209. a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
  210. flush_dcache_mft_record_page(ctx->ntfs_ino);
  211. mark_mft_record_dirty(ctx->ntfs_ino);
  212. /* Update the file size in the vfs inode. */
  213. i_size_write(vi, new_init_size);
  214. ntfs_attr_put_search_ctx(ctx);
  215. ctx = NULL;
  216. unmap_mft_record(base_ni);
  217. m = NULL;
  218. }
  219. mapping = vi->i_mapping;
  220. index = old_init_size >> PAGE_CACHE_SHIFT;
  221. end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  222. do {
  223. /*
  224. * Read the page. If the page is not present, this will zero
  225. * the uninitialized regions for us.
  226. */
  227. page = read_mapping_page(mapping, index, NULL);
  228. if (IS_ERR(page)) {
  229. err = PTR_ERR(page);
  230. goto init_err_out;
  231. }
  232. wait_on_page_locked(page);
  233. if (unlikely(!PageUptodate(page) || PageError(page))) {
  234. page_cache_release(page);
  235. err = -EIO;
  236. goto init_err_out;
  237. }
  238. /*
  239. * Update the initialized size in the ntfs inode. This is
  240. * enough to make ntfs_writepage() work.
  241. */
  242. write_lock_irqsave(&ni->size_lock, flags);
  243. ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
  244. if (ni->initialized_size > new_init_size)
  245. ni->initialized_size = new_init_size;
  246. write_unlock_irqrestore(&ni->size_lock, flags);
  247. /* Set the page dirty so it gets written out. */
  248. set_page_dirty(page);
  249. page_cache_release(page);
  250. /*
  251. * Play nice with the vm and the rest of the system. This is
  252. * very much needed as we can potentially be modifying the
  253. * initialised size from a very small value to a really huge
  254. * value, e.g.
  255. * f = open(somefile, O_TRUNC);
  256. * truncate(f, 10GiB);
  257. * seek(f, 10GiB);
  258. * write(f, 1);
  259. * And this would mean we would be marking dirty hundreds of
  260. * thousands of pages or as in the above example more than
  261. * two and a half million pages!
  262. *
  263. * TODO: For sparse pages could optimize this workload by using
  264. * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
  265. * would be set in readpage for sparse pages and here we would
  266. * not need to mark dirty any pages which have this bit set.
  267. * The only caveat is that we have to clear the bit everywhere
  268. * where we allocate any clusters that lie in the page or that
  269. * contain the page.
  270. *
  271. * TODO: An even greater optimization would be for us to only
  272. * call readpage() on pages which are not in sparse regions as
  273. * determined from the runlist. This would greatly reduce the
  274. * number of pages we read and make dirty in the case of sparse
  275. * files.
  276. */
  277. balance_dirty_pages_ratelimited(mapping);
  278. cond_resched();
  279. } while (++index < end_index);
  280. read_lock_irqsave(&ni->size_lock, flags);
  281. BUG_ON(ni->initialized_size != new_init_size);
  282. read_unlock_irqrestore(&ni->size_lock, flags);
  283. /* Now bring in sync the initialized_size in the mft record. */
  284. m = map_mft_record(base_ni);
  285. if (IS_ERR(m)) {
  286. err = PTR_ERR(m);
  287. m = NULL;
  288. goto init_err_out;
  289. }
  290. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  291. if (unlikely(!ctx)) {
  292. err = -ENOMEM;
  293. goto init_err_out;
  294. }
  295. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  296. CASE_SENSITIVE, 0, NULL, 0, ctx);
  297. if (unlikely(err)) {
  298. if (err == -ENOENT)
  299. err = -EIO;
  300. goto init_err_out;
  301. }
  302. m = ctx->mrec;
  303. a = ctx->attr;
  304. BUG_ON(!a->non_resident);
  305. a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
  306. done:
  307. flush_dcache_mft_record_page(ctx->ntfs_ino);
  308. mark_mft_record_dirty(ctx->ntfs_ino);
  309. if (ctx)
  310. ntfs_attr_put_search_ctx(ctx);
  311. if (m)
  312. unmap_mft_record(base_ni);
  313. ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
  314. (unsigned long long)new_init_size, i_size_read(vi));
  315. return 0;
  316. init_err_out:
  317. write_lock_irqsave(&ni->size_lock, flags);
  318. ni->initialized_size = old_init_size;
  319. write_unlock_irqrestore(&ni->size_lock, flags);
  320. err_out:
  321. if (ctx)
  322. ntfs_attr_put_search_ctx(ctx);
  323. if (m)
  324. unmap_mft_record(base_ni);
  325. ntfs_debug("Failed. Returning error code %i.", err);
  326. return err;
  327. }
  328. /**
  329. * ntfs_fault_in_pages_readable -
  330. *
  331. * Fault a number of userspace pages into pagetables.
  332. *
  333. * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
  334. * with more than two userspace pages as well as handling the single page case
  335. * elegantly.
  336. *
  337. * If you find this difficult to understand, then think of the while loop being
  338. * the following code, except that we do without the integer variable ret:
  339. *
  340. * do {
  341. * ret = __get_user(c, uaddr);
  342. * uaddr += PAGE_SIZE;
  343. * } while (!ret && uaddr < end);
  344. *
  345. * Note, the final __get_user() may well run out-of-bounds of the user buffer,
  346. * but _not_ out-of-bounds of the page the user buffer belongs to, and since
  347. * this is only a read and not a write, and since it is still in the same page,
  348. * it should not matter and this makes the code much simpler.
  349. */
  350. static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
  351. int bytes)
  352. {
  353. const char __user *end;
  354. volatile char c;
  355. /* Set @end to the first byte outside the last page we care about. */
  356. end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
  357. while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
  358. ;
  359. }
  360. /**
  361. * ntfs_fault_in_pages_readable_iovec -
  362. *
  363. * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
  364. */
  365. static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
  366. size_t iov_ofs, int bytes)
  367. {
  368. do {
  369. const char __user *buf;
  370. unsigned len;
  371. buf = iov->iov_base + iov_ofs;
  372. len = iov->iov_len - iov_ofs;
  373. if (len > bytes)
  374. len = bytes;
  375. ntfs_fault_in_pages_readable(buf, len);
  376. bytes -= len;
  377. iov++;
  378. iov_ofs = 0;
  379. } while (bytes);
  380. }
  381. /**
  382. * __ntfs_grab_cache_pages - obtain a number of locked pages
  383. * @mapping: address space mapping from which to obtain page cache pages
  384. * @index: starting index in @mapping at which to begin obtaining pages
  385. * @nr_pages: number of page cache pages to obtain
  386. * @pages: array of pages in which to return the obtained page cache pages
  387. * @cached_page: allocated but as yet unused page
  388. * @lru_pvec: lru-buffering pagevec of caller
  389. *
  390. * Obtain @nr_pages locked page cache pages from the mapping @maping and
  391. * starting at index @index.
  392. *
  393. * If a page is newly created, increment its refcount and add it to the
  394. * caller's lru-buffering pagevec @lru_pvec.
  395. *
  396. * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
  397. * are obtained at once instead of just one page and that 0 is returned on
  398. * success and -errno on error.
  399. *
  400. * Note, the page locks are obtained in ascending page index order.
  401. */
  402. static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
  403. pgoff_t index, const unsigned nr_pages, struct page **pages,
  404. struct page **cached_page, struct pagevec *lru_pvec)
  405. {
  406. int err, nr;
  407. BUG_ON(!nr_pages);
  408. err = nr = 0;
  409. do {
  410. pages[nr] = find_lock_page(mapping, index);
  411. if (!pages[nr]) {
  412. if (!*cached_page) {
  413. *cached_page = page_cache_alloc(mapping);
  414. if (unlikely(!*cached_page)) {
  415. err = -ENOMEM;
  416. goto err_out;
  417. }
  418. }
  419. err = add_to_page_cache(*cached_page, mapping, index,
  420. GFP_KERNEL);
  421. if (unlikely(err)) {
  422. if (err == -EEXIST)
  423. continue;
  424. goto err_out;
  425. }
  426. pages[nr] = *cached_page;
  427. page_cache_get(*cached_page);
  428. if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
  429. __pagevec_lru_add(lru_pvec);
  430. *cached_page = NULL;
  431. }
  432. index++;
  433. nr++;
  434. } while (nr < nr_pages);
  435. out:
  436. return err;
  437. err_out:
  438. while (nr > 0) {
  439. unlock_page(pages[--nr]);
  440. page_cache_release(pages[nr]);
  441. }
  442. goto out;
  443. }
  444. static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
  445. {
  446. lock_buffer(bh);
  447. get_bh(bh);
  448. bh->b_end_io = end_buffer_read_sync;
  449. return submit_bh(READ, bh);
  450. }
  451. /**
  452. * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
  453. * @pages: array of destination pages
  454. * @nr_pages: number of pages in @pages
  455. * @pos: byte position in file at which the write begins
  456. * @bytes: number of bytes to be written
  457. *
  458. * This is called for non-resident attributes from ntfs_file_buffered_write()
  459. * with i_mutex held on the inode (@pages[0]->mapping->host). There are
  460. * @nr_pages pages in @pages which are locked but not kmap()ped. The source
  461. * data has not yet been copied into the @pages.
  462. *
  463. * Need to fill any holes with actual clusters, allocate buffers if necessary,
  464. * ensure all the buffers are mapped, and bring uptodate any buffers that are
  465. * only partially being written to.
  466. *
  467. * If @nr_pages is greater than one, we are guaranteed that the cluster size is
  468. * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
  469. * the same cluster and that they are the entirety of that cluster, and that
  470. * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
  471. *
  472. * i_size is not to be modified yet.
  473. *
  474. * Return 0 on success or -errno on error.
  475. */
  476. static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
  477. unsigned nr_pages, s64 pos, size_t bytes)
  478. {
  479. VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
  480. LCN lcn;
  481. s64 bh_pos, vcn_len, end, initialized_size;
  482. sector_t lcn_block;
  483. struct page *page;
  484. struct inode *vi;
  485. ntfs_inode *ni, *base_ni = NULL;
  486. ntfs_volume *vol;
  487. runlist_element *rl, *rl2;
  488. struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
  489. ntfs_attr_search_ctx *ctx = NULL;
  490. MFT_RECORD *m = NULL;
  491. ATTR_RECORD *a = NULL;
  492. unsigned long flags;
  493. u32 attr_rec_len = 0;
  494. unsigned blocksize, u;
  495. int err, mp_size;
  496. BOOL rl_write_locked, was_hole, is_retry;
  497. unsigned char blocksize_bits;
  498. struct {
  499. u8 runlist_merged:1;
  500. u8 mft_attr_mapped:1;
  501. u8 mp_rebuilt:1;
  502. u8 attr_switched:1;
  503. } status = { 0, 0, 0, 0 };
  504. BUG_ON(!nr_pages);
  505. BUG_ON(!pages);
  506. BUG_ON(!*pages);
  507. vi = pages[0]->mapping->host;
  508. ni = NTFS_I(vi);
  509. vol = ni->vol;
  510. ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
  511. "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
  512. vi->i_ino, ni->type, pages[0]->index, nr_pages,
  513. (long long)pos, bytes);
  514. blocksize = vol->sb->s_blocksize;
  515. blocksize_bits = vol->sb->s_blocksize_bits;
  516. u = 0;
  517. do {
  518. struct page *page = pages[u];
  519. /*
  520. * create_empty_buffers() will create uptodate/dirty buffers if
  521. * the page is uptodate/dirty.
  522. */
  523. if (!page_has_buffers(page)) {
  524. create_empty_buffers(page, blocksize, 0);
  525. if (unlikely(!page_has_buffers(page)))
  526. return -ENOMEM;
  527. }
  528. } while (++u < nr_pages);
  529. rl_write_locked = FALSE;
  530. rl = NULL;
  531. err = 0;
  532. vcn = lcn = -1;
  533. vcn_len = 0;
  534. lcn_block = -1;
  535. was_hole = FALSE;
  536. cpos = pos >> vol->cluster_size_bits;
  537. end = pos + bytes;
  538. cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
  539. /*
  540. * Loop over each page and for each page over each buffer. Use goto to
  541. * reduce indentation.
  542. */
  543. u = 0;
  544. do_next_page:
  545. page = pages[u];
  546. bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
  547. bh = head = page_buffers(page);
  548. do {
  549. VCN cdelta;
  550. s64 bh_end;
  551. unsigned bh_cofs;
  552. /* Clear buffer_new on all buffers to reinitialise state. */
  553. if (buffer_new(bh))
  554. clear_buffer_new(bh);
  555. bh_end = bh_pos + blocksize;
  556. bh_cpos = bh_pos >> vol->cluster_size_bits;
  557. bh_cofs = bh_pos & vol->cluster_size_mask;
  558. if (buffer_mapped(bh)) {
  559. /*
  560. * The buffer is already mapped. If it is uptodate,
  561. * ignore it.
  562. */
  563. if (buffer_uptodate(bh))
  564. continue;
  565. /*
  566. * The buffer is not uptodate. If the page is uptodate
  567. * set the buffer uptodate and otherwise ignore it.
  568. */
  569. if (PageUptodate(page)) {
  570. set_buffer_uptodate(bh);
  571. continue;
  572. }
  573. /*
  574. * Neither the page nor the buffer are uptodate. If
  575. * the buffer is only partially being written to, we
  576. * need to read it in before the write, i.e. now.
  577. */
  578. if ((bh_pos < pos && bh_end > pos) ||
  579. (bh_pos < end && bh_end > end)) {
  580. /*
  581. * If the buffer is fully or partially within
  582. * the initialized size, do an actual read.
  583. * Otherwise, simply zero the buffer.
  584. */
  585. read_lock_irqsave(&ni->size_lock, flags);
  586. initialized_size = ni->initialized_size;
  587. read_unlock_irqrestore(&ni->size_lock, flags);
  588. if (bh_pos < initialized_size) {
  589. ntfs_submit_bh_for_read(bh);
  590. *wait_bh++ = bh;
  591. } else {
  592. u8 *kaddr = kmap_atomic(page, KM_USER0);
  593. memset(kaddr + bh_offset(bh), 0,
  594. blocksize);
  595. kunmap_atomic(kaddr, KM_USER0);
  596. flush_dcache_page(page);
  597. set_buffer_uptodate(bh);
  598. }
  599. }
  600. continue;
  601. }
  602. /* Unmapped buffer. Need to map it. */
  603. bh->b_bdev = vol->sb->s_bdev;
  604. /*
  605. * If the current buffer is in the same clusters as the map
  606. * cache, there is no need to check the runlist again. The
  607. * map cache is made up of @vcn, which is the first cached file
  608. * cluster, @vcn_len which is the number of cached file
  609. * clusters, @lcn is the device cluster corresponding to @vcn,
  610. * and @lcn_block is the block number corresponding to @lcn.
  611. */
  612. cdelta = bh_cpos - vcn;
  613. if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
  614. map_buffer_cached:
  615. BUG_ON(lcn < 0);
  616. bh->b_blocknr = lcn_block +
  617. (cdelta << (vol->cluster_size_bits -
  618. blocksize_bits)) +
  619. (bh_cofs >> blocksize_bits);
  620. set_buffer_mapped(bh);
  621. /*
  622. * If the page is uptodate so is the buffer. If the
  623. * buffer is fully outside the write, we ignore it if
  624. * it was already allocated and we mark it dirty so it
  625. * gets written out if we allocated it. On the other
  626. * hand, if we allocated the buffer but we are not
  627. * marking it dirty we set buffer_new so we can do
  628. * error recovery.
  629. */
  630. if (PageUptodate(page)) {
  631. if (!buffer_uptodate(bh))
  632. set_buffer_uptodate(bh);
  633. if (unlikely(was_hole)) {
  634. /* We allocated the buffer. */
  635. unmap_underlying_metadata(bh->b_bdev,
  636. bh->b_blocknr);
  637. if (bh_end <= pos || bh_pos >= end)
  638. mark_buffer_dirty(bh);
  639. else
  640. set_buffer_new(bh);
  641. }
  642. continue;
  643. }
  644. /* Page is _not_ uptodate. */
  645. if (likely(!was_hole)) {
  646. /*
  647. * Buffer was already allocated. If it is not
  648. * uptodate and is only partially being written
  649. * to, we need to read it in before the write,
  650. * i.e. now.
  651. */
  652. if (!buffer_uptodate(bh) && bh_pos < end &&
  653. bh_end > pos &&
  654. (bh_pos < pos ||
  655. bh_end > end)) {
  656. /*
  657. * If the buffer is fully or partially
  658. * within the initialized size, do an
  659. * actual read. Otherwise, simply zero
  660. * the buffer.
  661. */
  662. read_lock_irqsave(&ni->size_lock,
  663. flags);
  664. initialized_size = ni->initialized_size;
  665. read_unlock_irqrestore(&ni->size_lock,
  666. flags);
  667. if (bh_pos < initialized_size) {
  668. ntfs_submit_bh_for_read(bh);
  669. *wait_bh++ = bh;
  670. } else {
  671. u8 *kaddr = kmap_atomic(page,
  672. KM_USER0);
  673. memset(kaddr + bh_offset(bh),
  674. 0, blocksize);
  675. kunmap_atomic(kaddr, KM_USER0);
  676. flush_dcache_page(page);
  677. set_buffer_uptodate(bh);
  678. }
  679. }
  680. continue;
  681. }
  682. /* We allocated the buffer. */
  683. unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
  684. /*
  685. * If the buffer is fully outside the write, zero it,
  686. * set it uptodate, and mark it dirty so it gets
  687. * written out. If it is partially being written to,
  688. * zero region surrounding the write but leave it to
  689. * commit write to do anything else. Finally, if the
  690. * buffer is fully being overwritten, do nothing.
  691. */
  692. if (bh_end <= pos || bh_pos >= end) {
  693. if (!buffer_uptodate(bh)) {
  694. u8 *kaddr = kmap_atomic(page, KM_USER0);
  695. memset(kaddr + bh_offset(bh), 0,
  696. blocksize);
  697. kunmap_atomic(kaddr, KM_USER0);
  698. flush_dcache_page(page);
  699. set_buffer_uptodate(bh);
  700. }
  701. mark_buffer_dirty(bh);
  702. continue;
  703. }
  704. set_buffer_new(bh);
  705. if (!buffer_uptodate(bh) &&
  706. (bh_pos < pos || bh_end > end)) {
  707. u8 *kaddr;
  708. unsigned pofs;
  709. kaddr = kmap_atomic(page, KM_USER0);
  710. if (bh_pos < pos) {
  711. pofs = bh_pos & ~PAGE_CACHE_MASK;
  712. memset(kaddr + pofs, 0, pos - bh_pos);
  713. }
  714. if (bh_end > end) {
  715. pofs = end & ~PAGE_CACHE_MASK;
  716. memset(kaddr + pofs, 0, bh_end - end);
  717. }
  718. kunmap_atomic(kaddr, KM_USER0);
  719. flush_dcache_page(page);
  720. }
  721. continue;
  722. }
  723. /*
  724. * Slow path: this is the first buffer in the cluster. If it
  725. * is outside allocated size and is not uptodate, zero it and
  726. * set it uptodate.
  727. */
  728. read_lock_irqsave(&ni->size_lock, flags);
  729. initialized_size = ni->allocated_size;
  730. read_unlock_irqrestore(&ni->size_lock, flags);
  731. if (bh_pos > initialized_size) {
  732. if (PageUptodate(page)) {
  733. if (!buffer_uptodate(bh))
  734. set_buffer_uptodate(bh);
  735. } else if (!buffer_uptodate(bh)) {
  736. u8 *kaddr = kmap_atomic(page, KM_USER0);
  737. memset(kaddr + bh_offset(bh), 0, blocksize);
  738. kunmap_atomic(kaddr, KM_USER0);
  739. flush_dcache_page(page);
  740. set_buffer_uptodate(bh);
  741. }
  742. continue;
  743. }
  744. is_retry = FALSE;
  745. if (!rl) {
  746. down_read(&ni->runlist.lock);
  747. retry_remap:
  748. rl = ni->runlist.rl;
  749. }
  750. if (likely(rl != NULL)) {
  751. /* Seek to element containing target cluster. */
  752. while (rl->length && rl[1].vcn <= bh_cpos)
  753. rl++;
  754. lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
  755. if (likely(lcn >= 0)) {
  756. /*
  757. * Successful remap, setup the map cache and
  758. * use that to deal with the buffer.
  759. */
  760. was_hole = FALSE;
  761. vcn = bh_cpos;
  762. vcn_len = rl[1].vcn - vcn;
  763. lcn_block = lcn << (vol->cluster_size_bits -
  764. blocksize_bits);
  765. cdelta = 0;
  766. /*
  767. * If the number of remaining clusters touched
  768. * by the write is smaller or equal to the
  769. * number of cached clusters, unlock the
  770. * runlist as the map cache will be used from
  771. * now on.
  772. */
  773. if (likely(vcn + vcn_len >= cend)) {
  774. if (rl_write_locked) {
  775. up_write(&ni->runlist.lock);
  776. rl_write_locked = FALSE;
  777. } else
  778. up_read(&ni->runlist.lock);
  779. rl = NULL;
  780. }
  781. goto map_buffer_cached;
  782. }
  783. } else
  784. lcn = LCN_RL_NOT_MAPPED;
  785. /*
  786. * If it is not a hole and not out of bounds, the runlist is
  787. * probably unmapped so try to map it now.
  788. */
  789. if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
  790. if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
  791. /* Attempt to map runlist. */
  792. if (!rl_write_locked) {
  793. /*
  794. * We need the runlist locked for
  795. * writing, so if it is locked for
  796. * reading relock it now and retry in
  797. * case it changed whilst we dropped
  798. * the lock.
  799. */
  800. up_read(&ni->runlist.lock);
  801. down_write(&ni->runlist.lock);
  802. rl_write_locked = TRUE;
  803. goto retry_remap;
  804. }
  805. err = ntfs_map_runlist_nolock(ni, bh_cpos,
  806. NULL);
  807. if (likely(!err)) {
  808. is_retry = TRUE;
  809. goto retry_remap;
  810. }
  811. /*
  812. * If @vcn is out of bounds, pretend @lcn is
  813. * LCN_ENOENT. As long as the buffer is out
  814. * of bounds this will work fine.
  815. */
  816. if (err == -ENOENT) {
  817. lcn = LCN_ENOENT;
  818. err = 0;
  819. goto rl_not_mapped_enoent;
  820. }
  821. } else
  822. err = -EIO;
  823. /* Failed to map the buffer, even after retrying. */
  824. bh->b_blocknr = -1;
  825. ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
  826. "attribute type 0x%x, vcn 0x%llx, "
  827. "vcn offset 0x%x, because its "
  828. "location on disk could not be "
  829. "determined%s (error code %i).",
  830. ni->mft_no, ni->type,
  831. (unsigned long long)bh_cpos,
  832. (unsigned)bh_pos &
  833. vol->cluster_size_mask,
  834. is_retry ? " even after retrying" : "",
  835. err);
  836. break;
  837. }
  838. rl_not_mapped_enoent:
  839. /*
  840. * The buffer is in a hole or out of bounds. We need to fill
  841. * the hole, unless the buffer is in a cluster which is not
  842. * touched by the write, in which case we just leave the buffer
  843. * unmapped. This can only happen when the cluster size is
  844. * less than the page cache size.
  845. */
  846. if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
  847. bh_cend = (bh_end + vol->cluster_size - 1) >>
  848. vol->cluster_size_bits;
  849. if ((bh_cend <= cpos || bh_cpos >= cend)) {
  850. bh->b_blocknr = -1;
  851. /*
  852. * If the buffer is uptodate we skip it. If it
  853. * is not but the page is uptodate, we can set
  854. * the buffer uptodate. If the page is not
  855. * uptodate, we can clear the buffer and set it
  856. * uptodate. Whether this is worthwhile is
  857. * debatable and this could be removed.
  858. */
  859. if (PageUptodate(page)) {
  860. if (!buffer_uptodate(bh))
  861. set_buffer_uptodate(bh);
  862. } else if (!buffer_uptodate(bh)) {
  863. u8 *kaddr = kmap_atomic(page, KM_USER0);
  864. memset(kaddr + bh_offset(bh), 0,
  865. blocksize);
  866. kunmap_atomic(kaddr, KM_USER0);
  867. flush_dcache_page(page);
  868. set_buffer_uptodate(bh);
  869. }
  870. continue;
  871. }
  872. }
  873. /*
  874. * Out of bounds buffer is invalid if it was not really out of
  875. * bounds.
  876. */
  877. BUG_ON(lcn != LCN_HOLE);
  878. /*
  879. * We need the runlist locked for writing, so if it is locked
  880. * for reading relock it now and retry in case it changed
  881. * whilst we dropped the lock.
  882. */
  883. BUG_ON(!rl);
  884. if (!rl_write_locked) {
  885. up_read(&ni->runlist.lock);
  886. down_write(&ni->runlist.lock);
  887. rl_write_locked = TRUE;
  888. goto retry_remap;
  889. }
  890. /* Find the previous last allocated cluster. */
  891. BUG_ON(rl->lcn != LCN_HOLE);
  892. lcn = -1;
  893. rl2 = rl;
  894. while (--rl2 >= ni->runlist.rl) {
  895. if (rl2->lcn >= 0) {
  896. lcn = rl2->lcn + rl2->length;
  897. break;
  898. }
  899. }
  900. rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
  901. FALSE);
  902. if (IS_ERR(rl2)) {
  903. err = PTR_ERR(rl2);
  904. ntfs_debug("Failed to allocate cluster, error code %i.",
  905. err);
  906. break;
  907. }
  908. lcn = rl2->lcn;
  909. rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
  910. if (IS_ERR(rl)) {
  911. err = PTR_ERR(rl);
  912. if (err != -ENOMEM)
  913. err = -EIO;
  914. if (ntfs_cluster_free_from_rl(vol, rl2)) {
  915. ntfs_error(vol->sb, "Failed to release "
  916. "allocated cluster in error "
  917. "code path. Run chkdsk to "
  918. "recover the lost cluster.");
  919. NVolSetErrors(vol);
  920. }
  921. ntfs_free(rl2);
  922. break;
  923. }
  924. ni->runlist.rl = rl;
  925. status.runlist_merged = 1;
  926. ntfs_debug("Allocated cluster, lcn 0x%llx.",
  927. (unsigned long long)lcn);
  928. /* Map and lock the mft record and get the attribute record. */
  929. if (!NInoAttr(ni))
  930. base_ni = ni;
  931. else
  932. base_ni = ni->ext.base_ntfs_ino;
  933. m = map_mft_record(base_ni);
  934. if (IS_ERR(m)) {
  935. err = PTR_ERR(m);
  936. break;
  937. }
  938. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  939. if (unlikely(!ctx)) {
  940. err = -ENOMEM;
  941. unmap_mft_record(base_ni);
  942. break;
  943. }
  944. status.mft_attr_mapped = 1;
  945. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  946. CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
  947. if (unlikely(err)) {
  948. if (err == -ENOENT)
  949. err = -EIO;
  950. break;
  951. }
  952. m = ctx->mrec;
  953. a = ctx->attr;
  954. /*
  955. * Find the runlist element with which the attribute extent
  956. * starts. Note, we cannot use the _attr_ version because we
  957. * have mapped the mft record. That is ok because we know the
  958. * runlist fragment must be mapped already to have ever gotten
  959. * here, so we can just use the _rl_ version.
  960. */
  961. vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
  962. rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
  963. BUG_ON(!rl2);
  964. BUG_ON(!rl2->length);
  965. BUG_ON(rl2->lcn < LCN_HOLE);
  966. highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
  967. /*
  968. * If @highest_vcn is zero, calculate the real highest_vcn
  969. * (which can really be zero).
  970. */
  971. if (!highest_vcn)
  972. highest_vcn = (sle64_to_cpu(
  973. a->data.non_resident.allocated_size) >>
  974. vol->cluster_size_bits) - 1;
  975. /*
  976. * Determine the size of the mapping pairs array for the new
  977. * extent, i.e. the old extent with the hole filled.
  978. */
  979. mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
  980. highest_vcn);
  981. if (unlikely(mp_size <= 0)) {
  982. if (!(err = mp_size))
  983. err = -EIO;
  984. ntfs_debug("Failed to get size for mapping pairs "
  985. "array, error code %i.", err);
  986. break;
  987. }
  988. /*
  989. * Resize the attribute record to fit the new mapping pairs
  990. * array.
  991. */
  992. attr_rec_len = le32_to_cpu(a->length);
  993. err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
  994. a->data.non_resident.mapping_pairs_offset));
  995. if (unlikely(err)) {
  996. BUG_ON(err != -ENOSPC);
  997. // TODO: Deal with this by using the current attribute
  998. // and fill it with as much of the mapping pairs
  999. // array as possible. Then loop over each attribute
  1000. // extent rewriting the mapping pairs arrays as we go
  1001. // along and if when we reach the end we have not
  1002. // enough space, try to resize the last attribute
  1003. // extent and if even that fails, add a new attribute
  1004. // extent.
  1005. // We could also try to resize at each step in the hope
  1006. // that we will not need to rewrite every single extent.
  1007. // Note, we may need to decompress some extents to fill
  1008. // the runlist as we are walking the extents...
  1009. ntfs_error(vol->sb, "Not enough space in the mft "
  1010. "record for the extended attribute "
  1011. "record. This case is not "
  1012. "implemented yet.");
  1013. err = -EOPNOTSUPP;
  1014. break ;
  1015. }
  1016. status.mp_rebuilt = 1;
  1017. /*
  1018. * Generate the mapping pairs array directly into the attribute
  1019. * record.
  1020. */
  1021. err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
  1022. a->data.non_resident.mapping_pairs_offset),
  1023. mp_size, rl2, vcn, highest_vcn, NULL);
  1024. if (unlikely(err)) {
  1025. ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
  1026. "attribute type 0x%x, because building "
  1027. "the mapping pairs failed with error "
  1028. "code %i.", vi->i_ino,
  1029. (unsigned)le32_to_cpu(ni->type), err);
  1030. err = -EIO;
  1031. break;
  1032. }
  1033. /* Update the highest_vcn but only if it was not set. */
  1034. if (unlikely(!a->data.non_resident.highest_vcn))
  1035. a->data.non_resident.highest_vcn =
  1036. cpu_to_sle64(highest_vcn);
  1037. /*
  1038. * If the attribute is sparse/compressed, update the compressed
  1039. * size in the ntfs_inode structure and the attribute record.
  1040. */
  1041. if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
  1042. /*
  1043. * If we are not in the first attribute extent, switch
  1044. * to it, but first ensure the changes will make it to
  1045. * disk later.
  1046. */
  1047. if (a->data.non_resident.lowest_vcn) {
  1048. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1049. mark_mft_record_dirty(ctx->ntfs_ino);
  1050. ntfs_attr_reinit_search_ctx(ctx);
  1051. err = ntfs_attr_lookup(ni->type, ni->name,
  1052. ni->name_len, CASE_SENSITIVE,
  1053. 0, NULL, 0, ctx);
  1054. if (unlikely(err)) {
  1055. status.attr_switched = 1;
  1056. break;
  1057. }
  1058. /* @m is not used any more so do not set it. */
  1059. a = ctx->attr;
  1060. }
  1061. write_lock_irqsave(&ni->size_lock, flags);
  1062. ni->itype.compressed.size += vol->cluster_size;
  1063. a->data.non_resident.compressed_size =
  1064. cpu_to_sle64(ni->itype.compressed.size);
  1065. write_unlock_irqrestore(&ni->size_lock, flags);
  1066. }
  1067. /* Ensure the changes make it to disk. */
  1068. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1069. mark_mft_record_dirty(ctx->ntfs_ino);
  1070. ntfs_attr_put_search_ctx(ctx);
  1071. unmap_mft_record(base_ni);
  1072. /* Successfully filled the hole. */
  1073. status.runlist_merged = 0;
  1074. status.mft_attr_mapped = 0;
  1075. status.mp_rebuilt = 0;
  1076. /* Setup the map cache and use that to deal with the buffer. */
  1077. was_hole = TRUE;
  1078. vcn = bh_cpos;
  1079. vcn_len = 1;
  1080. lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
  1081. cdelta = 0;
  1082. /*
  1083. * If the number of remaining clusters in the @pages is smaller
  1084. * or equal to the number of cached clusters, unlock the
  1085. * runlist as the map cache will be used from now on.
  1086. */
  1087. if (likely(vcn + vcn_len >= cend)) {
  1088. up_write(&ni->runlist.lock);
  1089. rl_write_locked = FALSE;
  1090. rl = NULL;
  1091. }
  1092. goto map_buffer_cached;
  1093. } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
  1094. /* If there are no errors, do the next page. */
  1095. if (likely(!err && ++u < nr_pages))
  1096. goto do_next_page;
  1097. /* If there are no errors, release the runlist lock if we took it. */
  1098. if (likely(!err)) {
  1099. if (unlikely(rl_write_locked)) {
  1100. up_write(&ni->runlist.lock);
  1101. rl_write_locked = FALSE;
  1102. } else if (unlikely(rl))
  1103. up_read(&ni->runlist.lock);
  1104. rl = NULL;
  1105. }
  1106. /* If we issued read requests, let them complete. */
  1107. read_lock_irqsave(&ni->size_lock, flags);
  1108. initialized_size = ni->initialized_size;
  1109. read_unlock_irqrestore(&ni->size_lock, flags);
  1110. while (wait_bh > wait) {
  1111. bh = *--wait_bh;
  1112. wait_on_buffer(bh);
  1113. if (likely(buffer_uptodate(bh))) {
  1114. page = bh->b_page;
  1115. bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
  1116. bh_offset(bh);
  1117. /*
  1118. * If the buffer overflows the initialized size, need
  1119. * to zero the overflowing region.
  1120. */
  1121. if (unlikely(bh_pos + blocksize > initialized_size)) {
  1122. u8 *kaddr;
  1123. int ofs = 0;
  1124. if (likely(bh_pos < initialized_size))
  1125. ofs = initialized_size - bh_pos;
  1126. kaddr = kmap_atomic(page, KM_USER0);
  1127. memset(kaddr + bh_offset(bh) + ofs, 0,
  1128. blocksize - ofs);
  1129. kunmap_atomic(kaddr, KM_USER0);
  1130. flush_dcache_page(page);
  1131. }
  1132. } else /* if (unlikely(!buffer_uptodate(bh))) */
  1133. err = -EIO;
  1134. }
  1135. if (likely(!err)) {
  1136. /* Clear buffer_new on all buffers. */
  1137. u = 0;
  1138. do {
  1139. bh = head = page_buffers(pages[u]);
  1140. do {
  1141. if (buffer_new(bh))
  1142. clear_buffer_new(bh);
  1143. } while ((bh = bh->b_this_page) != head);
  1144. } while (++u < nr_pages);
  1145. ntfs_debug("Done.");
  1146. return err;
  1147. }
  1148. if (status.attr_switched) {
  1149. /* Get back to the attribute extent we modified. */
  1150. ntfs_attr_reinit_search_ctx(ctx);
  1151. if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  1152. CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
  1153. ntfs_error(vol->sb, "Failed to find required "
  1154. "attribute extent of attribute in "
  1155. "error code path. Run chkdsk to "
  1156. "recover.");
  1157. write_lock_irqsave(&ni->size_lock, flags);
  1158. ni->itype.compressed.size += vol->cluster_size;
  1159. write_unlock_irqrestore(&ni->size_lock, flags);
  1160. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1161. mark_mft_record_dirty(ctx->ntfs_ino);
  1162. /*
  1163. * The only thing that is now wrong is the compressed
  1164. * size of the base attribute extent which chkdsk
  1165. * should be able to fix.
  1166. */
  1167. NVolSetErrors(vol);
  1168. } else {
  1169. m = ctx->mrec;
  1170. a = ctx->attr;
  1171. status.attr_switched = 0;
  1172. }
  1173. }
  1174. /*
  1175. * If the runlist has been modified, need to restore it by punching a
  1176. * hole into it and we then need to deallocate the on-disk cluster as
  1177. * well. Note, we only modify the runlist if we are able to generate a
  1178. * new mapping pairs array, i.e. only when the mapped attribute extent
  1179. * is not switched.
  1180. */
  1181. if (status.runlist_merged && !status.attr_switched) {
  1182. BUG_ON(!rl_write_locked);
  1183. /* Make the file cluster we allocated sparse in the runlist. */
  1184. if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
  1185. ntfs_error(vol->sb, "Failed to punch hole into "
  1186. "attribute runlist in error code "
  1187. "path. Run chkdsk to recover the "
  1188. "lost cluster.");
  1189. NVolSetErrors(vol);
  1190. } else /* if (success) */ {
  1191. status.runlist_merged = 0;
  1192. /*
  1193. * Deallocate the on-disk cluster we allocated but only
  1194. * if we succeeded in punching its vcn out of the
  1195. * runlist.
  1196. */
  1197. down_write(&vol->lcnbmp_lock);
  1198. if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
  1199. ntfs_error(vol->sb, "Failed to release "
  1200. "allocated cluster in error "
  1201. "code path. Run chkdsk to "
  1202. "recover the lost cluster.");
  1203. NVolSetErrors(vol);
  1204. }
  1205. up_write(&vol->lcnbmp_lock);
  1206. }
  1207. }
  1208. /*
  1209. * Resize the attribute record to its old size and rebuild the mapping
  1210. * pairs array. Note, we only can do this if the runlist has been
  1211. * restored to its old state which also implies that the mapped
  1212. * attribute extent is not switched.
  1213. */
  1214. if (status.mp_rebuilt && !status.runlist_merged) {
  1215. if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
  1216. ntfs_error(vol->sb, "Failed to restore attribute "
  1217. "record in error code path. Run "
  1218. "chkdsk to recover.");
  1219. NVolSetErrors(vol);
  1220. } else /* if (success) */ {
  1221. if (ntfs_mapping_pairs_build(vol, (u8*)a +
  1222. le16_to_cpu(a->data.non_resident.
  1223. mapping_pairs_offset), attr_rec_len -
  1224. le16_to_cpu(a->data.non_resident.
  1225. mapping_pairs_offset), ni->runlist.rl,
  1226. vcn, highest_vcn, NULL)) {
  1227. ntfs_error(vol->sb, "Failed to restore "
  1228. "mapping pairs array in error "
  1229. "code path. Run chkdsk to "
  1230. "recover.");
  1231. NVolSetErrors(vol);
  1232. }
  1233. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1234. mark_mft_record_dirty(ctx->ntfs_ino);
  1235. }
  1236. }
  1237. /* Release the mft record and the attribute. */
  1238. if (status.mft_attr_mapped) {
  1239. ntfs_attr_put_search_ctx(ctx);
  1240. unmap_mft_record(base_ni);
  1241. }
  1242. /* Release the runlist lock. */
  1243. if (rl_write_locked)
  1244. up_write(&ni->runlist.lock);
  1245. else if (rl)
  1246. up_read(&ni->runlist.lock);
  1247. /*
  1248. * Zero out any newly allocated blocks to avoid exposing stale data.
  1249. * If BH_New is set, we know that the block was newly allocated above
  1250. * and that it has not been fully zeroed and marked dirty yet.
  1251. */
  1252. nr_pages = u;
  1253. u = 0;
  1254. end = bh_cpos << vol->cluster_size_bits;
  1255. do {
  1256. page = pages[u];
  1257. bh = head = page_buffers(page);
  1258. do {
  1259. if (u == nr_pages &&
  1260. ((s64)page->index << PAGE_CACHE_SHIFT) +
  1261. bh_offset(bh) >= end)
  1262. break;
  1263. if (!buffer_new(bh))
  1264. continue;
  1265. clear_buffer_new(bh);
  1266. if (!buffer_uptodate(bh)) {
  1267. if (PageUptodate(page))
  1268. set_buffer_uptodate(bh);
  1269. else {
  1270. u8 *kaddr = kmap_atomic(page, KM_USER0);
  1271. memset(kaddr + bh_offset(bh), 0,
  1272. blocksize);
  1273. kunmap_atomic(kaddr, KM_USER0);
  1274. flush_dcache_page(page);
  1275. set_buffer_uptodate(bh);
  1276. }
  1277. }
  1278. mark_buffer_dirty(bh);
  1279. } while ((bh = bh->b_this_page) != head);
  1280. } while (++u <= nr_pages);
  1281. ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
  1282. return err;
  1283. }
  1284. /*
  1285. * Copy as much as we can into the pages and return the number of bytes which
  1286. * were sucessfully copied. If a fault is encountered then clear the pages
  1287. * out to (ofs + bytes) and return the number of bytes which were copied.
  1288. */
  1289. static inline size_t ntfs_copy_from_user(struct page **pages,
  1290. unsigned nr_pages, unsigned ofs, const char __user *buf,
  1291. size_t bytes)
  1292. {
  1293. struct page **last_page = pages + nr_pages;
  1294. char *kaddr;
  1295. size_t total = 0;
  1296. unsigned len;
  1297. int left;
  1298. do {
  1299. len = PAGE_CACHE_SIZE - ofs;
  1300. if (len > bytes)
  1301. len = bytes;
  1302. kaddr = kmap_atomic(*pages, KM_USER0);
  1303. left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
  1304. kunmap_atomic(kaddr, KM_USER0);
  1305. if (unlikely(left)) {
  1306. /* Do it the slow way. */
  1307. kaddr = kmap(*pages);
  1308. left = __copy_from_user(kaddr + ofs, buf, len);
  1309. kunmap(*pages);
  1310. if (unlikely(left))
  1311. goto err_out;
  1312. }
  1313. total += len;
  1314. bytes -= len;
  1315. if (!bytes)
  1316. break;
  1317. buf += len;
  1318. ofs = 0;
  1319. } while (++pages < last_page);
  1320. out:
  1321. return total;
  1322. err_out:
  1323. total += len - left;
  1324. /* Zero the rest of the target like __copy_from_user(). */
  1325. while (++pages < last_page) {
  1326. bytes -= len;
  1327. if (!bytes)
  1328. break;
  1329. len = PAGE_CACHE_SIZE;
  1330. if (len > bytes)
  1331. len = bytes;
  1332. kaddr = kmap_atomic(*pages, KM_USER0);
  1333. memset(kaddr, 0, len);
  1334. kunmap_atomic(kaddr, KM_USER0);
  1335. }
  1336. goto out;
  1337. }
  1338. static size_t __ntfs_copy_from_user_iovec(char *vaddr,
  1339. const struct iovec *iov, size_t iov_ofs, size_t bytes)
  1340. {
  1341. size_t total = 0;
  1342. while (1) {
  1343. const char __user *buf = iov->iov_base + iov_ofs;
  1344. unsigned len;
  1345. size_t left;
  1346. len = iov->iov_len - iov_ofs;
  1347. if (len > bytes)
  1348. len = bytes;
  1349. left = __copy_from_user_inatomic(vaddr, buf, len);
  1350. total += len;
  1351. bytes -= len;
  1352. vaddr += len;
  1353. if (unlikely(left)) {
  1354. /*
  1355. * Zero the rest of the target like __copy_from_user().
  1356. */
  1357. memset(vaddr, 0, bytes);
  1358. total -= left;
  1359. break;
  1360. }
  1361. if (!bytes)
  1362. break;
  1363. iov++;
  1364. iov_ofs = 0;
  1365. }
  1366. return total;
  1367. }
  1368. static inline void ntfs_set_next_iovec(const struct iovec **iovp,
  1369. size_t *iov_ofsp, size_t bytes)
  1370. {
  1371. const struct iovec *iov = *iovp;
  1372. size_t iov_ofs = *iov_ofsp;
  1373. while (bytes) {
  1374. unsigned len;
  1375. len = iov->iov_len - iov_ofs;
  1376. if (len > bytes)
  1377. len = bytes;
  1378. bytes -= len;
  1379. iov_ofs += len;
  1380. if (iov->iov_len == iov_ofs) {
  1381. iov++;
  1382. iov_ofs = 0;
  1383. }
  1384. }
  1385. *iovp = iov;
  1386. *iov_ofsp = iov_ofs;
  1387. }
  1388. /*
  1389. * This has the same side-effects and return value as ntfs_copy_from_user().
  1390. * The difference is that on a fault we need to memset the remainder of the
  1391. * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
  1392. * single-segment behaviour.
  1393. *
  1394. * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and
  1395. * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls
  1396. * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
  1397. * fact, the only difference between __copy_from_user_inatomic() and
  1398. * __copy_from_user() is that the latter calls might_sleep(). And on many
  1399. * architectures __copy_from_user_inatomic() is just defined to
  1400. * __copy_from_user() so it makes no difference at all on those architectures.
  1401. */
  1402. static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
  1403. unsigned nr_pages, unsigned ofs, const struct iovec **iov,
  1404. size_t *iov_ofs, size_t bytes)
  1405. {
  1406. struct page **last_page = pages + nr_pages;
  1407. char *kaddr;
  1408. size_t copied, len, total = 0;
  1409. do {
  1410. len = PAGE_CACHE_SIZE - ofs;
  1411. if (len > bytes)
  1412. len = bytes;
  1413. kaddr = kmap_atomic(*pages, KM_USER0);
  1414. copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
  1415. *iov, *iov_ofs, len);
  1416. kunmap_atomic(kaddr, KM_USER0);
  1417. if (unlikely(copied != len)) {
  1418. /* Do it the slow way. */
  1419. kaddr = kmap(*pages);
  1420. copied = __ntfs_copy_from_user_iovec(kaddr + ofs,
  1421. *iov, *iov_ofs, len);
  1422. kunmap(*pages);
  1423. if (unlikely(copied != len))
  1424. goto err_out;
  1425. }
  1426. total += len;
  1427. bytes -= len;
  1428. if (!bytes)
  1429. break;
  1430. ntfs_set_next_iovec(iov, iov_ofs, len);
  1431. ofs = 0;
  1432. } while (++pages < last_page);
  1433. out:
  1434. return total;
  1435. err_out:
  1436. total += copied;
  1437. /* Zero the rest of the target like __copy_from_user(). */
  1438. while (++pages < last_page) {
  1439. bytes -= len;
  1440. if (!bytes)
  1441. break;
  1442. len = PAGE_CACHE_SIZE;
  1443. if (len > bytes)
  1444. len = bytes;
  1445. kaddr = kmap_atomic(*pages, KM_USER0);
  1446. memset(kaddr, 0, len);
  1447. kunmap_atomic(kaddr, KM_USER0);
  1448. }
  1449. goto out;
  1450. }
  1451. static inline void ntfs_flush_dcache_pages(struct page **pages,
  1452. unsigned nr_pages)
  1453. {
  1454. BUG_ON(!nr_pages);
  1455. /*
  1456. * Warning: Do not do the decrement at the same time as the call to
  1457. * flush_dcache_page() because it is a NULL macro on i386 and hence the
  1458. * decrement never happens so the loop never terminates.
  1459. */
  1460. do {
  1461. --nr_pages;
  1462. flush_dcache_page(pages[nr_pages]);
  1463. } while (nr_pages > 0);
  1464. }
  1465. /**
  1466. * ntfs_commit_pages_after_non_resident_write - commit the received data
  1467. * @pages: array of destination pages
  1468. * @nr_pages: number of pages in @pages
  1469. * @pos: byte position in file at which the write begins
  1470. * @bytes: number of bytes to be written
  1471. *
  1472. * See description of ntfs_commit_pages_after_write(), below.
  1473. */
  1474. static inline int ntfs_commit_pages_after_non_resident_write(
  1475. struct page **pages, const unsigned nr_pages,
  1476. s64 pos, size_t bytes)
  1477. {
  1478. s64 end, initialized_size;
  1479. struct inode *vi;
  1480. ntfs_inode *ni, *base_ni;
  1481. struct buffer_head *bh, *head;
  1482. ntfs_attr_search_ctx *ctx;
  1483. MFT_RECORD *m;
  1484. ATTR_RECORD *a;
  1485. unsigned long flags;
  1486. unsigned blocksize, u;
  1487. int err;
  1488. vi = pages[0]->mapping->host;
  1489. ni = NTFS_I(vi);
  1490. blocksize = vi->i_sb->s_blocksize;
  1491. end = pos + bytes;
  1492. u = 0;
  1493. do {
  1494. s64 bh_pos;
  1495. struct page *page;
  1496. BOOL partial;
  1497. page = pages[u];
  1498. bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
  1499. bh = head = page_buffers(page);
  1500. partial = FALSE;
  1501. do {
  1502. s64 bh_end;
  1503. bh_end = bh_pos + blocksize;
  1504. if (bh_end <= pos || bh_pos >= end) {
  1505. if (!buffer_uptodate(bh))
  1506. partial = TRUE;
  1507. } else {
  1508. set_buffer_uptodate(bh);
  1509. mark_buffer_dirty(bh);
  1510. }
  1511. } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
  1512. /*
  1513. * If all buffers are now uptodate but the page is not, set the
  1514. * page uptodate.
  1515. */
  1516. if (!partial && !PageUptodate(page))
  1517. SetPageUptodate(page);
  1518. } while (++u < nr_pages);
  1519. /*
  1520. * Finally, if we do not need to update initialized_size or i_size we
  1521. * are finished.
  1522. */
  1523. read_lock_irqsave(&ni->size_lock, flags);
  1524. initialized_size = ni->initialized_size;
  1525. read_unlock_irqrestore(&ni->size_lock, flags);
  1526. if (end <= initialized_size) {
  1527. ntfs_debug("Done.");
  1528. return 0;
  1529. }
  1530. /*
  1531. * Update initialized_size/i_size as appropriate, both in the inode and
  1532. * the mft record.
  1533. */
  1534. if (!NInoAttr(ni))
  1535. base_ni = ni;
  1536. else
  1537. base_ni = ni->ext.base_ntfs_ino;
  1538. /* Map, pin, and lock the mft record. */
  1539. m = map_mft_record(base_ni);
  1540. if (IS_ERR(m)) {
  1541. err = PTR_ERR(m);
  1542. m = NULL;
  1543. ctx = NULL;
  1544. goto err_out;
  1545. }
  1546. BUG_ON(!NInoNonResident(ni));
  1547. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  1548. if (unlikely(!ctx)) {
  1549. err = -ENOMEM;
  1550. goto err_out;
  1551. }
  1552. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  1553. CASE_SENSITIVE, 0, NULL, 0, ctx);
  1554. if (unlikely(err)) {
  1555. if (err == -ENOENT)
  1556. err = -EIO;
  1557. goto err_out;
  1558. }
  1559. a = ctx->attr;
  1560. BUG_ON(!a->non_resident);
  1561. write_lock_irqsave(&ni->size_lock, flags);
  1562. BUG_ON(end > ni->allocated_size);
  1563. ni->initialized_size = end;
  1564. a->data.non_resident.initialized_size = cpu_to_sle64(end);
  1565. if (end > i_size_read(vi)) {
  1566. i_size_write(vi, end);
  1567. a->data.non_resident.data_size =
  1568. a->data.non_resident.initialized_size;
  1569. }
  1570. write_unlock_irqrestore(&ni->size_lock, flags);
  1571. /* Mark the mft record dirty, so it gets written back. */
  1572. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1573. mark_mft_record_dirty(ctx->ntfs_ino);
  1574. ntfs_attr_put_search_ctx(ctx);
  1575. unmap_mft_record(base_ni);
  1576. ntfs_debug("Done.");
  1577. return 0;
  1578. err_out:
  1579. if (ctx)
  1580. ntfs_attr_put_search_ctx(ctx);
  1581. if (m)
  1582. unmap_mft_record(base_ni);
  1583. ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
  1584. "code %i).", err);
  1585. if (err != -ENOMEM)
  1586. NVolSetErrors(ni->vol);
  1587. return err;
  1588. }
  1589. /**
  1590. * ntfs_commit_pages_after_write - commit the received data
  1591. * @pages: array of destination pages
  1592. * @nr_pages: number of pages in @pages
  1593. * @pos: byte position in file at which the write begins
  1594. * @bytes: number of bytes to be written
  1595. *
  1596. * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
  1597. * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
  1598. * locked but not kmap()ped. The source data has already been copied into the
  1599. * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
  1600. * the data was copied (for non-resident attributes only) and it returned
  1601. * success.
  1602. *
  1603. * Need to set uptodate and mark dirty all buffers within the boundary of the
  1604. * write. If all buffers in a page are uptodate we set the page uptodate, too.
  1605. *
  1606. * Setting the buffers dirty ensures that they get written out later when
  1607. * ntfs_writepage() is invoked by the VM.
  1608. *
  1609. * Finally, we need to update i_size and initialized_size as appropriate both
  1610. * in the inode and the mft record.
  1611. *
  1612. * This is modelled after fs/buffer.c::generic_commit_write(), which marks
  1613. * buffers uptodate and dirty, sets the page uptodate if all buffers in the
  1614. * page are uptodate, and updates i_size if the end of io is beyond i_size. In
  1615. * that case, it also marks the inode dirty.
  1616. *
  1617. * If things have gone as outlined in
  1618. * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
  1619. * content modifications here for non-resident attributes. For resident
  1620. * attributes we need to do the uptodate bringing here which we combine with
  1621. * the copying into the mft record which means we save one atomic kmap.
  1622. *
  1623. * Return 0 on success or -errno on error.
  1624. */
  1625. static int ntfs_commit_pages_after_write(struct page **pages,
  1626. const unsigned nr_pages, s64 pos, size_t bytes)
  1627. {
  1628. s64 end, initialized_size;
  1629. loff_t i_size;
  1630. struct inode *vi;
  1631. ntfs_inode *ni, *base_ni;
  1632. struct page *page;
  1633. ntfs_attr_search_ctx *ctx;
  1634. MFT_RECORD *m;
  1635. ATTR_RECORD *a;
  1636. char *kattr, *kaddr;
  1637. unsigned long flags;
  1638. u32 attr_len;
  1639. int err;
  1640. BUG_ON(!nr_pages);
  1641. BUG_ON(!pages);
  1642. page = pages[0];
  1643. BUG_ON(!page);
  1644. vi = page->mapping->host;
  1645. ni = NTFS_I(vi);
  1646. ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
  1647. "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
  1648. vi->i_ino, ni->type, page->index, nr_pages,
  1649. (long long)pos, bytes);
  1650. if (NInoNonResident(ni))
  1651. return ntfs_commit_pages_after_non_resident_write(pages,
  1652. nr_pages, pos, bytes);
  1653. BUG_ON(nr_pages > 1);
  1654. /*
  1655. * Attribute is resident, implying it is not compressed, encrypted, or
  1656. * sparse.
  1657. */
  1658. if (!NInoAttr(ni))
  1659. base_ni = ni;
  1660. else
  1661. base_ni = ni->ext.base_ntfs_ino;
  1662. BUG_ON(NInoNonResident(ni));
  1663. /* Map, pin, and lock the mft record. */
  1664. m = map_mft_record(base_ni);
  1665. if (IS_ERR(m)) {
  1666. err = PTR_ERR(m);
  1667. m = NULL;
  1668. ctx = NULL;
  1669. goto err_out;
  1670. }
  1671. ctx = ntfs_attr_get_search_ctx(base_ni, m);
  1672. if (unlikely(!ctx)) {
  1673. err = -ENOMEM;
  1674. goto err_out;
  1675. }
  1676. err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
  1677. CASE_SENSITIVE, 0, NULL, 0, ctx);
  1678. if (unlikely(err)) {
  1679. if (err == -ENOENT)
  1680. err = -EIO;
  1681. goto err_out;
  1682. }
  1683. a = ctx->attr;
  1684. BUG_ON(a->non_resident);
  1685. /* The total length of the attribute value. */
  1686. attr_len = le32_to_cpu(a->data.resident.value_length);
  1687. i_size = i_size_read(vi);
  1688. BUG_ON(attr_len != i_size);
  1689. BUG_ON(pos > attr_len);
  1690. end = pos + bytes;
  1691. BUG_ON(end > le32_to_cpu(a->length) -
  1692. le16_to_cpu(a->data.resident.value_offset));
  1693. kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
  1694. kaddr = kmap_atomic(page, KM_USER0);
  1695. /* Copy the received data from the page to the mft record. */
  1696. memcpy(kattr + pos, kaddr + pos, bytes);
  1697. /* Update the attribute length if necessary. */
  1698. if (end > attr_len) {
  1699. attr_len = end;
  1700. a->data.resident.value_length = cpu_to_le32(attr_len);
  1701. }
  1702. /*
  1703. * If the page is not uptodate, bring the out of bounds area(s)
  1704. * uptodate by copying data from the mft record to the page.
  1705. */
  1706. if (!PageUptodate(page)) {
  1707. if (pos > 0)
  1708. memcpy(kaddr, kattr, pos);
  1709. if (end < attr_len)
  1710. memcpy(kaddr + end, kattr + end, attr_len - end);
  1711. /* Zero the region outside the end of the attribute value. */
  1712. memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
  1713. flush_dcache_page(page);
  1714. SetPageUptodate(page);
  1715. }
  1716. kunmap_atomic(kaddr, KM_USER0);
  1717. /* Update initialized_size/i_size if necessary. */
  1718. read_lock_irqsave(&ni->size_lock, flags);
  1719. initialized_size = ni->initialized_size;
  1720. BUG_ON(end > ni->allocated_size);
  1721. read_unlock_irqrestore(&ni->size_lock, flags);
  1722. BUG_ON(initialized_size != i_size);
  1723. if (end > initialized_size) {
  1724. unsigned long flags;
  1725. write_lock_irqsave(&ni->size_lock, flags);
  1726. ni->initialized_size = end;
  1727. i_size_write(vi, end);
  1728. write_unlock_irqrestore(&ni->size_lock, flags);
  1729. }
  1730. /* Mark the mft record dirty, so it gets written back. */
  1731. flush_dcache_mft_record_page(ctx->ntfs_ino);
  1732. mark_mft_record_dirty(ctx->ntfs_ino);
  1733. ntfs_attr_put_search_ctx(ctx);
  1734. unmap_mft_record(base_ni);
  1735. ntfs_debug("Done.");
  1736. return 0;
  1737. err_out:
  1738. if (err == -ENOMEM) {
  1739. ntfs_warning(vi->i_sb, "Error allocating memory required to "
  1740. "commit the write.");
  1741. if (PageUptodate(page)) {
  1742. ntfs_warning(vi->i_sb, "Page is uptodate, setting "
  1743. "dirty so the write will be retried "
  1744. "later on by the VM.");
  1745. /*
  1746. * Put the page on mapping->dirty_pages, but leave its
  1747. * buffers' dirty state as-is.
  1748. */
  1749. __set_page_dirty_nobuffers(page);
  1750. err = 0;
  1751. } else
  1752. ntfs_error(vi->i_sb, "Page is not uptodate. Written "
  1753. "data has been lost.");
  1754. } else {
  1755. ntfs_error(vi->i_sb, "Resident attribute commit write failed "
  1756. "with error %i.", err);
  1757. NVolSetErrors(ni->vol);
  1758. }
  1759. if (ctx)
  1760. ntfs_attr_put_search_ctx(ctx);
  1761. if (m)
  1762. unmap_mft_record(base_ni);
  1763. return err;
  1764. }
  1765. /**
  1766. * ntfs_file_buffered_write -
  1767. *
  1768. * Locking: The vfs is holding ->i_mutex on the inode.
  1769. */
  1770. static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
  1771. const struct iovec *iov, unsigned long nr_segs,
  1772. loff_t pos, loff_t *ppos, size_t count)
  1773. {
  1774. struct file *file = iocb->ki_filp;
  1775. struct address_space *mapping = file->f_mapping;
  1776. struct inode *vi = mapping->host;
  1777. ntfs_inode *ni = NTFS_I(vi);
  1778. ntfs_volume *vol = ni->vol;
  1779. struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
  1780. struct page *cached_page = NULL;
  1781. char __user *buf = NULL;
  1782. s64 end, ll;
  1783. VCN last_vcn;
  1784. LCN lcn;
  1785. unsigned long flags;
  1786. size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
  1787. ssize_t status, written;
  1788. unsigned nr_pages;
  1789. int err;
  1790. struct pagevec lru_pvec;
  1791. ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
  1792. "pos 0x%llx, count 0x%lx.",
  1793. vi->i_ino, (unsigned)le32_to_cpu(ni->type),
  1794. (unsigned long long)pos, (unsigned long)count);
  1795. if (unlikely(!count))
  1796. return 0;
  1797. BUG_ON(NInoMstProtected(ni));
  1798. /*
  1799. * If the attribute is not an index root and it is encrypted or
  1800. * compressed, we cannot write to it yet. Note we need to check for
  1801. * AT_INDEX_ALLOCATION since this is the type of both directory and
  1802. * index inodes.
  1803. */
  1804. if (ni->type != AT_INDEX_ALLOCATION) {
  1805. /* If file is encrypted, deny access, just like NT4. */
  1806. if (NInoEncrypted(ni)) {
  1807. /*
  1808. * Reminder for later: Encrypted files are _always_
  1809. * non-resident so that the content can always be
  1810. * encrypted.
  1811. */
  1812. ntfs_debug("Denying write access to encrypted file.");
  1813. return -EACCES;
  1814. }
  1815. if (NInoCompressed(ni)) {
  1816. /* Only unnamed $DATA attribute can be compressed. */
  1817. BUG_ON(ni->type != AT_DATA);
  1818. BUG_ON(ni->name_len);
  1819. /*
  1820. * Reminder for later: If resident, the data is not
  1821. * actually compressed. Only on the switch to non-
  1822. * resident does compression kick in. This is in
  1823. * contrast to encrypted files (see above).
  1824. */
  1825. ntfs_error(vi->i_sb, "Writing to compressed files is "
  1826. "not implemented yet. Sorry.");
  1827. return -EOPNOTSUPP;
  1828. }
  1829. }
  1830. /*
  1831. * If a previous ntfs_truncate() failed, repeat it and abort if it
  1832. * fails again.
  1833. */
  1834. if (unlikely(NInoTruncateFailed(ni))) {
  1835. down_write(&vi->i_alloc_sem);
  1836. err = ntfs_truncate(vi);
  1837. up_write(&vi->i_alloc_sem);
  1838. if (err || NInoTruncateFailed(ni)) {
  1839. if (!err)
  1840. err = -EIO;
  1841. ntfs_error(vol->sb, "Cannot perform write to inode "
  1842. "0x%lx, attribute type 0x%x, because "
  1843. "ntfs_truncate() failed (error code "
  1844. "%i).", vi->i_ino,
  1845. (unsigned)le32_to_cpu(ni->type), err);
  1846. return err;
  1847. }
  1848. }
  1849. /* The first byte after the write. */
  1850. end = pos + count;
  1851. /*
  1852. * If the write goes beyond the allocated size, extend the allocation
  1853. * to cover the whole of the write, rounded up to the nearest cluster.
  1854. */
  1855. read_lock_irqsave(&ni->size_lock, flags);
  1856. ll = ni->allocated_size;
  1857. read_unlock_irqrestore(&ni->size_lock, flags);
  1858. if (end > ll) {
  1859. /* Extend the allocation without changing the data size. */
  1860. ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
  1861. if (likely(ll >= 0)) {
  1862. BUG_ON(pos >= ll);
  1863. /* If the extension was partial truncate the write. */
  1864. if (end > ll) {
  1865. ntfs_debug("Truncating write to inode 0x%lx, "
  1866. "attribute type 0x%x, because "
  1867. "the allocation was only "
  1868. "partially extended.",
  1869. vi->i_ino, (unsigned)
  1870. le32_to_cpu(ni->type));
  1871. end = ll;
  1872. count = ll - pos;
  1873. }
  1874. } else {
  1875. err = ll;
  1876. read_lock_irqsave(&ni->size_lock, flags);
  1877. ll = ni->allocated_size;
  1878. read_unlock_irqrestore(&ni->size_lock, flags);
  1879. /* Perform a partial write if possible or fail. */
  1880. if (pos < ll) {
  1881. ntfs_debug("Truncating write to inode 0x%lx, "
  1882. "attribute type 0x%x, because "
  1883. "extending the allocation "
  1884. "failed (error code %i).",
  1885. vi->i_ino, (unsigned)
  1886. le32_to_cpu(ni->type), err);
  1887. end = ll;
  1888. count = ll - pos;
  1889. } else {
  1890. ntfs_error(vol->sb, "Cannot perform write to "
  1891. "inode 0x%lx, attribute type "
  1892. "0x%x, because extending the "
  1893. "allocation failed (error "
  1894. "code %i).", vi->i_ino,
  1895. (unsigned)
  1896. le32_to_cpu(ni->type), err);
  1897. return err;
  1898. }
  1899. }
  1900. }
  1901. pagevec_init(&lru_pvec, 0);
  1902. written = 0;
  1903. /*
  1904. * If the write starts beyond the initialized size, extend it up to the
  1905. * beginning of the write and initialize all non-sparse space between
  1906. * the old initialized size and the new one. This automatically also
  1907. * increments the vfs inode->i_size to keep it above or equal to the
  1908. * initialized_size.
  1909. */
  1910. read_lock_irqsave(&ni->size_lock, flags);
  1911. ll = ni->initialized_size;
  1912. read_unlock_irqrestore(&ni->size_lock, flags);
  1913. if (pos > ll) {
  1914. err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
  1915. &lru_pvec);
  1916. if (err < 0) {
  1917. ntfs_error(vol->sb, "Cannot perform write to inode "
  1918. "0x%lx, attribute type 0x%x, because "
  1919. "extending the initialized size "
  1920. "failed (error code %i).", vi->i_ino,
  1921. (unsigned)le32_to_cpu(ni->type), err);
  1922. status = err;
  1923. goto err_out;
  1924. }
  1925. }
  1926. /*
  1927. * Determine the number of pages per cluster for non-resident
  1928. * attributes.
  1929. */
  1930. nr_pages = 1;
  1931. if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
  1932. nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
  1933. /* Finally, perform the actual write. */
  1934. last_vcn = -1;
  1935. if (likely(nr_segs == 1))
  1936. buf = iov->iov_base;
  1937. do {
  1938. VCN vcn;
  1939. pgoff_t idx, start_idx;
  1940. unsigned ofs, do_pages, u;
  1941. size_t copied;
  1942. start_idx = idx = pos >> PAGE_CACHE_SHIFT;
  1943. ofs = pos & ~PAGE_CACHE_MASK;
  1944. bytes = PAGE_CACHE_SIZE - ofs;
  1945. do_pages = 1;
  1946. if (nr_pages > 1) {
  1947. vcn = pos >> vol->cluster_size_bits;
  1948. if (vcn != last_vcn) {
  1949. last_vcn = vcn;
  1950. /*
  1951. * Get the lcn of the vcn the write is in. If
  1952. * it is a hole, need to lock down all pages in
  1953. * the cluster.
  1954. */
  1955. down_read(&ni->runlist.lock);
  1956. lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
  1957. vol->cluster_size_bits, FALSE);
  1958. up_read(&ni->runlist.lock);
  1959. if (unlikely(lcn < LCN_HOLE)) {
  1960. status = -EIO;
  1961. if (lcn == LCN_ENOMEM)
  1962. status = -ENOMEM;
  1963. else
  1964. ntfs_error(vol->sb, "Cannot "
  1965. "perform write to "
  1966. "inode 0x%lx, "
  1967. "attribute type 0x%x, "
  1968. "because the attribute "
  1969. "is corrupt.",
  1970. vi->i_ino, (unsigned)
  1971. le32_to_cpu(ni->type));
  1972. break;
  1973. }
  1974. if (lcn == LCN_HOLE) {
  1975. start_idx = (pos & ~(s64)
  1976. vol->cluster_size_mask)
  1977. >> PAGE_CACHE_SHIFT;
  1978. bytes = vol->cluster_size - (pos &
  1979. vol->cluster_size_mask);
  1980. do_pages = nr_pages;
  1981. }
  1982. }
  1983. }
  1984. if (bytes > count)
  1985. bytes = count;
  1986. /*
  1987. * Bring in the user page(s) that we will copy from _first_.
  1988. * Otherwise there is a nasty deadlock on copying from the same
  1989. * page(s) as we are writing to, without it/them being marked
  1990. * up-to-date. Note, at present there is nothing to stop the
  1991. * pages being swapped out between us bringing them into memory
  1992. * and doing the actual copying.
  1993. */
  1994. if (likely(nr_segs == 1))
  1995. ntfs_fault_in_pages_readable(buf, bytes);
  1996. else
  1997. ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
  1998. /* Get and lock @do_pages starting at index @start_idx. */
  1999. status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
  2000. pages, &cached_page, &lru_pvec);
  2001. if (unlikely(status))
  2002. break;
  2003. /*
  2004. * For non-resident attributes, we need to fill any holes with
  2005. * actual clusters and ensure all bufferes are mapped. We also
  2006. * need to bring uptodate any buffers that are only partially
  2007. * being written to.
  2008. */
  2009. if (NInoNonResident(ni)) {
  2010. status = ntfs_prepare_pages_for_non_resident_write(
  2011. pages, do_pages, pos, bytes);
  2012. if (unlikely(status)) {
  2013. loff_t i_size;
  2014. do {
  2015. unlock_page(pages[--do_pages]);
  2016. page_cache_release(pages[do_pages]);
  2017. } while (do_pages);
  2018. /*
  2019. * The write preparation may have instantiated
  2020. * allocated space outside i_size. Trim this
  2021. * off again. We can ignore any errors in this
  2022. * case as we will just be waisting a bit of
  2023. * allocated space, which is not a disaster.
  2024. */
  2025. i_size = i_size_read(vi);
  2026. if (pos + bytes > i_size)
  2027. vmtruncate(vi, i_size);
  2028. break;
  2029. }
  2030. }
  2031. u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
  2032. if (likely(nr_segs == 1)) {
  2033. copied = ntfs_copy_from_user(pages + u, do_pages - u,
  2034. ofs, buf, bytes);
  2035. buf += copied;
  2036. } else
  2037. copied = ntfs_copy_from_user_iovec(pages + u,
  2038. do_pages - u, ofs, &iov, &iov_ofs,
  2039. bytes);
  2040. ntfs_flush_dcache_pages(pages + u, do_pages - u);
  2041. status = ntfs_commit_pages_after_write(pages, do_pages, pos,
  2042. bytes);
  2043. if (likely(!status)) {
  2044. written += copied;
  2045. count -= copied;
  2046. pos += copied;
  2047. if (unlikely(copied != bytes))
  2048. status = -EFAULT;
  2049. }
  2050. do {
  2051. unlock_page(pages[--do_pages]);
  2052. mark_page_accessed(pages[do_pages]);
  2053. page_cache_release(pages[do_pages]);
  2054. } while (do_pages);
  2055. if (unlikely(status))
  2056. break;
  2057. balance_dirty_pages_ratelimited(mapping);
  2058. cond_resched();
  2059. } while (count);
  2060. err_out:
  2061. *ppos = pos;
  2062. if (cached_page)
  2063. page_cache_release(cached_page);
  2064. /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
  2065. if (likely(!status)) {
  2066. if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
  2067. if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
  2068. status = generic_osync_inode(vi, mapping,
  2069. OSYNC_METADATA|OSYNC_DATA);
  2070. }
  2071. }
  2072. pagevec_lru_add(&lru_pvec);
  2073. ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
  2074. written ? "written" : "status", (unsigned long)written,
  2075. (long)status);
  2076. return written ? written : status;
  2077. }
  2078. /**
  2079. * ntfs_file_aio_write_nolock -
  2080. */
  2081. static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
  2082. const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
  2083. {
  2084. struct file *file = iocb->ki_filp;
  2085. struct address_space *mapping = file->f_mapping;
  2086. struct inode *inode = mapping->host;
  2087. loff_t pos;
  2088. unsigned long seg;
  2089. size_t count; /* after file limit checks */
  2090. ssize_t written, err;
  2091. count = 0;
  2092. for (seg = 0; seg < nr_segs; seg++) {
  2093. const struct iovec *iv = &iov[seg];
  2094. /*
  2095. * If any segment has a negative length, or the cumulative
  2096. * length ever wraps negative then return -EINVAL.
  2097. */
  2098. count += iv->iov_len;
  2099. if (unlikely((ssize_t)(count|iv->iov_len) < 0))
  2100. return -EINVAL;
  2101. if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
  2102. continue;
  2103. if (!seg)
  2104. return -EFAULT;
  2105. nr_segs = seg;
  2106. count -= iv->iov_len; /* This segment is no good */
  2107. break;
  2108. }
  2109. pos = *ppos;
  2110. vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
  2111. /* We can write back this queue in page reclaim. */
  2112. current->backing_dev_info = mapping->backing_dev_info;
  2113. written = 0;
  2114. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  2115. if (err)
  2116. goto out;
  2117. if (!count)
  2118. goto out;
  2119. err = remove_suid(file->f_dentry);
  2120. if (err)
  2121. goto out;
  2122. file_update_time(file);
  2123. written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
  2124. count);
  2125. out:
  2126. current->backing_dev_info = NULL;
  2127. return written ? written : err;
  2128. }
  2129. /**
  2130. * ntfs_file_aio_write -
  2131. */
  2132. static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf,
  2133. size_t count, loff_t pos)
  2134. {
  2135. struct file *file = iocb->ki_filp;
  2136. struct address_space *mapping = file->f_mapping;
  2137. struct inode *inode = mapping->host;
  2138. ssize_t ret;
  2139. struct iovec local_iov = { .iov_base = (void __user *)buf,
  2140. .iov_len = count };
  2141. BUG_ON(iocb->ki_pos != pos);
  2142. mutex_lock(&inode->i_mutex);
  2143. ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos);
  2144. mutex_unlock(&inode->i_mutex);
  2145. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2146. int err = sync_page_range(inode, mapping, pos, ret);
  2147. if (err < 0)
  2148. ret = err;
  2149. }
  2150. return ret;
  2151. }
  2152. /**
  2153. * ntfs_file_writev -
  2154. *
  2155. * Basically the same as generic_file_writev() except that it ends up calling
  2156. * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
  2157. */
  2158. static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
  2159. unsigned long nr_segs, loff_t *ppos)
  2160. {
  2161. struct address_space *mapping = file->f_mapping;
  2162. struct inode *inode = mapping->host;
  2163. struct kiocb kiocb;
  2164. ssize_t ret;
  2165. mutex_lock(&inode->i_mutex);
  2166. init_sync_kiocb(&kiocb, file);
  2167. ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
  2168. if (ret == -EIOCBQUEUED)
  2169. ret = wait_on_sync_kiocb(&kiocb);
  2170. mutex_unlock(&inode->i_mutex);
  2171. if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
  2172. int err = sync_page_range(inode, mapping, *ppos - ret, ret);
  2173. if (err < 0)
  2174. ret = err;
  2175. }
  2176. return ret;
  2177. }
  2178. /**
  2179. * ntfs_file_write - simple wrapper for ntfs_file_writev()
  2180. */
  2181. static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
  2182. size_t count, loff_t *ppos)
  2183. {
  2184. struct iovec local_iov = { .iov_base = (void __user *)buf,
  2185. .iov_len = count };
  2186. return ntfs_file_writev(file, &local_iov, 1, ppos);
  2187. }
  2188. /**
  2189. * ntfs_file_fsync - sync a file to disk
  2190. * @filp: file to be synced
  2191. * @dentry: dentry describing the file to sync
  2192. * @datasync: if non-zero only flush user data and not metadata
  2193. *
  2194. * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
  2195. * system calls. This function is inspired by fs/buffer.c::file_fsync().
  2196. *
  2197. * If @datasync is false, write the mft record and all associated extent mft
  2198. * records as well as the $DATA attribute and then sync the block device.
  2199. *
  2200. * If @datasync is true and the attribute is non-resident, we skip the writing
  2201. * of the mft record and all associated extent mft records (this might still
  2202. * happen due to the write_inode_now() call).
  2203. *
  2204. * Also, if @datasync is true, we do not wait on the inode to be written out
  2205. * but we always wait on the page cache pages to be written out.
  2206. *
  2207. * Note: In the past @filp could be NULL so we ignore it as we don't need it
  2208. * anyway.
  2209. *
  2210. * Locking: Caller must hold i_mutex on the inode.
  2211. *
  2212. * TODO: We should probably also write all attribute/index inodes associated
  2213. * with this inode but since we have no simple way of getting to them we ignore
  2214. * this problem for now.
  2215. */
  2216. static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
  2217. int datasync)
  2218. {
  2219. struct inode *vi = dentry->d_inode;
  2220. int err, ret = 0;
  2221. ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
  2222. BUG_ON(S_ISDIR(vi->i_mode));
  2223. if (!datasync || !NInoNonResident(NTFS_I(vi)))
  2224. ret = ntfs_write_inode(vi, 1);
  2225. write_inode_now(vi, !datasync);
  2226. /*
  2227. * NOTE: If we were to use mapping->private_list (see ext2 and
  2228. * fs/buffer.c) for dirty blocks then we could optimize the below to be
  2229. * sync_mapping_buffers(vi->i_mapping).
  2230. */
  2231. err = sync_blockdev(vi->i_sb->s_bdev);
  2232. if (unlikely(err && !ret))
  2233. ret = err;
  2234. if (likely(!ret))
  2235. ntfs_debug("Done.");
  2236. else
  2237. ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
  2238. "%u.", datasync ? "data" : "", vi->i_ino, -ret);
  2239. return ret;
  2240. }
  2241. #endif /* NTFS_RW */
  2242. const struct file_operations ntfs_file_ops = {
  2243. .llseek = generic_file_llseek, /* Seek inside file. */
  2244. .read = generic_file_read, /* Read from file. */
  2245. .aio_read = generic_file_aio_read, /* Async read from file. */
  2246. .readv = generic_file_readv, /* Read from file. */
  2247. #ifdef NTFS_RW
  2248. .write = ntfs_file_write, /* Write to file. */
  2249. .aio_write = ntfs_file_aio_write, /* Async write to file. */
  2250. .writev = ntfs_file_writev, /* Write to file. */
  2251. /*.release = ,*/ /* Last file is closed. See
  2252. fs/ext2/file.c::
  2253. ext2_release_file() for
  2254. how to use this to discard
  2255. preallocated space for
  2256. write opened files. */
  2257. .fsync = ntfs_file_fsync, /* Sync a file to disk. */
  2258. /*.aio_fsync = ,*/ /* Sync all outstanding async
  2259. i/o operations on a
  2260. kiocb. */
  2261. #endif /* NTFS_RW */
  2262. /*.ioctl = ,*/ /* Perform function on the
  2263. mounted filesystem. */
  2264. .mmap = generic_file_mmap, /* Mmap file. */
  2265. .open = ntfs_file_open, /* Open file. */
  2266. .sendfile = generic_file_sendfile, /* Zero-copy data send with
  2267. the data source being on
  2268. the ntfs partition. We do
  2269. not need to care about the
  2270. data destination. */
  2271. /*.sendpage = ,*/ /* Zero-copy data send with
  2272. the data destination being
  2273. on the ntfs partition. We
  2274. do not need to care about
  2275. the data source. */
  2276. };
  2277. struct inode_operations ntfs_file_inode_ops = {
  2278. #ifdef NTFS_RW
  2279. .truncate = ntfs_truncate_vfs,
  2280. .setattr = ntfs_setattr,
  2281. #endif /* NTFS_RW */
  2282. };
  2283. const struct file_operations ntfs_empty_file_ops = {};
  2284. struct inode_operations ntfs_empty_inode_ops = {};