spi-tegra20-sflash.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636
  1. /*
  2. * SPI driver for Nvidia's Tegra20 Serial Flash Controller.
  3. *
  4. * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
  5. *
  6. * Author: Laxman Dewangan <ldewangan@nvidia.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <linux/clk.h>
  21. #include <linux/completion.h>
  22. #include <linux/delay.h>
  23. #include <linux/err.h>
  24. #include <linux/init.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/module.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/of.h>
  33. #include <linux/of_device.h>
  34. #include <linux/spi/spi.h>
  35. #include <linux/clk/tegra.h>
  36. #define SPI_COMMAND 0x000
  37. #define SPI_GO BIT(30)
  38. #define SPI_M_S BIT(28)
  39. #define SPI_ACTIVE_SCLK_MASK (0x3 << 26)
  40. #define SPI_ACTIVE_SCLK_DRIVE_LOW (0 << 26)
  41. #define SPI_ACTIVE_SCLK_DRIVE_HIGH (1 << 26)
  42. #define SPI_ACTIVE_SCLK_PULL_LOW (2 << 26)
  43. #define SPI_ACTIVE_SCLK_PULL_HIGH (3 << 26)
  44. #define SPI_CK_SDA_FALLING (1 << 21)
  45. #define SPI_CK_SDA_RISING (0 << 21)
  46. #define SPI_CK_SDA_MASK (1 << 21)
  47. #define SPI_ACTIVE_SDA (0x3 << 18)
  48. #define SPI_ACTIVE_SDA_DRIVE_LOW (0 << 18)
  49. #define SPI_ACTIVE_SDA_DRIVE_HIGH (1 << 18)
  50. #define SPI_ACTIVE_SDA_PULL_LOW (2 << 18)
  51. #define SPI_ACTIVE_SDA_PULL_HIGH (3 << 18)
  52. #define SPI_CS_POL_INVERT BIT(16)
  53. #define SPI_TX_EN BIT(15)
  54. #define SPI_RX_EN BIT(14)
  55. #define SPI_CS_VAL_HIGH BIT(13)
  56. #define SPI_CS_VAL_LOW 0x0
  57. #define SPI_CS_SW BIT(12)
  58. #define SPI_CS_HW 0x0
  59. #define SPI_CS_DELAY_MASK (7 << 9)
  60. #define SPI_CS3_EN BIT(8)
  61. #define SPI_CS2_EN BIT(7)
  62. #define SPI_CS1_EN BIT(6)
  63. #define SPI_CS0_EN BIT(5)
  64. #define SPI_CS_MASK (SPI_CS3_EN | SPI_CS2_EN | \
  65. SPI_CS1_EN | SPI_CS0_EN)
  66. #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
  67. #define SPI_MODES (SPI_ACTIVE_SCLK_MASK | SPI_CK_SDA_MASK)
  68. #define SPI_STATUS 0x004
  69. #define SPI_BSY BIT(31)
  70. #define SPI_RDY BIT(30)
  71. #define SPI_TXF_FLUSH BIT(29)
  72. #define SPI_RXF_FLUSH BIT(28)
  73. #define SPI_RX_UNF BIT(27)
  74. #define SPI_TX_OVF BIT(26)
  75. #define SPI_RXF_EMPTY BIT(25)
  76. #define SPI_RXF_FULL BIT(24)
  77. #define SPI_TXF_EMPTY BIT(23)
  78. #define SPI_TXF_FULL BIT(22)
  79. #define SPI_BLK_CNT(count) (((count) & 0xffff) + 1)
  80. #define SPI_FIFO_ERROR (SPI_RX_UNF | SPI_TX_OVF)
  81. #define SPI_FIFO_EMPTY (SPI_TX_EMPTY | SPI_RX_EMPTY)
  82. #define SPI_RX_CMP 0x8
  83. #define SPI_DMA_CTL 0x0C
  84. #define SPI_DMA_EN BIT(31)
  85. #define SPI_IE_RXC BIT(27)
  86. #define SPI_IE_TXC BIT(26)
  87. #define SPI_PACKED BIT(20)
  88. #define SPI_RX_TRIG_MASK (0x3 << 18)
  89. #define SPI_RX_TRIG_1W (0x0 << 18)
  90. #define SPI_RX_TRIG_4W (0x1 << 18)
  91. #define SPI_TX_TRIG_MASK (0x3 << 16)
  92. #define SPI_TX_TRIG_1W (0x0 << 16)
  93. #define SPI_TX_TRIG_4W (0x1 << 16)
  94. #define SPI_DMA_BLK_COUNT(count) (((count) - 1) & 0xFFFF);
  95. #define SPI_TX_FIFO 0x10
  96. #define SPI_RX_FIFO 0x20
  97. #define DATA_DIR_TX (1 << 0)
  98. #define DATA_DIR_RX (1 << 1)
  99. #define MAX_CHIP_SELECT 4
  100. #define SPI_FIFO_DEPTH 4
  101. #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
  102. struct tegra_sflash_data {
  103. struct device *dev;
  104. struct spi_master *master;
  105. spinlock_t lock;
  106. struct clk *clk;
  107. void __iomem *base;
  108. unsigned irq;
  109. u32 spi_max_frequency;
  110. u32 cur_speed;
  111. struct spi_device *cur_spi;
  112. unsigned cur_pos;
  113. unsigned cur_len;
  114. unsigned bytes_per_word;
  115. unsigned cur_direction;
  116. unsigned curr_xfer_words;
  117. unsigned cur_rx_pos;
  118. unsigned cur_tx_pos;
  119. u32 tx_status;
  120. u32 rx_status;
  121. u32 status_reg;
  122. u32 def_command_reg;
  123. u32 command_reg;
  124. u32 dma_control_reg;
  125. struct completion xfer_completion;
  126. struct spi_transfer *curr_xfer;
  127. };
  128. static int tegra_sflash_runtime_suspend(struct device *dev);
  129. static int tegra_sflash_runtime_resume(struct device *dev);
  130. static inline unsigned long tegra_sflash_readl(struct tegra_sflash_data *tsd,
  131. unsigned long reg)
  132. {
  133. return readl(tsd->base + reg);
  134. }
  135. static inline void tegra_sflash_writel(struct tegra_sflash_data *tsd,
  136. unsigned long val, unsigned long reg)
  137. {
  138. writel(val, tsd->base + reg);
  139. }
  140. static void tegra_sflash_clear_status(struct tegra_sflash_data *tsd)
  141. {
  142. /* Write 1 to clear status register */
  143. tegra_sflash_writel(tsd, SPI_RDY | SPI_FIFO_ERROR, SPI_STATUS);
  144. }
  145. static unsigned tegra_sflash_calculate_curr_xfer_param(
  146. struct spi_device *spi, struct tegra_sflash_data *tsd,
  147. struct spi_transfer *t)
  148. {
  149. unsigned remain_len = t->len - tsd->cur_pos;
  150. unsigned max_word;
  151. tsd->bytes_per_word = (t->bits_per_word - 1) / 8 + 1;
  152. max_word = remain_len / tsd->bytes_per_word;
  153. if (max_word > SPI_FIFO_DEPTH)
  154. max_word = SPI_FIFO_DEPTH;
  155. tsd->curr_xfer_words = max_word;
  156. return max_word;
  157. }
  158. static unsigned tegra_sflash_fill_tx_fifo_from_client_txbuf(
  159. struct tegra_sflash_data *tsd, struct spi_transfer *t)
  160. {
  161. unsigned nbytes;
  162. unsigned long status;
  163. unsigned max_n_32bit = tsd->curr_xfer_words;
  164. u8 *tx_buf = (u8 *)t->tx_buf + tsd->cur_tx_pos;
  165. if (max_n_32bit > SPI_FIFO_DEPTH)
  166. max_n_32bit = SPI_FIFO_DEPTH;
  167. nbytes = max_n_32bit * tsd->bytes_per_word;
  168. status = tegra_sflash_readl(tsd, SPI_STATUS);
  169. while (!(status & SPI_TXF_FULL)) {
  170. int i;
  171. unsigned int x = 0;
  172. for (i = 0; nbytes && (i < tsd->bytes_per_word);
  173. i++, nbytes--)
  174. x |= ((*tx_buf++) << i*8);
  175. tegra_sflash_writel(tsd, x, SPI_TX_FIFO);
  176. if (!nbytes)
  177. break;
  178. status = tegra_sflash_readl(tsd, SPI_STATUS);
  179. }
  180. tsd->cur_tx_pos += max_n_32bit * tsd->bytes_per_word;
  181. return max_n_32bit;
  182. }
  183. static int tegra_sflash_read_rx_fifo_to_client_rxbuf(
  184. struct tegra_sflash_data *tsd, struct spi_transfer *t)
  185. {
  186. unsigned long status;
  187. unsigned int read_words = 0;
  188. u8 *rx_buf = (u8 *)t->rx_buf + tsd->cur_rx_pos;
  189. status = tegra_sflash_readl(tsd, SPI_STATUS);
  190. while (!(status & SPI_RXF_EMPTY)) {
  191. int i;
  192. unsigned long x;
  193. x = tegra_sflash_readl(tsd, SPI_RX_FIFO);
  194. for (i = 0; (i < tsd->bytes_per_word); i++)
  195. *rx_buf++ = (x >> (i*8)) & 0xFF;
  196. read_words++;
  197. status = tegra_sflash_readl(tsd, SPI_STATUS);
  198. }
  199. tsd->cur_rx_pos += read_words * tsd->bytes_per_word;
  200. return 0;
  201. }
  202. static int tegra_sflash_start_cpu_based_transfer(
  203. struct tegra_sflash_data *tsd, struct spi_transfer *t)
  204. {
  205. unsigned long val = 0;
  206. unsigned cur_words;
  207. if (tsd->cur_direction & DATA_DIR_TX)
  208. val |= SPI_IE_TXC;
  209. if (tsd->cur_direction & DATA_DIR_RX)
  210. val |= SPI_IE_RXC;
  211. tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
  212. tsd->dma_control_reg = val;
  213. if (tsd->cur_direction & DATA_DIR_TX)
  214. cur_words = tegra_sflash_fill_tx_fifo_from_client_txbuf(tsd, t);
  215. else
  216. cur_words = tsd->curr_xfer_words;
  217. val |= SPI_DMA_BLK_COUNT(cur_words);
  218. tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
  219. tsd->dma_control_reg = val;
  220. val |= SPI_DMA_EN;
  221. tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
  222. return 0;
  223. }
  224. static int tegra_sflash_start_transfer_one(struct spi_device *spi,
  225. struct spi_transfer *t, bool is_first_of_msg,
  226. bool is_single_xfer)
  227. {
  228. struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master);
  229. u32 speed;
  230. unsigned long command;
  231. speed = t->speed_hz;
  232. if (speed != tsd->cur_speed) {
  233. clk_set_rate(tsd->clk, speed);
  234. tsd->cur_speed = speed;
  235. }
  236. tsd->cur_spi = spi;
  237. tsd->cur_pos = 0;
  238. tsd->cur_rx_pos = 0;
  239. tsd->cur_tx_pos = 0;
  240. tsd->curr_xfer = t;
  241. tegra_sflash_calculate_curr_xfer_param(spi, tsd, t);
  242. if (is_first_of_msg) {
  243. command = tsd->def_command_reg;
  244. command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
  245. command |= SPI_CS_VAL_HIGH;
  246. command &= ~SPI_MODES;
  247. if (spi->mode & SPI_CPHA)
  248. command |= SPI_CK_SDA_FALLING;
  249. if (spi->mode & SPI_CPOL)
  250. command |= SPI_ACTIVE_SCLK_DRIVE_HIGH;
  251. else
  252. command |= SPI_ACTIVE_SCLK_DRIVE_LOW;
  253. command |= SPI_CS0_EN << spi->chip_select;
  254. } else {
  255. command = tsd->command_reg;
  256. command &= ~SPI_BIT_LENGTH(~0);
  257. command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
  258. command &= ~(SPI_RX_EN | SPI_TX_EN);
  259. }
  260. tsd->cur_direction = 0;
  261. if (t->rx_buf) {
  262. command |= SPI_RX_EN;
  263. tsd->cur_direction |= DATA_DIR_RX;
  264. }
  265. if (t->tx_buf) {
  266. command |= SPI_TX_EN;
  267. tsd->cur_direction |= DATA_DIR_TX;
  268. }
  269. tegra_sflash_writel(tsd, command, SPI_COMMAND);
  270. tsd->command_reg = command;
  271. return tegra_sflash_start_cpu_based_transfer(tsd, t);
  272. }
  273. static int tegra_sflash_setup(struct spi_device *spi)
  274. {
  275. struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master);
  276. /* Set speed to the spi max fequency if spi device has not set */
  277. spi->max_speed_hz = spi->max_speed_hz ? : tsd->spi_max_frequency;
  278. return 0;
  279. }
  280. static int tegra_sflash_transfer_one_message(struct spi_master *master,
  281. struct spi_message *msg)
  282. {
  283. bool is_first_msg = true;
  284. int single_xfer;
  285. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  286. struct spi_transfer *xfer;
  287. struct spi_device *spi = msg->spi;
  288. int ret;
  289. msg->status = 0;
  290. msg->actual_length = 0;
  291. single_xfer = list_is_singular(&msg->transfers);
  292. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  293. INIT_COMPLETION(tsd->xfer_completion);
  294. ret = tegra_sflash_start_transfer_one(spi, xfer,
  295. is_first_msg, single_xfer);
  296. if (ret < 0) {
  297. dev_err(tsd->dev,
  298. "spi can not start transfer, err %d\n", ret);
  299. goto exit;
  300. }
  301. is_first_msg = false;
  302. ret = wait_for_completion_timeout(&tsd->xfer_completion,
  303. SPI_DMA_TIMEOUT);
  304. if (WARN_ON(ret == 0)) {
  305. dev_err(tsd->dev,
  306. "spi trasfer timeout, err %d\n", ret);
  307. ret = -EIO;
  308. goto exit;
  309. }
  310. if (tsd->tx_status || tsd->rx_status) {
  311. dev_err(tsd->dev, "Error in Transfer\n");
  312. ret = -EIO;
  313. goto exit;
  314. }
  315. msg->actual_length += xfer->len;
  316. if (xfer->cs_change && xfer->delay_usecs) {
  317. tegra_sflash_writel(tsd, tsd->def_command_reg,
  318. SPI_COMMAND);
  319. udelay(xfer->delay_usecs);
  320. }
  321. }
  322. ret = 0;
  323. exit:
  324. tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
  325. msg->status = ret;
  326. spi_finalize_current_message(master);
  327. return ret;
  328. }
  329. static irqreturn_t handle_cpu_based_xfer(struct tegra_sflash_data *tsd)
  330. {
  331. struct spi_transfer *t = tsd->curr_xfer;
  332. unsigned long flags;
  333. spin_lock_irqsave(&tsd->lock, flags);
  334. if (tsd->tx_status || tsd->rx_status || (tsd->status_reg & SPI_BSY)) {
  335. dev_err(tsd->dev,
  336. "CpuXfer ERROR bit set 0x%x\n", tsd->status_reg);
  337. dev_err(tsd->dev,
  338. "CpuXfer 0x%08x:0x%08x\n", tsd->command_reg,
  339. tsd->dma_control_reg);
  340. tegra_periph_reset_assert(tsd->clk);
  341. udelay(2);
  342. tegra_periph_reset_deassert(tsd->clk);
  343. complete(&tsd->xfer_completion);
  344. goto exit;
  345. }
  346. if (tsd->cur_direction & DATA_DIR_RX)
  347. tegra_sflash_read_rx_fifo_to_client_rxbuf(tsd, t);
  348. if (tsd->cur_direction & DATA_DIR_TX)
  349. tsd->cur_pos = tsd->cur_tx_pos;
  350. else
  351. tsd->cur_pos = tsd->cur_rx_pos;
  352. if (tsd->cur_pos == t->len) {
  353. complete(&tsd->xfer_completion);
  354. goto exit;
  355. }
  356. tegra_sflash_calculate_curr_xfer_param(tsd->cur_spi, tsd, t);
  357. tegra_sflash_start_cpu_based_transfer(tsd, t);
  358. exit:
  359. spin_unlock_irqrestore(&tsd->lock, flags);
  360. return IRQ_HANDLED;
  361. }
  362. static irqreturn_t tegra_sflash_isr(int irq, void *context_data)
  363. {
  364. struct tegra_sflash_data *tsd = context_data;
  365. tsd->status_reg = tegra_sflash_readl(tsd, SPI_STATUS);
  366. if (tsd->cur_direction & DATA_DIR_TX)
  367. tsd->tx_status = tsd->status_reg & SPI_TX_OVF;
  368. if (tsd->cur_direction & DATA_DIR_RX)
  369. tsd->rx_status = tsd->status_reg & SPI_RX_UNF;
  370. tegra_sflash_clear_status(tsd);
  371. return handle_cpu_based_xfer(tsd);
  372. }
  373. static void tegra_sflash_parse_dt(struct tegra_sflash_data *tsd)
  374. {
  375. struct device_node *np = tsd->dev->of_node;
  376. if (of_property_read_u32(np, "spi-max-frequency",
  377. &tsd->spi_max_frequency))
  378. tsd->spi_max_frequency = 25000000; /* 25MHz */
  379. }
  380. static struct of_device_id tegra_sflash_of_match[] = {
  381. { .compatible = "nvidia,tegra20-sflash", },
  382. {}
  383. };
  384. MODULE_DEVICE_TABLE(of, tegra_sflash_of_match);
  385. static int tegra_sflash_probe(struct platform_device *pdev)
  386. {
  387. struct spi_master *master;
  388. struct tegra_sflash_data *tsd;
  389. struct resource *r;
  390. int ret;
  391. const struct of_device_id *match;
  392. match = of_match_device(tegra_sflash_of_match, &pdev->dev);
  393. if (!match) {
  394. dev_err(&pdev->dev, "Error: No device match found\n");
  395. return -ENODEV;
  396. }
  397. master = spi_alloc_master(&pdev->dev, sizeof(*tsd));
  398. if (!master) {
  399. dev_err(&pdev->dev, "master allocation failed\n");
  400. return -ENOMEM;
  401. }
  402. /* the spi->mode bits understood by this driver: */
  403. master->mode_bits = SPI_CPOL | SPI_CPHA;
  404. master->setup = tegra_sflash_setup;
  405. master->transfer_one_message = tegra_sflash_transfer_one_message;
  406. master->auto_runtime_pm = true;
  407. master->num_chipselect = MAX_CHIP_SELECT;
  408. master->bus_num = -1;
  409. platform_set_drvdata(pdev, master);
  410. tsd = spi_master_get_devdata(master);
  411. tsd->master = master;
  412. tsd->dev = &pdev->dev;
  413. spin_lock_init(&tsd->lock);
  414. tegra_sflash_parse_dt(tsd);
  415. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  416. tsd->base = devm_ioremap_resource(&pdev->dev, r);
  417. if (IS_ERR(tsd->base)) {
  418. ret = PTR_ERR(tsd->base);
  419. goto exit_free_master;
  420. }
  421. tsd->irq = platform_get_irq(pdev, 0);
  422. ret = request_irq(tsd->irq, tegra_sflash_isr, 0,
  423. dev_name(&pdev->dev), tsd);
  424. if (ret < 0) {
  425. dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
  426. tsd->irq);
  427. goto exit_free_master;
  428. }
  429. tsd->clk = devm_clk_get(&pdev->dev, NULL);
  430. if (IS_ERR(tsd->clk)) {
  431. dev_err(&pdev->dev, "can not get clock\n");
  432. ret = PTR_ERR(tsd->clk);
  433. goto exit_free_irq;
  434. }
  435. init_completion(&tsd->xfer_completion);
  436. pm_runtime_enable(&pdev->dev);
  437. if (!pm_runtime_enabled(&pdev->dev)) {
  438. ret = tegra_sflash_runtime_resume(&pdev->dev);
  439. if (ret)
  440. goto exit_pm_disable;
  441. }
  442. ret = pm_runtime_get_sync(&pdev->dev);
  443. if (ret < 0) {
  444. dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
  445. goto exit_pm_disable;
  446. }
  447. /* Reset controller */
  448. tegra_periph_reset_assert(tsd->clk);
  449. udelay(2);
  450. tegra_periph_reset_deassert(tsd->clk);
  451. tsd->def_command_reg = SPI_M_S | SPI_CS_SW;
  452. tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
  453. pm_runtime_put(&pdev->dev);
  454. master->dev.of_node = pdev->dev.of_node;
  455. ret = devm_spi_register_master(&pdev->dev, master);
  456. if (ret < 0) {
  457. dev_err(&pdev->dev, "can not register to master err %d\n", ret);
  458. goto exit_pm_disable;
  459. }
  460. return ret;
  461. exit_pm_disable:
  462. pm_runtime_disable(&pdev->dev);
  463. if (!pm_runtime_status_suspended(&pdev->dev))
  464. tegra_sflash_runtime_suspend(&pdev->dev);
  465. exit_free_irq:
  466. free_irq(tsd->irq, tsd);
  467. exit_free_master:
  468. spi_master_put(master);
  469. return ret;
  470. }
  471. static int tegra_sflash_remove(struct platform_device *pdev)
  472. {
  473. struct spi_master *master = platform_get_drvdata(pdev);
  474. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  475. free_irq(tsd->irq, tsd);
  476. pm_runtime_disable(&pdev->dev);
  477. if (!pm_runtime_status_suspended(&pdev->dev))
  478. tegra_sflash_runtime_suspend(&pdev->dev);
  479. return 0;
  480. }
  481. #ifdef CONFIG_PM_SLEEP
  482. static int tegra_sflash_suspend(struct device *dev)
  483. {
  484. struct spi_master *master = dev_get_drvdata(dev);
  485. return spi_master_suspend(master);
  486. }
  487. static int tegra_sflash_resume(struct device *dev)
  488. {
  489. struct spi_master *master = dev_get_drvdata(dev);
  490. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  491. int ret;
  492. ret = pm_runtime_get_sync(dev);
  493. if (ret < 0) {
  494. dev_err(dev, "pm runtime failed, e = %d\n", ret);
  495. return ret;
  496. }
  497. tegra_sflash_writel(tsd, tsd->command_reg, SPI_COMMAND);
  498. pm_runtime_put(dev);
  499. return spi_master_resume(master);
  500. }
  501. #endif
  502. static int tegra_sflash_runtime_suspend(struct device *dev)
  503. {
  504. struct spi_master *master = dev_get_drvdata(dev);
  505. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  506. /* Flush all write which are in PPSB queue by reading back */
  507. tegra_sflash_readl(tsd, SPI_COMMAND);
  508. clk_disable_unprepare(tsd->clk);
  509. return 0;
  510. }
  511. static int tegra_sflash_runtime_resume(struct device *dev)
  512. {
  513. struct spi_master *master = dev_get_drvdata(dev);
  514. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  515. int ret;
  516. ret = clk_prepare_enable(tsd->clk);
  517. if (ret < 0) {
  518. dev_err(tsd->dev, "clk_prepare failed: %d\n", ret);
  519. return ret;
  520. }
  521. return 0;
  522. }
  523. static const struct dev_pm_ops slink_pm_ops = {
  524. SET_RUNTIME_PM_OPS(tegra_sflash_runtime_suspend,
  525. tegra_sflash_runtime_resume, NULL)
  526. SET_SYSTEM_SLEEP_PM_OPS(tegra_sflash_suspend, tegra_sflash_resume)
  527. };
  528. static struct platform_driver tegra_sflash_driver = {
  529. .driver = {
  530. .name = "spi-tegra-sflash",
  531. .owner = THIS_MODULE,
  532. .pm = &slink_pm_ops,
  533. .of_match_table = tegra_sflash_of_match,
  534. },
  535. .probe = tegra_sflash_probe,
  536. .remove = tegra_sflash_remove,
  537. };
  538. module_platform_driver(tegra_sflash_driver);
  539. MODULE_ALIAS("platform:spi-tegra-sflash");
  540. MODULE_DESCRIPTION("NVIDIA Tegra20 Serial Flash Controller Driver");
  541. MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
  542. MODULE_LICENSE("GPL v2");